Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices
Directory of Open Access Journals (Sweden)
Suwimon Ruengsri
2014-01-01
Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.
Deep-Earth Equilibration between Molten Iron and Solid Silicates
Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.
2017-12-01
Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.
Energy Technology Data Exchange (ETDEWEB)
Sharaf El-Deen, A N; El-Dessouky, M M; Helmy, M A [Petroleum Research Institue, Academy of Scientific Research, Nasr City, Cairo (Egypt); Abed Raouf, M W; El-Dessouky, M I [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt)
1995-10-01
In this study, simulated liquid waste and radioactive tracers of Cs-137 and Co-60 were used to represent the high-level liquid waste (HLLW). immobilization of the liquid waste was performed by its interaction with commercial sodium silicate hydrosol to the gel point, at room temperature. The candidate waste forms forms were fabricated from the obtained hydrogel through several steps including: drying the hydrogel to a solid gel form, crushing the solid to be in a powder from, pressing the powder to the green disk form using a cold pressing technique and finally the heat treatment of the green disks to the sintered form. Characterization for the obtained waste forms was carried out using: thermal analysis (TGA and DTA), X-ray powder diffraction (XRD) techniques and porosity investigation. The leach tests for the prepared forms were conducted according to the international atomic energy agency (IAEA) standard test (static and accelerated). The static test was carried out for simulated and radioactive waste in distilled, bidistilled and ground water for 28 days. The accelerated (Soxhlet) test was conducted for simulated waste in deionized water for 72 hours. 4 figs., 7 tabs.
Evaluation of apatite silicates as solid oxide fuel cell electrolytes
Energy Technology Data Exchange (ETDEWEB)
Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)
2010-05-01
Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)
Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices
Ruengsri, Suwimon
2014-01-01
Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...
International Nuclear Information System (INIS)
Bonfils, J. de
2007-09-01
This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu 3+ and Nd 3+ ). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10 13 at.cm -2 , which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)
Chromium speciation in solid matrices and regulation: a review
Energy Technology Data Exchange (ETDEWEB)
Unceta, N. [University of the Basque Country, Department of Analytical Chemistry, Faculty of Pharmacy, Vitoria-Gasteiz (Spain); Seby, F. [Ultra Traces Analyses Aquitaine (UT2A), Helioparc Pau-Pyrenees, Pau (France); Malherbe, J.; Donard, O.F.X. [Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM, UMR CNRS 5254, Pau (France)
2010-06-15
In recent years, the extensive use of chromium in industrial processes has led to the promotion of several directives and recommendations by the European Union, that try to limit and regulate the presence of Cr(VI) in the environment and to protect industrial workers using chromium and end-users of manufactured products. As a consequence, new standard methods and analytical procedures have been published at the EU level for Cr(VI) determination in soil, sludge, sediment, and similar waste materials, workplace atmospheres, cement, packaging materials, industrially produced samples, and corrosion-protection layers on some components of vehicles and electrical and electronic equipment. The objective of this article is to summarize the different directives and recommendations and to critically review the currently existing standard methods and the methods published in the literature for chromium speciation in the above mentioned solid matrices, putting the emphasis on the different extraction procedures which have been developed for each matrix. Particular attention has been paid to Cr(III) and Cr(VI) inter-conversions that can occur during extraction and efforts to minimize these unwanted reactions. Although the use of NaOH-Na{sub 2}CO{sub 3} solutions with hot plate extraction seems to be the more widespread procedure, species transformation can still occur and several studies suggest that speciated isotope-dilution mass spectrometry (SIDMS) could be a suitable tool for correction of these interconversions. Besides, recent studies have proved the role of Cr(III) in chromium toxicology. As a consequence, the authors suggest an update of standard methods in the near future. (orig.)
Directory of Open Access Journals (Sweden)
Spas Artarsky
2006-01-01
Full Text Available The aim of the present investigation was to immobilize zinc phthalocyanines in a silicate matrix and to test the photobactericidal properties of the matrices so prepared toward Esherichia coli in model aqueous media. For the purpose, tetra tertiary butyl zinc phthalocyanine (TBZnPc and zinc phthalocyanine tetrasulfonic acid (ZnPcTS were used. The abilities of these two photosensitizers to generate singlet oxygen in solution were compared by following the rate of photobleaching of 1,3-diphenylisobenzofuran (DPBF at 430 nm in dimethylformamide (DMF.The results of this study show clearly that, under the conditions used here, the TBZnPc is the more effective generator of singlet oxygen; with it the DPBF was virtually completely photobleached in 4 min, while with the ZnPcTS under the same conditions, it took 12 min to reach this point. Glass conjugates with the two phthalocyanines were obtained by the sol-gel technique and were characterized by a well-defined color due to the phthalocyanine incorporated in the silicate matrix. Glasses with an intense, but inhomogeneous, green color were obtained when the tetrasulfonic derivative of the zinc phthalocyanine was used, while blue glasses of evenly distributed coloration were formed from the tetra tertiary butyl derivative.The ZnPcTS conjugate demonstrates more effective singlet oxygen evolution than is the case with the TBZnPc conjugate. These results are the opposite of those obtained for the free phthalocyanines in solution. The structural formulae of the compounds show that TBZnPc has a more pronounced hydrophobic character than the sulfonic derivative. In our view, the relative reactivities of the conjugates can be explained by the tetrasulfonic derivative being situated mainly in the surface parts of the glass matrix where the hydrophilic character is prevailing, while the tertiary butyl derivative is mainly present in the internal parts of the matrix as a result of which it is less accessible and
Solid-phase extraction (SPE) of Iron using Lanthanum Silicate ion exchange
International Nuclear Information System (INIS)
Kiarostami, V.; Husain, W.
2002-01-01
Solid-phase extraction (SPE) is gaining wide use as an effective and speedy technique which reduces solvent usage, disposal costs and extraction time. The analyte is adsorbed from solution onto a solid adsorbent, which is followed by elution of the analyte with a solvent appropriate for instrumental analysis. However, there is an increasing need for new selective adsorbents to expand the area of this technique. Lanthanum silicate ion exchanger, which shows unusual selectivity elements and in this study, it was employed to develop a SPE method for iron ion. Special experiments such as determination of distribution coefficient for iron ion in different solvent systems have been determined
Subcritical-Water Extraction of Organics from Solid Matrices
Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles
2009-01-01
An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.
Bayliss, Ryan D.; Cook, Stuart N.; Scanlon, David O.; Fearn, Sarah; Cabana, Jordi; Greaves, Colin; Kilner, John A.; Skinner, Stephen J.
2014-01-01
© the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is
Bayliss, Ryan D.
2014-09-24
© the Partner Organisations 2014. Recent reports of remarkably high oxide ion conduction in a new family of strontium silicates have been challenged. It has recently been demonstrated that, in the nominally potassium substituted strontium germanium silicate material, the dominant charge carrier was not the oxygen ion, and furthermore that the material was not single phase (R. D. Bayliss et. al., Energy Environ. Sci., 2014, DOI: 10.1039/c4ee00734d). In this work we re-investigate the sodium-doped strontium silicate material that was reported to exhibit the highest oxide ion conductivity in the solid solution, nominally Sr0.55Na0.45SiO2.775. The results show lower levels of total conductivity than previously reported and sub-micron elemental mapping demonstrates, in a similar manner to that reported for the Sr0.8K0.2Si0.5Ge0.5O2.9 composition, an inhomogeneous chemical distribution correlating with a multiphase material. It is also shown that the conductivity is not related to protonic mobility. A density functional theory computational approach provides a theoretical justification for these new results, related to the high energetic costs associated with oxygen vacancy formation. This journal is
International Nuclear Information System (INIS)
Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi
2010-01-01
Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g -1 , 141-237 ng g -1 and 413-755 ng g -1 , respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (< C8) in some individual cases, PFOA and PFOS were still the major pollution compounds in most cases and they constituted 2-34% and 1-9% of the total PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.
Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi
2010-01-01
Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g(-1), 141-237 ng g(-1) and 413-755 ng g(-1), respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.
Dispersion of Silicate in Tricalcium Phosphate Elucidated by Solid-State NMR
Energy Technology Data Exchange (ETDEWEB)
Rewal, A.; Wei, X.; Akinc, M.; Schmidt-Rohr, K.
2008-03-12
The dispersion of silicate in tricalcium phosphate, a resorbable bioceramics for bone replacement, has been investigated by various solid-state nuclear magnetic resonance (NMR) methods. In samples prepared with 5 and 10 mol% of both {sup 29}SiO{sub 2} and ZnO, three types of silicate have been detected: (i) SiO{sub 4}{sup 4-} (Q{sub 0} sites) with long longitudinal (T{sub 1,Si}) relaxation times ({approx} 10,000 s), which substitute for {approx}1% of PO{sub 4}{sup 3-}; (ii) silicate nanoinclusions containing Q{sub 2}, Q{sub 1}, and Q{sub 0} sites with T{sub 1,Si} 100 s, which account for most of the silicon; and (iii) crystalline Q{sub 4} (SiO{sub 2}) with long T{sub 1,Si}. Sensitivity was enhanced >100-fold by {sup 29}Si enrichment and refocused detection. The inclusions in both samples have a diameter of {approx}8 nm, as proved by {sup 29}Si{l_brace}{sup 31}P{r_brace} REDOR dephasing on a 30-ms time scale, which was simulated using a multispin approach specifically suited for nanoparticles. {sup 29}Si CODEX NMR with 30-s {sup 29}Si spin diffusion confirms that an inclusion contains >10 Si (consistent with the REDOR result of >100 Si per inclusion). Overlapping signals of silicate Q{sub 2}, Q{sub 1}, and Q{sub 0} sites were spectrally edited based on their J-couplings, using double-quantum filtering. The large inhomogeneous broadening of the Q{sub 2}, Q{sub 1}, and Q{sub 0} {sup 29}Si subspectra indicates that the nanoinclusions are amorphous.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.
Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J
2013-10-15
Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.
2016-04-01
QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid - Phase Extraction Ultra-Performance Liquid Chromatography...QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–TIME-OF-FLIGHT MASS
Mashile, Geaneth Pertunia; Nomngongo, Philiswa N
2017-03-04
Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.
Radiation-induced transformations of isolated organic molecules in solid rare gas matrices
International Nuclear Information System (INIS)
Feldman, V.I.
1998-01-01
Complete text of publication follows. The studies of radiation-chemical behaviour of isolated organic molecules in rigid inert media are of considerable interest for radiation chemistry and general structural chemistry. Previous efforts were limited to the ESR studies of radicals resulting from some small hydrocarbon molecules in frozen rare gas solutions. Recently, we developed an approach to the radiation chemistry of isolated organic molecules using classic matrix isolation procedure for sample preparation and a combination of ESR and IR spectroscopy for characterization of paramagnetic and diamagnetic species resulting form electron irradiation or organic molecules in solid rare gas matrices at 10-15 K. The results obtained reveal high efficiency of energy transfer from rare gas matrix to organic molecules. The total radiation-chemical yields of degradation of organic molecules in argon and xenon matrices were measured directly by IR spectroscopy. The studies of the effect of electron scavengers on the radiolysis of organic molecules in solid rare gases show that the main primary process is positive hole transfer from matrix to additive molecule. ESR spectra of a number of radical cations (alkanes, ethers, arenes) were first characterized in a low-disturbing environment. It was found that the electronic characteristics (IP, polarizability) of the matrix used had crucial effect on trapping and degradation of primary organic radical cations. Using matrices with various IP provides an unique possibility to examine the chemical meaning of excess energy resulting from exothermic positive hole transfer, that is, to follow the fate of excited cations in condensed phase
Development of a protocol to measure iron-55 in solid matrices in the environment
International Nuclear Information System (INIS)
Augeray, Céline; Magalie, Mouton; Nathalie, Broustet; Marie-France, Perdereau; Chloé, Laconici; Jeanne, Loyen; Corinne, Fayolle; Jean-Louis, Picolo
2015-01-01
The development of metrology of iron-55 in low-level radioactivity in environmental solid matrices was realised for conducting radioecological studies. A protocol was developed based on the adaptation of existing methods for the purification of iron-55 with selective chromatographic resin, which was then measured with liquid scintillation. The loss attached treatment chemical steps were quantified with elemental iron by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The tests were used to define the iron retention capacity of selective chromatographic resin, a key element in chemical treatment, and test sample size needed to reach the detection limit of 30 Bq kg −1 dry. The solid samples were analysed with the developed protocol. The activities obtained from iron-55 were below the detection limit of 30 Bq kg −1 dry. - Highlights: • To obtain the desired detection limit in environmental solid matrices, the choice of method was realised. • A protocol was thus developed with our resources to obtain a 30 Bq kg-1 dry detection limit. • The optimisation of the operating conditions is described and the activities obtained are presented
International Nuclear Information System (INIS)
LaVerne, J.A.
1998-01-01
'This project uses fundamental radiation chemical techniques to elucidate the basic processes occurring in the heavy-ion radiolysis of solid hydrocarbon matrices such as polymers and organic resins that are associated with many of the transuranic waste deposits or the transportation of these radionuclides. The environmental management of mixed waste containing transuranic radionuclides is difficult because these nuclides are alpha particle emitters and the energy deposited by the alpha particles causes chemical transformations in the matrices accompanying the waste. Most radiolysis programs focus on conventional radiation such as gamma rays, but the chemical changes induced by alpha particles and other heavy ions are typically very different and product yields can vary by more than an order of magnitude. The objective of this research is to measure the production of gases, especially molecular hydrogen, produced in the proton, helium ion, and carbon ion radiolysis of selected solid organic matrices in order to obtain fundamental mechanistic information on the radiolytic decomposition of these materials. This knowledge can also be used to directly give reasonable estimates of explosive or flammability hazards in the storage or transport of transuranic wastes in order to enhance the safety of DOE sites. This report summarizes the work after eight months of a three-year project on determining the production of hazardous gases in transuranic waste. The first stage of the project was to design and build an assembly to irradiate solid organic matrices using accelerated ion beams. It is necessary to measure absolute radiolytic yields, and simulate some of the conditions found in the field. A window assembly was constructed allowing the beam to pass consecutively through a collimator, a vacuum exit window and into the solid sample. The beam is stopped in the sample and the entire end of the assembly is a Faraday cup. Integration of the collected current, in conjunction
Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin
2016-01-01
Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.
Rogacheva, Svetlana M.; Shipovskaya, Anna B.; Volkova, Elena V.; Khurshudyan, Grachia N.; Suska-Malawska, Malgorzata; Gubina, Tamara I.
2018-04-01
The spectral-kinetic characteristics of luminescence of 17 polycyclic aromatic hydrocarbons (PAH) sorbed from a "water-organic solvent" medium on cellulose diacetate (CDA) matrices were studied. A significant increase in the fluorescence signal on the CDA matrix was observed for 13 PAHs in comparison with aqueous solutions. The highest detection sensitivity was found for pyrene, benzo(a)pyrene, and benzo(k)fluoranthene. The fluorescence spectra of two PAH indicator pairs (anthracene-phenanthrene and pyrene-fluoranthene) used to control toxicant emission sources were studied with the simultaneous presence of isomers in the analyte, depending on the excitation wavelength. For both isomer pairs, it has been found that the spectra of their solid-state luminescence overlap insignificantly, the characteristic peaks do not coincide and do not overlap, the sensitivities of detection are close to each other, which makes it possible to consider this technique as promising to control PAH contamination sources.
Carbonate formation in non-aqueous environments by solid-gas carbonation of silicates
Day, S. J.; Thompson, S. P.; Evans, A.; Parker, J. E.
2012-02-01
We have produced synthetic analogues of cosmic silicates using the Sol Gel method, producing amorphous silicates of composition Mg(x)Ca(1-x)SiO3. Using synchrotron X-ray powder diffraction on Beamline I11 at the Diamond Light Source, together with a newly-commissioned gas cell, real-time powder diffraction scans have been taken of a range of silicates exposed to CO2 under non-ambient conditions. The SXPD is complemented by other techniques including Raman and Infrared Spectroscopy and SEM imaging.
Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices
International Nuclear Information System (INIS)
Schlyer, D.
2000-01-01
Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive
International Nuclear Information System (INIS)
Kobzarenko, A.V.; Sukhov, F.F.; Orlov, A.Yu.; Kovalev, G.V.; Baranova, I.A.; Feldman, V.I.
2012-01-01
The effect of excess energy on the primary radical cations of bifunctional carbonyl compounds and aliphatic alkynes was simulated by matrix isolation method using rare gas matrices with various ionization potentials. The formation of fragmentation products was monitored by EPR and FTIR spectroscopy. It was shown that the radical cations of bifunctional compounds (CH 3 OCH 2 COCH 3 and CH 3 COCOCH 3 ) dissociated effectively yielding · CH 3 radicals upon irradiation in solid argon matrix at T≤16 K. In addition to isolated methyl radicals, the radical pairs consisting of two methyl radicals separated by two CO molecules were detected in the case of diacetyl. The probability of fragmentation decreases with the decreasing excess energy by switching from Ar to Xe. In general, bifunctional molecules were found to be less stable to “hot” ionic fragmentation in low-temperature solids in comparison with simple prototype compounds. In the case of alkynes of the R--C≡CH type, a noticeable yield of fragmentation products was observed when R=–C(CH 3 ) 3 , but it was negligible for R=–CH 3 . The mechanisms of “hot” reactions and excess energy relaxation are discussed. - Highlights: ► Radiolysis of bifunctional organic compounds and alkynes. ► Dependence of “hot” fragmentation probability from molecular structure. ► Ions of bifunctional compounds are less stable than those of monofunctional ones. ► Alkynes are rather stable to “hot” fragmentation.
Directory of Open Access Journals (Sweden)
Lee Yook Heng
2017-11-01
Full Text Available New membrane materials based on cross-linked poly(n-butyl acrylate (nBA, have been used successfully as calcium ion-selective membranes. These membrane materials possess selfplasticising property and hence do not require plasticisers. The photocurability and good adhesion characteristics of these polymer matrices enable workable solid-state calcium ion sensors to be fabricated by simple photocure procedures employing the calcium ionophore ETH5234 and a lipophilic additive as ion sensing components. The calcium ion-selectivity of the sensors can be controlled by varying the chemical composition of the photocured membrane. An optimum amount of the cross-linker 2,2-hexanedioldiacrylate (HDDA and the incorporation of n-heptyl acrylate (nHA led to improvement in the calcium ion-selectivity. The best calcium ion-selectivity was obtained from a copolymer membrane with composition: nBA = 74 wt-%, nHA = 20 wt-% and HDDA = 0.1 wt-%. The selectivity coefficients of calcium over major cations were: LogKCaPot,Na= -4.4, LogKCaPot,K = -3.6, LogKCa,PotLi = -5.9, LogKCaPot,Mg= -4.4 with a Nernstian slope (29.1 ± 0.8 mV/decade under buffered conditions. This potentiometric performance is comparable to other solid-state calcium ion sensors with various plasticised polymer membranes.
International Nuclear Information System (INIS)
Jin, Geng Bang; Soderholm, L.
2015-01-01
Colorless crystals of ThSiO 4 (huttonite) (1) and (Ca 0.5 Na 0.5 ) 2 NaThSi 8 O 20 (2) have been synthesized by the solid-state reactions of ThO 2 , CaSiO 3 , and Na 2 WO 4 at 1073 K. Green crystals of (Ca 0.5 Na 0.5 ) 2 NaUSi 8 O 20 (3) have been synthesized by the solid-state reactions of UO 2 , CaSiO 3 , and Na 2 WO 4 at 1003 K. All three compounds have been characterized by single-crystal X-ray diffraction. Compound 1 adopts a monazite-type three-dimensional condensed structure, which is built from edge- and corner-shared ThO 9 polyhedra and SiO 4 tetrahedra. Compounds 2 and 3 are isostructural and they crystallize in a steacyite-type structure. The structure consists of discrete pseudocubic [Si 8 O 20 ] 8− polyanions, which are connected by An 4+ cations into a three-dimensional framework. Each An atom coordinates to eight monodentate [Si 8 O 20 ] 8− moieties in a square antiprismatic geometry. Na + and Ca 2+ ions reside in the void within the framework. Raman spectra of 1, 2, and 3 were collected on single crystal samples. 1 displays more complex vibrational bands than thorite. Raman spectra of 2 and 3 are analogous with most of vibrational bands located at almost the same regions. - Graphical abstract: A Raman spectrum and crystal structures of (Ca 0.5 Na 0.5 ) 2 NaAnSi 8 O 20 (An=Th, U), which contain pseudocubic [Si 8 O 20 ] 8− polyanions and eight-coordinate An 4+ cations. - Highlights: • Single crystal growth of three tetravalent actinide silicates from melts. • Single-crystal structures and Raman spectra of (Ca 0.5 Na 0.5 ) 2 NaAnSi 8 O 20 (An=Th, U). • First report of Raman spectrum of huttonite on single crystal samples
Activity of NaOH buffered by silicate solids in molten sodium acetate-water at 3170C
International Nuclear Information System (INIS)
Weres, O.; Tsao, L.
1988-01-01
Silica and sodium acetate are present in the steam generator tube sheet crevices of many nuclear power plants. Trace solutes in the condensate are tremendously concentrated in the crevices by boiling. Sparingly soluble sodium silicates and other solids precipitate from the crevice liquid leaving an extremely concentrated molten mixture of water, sodium acetate and other salts. The precipitates buffer the activity of sodium hydroxide in the superheated liquid that remains. The activity of NaOH corresponding to the buffers quartz/sodium disilicate and sodium disilicate/sodium metasilicate at 317 0 C has been determined experimentally. The sodium hydroxide content of a sodium acetate-water melt buffered by these reactions was determined by chemical analysis, and the corresponding activity of NaOH at temperature was calculated using the recently published Pitzer-Simonson Model of molten salt-water mixtures. The molten mixture of sodium acetate and water plays the role solvent in these experiments and calculations. The free energies of formation of solid sodium silicates at 317 0 C were also determined. The activity of NaOH corresponding to other silicate and phosphate buffers was calculated using published thermodynamic data and estimated from phase diagrams
International Nuclear Information System (INIS)
Kobrazenko, A.V.; Sukhov, F.F.; Orlov, A.Yu.; Kovalev, G.V.; Baranova, I.A.; Feldman, V.I.
2011-01-01
Complete text of publication follows. Elucidation of high-energy reaction pathways in the condensed phase is an important issue for basic understanding of the radiation stability of complex organic molecules. As was shown previously, organic radical cations (RC) may undergo fragmentation or rearrangement in solid matrices due to excess energy. The probability of this process depends on both ionization potential (IP) of the molecule and molecular structure. In the present work we have studied the role of 'hot' ionic reaction channels for RC of some bifunctional compounds and alkynes. The effect of excess energy was simulated by matrix isolation method as described in detail earlier. The formation of fragmentation products was monitored by EPR and FTIR spectroscopy. In the present work it was shown that the RC of bifunctional compounds (CH 3 OCH 2 COCH 3 , CH 3 CO(CH 2 ) n COCH 3 , n 0/2) dissociated efficiently producing · CH 3 radicals upon irradiation in solid argon matrix at T ≤ 16 K. The probability of fragmentation decreases with decrease of excess energy by switching from Ar to Xe. It is worth noting that acetone RC does not show fragmentation under these conditions. Thus, bifunctional molecules were found to be less stable to 'hot' ionic fragmentation in low-temperature solids in comparison with simple prototype carbonyl compounds. In the case of alkynes of the R-C ≡ CH type, a noticeable yield of fragmentation products was observed when R = -C(CH 3 ) 3 , but it was negligible for R = -CH 3 . It means that the presence of triple bond stabilizes the molecular skeleton of linear alkynes toward 'hot' fragmentation, similarly as it was shown for alkenes. The mechanisms of 'hot' reactions and excess energy relaxation are discussed. This work was supported by the Russian Foundation for Basic Research (project 09-03-00848a).
An experimental device for measurement of gas permeation in solid matrices
International Nuclear Information System (INIS)
De Salve, M.; Mazzi, E.; Zucchetti, M.
1996-01-01
The inventory in and the permeation through fusion reactor structures of hydrogen and its isotopes play an important role in the machine operation, evolution of material properties, and safety. An experimental and research activity for the determination of permeability (and derived parameters) of gases in solid matrices is described. It uses a gas permeation method, that basically consists in the measure of the time evolution of the gas pressure in a chamber in which vacuum has been previously made (downstream volume). This chamber is separated from another one, full of the gas in exam (upstream volume), by means of a membrane of the material under study. The experimental installation is described. The first stage of the experimental activity has dealt with the set-up of the device, the volume calibration, and the definition of the parameters range for which the installation can give reliable measurements. The subsequent stage of the activity has consisted in the measurement of the permeability, and then of the diffusion coefficient, of nitrogen in some materials at room temperature. Concurrently with the experimental activity, a model has been set-up and implemented in a computer code: this code permits to evaluate the time evolution of the pressure in the downstream chamber. With this code, using the measured parameters, the time evolution of the pressure experimentally measured has been satisfactorily reproduced. (author)
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara
2004-01-23
High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.
Energy Technology Data Exchange (ETDEWEB)
Sahu, Ishwar Prasad, E-mail: ishwarprasad1986@gmail.com [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandrakar, Priya; Baghel, R.N.; Bisen, D.P.; Brahme, Nameeta [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Tamrakar, Raunak Kumar [Department of Applied Physics, Bhilai Institute of Technology, Durg, C.G. 491001 (India)
2015-11-15
Dysprosium doped calcium magnesium silicate (CaMgSi{sub 2}O{sub 6}:Dy{sup 3+}) white light emitting phosphor was synthesized by solid state reaction process. The crystal structure of sintered phosphor was monoclinic structure with space group C2/c. Chemical composition of the sintered CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was confirmed by EDX. The prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was excited from 352 nm and their corresponding emission spectra were recorded at blue (470 nm), yellow (570 nm) and red (675 nm) line due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 11/2} transitions of Dy{sup 3+} ions. The combination of these three emissions constituted as white light confirmed by the Commission Internationale de L'Eclairage (CIE) chromatic coordinate diagram. The possible mechanism of the white light emitting long lasting CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was also investigated. Investigation on afterglow property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. Thus the present investigation indicates that the local piezoelectricity-induced electron bombardment model is responsible to produce ML in prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor. - Highlights: • The crystal structure of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is consistent with standard monoclinic structure. • CIE coordinates of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is suitable as white light emitting phosphor. • The local piezoelectricity-induced electron bombardment model is responsible to produce ML in CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor.
Decontamination of solid matrices using supercritical CO2: study of contaminant-additives-CO2
International Nuclear Information System (INIS)
Galy, J.
2006-11-01
This work deals with the decontamination of solid matrices by supercritical CO 2 and more particularly with the study of the interactions between the surfactants and the CO 2 in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO 2 . The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO 2 low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO 2 -phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO 2 and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO 2 -phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO 2 . A parallel has been established between the evolution of the surface tension between the water and
Alam, Md Nazmul; Pawliszyn, Janusz
2018-02-20
The development of matrix compatible coatings for solid-phase microextraction (SPME) has enabled direct extraction of analytes from complex sample matrices. The direct immersion (DI) mode of SPME when utilized in conjunction with such extraction phases facilitates extraction of a wide range of analytes from complex matrices without the incurrence of fouling or coating saturation. In this work, mathematical models and computational simulations were employed to investigate the effect of binding components present in complex samples on the recovery of small molecules varying in logP for extractions carried out using the direct immersion approach. The presented findings corroborate that the studied approach indeed enables the extraction of both polar and nonpolar analytes from complex matrices, provided a suitable sorbent is employed. Further results indicated that, in certain cases, the kinetics of extraction of a given analyte in its free form might be dependent on the desorption kinetics of their bound form from matrix components, which might lower total recoveries of analytes with high affinity for the matrix. However, the binding of analytes to matrix components also enables SPME to extract a balanced quantity of different logP analytes, facilitated by multiphase equilibria, with a single extraction device.
Energy Technology Data Exchange (ETDEWEB)
Aydın, Ahmet Alper, E-mail: ahmetalperaydin@gmail.com [Chair of Urban Water Systems Engineering, Technische Universität München, Am Coulombwall, 85748 Garching (Germany); Aydın, Adnan [Istanbul Bilim University, School of Health, Esentepe, Istanbul, Sisli, 34394 (Turkey)
2014-04-01
Highlights: • A new physico-chemical process below 1000 °C for immobilization of galvanic sludges. • Sodium tetraborate and sodium silicate have been used as additives. • A strategy for adjustment of solid waste/additive mixture composition is presented. • Strategy is valid for wastes of hydrometallurgical and electro-plating processes. • Lower energy consumption and treated waste volume, shorter process time are provided. - Abstract: Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900 °C and fritted at three different temperatures of 850 °C, 900 °C and 950 °C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass–ceramics.
Solid solubility of MgO in the calcium silicates of portland clinker. The effect of CaF2
Directory of Open Access Journals (Sweden)
Puertas, F.
1992-03-01
Full Text Available The solid solubility of MgO in the calcium silicates of portland clinker has been determined by XRD and XDS. The influence that the presence of CaF2 has on said solubility has also been verified. The solid solution limit of MgO in C3S at 1275 ºC lies at about 1.0% wt, where the triclinic form II stabilizes. The presence of CaF2 does not alter the maximum value of the MgO solubilized in that silicate, although there does take place the stabilization of the triclinic polymorph II at lower MgO contents (between 0.3 - 0.6% wt. The maximum amount of solubilized MgO in βC2 at 1.050 ºC lies around 0.5% wt. This value does not change by the presence of CaF2.Se ha determinado por DRX y EDX la solubilidad sólida del MgO en los silicatos cálcicos del clínker portland. Se ha comprobado, así mismo la influencia que sobre dicha solubilidad tiene la presencia de CaF2. El límite de disolución sólida del MgO en el C3S a 1.275º C se sitúa alrededor del 1,0% en peso, estabilizándose la forma triclínica II. La presencia de CaF2 no altera el valor máximo de MgO solubilizado en este silicato, aunque si se produce la estabilización del polimorfo triclínico II a contenidos menores de MgO (entre 0,3 – 0,6% en peso. La cantidad máxima de MgO solubilizado en e/ βC2S a 1.050 ºC se sitúa en torno al 0,5% en peso. Este valor no se ve modificado por la presencia de CaF2.
Chagvardieff, Pierre; Barré, Yves; Blin, Virginie; Faure, Sylvain; Fornier, Anne; Grange, Didier; Grandjean, Agnès; Guiderdoni, Emmanuel; Henner, Pascale; Siroux, Brice; Leybros, Antoine; Messalier, Marc; Paillard, Hervé; Prévost, Thierry; Rennesson, Malvina; Sarrobert, Catherine; Vavasseur, Alain; Véry, Anne-Aliénor
2017-09-01
As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA) proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor …) and biological ones (bioextractants, phytoextraction) which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.
International Nuclear Information System (INIS)
Grandjean, A.
2006-07-01
The author gives an overview of his research activity during which she worked on three main subjects. The first one dealt with the investigation of transport mechanisms in metal alloys (experimental investigation of diffusion in amorphous alloys, oxidation mechanism of Zircaloy-4 under temperature and in water or in dry oxygen). The second one dealt with the synthesis and properties of specific confinement matrices (effect of chemical composition on sintering of a carbonate powder, effect of microstructure of high Mo and P content vitro-crystals on lixiviation properties, incorporation of fluorine compounds in the case of borosilicate systems). The third one dealt with the transport in borosilicate glasses and melts (ionic transport, properties, and electrical transport glass-RuO 2 particles composites)
Guernec, Anthony; Robichaud-Rincon, Philippe; Saucier, Linda
2012-10-01
Bacteria on meat are subjected to specific living conditions that differ drastically from typical laboratory procedures in synthetic media. This study was undertaken to determine the behavior of bacteria when transferred from a rich-liquid medium to solid matrices, as is the case during microbial process validation. Escherichia coli cultured in Brain-Heart Infusion (BHI) broth to different growth phases were inoculated in ground beef (GB) and stored at 5°C for 12 days or spread onto BHI agar and cooked meat medium (CMM), and incubated at 37°C for several hours. We monitored cell densities and the expression of σ factors and genes under their control over time. The initial growth phase of the inoculum influenced growth resumption after transfer onto BHI agar and CMM. Whatever the solid matrix, bacteria adapted to their new environment and did not perceive stress immediately after inoculation. During this period, the σ(E) and σ(H) regulons were not activated and rpoD mRNA levels adjusted quickly. The rpoS and gadA mRNA levels did not increase after inoculation on solid surfaces and displayed normal growth-dependent modifications. After transfer onto GB, dnaK and groEL gene expression was affected more by the low temperature than by the composition of a meat environment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
O' Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.; Morrison, Samuel S.; Corbey, Jordan F.; Grate, Jay W.
2017-09-01
Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. The degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.
Directory of Open Access Journals (Sweden)
Chagvardieff Pierre
2017-01-01
Full Text Available As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor … and biological ones (bioextractants, phytoextraction which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.
Energy Technology Data Exchange (ETDEWEB)
Bonfils, J. de
2007-09-15
This work deals with the long term behaviour of R7T7-type nuclear waste glasses and more particularly of non-active boro-silicated glasses made up of 3 or 5 oxides. Radioactivity of active glasses is simulated by multi energies ions implantations which reproduce the same defects. The damages due to the alpha particles are simulated by helium ions implantations and those corresponding to the recoil nucleus are obtained with gold ions ones. Minor actinides, stemming from the used fuel, is simulated by trivalent rare-earths (Eu{sup 3+} and Nd{sup 3+}). In a first part, we have shown by macroscopic experiments (Vickers hardness - swelling) and optical spectroscopies (Raman - ATR-IR) that the structure of the glassy matrices is modified under implantations until a dose of 2,3.10{sup 13} at.cm{sup -2}, which corresponds to a R7T7 storage time estimated at 300 years. Beyond this dose, no additional modifications have been observed. The second part concerns the local environment of the rare-earth ions in glasses. Two different environments were found and identified as follows: one is a silicate rich one and the other is attributed to a borate rich one. (author)
Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua
2018-03-01
In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.
Model for UV induced formation of gold nanoparticles in solid polymeric matrices
Sapogova, N.; Bityurin, N.
2009-09-01
UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.
Andres, Maria Jesus; Alvarez, Rodrigo; Andreu, Vicente; Pico, Yolanda
2015-04-01
After their consumption, drug of abuse are excreted through urine or faeces, as parent compound or as secondary metabolites that arrive to wastewater treatment plants. Accordingly, the incomplete removal of these compounds in the treatment plants could release them into environmental compartments [1]. This scenario needs attention from an ecotoxicological perspective because their possible negative effects [2]. The aim of this study is to optimize and apply a solvent extraction and solid phase clean-up methodology to obtain a valid procedure for the extraction of these compounds in different solid matrices. Amphetamine, methamphetamine, ethylamphetamine, ecstasy, ethylone, bk-MMBDB and MBDB belong to phenylethylamine group; codeine and ketamine belong to opioid and phencyclidine group, respectively, and benzoylecgonine is the major excreted metabolite of the alkaloid cocaine. To optimize the method to determinate drugs of abuse in environmental solid matrices, two replicates and one blank were prepared for each sample of sediment. They were prepared by adding 1 g of sediment sample, 5 mL of buffer (methanol-Mc Ilvaine 50:50) and internal standard to obtain a final concentration in the extract of 25 ng/g. Also standards of drugs of abuse were added to the replicates to obtain a final concentration of 100 ng/g. Then all samples were shaken, sonicated and centrifuged and the supernatant was separated and placed in a 250 mL volumetric flask, which was filled the rest with distilled water. SPE was carried out with Strata-X cartridges and 250 mL of sample were passed through them. The extracts were eluted with 6 mL of methanol, evaporated to dryness and reconstituted in 1 mL of methanol-water 1:9. One of the replicates was filtrated through 0.22 μm pore size and the others were not. The samples were determined by liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS/MS) using an electrospray ionization source (ESI) in positive ionization mode. The results
[Studies of chemical reactions in solid matrices]. Final report, December 1,, 1979-November 30, 1984
International Nuclear Information System (INIS)
Willard, J.E.
1984-12-01
This program, which has been supported for 35 years by the Atomic Energy Commission and its successor agencies, has produced significant advances in the understanding of the mechanisms of: (1) chemical activation by nuclear processes; (2) radiation chemistry; and (3) photochemistry. It has advanced knowledge of the reactions of electrons, hydrogen atoms and small free radicals, particularly in solids at cryogenic temperatures. It has applied radioisotopes as a tool in the solution of a number of chemical problems, has developed useful new techniques, and has contributed to the training of approximately 150 scientists at various levels. This final report includes a review of the evolution of areas of research emphasized, tabulations of the publications (chronologically and by research area) and Ph.D. theses resulting from the program, and tabulations of the research personnel (by academic category, by dates in the program and by subsequent employment)
The Systematics of Activity-Composition Relations in Mg-Fe2+ Oxide and Silicate Solid Solutions
O'Neill, H. S.
2006-12-01
accuracy including possible systematic errors of 0.5 kJ/mol (1 st. dev.). Any asymmetry is unambiguously constrained to be very small. These results were combined with experimental data (all at or above 900ºC), for partitioning of Mg and Fe between olivine and one of ilmenite (Pownceby and O'Neill, in prep.), Ti-, Al- or Cr-spinel (O'Neill, unpublished) and pyroxenes, garnet, and various high-pressure phases (literature). Internal consistency can be checked using other available partitioning data between pairs of these phases (i.e., without olivine). Except for some of the high-pressure phases, the ferromagnesian solutions are symmetrical with W Mg-Fe decreasing with the difference in the volumes of the end-members, which in turn depends on the atomic (Mg+Fe)/O ratio. This suggests that mixing in binary amphiboles, micas and other complex ferromagnesian silicates should be nearly ideal. The discrepancies shown by the high-pressure phases may be due to Fe3+ substitutions. As a working hypothesis, it is proposed that solid solutions between cations of the same charge and roughly similar size have simple thermodynamic mixing properties, with little asymmetry, modest excess entropies and excess enthalpies proportional to the volume difference of the end-members. Order-disorder phenomena have surprisingly little effect in the high temperature regime for which experimental data are available. Refs: [1] Davies and Navrotsky, J Sol State Chem 46, 1-22, 1983. [2] O'Neill et al., CMP 146, 308-325, 2003.
International Nuclear Information System (INIS)
Hartmann, M.; Ammon, J.; Berg, H.
1997-01-01
Detection of irradiated components in processed food with complex lipid matrices can be affected by two problems. First, the processed food may contain only a small amount of the irradiated component, and the radiation-induced hydrocarbons may be diluted throughout the lipid matrix of the whole food. Second, in complex lipid matrices, the detection of prior irradiation is often disturbed by fat-associated compounds. In these cases, common solid phase extraction (SPE) Florisil clean-up alone is inadequate in the detection of prior irradiation. Subsequent SPE argentation chromatography of the Florisil eluate allows the measurement of small amounts of irradiated lipid-containing ingredients in processed food as well as the detection of prior irradiation in complex lipid matrices such as paprika and chilli. SPE argetation chromatography is the first method available for the selective enrichment of radiation-specific hydrocarbons from even complex lipid matrices, thus enabling the detection of irradiation does as low as 0.025 kGy. Furthermore, by using radiation-induced hydrocarbons in the detection of prior irradiation of paprika and chilli powder, a second independent method, the first being measurement of thermoluminescence, is available for the analysis of these matrices. Such analysis could be achieved by using this highly sensitive, cheap and easy to perform combined SPE Florisil/argentation chromatography method, without the need for sophisticated techniques like SFE-GC/MS or LC-GC/MS, so that highly sensitive detection of prior irradiation colud be performed in almost every laboratory
Ceballos, Melisa Rodas; García-Tenorio, Rafael; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura
2017-12-01
Leached fractions of U and Th from different environmental solid matrices were evaluated by an automatic system enabling the on-line lixiviation and extraction/pre-concentration of these two elements previous ICP-MS detection. UTEVA resin was used as selective extraction material. Ten leached fraction, using artificial rainwater (pH 5.4) as leaching agent, and a residual fraction were analyzed for each sample, allowing the study of behavior of U and Th in dynamic lixiviation conditions. Multivariate techniques have been employed for the efficient optimization of the independent variables that affect the lixiviation process. The system reached LODs of 0.1 and 0.7ngkg -1 of U and Th, respectively. The method was satisfactorily validated for three solid matrices, by the analysis of a soil reference material (IAEA-375), a certified sediment reference material (BCR- 320R) and a phosphogypsum reference material (MatControl CSN-CIEMAT 2008). Besides, environmental samples were analyzed, showing a similar behavior, i.e. the content of radionuclides decreases with the successive extractions. In all cases, the accumulative leached fraction of U and Th for different solid matrices studied (soil, sediment and phosphogypsum) were extremely low, up to 0.05% and 0.005% of U and Th, respectively. However, a great variability was observed in terms of mass concentration released, e.g. between 44 and 13,967ngUkg -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Galy, J
2006-11-15
This work deals with the decontamination of solid matrices by supercritical CO{sub 2} and more particularly with the study of the interactions between the surfactants and the CO{sub 2} in one part, and with the interactions between the contaminant and the surfactants in another part. The first part of this study has revealed the different interactions between the Pluronics molecules and the supercritical CO{sub 2}. The diagrams graphs have shown that the pluronics (PE 6100, PE 8100 and PE 10100) present a solubility in the supercritical CO{sub 2} low but sufficient (0.1% m/m at 25 MPa and 313 K) for the studied application: the treatment of weak quantities of cerium oxide (or plutonium). An empirical approach based on the evolutions of the slops value and of the origin ordinates of the PT diagrams has been carried out to simulate the phase diagrams PT of the Pluronics. A modeling based on the state equations 'SAFT' (Statistical Associating Fluid Theory) has been studied in order to confirm the experimental results of the disorder points and to understand the role of the different blocks 'PEO' and 'PPO' in the behaviour of Pluronics; this modeling confirms the evolution of the slopes value with the 'CO{sub 2}-phily' of the system. The measure of the surface tension in terms of the Pluronics concentration (PE 6100, 81000 and 10100) has shown different behaviours. For the PE 6100, the surface tension decreases when the surfactant concentration increases (at constant pressure and temperature); on the other hand, for the PE 8100 a slop rupture appears and corresponds to the saturation of the interface water/CO{sub 2} and allows then to determine the Interface Saturation Concentration (ISC). The ISC value (at constant pressure and temperature) increases with an increase of the 'CO{sub 2}-phily'). The model hydrophilous medium being an approximation, it has been replaced by a solid polar phase of CeO{sub 2}. A parallel has
Salgueiro-González, N; Castiglioni, S; Zuccato, E; Turnes-Carou, I; López-Mahía, P; Muniategui-Lorenzo, S
2018-09-18
The problem of endocrine disrupting compounds (EDCs) in the environment has become a worldwide concern in recent decades. Besides their toxicological effects at low concentrations and their widespread use in industrial and household applications, these pollutants pose a risk for non-target organisms and also for public safety. Analytical methods to determine these compounds at trace levels in different matrices are urgently needed. This review critically discusses trends in analytical methods for well-known EDCs like alkylphenols and bisphenol A in solid environmental matrices, including sediment and aquatic biological samples (from 2006 to 2018). Information about extraction, clean-up and determination is covered in detail, including analytical quality parameters (QA/QC). Conventional and novel analytical techniques are compared, with their advantages and drawbacks. Ultrasound assisted extraction followed by solid phase extraction clean-up is the most widely used procedure for sediment and aquatic biological samples, although softer extraction conditions have been employed for the latter. The use of liquid chromatography followed by tandem mass spectrometry has greatly increased in the last five years. The majority of these methods have been employed for the analysis of river sediments and bivalve molluscs because of their usefulness in aquatic ecosystem (bio)monitoring programs. Green, simple, fast analytical methods are now needed to determine these compounds in complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.
2013-12-01
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the
International Nuclear Information System (INIS)
Carney, K.P.; Cummings, D.G.
1995-01-01
The design and characterization of an argon segmented-solid phase extraction system is described. A 200 ul volume micro-column has been constructed for the preconcentration of rare earth elements (REEs) from salt matrices containing uranium. An inductively coupled plasma atomic emission spectrometer has been utilized for simultaneous detection of Sr, Y and the REEs (namely Ce, Eu, La, Nd, Pr, Sm) at levels ranging from 5- to 2000 ppm in LiCl/KCl samples containing U. Preconcentration factors of 100 fold have been demonstrated. The precision, linear dynamic range and column performance of the system will be presented. (author). 5 refs., 5 figs., 3 tabs
DEFF Research Database (Denmark)
Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene
2018-01-01
encased in solid lipid matrices as a novel indicator of their stability upon in vitro release. Model proteins namely catalase and lysozyme were incorporated into lipid namely Precirol® AT05 (glycerol palmitostearate, melting point 58°C) at 30% w/w loading using melting and mixing and wet granulation...... aggregation for catalase which was increased using wet granulation. The biological activity of catalase was statistically different from that of control and was affected by the incorporation method and was found to be in alignment with ATR spectral changes and extent of aggregation. In conclusion, ATR...
Althoff, Marc André; Bertsch, Andreas; Metzulat, Manfred; Klapötke, Thomas M; Karaghiosoff, Konstantin L
2017-11-01
The successful application of headspace (HS) and direct immersion (DI) solid phase microextraction (SPME) for the unambiguous identification and characterization of a series of toxic thiophosphate esters, such as Amiton (I), from aqueous phases and complex matrices (e.g. grass and foliage) has been demonstrated. A Thermo Scientific gas chromatograph (GC) - tandem mass spectrometer (MS/MS) system with a TriPlus RSH® autosampler and a SPME tool was used to investigate the effect of different parameters that influence the extraction efficiency: e.g. pH of the sample matrix and extraction temperature. The developed methods were employed for the detection of several Amiton derivatives (Schedule II of the CWC) that are structurally closely related to each other; some of which are new and have not been reported in literature previously. In addition, a novel DI SPME method from complex matrices for the analysis of organophosphates related to the CWC was developed. The studies clearly show that DI SPME for complex matrices is superior to HS extraction and can potentially be applied to other related compounds controlled under the CWC. Copyright © 2017. Published by Elsevier B.V.
Uenver-Thiele, Laura; Woodland, Alan B.; Miyajima, Nobuyoshi; Ballaran, Tiziana Boffa; Frost, Daniel J.
2018-03-01
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5-Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg-Fe silicates. Multi-anvil experiments were performed at 11-20 GPa and 1100-1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least 1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot = 0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+ + [6]Mg2+ = 2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential "water-storing" mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298 = - 1981.5 kJ mol- 1. Solid solution is complete across the Fe4O5-Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg-Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.
International Nuclear Information System (INIS)
Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; Titov, S. V.
2013-01-01
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ 0 =ℏω 0 /k B T where ω 0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ 0 0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the
Energy Technology Data Exchange (ETDEWEB)
Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)
2013-12-21
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the
Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A
2013-12-21
The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local
International Nuclear Information System (INIS)
Zhu Rongbao; Yang Liucheng; Wei Liansheng; Ji Liqiang; Zhang Zengrui
1988-03-01
A new type of on-line monitoring system used to monitor radioactive nuclides with α or soft β radiation in the effluent from a high pressure ion exchange column is described. The beads made of cerium-impregnated lithium silicate glass are used as scientillation material. They are filled into a quartz glass tube to form a flow cell. By reducing the diameter of glass beads to more closly approximate the average range of α or soft β radiation in solution, the absolute counting efficiency for 241 Am, 242 Cm α radiation have reached and 85.8% and 92.8% respectively, for 14 C, 90 Sr- 90 Y β radiation, 62.1% and 88.6% respectively. These values can be comparable to those achieved with on-line liquid scientillation technique. When the total amount of 241 Am added into column is decreased to 7.4 Bq it is still possible to obtain a clear chromatography peak (half peak width = 0.22 mL)
Tang, Zhentao; Hou, Wenqian; Liu, Xiuming; Wang, Mingfeng; Duan, Yixiang
2016-08-26
Integral analysis plays an important role in study and quality control of substances with complex matrices in our daily life. As the preliminary construction of integral analysis of substances with complex matrices, developing a relatively comprehensive and sensitive methodology might offer more informative and reliable characteristic components. Flavoring mixtures belonging to the representatives of substances with complex matrices have now been widely used in various fields. To better study and control the quality of flavoring mixtures as additives in food industry, an in-house fabricated solid-phase microextraction (SPME) fiber was prepared based on sol-gel technology in this work. The active organic component of the fiber coating was multi-walled carbon nanotubes (MWCNTs) functionalized with hydroxyl-terminated polydimethyldiphenylsiloxane, which integrate the non-polar and polar chains of both materials. In this way, more sensitive extraction capability for a wider range of compounds can be obtained in comparison with commercial SPME fibers. Preliminarily integral analysis of three similar types of samples were realized by the optimized SPME-GC-MS method. With the obtained GC-MS data, a valid and well-fit model was established by partial least square discriminant analysis (PLS-DA) for classification of these samples (R2X=0.661, R2Y=0.996, Q2=0.986). The validity of the model (R2=0.266, Q2=-0.465) has also approved the potential to predict the "belongingness" of new samples. With the PLS-DA and SPSS method, further screening out the markers among three similar batches of samples may be helpful for monitoring and controlling the quality of the flavoring mixtures as additives in food industry. Conversely, the reliability and effectiveness of the GC-MS data has verified the comprehensive and efficient extraction performance of the in-house fabricated fiber. Copyright © 2016 Elsevier B.V. All rights reserved.
Modifying Silicates for Better Dispersion in Nanocomposites
Campbell, Sandi
2005-01-01
An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces
International Nuclear Information System (INIS)
Barbosa, P.C.; Silva, M.M.; Smith, M.J.; Goncalves, A.; Fortunato, E.
2007-01-01
Sol-gel hybrid organic-inorganic networks, doped with a lithium salt, have been used as electrolytes in prototype smart windows. The work described in this presentation is focused on the application of these networks as dual-function electrolyte/adhesive components in solid-state electrochromic devices. The performance of multi-layer electrochromic devices was characterized as a function of the choice of precursor used to prepare the polymer electrolyte component and the guest salt concentration. The prototype devices exhibited good open-circuit memory, coloration efficiency, optical contrast and stability
Liska, I.; Krupcik, J.; Leclercq, P.A.
1989-01-01
The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These
International Nuclear Information System (INIS)
Sierra, Ligia; Lopez, Betty; Pena, Bibiana; Rios, Juan Esteban; Castano, Nelson
2001-01-01
The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil
Czech Academy of Sciences Publication Activity Database
Čížková, P.; Navrátil, Tomáš; Šestáková, Ivana; Josypčuk, Bohdan
2007-01-01
Roč. 19, 2-3 (2007), s. 161-171 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * biological materials * solid amalgam electrode * atomic absorption spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.949, year: 2007
International Nuclear Information System (INIS)
Lutze, W.
1988-01-01
Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses
Energy Technology Data Exchange (ETDEWEB)
Vogg, A.T.J.; Lang, R.; Meier-Boeke, P.; Scheel, W.; Reske, S.N.; Neumaier, B. [Universitaetsklinikum Ulm (Germany). Abt. Nuklearmedizin
2004-07-01
Commonly used ''organic'' positron emitting radionuclides {sup 18}F, {sup 11}C, {sup 13}N, and {sup 15}O are simply obtained from gaseous or aqueous targets, which enable an automated handling of target, i.e. both, filling and radionuclide delivery to a hot cell containing a chemistry processing and/or labelling module. In the recent years other - mostly metallic - radionuclides for PET gained more and more interest, since they can be used as surrogates for therapeutic nuclides attached to biomolecules like peptides or antibodies. The implication for surrogate nuclides results from the circumstance that an optimum dosimetric regime in endo radiotherapy relies on quantitative pharmacokinetic data obtained only by non invasive in vivo PET scans. However, for production of these alternative positron emitters the vast majority of them affords solid targets in form of metal foils, oxide or salt pellets which can not be operated by an automated processing. Those solid target systems have to be mounted and dismounted after irradiation by man, leading to two major disadvantages. First, manual cyclotron intervention is practically unsuited for daily routine radionuclide production and second the operating staff receives high radiation doses from the activated target. An alternative could be the irradiation of aqueous salts of target isotopes, allowing automated target operation. The major requirements are firstly a thermal stability of the dissolved compound, secondly the avoidance of counter ions containing nuclides which produce long-lived radionuclides under irradiation and thirdly a high solubility of the salt in the aqueous matrix. Here we report the proof of principle of the new radionuclide production concept by irradiation of strontium nitrate dissolved in water in order to produce {sup 86}Y (cf.). (orig.)
Directory of Open Access Journals (Sweden)
V. N. Yaglov
2015-01-01
Full Text Available The paper proposes a technology for obtaining bricks on the basis of lime-silica mixtures where chemical interactions are practically completely realized in dispersive state at the stage of preparation of binding contact maturing and raw mixture as a whole. The role of forming operation (moulding is changed in principle because in this case conversion of dispersive system into a rock-like solid occurs and due to this the solid obtains complete water-resistance in contact with water immediately after forming operation. Theoretical basis for the developed technology is capability of silicate dispersive substances (hydrated calcium silicate to transit in non-stable state, to form a rock-like water-resistant solid in the moment of mechanical load application during forming process. Specific feature of the proposed method is an exclusion of additional operations for autoclaving of products from the process of obtaining a silicate brick.Synthetic hydrated calcium silicate in contrast to natural ones are more uniform in composition and structure, they contain less impurities and they are characterized by dispersive composition and due to the mentioned advantages they find wider practical application. Contact-condensation binders permit to manipulate product properties on their basis and ensure maximum correspondence to the requirements of the concrete application. Raw material sources for obtaining synthetic hydrated calcium silicates are practically un-limited because calcium-silicon containing substances are found as in various technogenic wastes so in natural compounds as well. So the problem for obtaining hydrated calcium silicates having contact-condensation ability for structure formation becomes more and more actual one. This transition is considered as dependent principally on arrangement rate of substance particles which determined the level of its instability.
Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping
2011-12-23
A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.
Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias
2018-03-01
Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.
Krylov, Piotr
2017-01-01
This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...
Energy Technology Data Exchange (ETDEWEB)
Santoro, L. [Naples, Univ. `Federico II` (Italy). Dipt. di Chimica; Cioffi, R. [Naples, Univ. `Federico II` (Italy). Ditp. di Ingegneria dei Materiali e della Produzione
1998-01-01
In this work the stabilization of hazardous solid wastes containing heavy metals has been studied by means of novel matrices able to generate calcium trisulphoaluminate and silicate hydrates. The process is based on the hydration of two different mixtures containing blast furnace slag, coal ashes, chemical gypsum and Portland cement. The stabilization capacity of the two mixtures has been checked with regard to both a residue from an incinerator of municipal solid wastes and model systems obtained by adding 5 and 10% of soluble nitrates of Cd, Cr, Cu, Ni, Pb and Zn. The stabilized products have been validated from the point of view of mechanical properties by determining the unconfined compressive strength, and from the environmental point of view by means of static and dynamic leaching tests. Both matrices have proved to have great potentiality for the stabilization of hazardous solid wastes, the one based on blast furnace slag being better. Finally, evidence is given that different leaching tests are necessary to fully understand the immobilization mechanism responsible for stabilization. [Italiano] In questo lavoro e` stata studiata la atbilizzazione di residui tossici e nocivi contenenti metalli pesanti per mezzo di matrici leganti innovative capaci di generare trisolfoalluminato e silicato di calcio idrati. Il processo e` basato sull`idratazione di due diverse miscele contenenti scoria d`alto forno, ceneri di carbone, gessi chimici e cemento Portland. Le capacita` stabilizzanti delle due miscele sono state verificate sia nei confronti di un residuo solido generato a seguito dell`incenerimento di RSU, che nei confronti di sistemi modello ottenuti aggiungendo singolarmente il 5 e 10% dei nitrati solubili di Cd, Cr, Cu, Ni, Pb e Zn. I prodotti solidi stabilizzati sono stati validati dal punto di vista delle prestazioni meccaniche mediante prove di resistenza a compressione, e dal punto di vista ambientale mediante test di rilascio sia statici che dinamici
Averaging operations on matrices
Indian Academy of Sciences (India)
2014-07-03
Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...
Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K
2013-10-01
Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.
Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J
2018-02-01
Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted
Energy Technology Data Exchange (ETDEWEB)
Nandi, P., E-mail: pnandi@barc.gov.in; Shukla, R., E-mail: pnandi@barc.gov.in; Goswami, M., E-mail: pnandi@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)
2014-04-24
Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.
Mathew, Renny; Stevensson, Baltzar; Edén, Mattias
2015-04-30
We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees
International Nuclear Information System (INIS)
Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z.; Bikiaris, Dimitrios N.; Lambropoulou, Dimitra A.
2016-01-01
In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME_f) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q_m_a_x) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME_f. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of synthesized MIPs
Energy Technology Data Exchange (ETDEWEB)
Terzopoulou, Zoi [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Papageorgiou, Myrsini [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece); Kyzas, George Z.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece)
2016-03-24
In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME{sub f}) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q{sub max}) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME{sub f}. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of
Energy Technology Data Exchange (ETDEWEB)
Felipe-Sese, M.; Eliche-Quesada, D.; Corpas-Iglesias, F. A.
2011-07-01
The suitability of re-using residues marble, remaining from cutting marble, as a source of calcium-oxide, as well as the resultant ashes from the combustion of the wastes generated in the process of manufacturing boards from derivates of wood, as a source of silica, as raw material for the production of calcium silicate products has been determined. First of all, the influence of water has been studied in the initial phase of mixing residues. Marble and ashes have been mixed in molar relation CaO:SiO{sub 2} of 1:1 using two different ways: using a planetary ball mill (while in solid state) or agitating at 90 degree centigrade (2 h) using a 60 wt% of water (while in humid state). Later, both mixtures were sintered at 1100 degree centigrade (24 h). In order to use the obtained calcium-silicates as ceramic insulating thermal materials, the samples were compressed at 15 Tm obtaining bricks from which the technological properties have been studied. The ceramic materials obtained from mixing the residues in dry phase, as well as those obtained in the wet phase, can be used as thermal insulators, showing values of conductivity of 0.18 and 0.12 w/m{sup 2}K, with an elevated resistance to compressive strength. (Author) 14 refs.
Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis
2018-02-01
Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2 = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2 = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2 = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.
Inverse m-matrices and ultrametric matrices
Dellacherie, Claude; San Martin, Jaime
2014-01-01
The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi
2018-06-01
In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.
Williams, Audrey M; Vu, Alexander K; Mayer, Brian P; Hok, Saphon; Valdez, Carlos A; Alcaraz, Armando
2018-08-15
Chemical attribution signatures indicative of O-isobutyl S-(2-diethylaminoethyl) methylphosphonothioate (Russian VX) synthetic routes were investigated in spiked food samples. Attribution signatures were identified using a multifaceted approach: Russian VX was synthesized using six synthetic routes and the chemical attribution signatures identified by GC-MS and LC-MS. Three synthetic routes were then down selected and spiked into complex matrices: bottled water, baby food, milk, liquid eggs, and hot dogs. Sampling and extraction methodologies were developed for these materials and used to isolate the attribution signatures and Russian VX from each matrix. Recoveries greater than 60% were achieved for most signatures in all matrices; some signatures provided recoveries greater than 100%, indicating some degradation during sample preparation. A chemometric model was then developed and validated with the concatenated data from GC-MS and LC-MS analyses of the signatures; the classification results of the model were > 75% for all samples. This work is part three of a three-part series in this issue of the United States-Sweden collaborative efforts towards the understanding of the chemical attribution signatures of Russian VX in crude materials and in food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Silicate enamel for alloyed steel
International Nuclear Information System (INIS)
Ket'ko, K.K.
1976-01-01
The use of silicate enamels in the metallurgical industry is discussed. Presented are the composition and the physico-chemical properties of the silicate enamel developed at the factory 'Krasnyj Oktyabr'. This enamel can be used in the working conditions both in the liquid and the solid state. In so doing the enamel is melted at 1250 to 1300 deg C, granulated and then reduced to a fraction of 0.3 to 0.5 mm. The greatest homogeneity is afforded by a granulated enamel. The trials have shown that the conversion of the test ingots melted under a layer of enamel leads to the smaller number of the ingots rejected for surface defect reasons and the lower metal consumption for slab cleaning. The cost of the silicate enamel is somewhat higher than that of synthetic slags but its application to the melting of stainless steels is still economically beneficial and technologically reasonable. Preliminary calculations only for steel EhI4IEh have revealed that the use of this enamel saves annually over 360000 roubles [ru
Nanostructured silicate polymer concrete
Directory of Open Access Journals (Sweden)
Figovskiy Oleg L'vovich
2014-03-01
Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.
Thermodynamics and Kinetics of Silicate Vaporization
Jacobson, Nathan S.; Costa, Gustavo C. C.
2015-01-01
Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-12-05
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Introduction into Hierarchical Matrices
Litvinenko, Alexander
2013-01-01
Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.
Gómez-Ríos, Germán Augusto; Gionfriddo, Emanuela; Poole, Justen; Pawliszyn, Janusz
2017-07-05
The direct interface of microextraction technologies to mass spectrometry (MS) has unquestionably revolutionized the speed and efficacy at which complex matrices are analyzed. Solid Phase Micro Extraction-Transmission Mode (SPME-TM) is a technology conceived as an effective synergy between sample preparation and ambient ionization. Succinctly, the device consists of a mesh coated with polymeric particles that extracts analytes of interest present in a given sample matrix. This coated mesh acts as a transmission-mode substrate for Direct Analysis in Real Time (DART), allowing for rapid and efficient thermal desorption/ionization of analytes previously concentrated on the coating, and dramatically lowering the limits of detection attained by sole DART analysis. In this study, we present SPME-TM as a novel tool for the ultrafast enrichment of pesticides present in food and environmental matrices and their quantitative determination by MS via DART ionization. Limits of quantitation in the subnanogram per milliliter range can be attained, while total analysis time does not exceed 2 min per sample. In addition to target information obtained via tandem MS, retrospective studies of the same sample via high-resolution mass spectrometry (HRMS) were accomplished by thermally desorbing a different segment of the microextraction device.
LABORATORY INVESTIGATIONS OF SILICATE MUD CONTAMINATION WITH CALCIUM
Directory of Open Access Journals (Sweden)
Nediljka Gaurina-Međimurec
2004-12-01
Full Text Available The silicate-based drilling fluid is a low solids KCl/polymer system with the addition of soluble sodium or potassium silicate to enhance inhibition and wellbore stability. Silicate-based drilling fluids exhibit remarkable shale and chalk stabilizing properties, resulting in gauge hole and the formation of firm cuttings when drilling reactive shales and soft chalks. Silicates protect shales by in-situ gellation when exposed to the neutral pore fluid and precipitation, which occurs on contact with divalent ions present at the surface of the shale. Also, silicates prevent the dispersion and washouts when drilling soft chalk by reacting with the Ca2+ ions present on chalk surfaces of cutting and wellbore to form a protective film. The silicate-based drilling fluid can be used during drilling hole section through shale interbeded anhydrite formations because of its superior shale stabilizing characteristics. However, drilling through the anhydrite can decrease the silicate concentration and change rheological and filtration fluid properties. So, the critical concentration of calcium ions should be investigated by lab tests. This paper details the mechanism of shale inhibition using silicate-based drilling fluid, and presents results of lab tests conducted to ascertain the effect of Ca2+ ions on silicate level in the fluid and the fluid properties.
Calcium and magnesium silicate hydrates
International Nuclear Information System (INIS)
Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.
2015-01-01
Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H
International Nuclear Information System (INIS)
Boyer, Laurent
1998-01-01
Apatite matrices have been developed for the conditioning of actinides from spent fuels of PWR reactors. Silicated apatites (britholites) containing actinides and lanthanides have been discovered in the natural environment. Synthetic analogues of these britholites can be obtained by solid-solid reaction at high temperature. The compounds of the solid solution of fluorinated britholites are synthesized by the double substitution of (Ca 2+ , PO 4 3- ) by (Ln 3+ , SiO 4 4- ). Trivalent lanthanides are chemical analogues of trivalent actinides. The synthesis was performed with La, Nd and Eu. This study allows to demonstrate that the chemical immobilization comes from the fixation of rare earths at the atomic scale, thanks to their participation to the mineral structure. In part 1, the criteria for the formulation of a matrix for the conditioning of separate radionuclides are given. The structure and the different methods of apatite preparation are shown. Part 2 treats of the study of the solid solution, of the elaboration of the Ca 9 Nd 1 (SiO 4 ) 5 F 2 ceramic and of its physico chemical characterization. The last part deals with the localization of rare earths in the apatite structure, determined by europium luminescence and X-ray diffraction on monocrystal. (J.S.) [fr
Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D
2007-01-01
Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.
Matrices and linear transformations
Cullen, Charles G
1990-01-01
""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first
Prasad Sahu, Ishwar
2016-05-01
A series of Sr2MgSi2O7:xCe3+ (x = 1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325 nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. Commission International de I'Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.
Directory of Open Access Journals (Sweden)
Costa Antônio C. Spínola
2002-01-01
Full Text Available A procedure for separation and pre-concentration of trace amounts of cadmium, copper, lead, nickel, and zinc in brine samples has been proposed. It is based on the adsorption of metal ions onto dithizone co-crystallized with microcrystalline naphthalene, in the pH range 8.5-9.1. Nitric acid is used to back-extract the cations from the solid phase, which are measured by ICP-OES. Various parameters, such as the effect of pH, stirring time, and amounts of solid phase, have been studied in detail, to optimize the conditions for the determination of trace amounts of Cd, Cu, Pb, Ni and Zn in synthetic brine samples. The limits of detection values expressed in mug L-1 are 44 (Zn, 11 (Ni, 30 (Cd, 47 (Pb and 11 (Cu. The precision of the procedure was determined by running 10 replicate samples, each one containing 250 mug L-1 of each element and the relative standard deviations were 2.71 % (Cd, 2.15 % (Cu, 1.53 % (Pb, 2.47 % (Ni, and 2.78 % (Zn. The accuracy of the procedure was confirmed by applying the analyte additions method and the results indicated that quantitative recoveries (superscript three 95 % were obtained.
Spectral properties of porphyrins in the systems with layered silicates
International Nuclear Information System (INIS)
Ceklovsky, A.
2009-03-01
This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the
Thermal properties and application of potential lithium silicate breeder materials
International Nuclear Information System (INIS)
Skokan, A.; Wedemeyer, H.; Vollath, D.; Gunther, E.
1987-01-01
Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and ''Li 6 SiO 5 '' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented
Thermal properties and application of potential lithium silicate breeder materials
International Nuclear Information System (INIS)
Skokan, A.; Wedemeyer, H.; Vollath, D.; Guenther, E.
1986-01-01
Phase relations, thermal stability and preparation methods of the Li 2 O-rich silicates Li 8 SiO 6 and 'Li 6 SiO 5 ' have been investigated experimentally, the application of these compounds as solid breeder materials is discussed. In the second part of this contribution, the results of thermal expansion measurements on the silicates Li 2 SiO 3 , Li 4 SiO 4 and Li 8 SiO 6 are presented. (author)
Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G
2016-10-01
A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Alcaraz, A.; Hulsey, S.S.; Andresen, B.D.
1995-01-01
A variety of methods have been established using advanced chromatographic techniques and new detection systems for the analysis of chemical signatures associated with nuclear and chemical weapon (CW) proliferation. Most of these analytical methods are used in the laboratory and seldom applied in the field. The Chemical Weapons Convention (an international treaty to ban chemical weapons) may require the rapid on-site analysis of environmental samples which contain CW agents, their precursors, and/or their degradation products. In addition to the fact that certain countries are involved in CW non-compliance, there is a current uncertainty regarding nuclear proliferation. This also creates new demands on sample work-up and analytical instrumentation use in the field. The isolation and identification of unique chemical signatures in complex samples such as soils, waste tanks, and decontamination solutions would determine non-compliance. However, a primary area of detection research continues to be sample preparation. Most of the established sample cleanup technologies involve liquid/liquid, Soxhlet, or most recently, solid phase extraction (SPE). Despite the success of these traditional sample preparation techniques, they are time consuming and require multi-step procedures (especially when preparing samples for gas chromatographic mass-spectrometric analysis). The goal of this work is to demonstrate the advantages of utilizing SPME and SPME in-situ derivatization techniques to eliminate time consuming steps necessary to prepare a sample for on-site GC-MS. The authors' approach was to compare two SPME fibers and to develop methods to facilitate the isolation of polar and moderately polar proliferation compounds from complex environmental samples. This work will help to evaluate current SPME technologies for use during on-site environmental monitoring analysis
2009-01-01
This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.
Indian Academy of Sciences (India)
IAS Admin
harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.
Lattice thermal conductivity of silicate glasses at high pressures
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
Celano, Rita; Piccinelli, Anna Lisa; Campone, Luca; Rastrelli, Luca
2014-08-15
Pharmaceutical and personal care products (PPCPs) are one of the most important classes of emerging contaminants. The potential of ecological and environmental impacts associated with PPCPs are of particular concern because they continually penetrate the aquatic environment. This work describes a novel ultra-preconcentration technique for the rapid and highly sensitive analysis of selected PPCPs in environmental water matrices at ppt levels. Selected PPCPs were rapidly extracted and concentrated from large volumes of aqueous solutions (500 and 250mL) by solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and then analyzed using UHPLC-MS/MS. Experimental parameters were carefully investigated and optimized to achieve the best SPE-DLLME efficiency and higher enrichment factors. The best results were obtained using the ternary mixture acetonitrile/methanol/dichloromethane 3:3:4, v/v/v, both as SPE eluent and DLLME extractant/dispersive mixture. DLLME aqueous solution (5% NaCl, 10mgL(-1) TBAB) was also modified to improve the extraction efficiency of more hydrophilic PPCPs. Under the optimal conditions, an exhaustive extraction for most of the investigated analytes (recoveries >70%), with a precision (RSD drinking, sea, river and wastewater). Method detection and quantification limits were at very low ppt levels and below 1 and 3ngL(-1), respectively, for 15 of selected PPCPs. The proposed analytical procedure offers numerous advantages such as the simplicity of operation, rapidity, a high enrichment factor and sensitivity. So it is suitable for monitoring and studies of occurrence of PPCPs in different environmental compartments. Copyright © 2014 Elsevier B.V. All rights reserved.
21 CFR 573.260 - Calcium silicate.
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...
Chemiluminescence in cryogenic matrices
Lotnik, S. V.; Kazakov, Valeri P.
1989-04-01
The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.
Petrophysical Analysis of Siliceous Ooze Sediments, Ormen Lange Field, Norway
DEFF Research Database (Denmark)
Awedalkarim, Ahmed; Fabricius, Ida Lykke
, but apparent porosity indications in any other lithology, such as siliceous ooze, are wrong and they should be corrected. The apparent bulk density log should be influenced by the hydrogen in opal as also the neutron porosity tools because they are sensitive to the amount of hydrogen in a formation...... present in the solid. Some minerals of siliceous ooze, such as opal, have hydrogen in their structures which influences the measured hydrogen index (HI). The neutron tool obtains the combined signal of the HI of the solid phase and of the water that occupies the true porosity. The HI is equal to true...... to interpret lithology and the unusual physical properties of the studied intervals. The integration of all these data revealed that the studied siliceous ooze is a mixture of opal and non-opal (shale). Our results proved to be reasonably consistent. The studied intervals apparently do not contain hydrocarbons....
Matrices in Engineering Problems
Tobias, Marvin
2011-01-01
This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo
Small angle X-ray scattering from hydrating tricalcium silicate
International Nuclear Information System (INIS)
Vollet, D.
1983-01-01
The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt
Infinite matrices and sequence spaces
Cooke, Richard G
2014-01-01
This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi
2014-04-01
materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral
Introduction to matrices and vectors
Schwartz, Jacob T
2001-01-01
In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.
Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite
Directory of Open Access Journals (Sweden)
Muljani Srie
2016-01-01
Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Hierarchical quark mass matrices
International Nuclear Information System (INIS)
Rasin, A.
1998-02-01
I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)
International Nuclear Information System (INIS)
Lutze, W.
1988-01-01
This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs
Radioanalysis of siliceous materials
International Nuclear Information System (INIS)
Das, H.A.
2003-01-01
Both natural and induced radioactivity as well as man-made radiotracers may be applied to assess quality and its maintenance a widely varying range of siliceous materials. One example of industrial application is given for each of these three branches. Natural Radioactivity: The measurement of 222-Rn emanation from building material components serves the determination of the internal diffusion and thus of the effective porosity as well as the usual environmental control. Radiotracers: The specific surface area of silica components can be obtained from measurements of the chemisorptions of fluoride and its kinetics, using acid fluoride solutions and carrier-free 18-F, Tl/2 = 110 min, as the radiotracer. This also enables the determination of fluoride in drinking water at the (sub-) ppm level by spiking isotope dilution and substoichiometric adsorption to small glass beads. Neutron activation analysis (NAA): Concentration profiles down to the micro m-range of trace elements in small electronic components of irregular shape are derived from combination of NAA with controlled sequential etching flux in dilute HF-solutions. The cases of Na, Mn, Co and Se by instrumental NAA and that of W by chemical isolation from the reagent solution are considered. (author)
Environmental silicate nano-biocomposites
Pollet, Eric
2012-01-01
Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...
21 CFR 172.410 - Calcium silicate.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...
Energy Technology Data Exchange (ETDEWEB)
Botelho, M.B.S. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Queiroz, T.B. de [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Eckert, H. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Institut für Physikalische Chemie, Westfälische Wilhelms Universität Münster, D-48149 Münster (Germany); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil)
2016-02-15
The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu{sup 3+} – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl]{sub 3} (“[{sup t}Bu–COO]{sub 3}Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state {sup 29}Si and {sup 1}H NMR, N{sub 2} adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly
International Nuclear Information System (INIS)
Botelho, M.B.S.; Queiroz, T.B. de; Eckert, H.; Camargo, A.S.S. de
2016-01-01
The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu 3+ – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl] 3 (“[ t Bu–COO] 3 Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state 29 Si and 1 H NMR, N 2 adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly emissive material • Matrix
M Wedderburn, J H
1934-01-01
It is the organization and presentation of the material, however, which make the peculiar appeal of the book. This is no mere compendium of results-the subject has been completely reworked and the proofs recast with the skill and elegance which come only from years of devotion. -Bulletin of the American Mathematical Society The very clear and simple presentation gives the reader easy access to the more difficult parts of the theory. -Jahrbuch über die Fortschritte der Mathematik In 1937, the theory of matrices was seventy-five years old. However, many results had only recently evolved from sp
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Intermittency and random matrices
Sokoloff, Dmitry; Illarionov, E. A.
2015-08-01
A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Solid NMR characterization of hydrogen solid storage matrices
International Nuclear Information System (INIS)
Pilette, M.A.; Charpentier, T.; Berthault, P.
2007-01-01
The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)
International Nuclear Information System (INIS)
Deneanu, N.; Dulama, M.; Baboescu, E.; Horhoianu, G.
2000-01-01
The research studies showed that the solidification of contaminated pump oils resulted from Cernavoda NPP operation can be done by using various immobilization matrices such as: cement with appropriate mineral additives sand of Aghires, lime and silicate accelerator. Research works and experiments were carried out on four groups: cement-emulsion, cement-emulsion-silicate accelerator, cement-emulsion-lime- silicate accelerator and cement-emulsion-sand of Aghires. The paper presents the author's research on immobilization of contaminated oil by cementation using Romanian emulsifiers. With both of the emulsifiers used, there were obtained reasonable compressive strengths and leaching rates. (author)
Polymer-Layer Silicate Nanocomposites
DEFF Research Database (Denmark)
Potarniche, Catalina-Gabriela
Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...
On crystallochemistry of uranil silicates
International Nuclear Information System (INIS)
Sidorenko, G.A.; Moroz, I.Kh.; Zhil'tsova, I.G.
1975-01-01
A crystallochemical analysis has been made of uranil silicates. It is shown that on crystallochemical grounds it is justified to distinguish among them uranophane-kasolite, soddyite and viksite groups differing in the uranil-anion [SiO 4 ] -4 ratio and, as a consequence, in their crystallochemical structures. Widespread silicates of the uranophane-kasolite group is the formation of polytype modifications where, depending on the interlaminar cation, crystalline structures are formed with various packing of single-type uranil-anion layers. It has been shown experimentally that silicates of the uranophanekasolite group contain no oxonium ion in their crystalline structures. Minerals of the viksite group belong to a group of isostructural (homeotypic) laminated formation apt to form phases of different degrees of hydration. Phases with a smaller interlaminar cation form hydrates with a greater number of water molecules in the formulas unit
Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices
Czech Academy of Sciences Publication Activity Database
Hnětynková, Iveta; Plešinger, M.
2015-01-01
Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015
Generalisations of Fisher Matrices
Directory of Open Access Journals (Sweden)
Alan Heavens
2016-06-01
Full Text Available Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a situations where the data (in the form of ( x , y pairs have errors in both x and y; (b modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c Derivative Approximation for LIkelihoods (DALI - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.
Energy Technology Data Exchange (ETDEWEB)
Fukuma, Masafumi; Sugishita, Sotaro; Umeda, Naoya [Department of Physics, Kyoto University,Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)
2015-07-17
We propose a class of models which generate three-dimensional random volumes, where each configuration consists of triangles glued together along multiple hinges. The models have matrices as the dynamical variables and are characterized by semisimple associative algebras A. Although most of the diagrams represent configurations which are not manifolds, we show that the set of possible diagrams can be drastically reduced such that only (and all of the) three-dimensional manifolds with tetrahedral decompositions appear, by introducing a color structure and taking an appropriate large N limit. We examine the analytic properties when A is a matrix ring or a group ring, and show that the models with matrix ring have a novel strong-weak duality which interchanges the roles of triangles and hinges. We also give a brief comment on the relationship of our models with the colored tensor models.
Solidification of low-level radioactive liquid waste using a cement-silicate process
International Nuclear Information System (INIS)
Grandlund, R.W.; Hayes, J.F.
1979-01-01
Extensive use has been made of silicate and Portland cement for the solidification of industrial waste and recently this method has been successfully used to solidify a variety of low level radioactive wastes. The types of wastes processed to date include fuel fabrication sludges, power reactor waste, decontamination solution, and university laboratory waste. The cement-silicate process produces a stable solid with a minimal increase in volume and the chemicals are relatively inexpensive and readily available. The method is adaptable to either batch or continuous processing and the equipment is simple. The solid has leaching characteristics similar to or better than plain Portland cement mixtures and the leaching can be further reduced by the use of ion-exchange additives. The cement-silicate process has been used to solidify waste containing high levels of boric acid, oils, and organic solvents. The experience of handling the various types of liquid waste with a cement-silicate system is described
VanderLaan Circulant Type Matrices
Directory of Open Access Journals (Sweden)
Hongyan Pan
2015-01-01
Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.
Diagonalization of the mass matrices
International Nuclear Information System (INIS)
Rhee, S.S.
1984-01-01
It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)
Enhancing Understanding of Transformation Matrices
Dick, Jonathan; Childrey, Maria
2012-01-01
With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…
Kim, Eun Jeong; Fei, Yingwei; Lee, Sung Keun
2018-03-01
Despite the pioneering efforts to explore the nature of carbon in carbon-bearing silicate melts under compression, experimental data for the speciation and the solubility of carbon in silicate melts above 4 GPa have not been reported. Here, we explore the speciation of carbon and pressure-induced changes in network structures of carbon-bearing silicate (Na2O-3SiO2, NS3) and sodium aluminosilicate (NaAlSi3O8, albite) glasses quenched from melts at high pressure up to 8 GPa using multi-nuclear solid-state NMR. The 27Al triple quantum (3Q) MAS NMR spectra for carbon-bearing albite melts revealed the pressure-induced increase in the topological disorder around 4 coordinated Al ([4]Al) without forming [5,6]Al. These structural changes are similar to those in volatile-free albite melts at high pressure, indicating that the addition of CO2 in silicate melts may not induce any additional increase in the topological disorder around Al at high pressure. 13C MAS NMR spectra for carbon-bearing albite melts show multiple carbonate species, including [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, [4]Al(CO3)[4]Al, and free CO32-. The fraction of [4]Si(CO3)[4]Al increases with increasing pressure, while those of other bridging carbonate species decrease, indicating that the addition of CO2 may enhance mixing of Si and Al at high pressure. A noticeable change is not observed for 29Si NMR spectra for the carbon-bearing albite glasses with varying pressure at 1.5-6 GPa. These NMR results confirm that the densification mechanisms established for fluid-free, polymerized aluminosilicate melts can be applied to the carbon-bearing albite melts at high pressure. In contrast, the 29Si MAS NMR spectra for partially depolymerized, carbon-bearing NS3 glasses show that the fraction of [5,6]Si increases with increasing pressure at the expense of Q3 species ([4]Si species with one non-bridging oxygen as the nearest neighbor). The pressure-induced increase in topological disorder around Si is evident from an
Hierarchical matrices algorithms and analysis
Hackbusch, Wolfgang
2015-01-01
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...
Intrinsic character of Stokes matrices
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
Berkson, Zachariah J; Messinger, Robert J; Na, Kyungsu; Seo, Yongbeom; Ryoo, Ryong; Chmelka, Bradley F
2017-05-02
Mesostructured MFI zeolite nanosheets are established to crystallize non-topotactically through a nanolayered silicate intermediate during hydrothermal synthesis. Solid-state 2D NMR analyses, with sensitivity enhanced by dynamic nuclear polarization (DNP), provide direct evidence of shared covalent 29 Si-O- 29 Si bonds between intermediate nanolayered silicate moieties and the crystallizing MFI zeolite nanosheet framework. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium
International Nuclear Information System (INIS)
Rossano, Stephanie
2008-01-01
During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)
Danilovtseva, Elena N; Aseyev, Vladimir; Belozerova, Olga Yu; Zelinskiy, Stanislav N; Annenkov, Vadim V
2015-05-15
Polymeric amines have been intensively studied for application in smart systems and as matrices for the design of composite materials, including bioinspired substances. A new thermo- and pH-responsive polymer was obtained by radical polymerization of N-(3-(diethylamino)propyl)-N-methylacrylamide. Upon heating, the polymer precipitated from aqueous solutions above pH 9; the observed cloud point was dependent on the polymer concentration and decreased from 95°C at pH 9 to 40°C at pH 11. The basicity of the polymer decreased at elevated temperatures owing to an increase in the hydrophobicity-driven compaction of the macromolecules. Dynamic light scattering analysis demonstrated that the formation of large multimolecular associates with radius 1000-2000 nm was initiated from 1 to 2°C below the cloud point. The new polymer is demonstrated to be an effective matrix for various siliceous composite structures, including 200-300 nm solid spherical raspberry-like particles and hollow hemispherical particles of more than 1000 nm diameter. Condensation of silicic acid in the presence of polymeric amines is a model reaction in biosilicification studies, and the obtained data are also discussed from the perspective of the matrix hypothesis for biosilica formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Antibacterial Activity of Silicate Bioceramics
Institute of Scientific and Technical Information of China (English)
HU Sheng; NING Congqin; ZHOU Yue; CHEN Lei; LIN Kaili; CHANG Jiang
2011-01-01
Four kinds of pure silicate ceramic particles, CaSiO3, Ca3SiO5, bredigite and akermanite were prepared and their bactericidal effects were systematically investigated. The phase compositions of these silicate ceramics were characterized by XRD. The ionic concentration meas urement revealed that the Calcium (Ca) ion concentration were relatively higher in Ca3SiO5 and bredigite, and much lower in CaSiO3 and akermanite. Accordingly, the pH values of the four silicate ceramics extracts showed a positive correlation with the particle concentrations. Meanwhile, by decreasing the particle size, higher Ca ion concentrations can be achieved, leading to the increase of aqueous pH value as well. In summary, all of the four silicate ceramics tested in our study showed antibacterial effect in a dose-dependent manner. Generally, the order of their antibacterial activity against E.coli from strong to weak is Ca3SiO5, bredigite, CaSiO3 and akermanite.
Energy Technology Data Exchange (ETDEWEB)
Nardova, A.K.; Filippov, E.A. [All Research Institute of Chemical Technologies, Moscow (Russian Federation); Glagolenko, Y.B. [and others
1996-05-01
This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.
Amended Silicated for Mercury Control
Energy Technology Data Exchange (ETDEWEB)
James Butz; Thomas Broderick; Craig Turchi
2006-12-31
Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where
21 CFR 182.2227 - Calcium silicate.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...
21 CFR 582.2227 - Calcium silicate.
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations...
Preparation of β-belite using liquid alkali silicates
International Nuclear Information System (INIS)
Koutník, P.
2017-01-01
The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite. [es
Special matrices of mathematical physics stochastic, circulant and Bell matrices
Aldrovandi, R
2001-01-01
This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co
Measurement of the efficacy of calcium silicate for the protection and repair of dental enamel.
Parker, Alexander S; Patel, Anisha N; Al Botros, Rehab; Snowden, Michael E; McKelvey, Kim; Unwin, Patrick R; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo
2014-06-01
To investigate the formation of hydroxyapatite (HAP) from calcium silicate and the deposition of calcium silicate onto sound and acid eroded enamel surfaces in order to investigate its repair and protective properties. Calcium silicate was mixed with phosphate buffer for seven days and the resulting solids analysed for crystalline phases by Raman spectroscopy. Deposition studies were conducted on bovine enamel surfaces. Acid etched regions were produced on the enamel surfaces using scanning electrochemical cell microscopy (SECCM) with acid filled pipettes and varying contact times. Following treatment with calcium silicate, the deposition was visualised with FE-SEM and etch pit volumes were measured by AFM. A second set of bovine enamel specimens were pre-treated with calcium silicate and fluoride, before acid exposure with the SECCM. The volumes of the resultant acid etched pits were measured using AFM and the intrinsic rate constant for calcium loss was calculated. Raman spectroscopy confirmed that HAP was formed from calcium silicate. Deposition studies demonstrated greater delivery of calcium silicate to acid eroded than sound enamel and that the volume of acid etched enamel pits was significantly reduced following one treatment (penamel was 0.092 ± 0.008 cm/s. This was significantly reduced, 0.056 ± 0.005 cm/s, for the calcium silicate treatments (penamel surfaces. Calcium silicate can provide significant protection of sound enamel from acid challenges. Calcium silicate is a material that has potential for a new approach to the repair of demineralised enamel and the protection of enamel from acid attacks, leading to significant dental hard tissue benefits. © 2014 Elsevier Ltd. All rights reserved.
The invariant theory of matrices
Concini, Corrado De
2017-01-01
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...
Properties of Tricalcium Silicate Sealers.
Khalil, Issam; Naaman, Alfred; Camilleri, Josette
2016-10-01
Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Quantum matrices in two dimensions
International Nuclear Information System (INIS)
Ewen, H.; Ogievetsky, O.; Wess, J.
1991-01-01
Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)
Manin matrices and Talalaev's formula
International Nuclear Information System (INIS)
Chervov, A; Falqui, G
2008-01-01
In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system
International Nuclear Information System (INIS)
Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan
2016-01-01
Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.
Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav
2016-12-28
Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.
On reflectionless equi-transmitting matrices
Directory of Open Access Journals (Sweden)
Pavel Kurasov
2014-01-01
Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.
Laser ablation of silicate glasses doped with transuranic actinides
International Nuclear Information System (INIS)
Gibson, J.K.; Haire, R.G.
1998-01-01
Direct sampling laser ablation plasma mass spectrometry (DS-LAMS) was applied to silica glasses doped with 237 Np, 242 Pu or 241 Am using a unique instrument recently installed into a transuranic glovebox. The primary goal was to assess the utility of mass spectrometry of directly ablated ions for facile evaluation of actinide (An) constituents of silicate glass immobilization matrices used for encapsulation of radionuclides. The instrument and general procedures have been described elsewhere. Three high-purity silicate glasses prepared by a sol-gel process (SG) and one conventional high-temperature (HT; melting point ∼ 1,450 C) borosilicate glass were studied. These glasses comprised the following constituents, with compositions expressed in mass percentages: Np-HT ∼ 30% SiO 2 + 6% B 2 O 3 + 3% BaO + 13% Al 2 O 3 + 10% PbO + 30% La 2 O 3 + 8% 237 NpO 2 ; Np-SG ∼ 70% SiO 2 + 30% 237 NpO 2 ; Pu-SG ∼ 70% SiO 2 + 30% 242 PuO 2 ; Am-SG ∼ 85% SiO 2 + 15% 241 AmO 2
Spectra of sparse random matrices
International Nuclear Information System (INIS)
Kuehn, Reimer
2008-01-01
We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices
Free probability and random matrices
Mingo, James A
2017-01-01
This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.
Chequered surfaces and complex matrices
International Nuclear Information System (INIS)
Morris, T.R.; Southampton Univ.
1991-01-01
We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)
Loop diagrams without γ matrices
International Nuclear Information System (INIS)
McKeon, D.G.C.; Rebhan, A.
1993-01-01
By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
Silicate bonded ceramics of laterites
International Nuclear Information System (INIS)
Wagh, A.S.; Douse, V.
1989-05-01
Sodium silicate is vacuum impregnated in bauxite waste (red mud) at room temperature to develop ceramics of mechanical properties comparable to the sintered ceramics. For a concentration up to 10% the fracture toughness increases from 0.12 MNm -3/2 to 0.9 MNm -3/2 , and the compressive strength from 7 MNm -2 to 30 MNm -2 . The mechanical properties do not deteriorate, when soaked in water for an entire week. The viscosity and the concentration of the silicate solution are crucial, both for the success of the fabrication and the economics of the process. Similar successful results have been obtained for bauxite and lime stone, even though the latter has poor weathering properties. With scanning electron microscopy and energy dispersive analysis, an attempt is made to identify the crystals formed in the composite, which are responsible for the strength. The process is an economic alternative to the sintered ceramics in the construction industry in the tropical countries, rich in lateritic soils and poor in energy. Also the process has all the potential for further development in arid regions abundant in limestone. (author). 6 refs, 20 figs, 3 tabs
Radiation effects in silicate glasses
International Nuclear Information System (INIS)
Bibler, N.E.; Howitt, D.G.
1988-01-01
The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered
Immobilization of radioactive waste in cement-based matrices
International Nuclear Information System (INIS)
Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCulloch, C.E.; Angus, M.J.
1984-01-01
Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)
On families of anticommuting matrices
Czech Academy of Sciences Publication Activity Database
Hrubeš, Pavel
2016-01-01
Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum-of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296
On families of anticommuting matrices
Czech Academy of Sciences Publication Activity Database
Hrubeš, Pavel
2016-01-01
Roč. 493, March 15 (2016), s. 494-507 ISSN 0024-3795 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : anticommuting matrices * sum -of-squares formulas Subject RIV: BA - General Mathematics Impact factor: 0.973, year: 2016 http://www.sciencedirect.com/science/article/pii/S0024379515007296
Silicates materials of high vacuum technology
Espe, Werner
2013-01-01
Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.
Korolkov, M V; Manz, J; Schild, A
2010-09-16
Six isotope effects (i)-(vi) are discovered for the reactions Cl + H(2)(ν) → HCl + H in solid para-H(2) ( 1 ) versus Cl + D(2)(ν) → DCl + D in ortho-D(2) ( 2 ), by means of quantum reaction dynamics simulations, within the frame of our simple model ( J. Phys. Chem. A 2009 , 113 , 7630 . ). Experimentally, the reactions may be initiated for ν = 0 and ν ≥ 1, by means of "UV only" photodissociation of the matrix-isolated precursor, Cl(2), or by "IR + UV" coirradiation ( Kettwich , S. C. , Raston , P. L. , and Anderson , D. T. J. Phys. Chem. A 2009 , 113 , 7621 . ), respectively. Specifically, (i) various shape and Feshbach reaction resonances correlate with vibrational thresholds of reactants and products, due to the near-thermoneutrality and low barrier of the system. The energetic density of resonances increases as the square root of mass, from M(X) = M(H) to M(D). (ii) The state selective reaction ( 1 ), ν = 1, is supported by a shape resonance, whereas this type of resonance is absent in ( 2 ), ν = 1. As a consequence, time-resolved measurements should monitor different three-step versus direct error-function type evolutions of the formation of the products. (iii) The effective barrier is lower for reaction 1 , ν = 0, enhancing the tunneling rate, as compared to that for reaction 2 , ν = 0. (iv) For reference, the reaction probabilities P versus total energy E(tot) in the gas exhibit sharp resonance peaks or zigzag behaviors of the reaction probability P versus total energy, near the levels of resonances ( Persky , A. and Baer , M. J. Chem. Phys . 1974 , 60 , 133 . ). These features tend to be washed out and broadened for reaction 1 , and even more so for reaction 2 . For comparison, they disappear for reactions in classical solids. (v) The slopes of P versus E(tot) below the potential barrier increase more steeply for reaction 1 , ν = 0, than for reaction 2 , ν = 0. This enhances the tunneling rate of the heavier isotopomer, reaction 2 , ν = 0
Reduced Young modulus and hardness of electron irradiated binarypotassium-silicate glass
Czech Academy of Sciences Publication Activity Database
Gedeon, O.; Lukeš, J.; Jurek, Karel
2012-01-01
Roč. 275, MAR (2012), s. 7-10 ISSN 0168-583X R&D Projects: GA ČR GA104/09/1269 Institutional research plan: CEZ:AV0Z10100521 Keywords : electron radiation * silicate glass * mechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.266, year: 2012
Czech Academy of Sciences Publication Activity Database
Gedeon, O.; Zemek, Josef
2003-01-01
Roč. 320, - (2003), s. 177-186 ISSN 0022-3093 R&D Projects: GA ČR GA104/99/1407 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray photoelectron spectroscopy * potassium-lime-silicate glass * electron -solid interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.563, year: 2003
Mesoporous Silicate Materials in Sensing
Directory of Open Access Journals (Sweden)
Paul T. Charles
2008-08-01
Full Text Available Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through cocondensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.
Lead-silicate glass surface sputtered by an argon cluster ion beam investigated by XPS
Czech Academy of Sciences Publication Activity Database
Zemek, Josef; Jiříček, Petr; Houdková, Jana; Jurek, Karel; Gedeon, O.
2017-01-01
Roč. 469, Aug (2017), s. 1-6 ISSN 0022-3093 R&D Projects: GA MŠk LM2015088; GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : lead-silicate glass * XPS * BO * NBO * Argon duster ion beam sputtering * X-ray irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.124, year: 2016
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Double stochastic matrices in quantum mechanics
International Nuclear Information System (INIS)
Louck, J.D.
1997-01-01
The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices
Virial expansion for almost diagonal random matrices
Yevtushenko, Oleg; Kravtsov, Vladimir E.
2003-08-01
Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\
International Nuclear Information System (INIS)
Wide, L.
1977-01-01
Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de
Hemmati, Maryam; Rajabi, Maryam; Asghari, Alireza
2017-11-17
In this research work, two consecutive dispersive solid/liquid phase microextractions based on efficient extraction media were developed for the influential and clean pre-concentration of clonazepam and lorazepam from complicated bio-samples. The magnetism nature of the proposed nanoadsorbent proceeded the clean-up step conveniently and swiftly (∼5min), pursued by a further enrichment via a highly effective and rapid emulsification microextraction process (∼4min) based on a deep eutectic solvent (DES). Finally, the instrumental analysis step was practicable via high performance liquid chromatography-ultraviolet detection. The solid phase used was an adequate magnetic nanocomposite termed as polythiophene-sodium dodecyl benzene sulfonate/iron oxide (PTh-DBSNa/Fe 3 O 4 ), easily and cost-effectively prepared by the impressive co-precipitation method followed by the efficient in situ sonochemical oxidative polymerization approach. The identification techniques viz. FESEM, XRD, and EDX certified the supreme physico-chemical properties of this effective nanosorbent. Also the powerful liquid extraction agent, DES, based on bio-degradable choline chloride, possessed a high efficiency, tolerable safety, low cost, and facile and mild synthesis route. The parameters involved in this versatile hyphenated procedure, efficiently evaluated via the central composite design (CCD), showed that the best extraction conditions consisted of an initial pH value of 7.2, 17mg of the PTh-DBSNa/Fe 3 O 4 nanocomposite, 20 air-agitation cycles (first step), 245μL of methanol, 250μL of DES, 440μL of THF, and 8 air-agitation cycles (second step). Under the optimal conditions, the understudied drugs could be accurately determined in the wide linear dynamic ranges (LDRs) of 4.0-3000ngmL -1 and 2.0-2000ngmL -1 for clonazepam and lorazepam, respectively, with low limits of detection (LODs) ranged from 0.7 to 1.0ngmL -1 . The enrichment factor (EF) and percentage extraction recovery (%ER
Phenomenological mass matrices with a democratic warp
International Nuclear Information System (INIS)
Kleppe, A.
2018-01-01
Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.
SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM
Energy Technology Data Exchange (ETDEWEB)
Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Sargent, B. A., E-mail: sfogerty@pas.rochester.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)
2016-10-20
The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.
SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM
International Nuclear Information System (INIS)
Fogerty, S.; Forrest, W.; Watson, D. M.; Koch, I.; Sargent, B. A.
2016-01-01
The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.
International Nuclear Information System (INIS)
Bombardelli, Diego
2016-01-01
In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)
Synthesised standards in natural matrices
International Nuclear Information System (INIS)
Olsen, D.G.
1980-01-01
The problem of securing the most reliable standards for the accurate analysis of radionuclides is discussed in the paper and in the comment on the paper. It is contended in the paper that the best standards can be created by quantitative addition of accurately known spiking solutions into carefully selected natural matrices. On the other hand it is argued that many natural materials can be successfully standardized for numerous trace constituents. Both points of view are supported with examples. (U.K.)
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu
2016-03-11
In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.
Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis
Energy Technology Data Exchange (ETDEWEB)
Annenkov, Vadim V., E-mail: annenkov@lin.irk.ru [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Pal' shin, Viktor A.; Verkhozina, Olga N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Larina, Lyudmila I. [A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Danilovtseva, Elena N. [Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033 (Russian Federation)
2015-09-01
A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.
Composite nanoparticles: A new way to siliceous materials and a model of biosilica synthesis
International Nuclear Information System (INIS)
Annenkov, Vadim V.; Pal'shin, Viktor A.; Verkhozina, Olga N.; Larina, Lyudmila I.; Danilovtseva, Elena N.
2015-01-01
A new polyampholyte based on poly (acrylic acid) which bears pendant polyamine oligomeric chains (average number of the nitrogen atoms is 11.2) is obtained. This polymer is a model of silaffins – proteins playing important role in formation of siliceous structures in diatom algae and sponges. The polymer catalyses condensation of silicic acid. The obtained solutions contain oligosilicates coordinated with the polymer chains. The action of 50,000 g gravity on this solution results in concentrating-induced condensation of the pre-condensed siliceous oligomers. The obtained solid silica contains 4% admixture of the organic polymer which is close to the silica from diatom frustules. These results confirm the hypothesis about formation of biosilica under the action of desiccation agent, e.g. aquaporins. The formation of solid substances during centrifugation of solutions containing soluble oligomers is a new promising approach to inorganic and composite materials which allows to work in aqueous medium and to reuse the organic polymer. - Highlights: • A polyampholyte with pendant polyamine chains is obtained. • The polymer catalyses condensation of silicic acid giving stable solutions. • Gravity-induced (50,000 g) formation of solid silica was observed in these solutions. • The obtained silica is close to biosilica from diatom frustules. • A new approach to inorganic and composite materials is proposed.
Physical ageing of silicate glasses
Energy Technology Data Exchange (ETDEWEB)
Nemilov, S.V. [S. I. Vavilov State Optical Inst., St. Petersburg (Russian Federation)
2003-02-01
The presented review has been devoted to the problem of volume-determined properties relaxation of silicate glasses at room temperature. It is shown that the experimental data are described by the simple Debye exponential law or by a superposition of two exponents. Their parameters are calculated and systematized. A molecular-kinetic model is proposed for these ageing processes. It proceeds from the possibility of volume relaxation due to the cooperative β-relaxation mechanism with no change in the system's topology. The characteristic ageing times can be calculated according to equations obtained based on the viscosity data in the glass transition range. The precision of the calculations is about {+-} 15% at the time variations from a few weeks up to about 15 years. The system of calculated parameters is proposed which characterizes the completeness of ageing and its rate at any glass age. Optical and thermometric glasses have been ranked by their tendency to ageing. The scheme of future investigations predetermined by practice is defined. (orig.)
Magnetic properties of sheet silicates
International Nuclear Information System (INIS)
Ballet, O.; Coey, J.M.D.
1982-01-01
Susceptibility, magnetisation and Moessbauer measurements are reported for a representative selection of 2:1 layer phyllosilicates. Eight samples from the mica, vermiculite and smectite groups include examples diluted in iron which are paramagnetic at all temperatures, as well as iron-rich silicates which order magnetically below 10 K. Anisotropic susceptibility of crystals of muscovite, biotite and vermiculite is quantitatively explained with a model where the Fe 2+ ions lie in sites of effective trigonal symmetry, the trigonal axis lying normal to the sheets. The ferrous ground state is an orbital singlet. Ferric iron gives an isotropic contribution to the susceptibility. Fe 2+ -Fe 2+ exchange interactions are ferromagnetic with Gapprox. equal to2 K, whereas Fe 3+ -Fe 3+ coupling is antiferromagnetic in the purely ferric minerals. A positive paramagnetic Curie temperature for glauconite may be attributable to Fe 2+ → Fe 3+ charge transfer. Magnetic order was found to set in inhomogeneously for glauconite at 1-7 K. One biotite sample showed an antiferromagnetic transition at Tsub(N) = 7 K marked by a well-defined susceptibility maximum. Its magnetic structure, consisting of ferromagnetic sheets with moments in their planes coupled antiferromagnetically by other, weak interactions, resembles that found earlier for the 1:1 mineral greenalite. (orig.)
Study of remobilization polycyclic aromatic hydrocarbons (PAHs) in contaminated matrices
International Nuclear Information System (INIS)
Belkessam, L.; Vessigaud, S.; Laboudigue, A.; Vessigaud, S.; Perrin-Ganier, C.; Schiavon, M.; Denys, S.
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) originate from many pyrolysis processes. They are widespread environmental pollutants because some of them present toxic and genotoxic properties. In coal pyrolysis sites such as former manufactured gas plants and coke production plants, coal tar is a major source of PAHs. The management of such sites requires better understanding of the mechanisms that control release of PAHs to the biosphere. Determining total PAH concentrations is not sufficient since it does not inform about the pollutants availability to environmental processes. The fate and transport of PAHs in soil are governed by sorption and microbial processes which are well documented. Globally, enhancing retention of the compounds by a solid matrix reduces the risk of pollutant dispersion, but decreases their accessibility to microbial microflora. Conversely, the remobilization of organics from contaminated solid matrices represents a potential hazard since these pollutants can reach groundwater resources. However the available data are often obtained from laboratory experiments in which many field parameters can not be taken into account (long term, temperature, co-pollution, ageing phenomenon, heterogenous distribution of pollution). The present work focuses on the influence assessment and understanding of some of these parameters on PAHs remobilization from heavily polluted matrices in near-field conditions (industrial contaminated matrices, high contact time, ..). Results concerning effects of temperature and physical state of pollution (dispersed among the soil or condensed in small clusters or in coal tar) are presented. (authors)
Adsorption of aqueous silicate on hematite
International Nuclear Information System (INIS)
Taylor, P.; Ticknor, K.V.
1997-08-01
During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)
Energy Technology Data Exchange (ETDEWEB)
Roskosz, Mathieu; Remusat, Laurent [IMPMC, CNRS UMR 7590, Sorbonne Universités, Université Pierre et Marie Curie, IRD, Muséum National d’Histoire Naturelle, CP 52, 57 rue Cuvier, Paris F-75231 (France); Laurent, Boris; Leroux, Hugues, E-mail: mathieu.roskosz@mnhn.fr [Unité Matériaux et Transformations, Université Lille 1, CNRS UMR 8207, Bâtiment C6, F-59655 Villeneuve d’Ascq (France)
2016-11-20
The origin of hydrogen in chondritic components is poorly understood. Their isotopic composition is heavier than the solar nebula gas. In addition, in most meteorites, hydrous silicates are found to be lighter than the coexisting organic matter. Ionizing irradiation recently emerged as an efficient hydrogen fractionating process in organics, but its effect on H-bearing silicates remains essentially unknown. We report the evolution of the D/H of hydrous silicates experimentally irradiated by electrons. Thin films of amorphous silica, amorphous “serpentine,” and pellets of crystalline muscovite were irradiated at 4 and 30 keV. For all samples, irradiation leads to a large hydrogen loss correlated with a moderate deuterium enrichment of the solid residue. The entire data set can be described by a Rayleigh distillation. The calculated fractionation factor is consistent with a kinetically controlled fractionation during the loss of hydrogen. Furthermore, for a given ionizing condition, the deuteration of the silicate residues is much lower than the deuteration measured on irradiated organic macromolecules. These results provide firm evidence of the limitations of ionizing irradiation as a driving mechanism for D-enrichment of silicate materials. The isotopic composition of the silicate dust cannot rise from a protosolar to a chondritic signature during solar irradiations. More importantly, these results imply that irradiation of the disk naturally induces a strong decoupling of the isotopic signatures of coexisting organics and silicates. This decoupling is consistent with the systematic difference observed between the heavy organic matter and the lighter water typically associated with minerals in the matrix of most carbonaceous chondrites.
Sparse Matrices in Frame Theory
DEFF Research Database (Denmark)
Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta
2014-01-01
Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...
The Inverse of Banded Matrices
2013-01-01
indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower
Fusion algebra and fusing matrices
International Nuclear Information System (INIS)
Gao Yihong; Li Miao; Yu Ming.
1989-09-01
We show that the Wilson line operators in topological field theories form a fusion algebra. In general, the fusion algebra is a relation among the fusing (F) matrices. In the case of the SU(2) WZW model, some special F matrix elements are found in this way, and the remaining F matrix elements are then determined up to a sign. In addition, the S(j) modular transformation of the one point blocks on the torus is worked out. Our results are found to agree with those obtained from the quantum group method. (author). 24 refs
Transfer matrices for multilayer structures
International Nuclear Information System (INIS)
Baquero, R.
1988-08-01
We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs
Orthogonal polynomials and random matrices
Deift, Percy
2000-01-01
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n {\\times} n matrices exhibit universal behavior as n {\\rightarrow} {\\infty}? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems.
Selection of appropriate conditioning matrices for the safe disposal of radioactive waste
International Nuclear Information System (INIS)
Vance, E.R.
2002-01-01
The selection of appropriate solid conditioning matrices or wasteforms for the safe disposal of radioactive waste is dictated by many factors. The overriding issue is that the matrix incorporating the radionuclides, together with a set of engineered barriers in a near-surface or deep geological repository, should prevent significant groundwater transport of radionuclides to the biosphere. For high-level waste (HLW) from nuclear fuel reprocessing, the favored matrices are glasses, ceramics and glass-ceramics. Borosilicate glasses are presently being used in some countries, but there are strong scientific arguments why ceramics based on assemblages of natural minerals are advantageous for HLW. Much research has been carried out in the last 40 years around the world, and different matrices are more suitable than others for a given waste composition. However a major stumbling block for HLW immobilisation is the mall number of approved geological repositories for such matrices. The most appropriate matrices for Intermediate and low-level wastes are contentious and the selection criteria are not very well defined. The candidate matrices for these latter wastes are cements, bitumen, geopolymers, glasses, glass-ceramics and ceramics. After discussing the pros and cons of various candidate matrices for given kinds of radioactive wastes, the SYNROC research program at ANSTO will be briefly surveyed. Some of the potential applications of this work using a variety of SYNROC derivatives will be given. Finally the basic research program at ANSTO on radioactive waste immobilisation will be summarised. This comprises mainly work on solid state chemistry to understand ionic valences and co-ordinations for the chemical design of wasteforms, aqueous durability to study the pH and temperature dependence of solid-water reactions, radiation damage effects on structure and solid-water reactions. (Author)
Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.
Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F
2011-05-31
Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.
International Nuclear Information System (INIS)
Rouse, C.G.; Lemos Guenaga, C.M. de
1984-01-01
A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt
Hypercyclic Abelian Semigroups of Matrices on Cn
International Nuclear Information System (INIS)
Ayadi, Adlene; Marzougui, Habib
2010-07-01
We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)
Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory
Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert
2018-02-01
Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.
Lambda-matrices and vibrating systems
Lancaster, Peter; Stark, M; Kahane, J P
1966-01-01
Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late
The kinetic fragility of natural silicate melts
International Nuclear Information System (INIS)
Giordano, Daniele; Dingwell, Donald B
2003-01-01
Newtonian viscosities of 19 multicomponent natural and synthetic silicate liquids, with variable contents of SiO 2 (41-79 wt%), Al 2 O 3 (10-19 wt%), TiO 2 (0-3 wt%), FeO tot (0-11 wt%); alkali oxides (5-17 wt%), alkaline-earth oxides (0-35 wt%), and minor oxides, obtained at ambient pressure using the high-temperature concentric cylinder, the low-temperature micropenetration, and the parallel plates techniques, have been analysed. For each silicate liquid, regression of the experimentally determined viscosities using the well known Vogel-Fulcher-Tammann (VFT) equation allowed the viscosity of all these silicates to be accurately described. The results of these fits, which provide the basis for the subsequent analysis here, permit qualitative and quantitative correlations to be made between the VFT adjustable parameters (A VFT , B VFT , and T 0 ). The values of B VFT and T 0 , calibrated via the VFT equation, are highly correlated. Kinetic fragility appears to be correlated with the number of non-bridging oxygens per tetrahedrally coordinated cation (NBO/T). This is taken to infer that melt polymerization controls melt fragility in liquid silicates. Thus NBO/T might form an useful ingredient of a structure-based model of non-Arrhenian viscosity in multicomponent silicate melts
Pathological rate matrices: from primates to pathogens
Directory of Open Access Journals (Sweden)
Knight Rob
2008-12-01
Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad
Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites
Directory of Open Access Journals (Sweden)
Eugenia Pechkova
2011-08-01
Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.
Silicic magma generation at Askja volcano, Iceland
Sigmarsson, O.
2009-04-01
Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja
Nanostructure of Calcium Silicate Hydrates in Cements
Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.
2010-01-01
Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.
Nanostructure of Calcium Silicate Hydrates in Cements
Skinner, L. B.
2010-05-11
Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
The construction of factorized S-matrices
International Nuclear Information System (INIS)
Chudnovsky, D.V.
1981-01-01
We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)
Skew-adjacency matrices of graphs
Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.
2012-01-01
The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic
On Investigating GMRES Convergence using Unitary Matrices
Czech Academy of Sciences Publication Activity Database
Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.
2014-01-01
Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix
Directory of Open Access Journals (Sweden)
Yanpeng Zheng
2015-01-01
Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.
High-performance polymer/layered silicate nanocomposites
Heidecker, Matthew J.
High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the
Heterogeneous condensation of ice mantle around silicate core grain in molecular cloud
International Nuclear Information System (INIS)
Hasegawa, H.
1984-01-01
Interstellar water ice grains are observed in the cold and dense regions such as molecular clouds, HII regions and protostellar objects. The water ice is formed from gas phase during the cooling stage of cosmic gas with solid grain surfaces of high temperature silicate minerals. It is a question whether the ice is formed through the homogeneous condensation process (as the ice alone) or the heterogeneous one (as the ice around the pre-existing high temperature mineral grains). (author)
The acid aging as alternative process for uranium recovery from silicated ores
International Nuclear Information System (INIS)
Cipriani, M.; Della Testa, A.
1984-01-01
The influence of different variables on the extraction uranium efficiency and on the silicate solubility by means of acid aging is studied. The variables studied in bench scale were: acid/ore, oxidizing/ore and liquid/solid relationships; reaction time; temperature and recovery time. The results are discussed and compared with the ones of continuous operation of a semi-pilot plant. A flowsheet of the industrial process application is presented. (M.A.C.) [pt
Irradiation of potassium-silicate glass surfaces: XPS and REELS study
Czech Academy of Sciences Publication Activity Database
Romanyuk, Olexandr; Jiříček, Petr; Zemek, Josef; Houdková, Jana; Jurek, Karel; Gedeon, O.
2016-01-01
Roč. 48, č. 7 (2016), s. 543-546 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : electron spectroscopy * potassium silicate glass * x-ray irradiation * electron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2016
Measuring and modelling of diffusivities in carbohydrate-rich matrices during thin film drying
Perdana, J.A.; Sman, van der R.G.M.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.
2014-01-01
Knowledge about moisture diffusivity in solid matrices is a key for understanding drying behaviour of for example probiotic or enzymatic formulations. This paper presents an experimental procedure to determine moisture diffusivity on the basis of thin film drying and gravimetric analysis in a
Antimony measurements in environmental matrices
DEFF Research Database (Denmark)
Maher, William A.; Krikowa, Frank; Foster, Simon D.
2018-01-01
of the oxidation of Sb(iii) to Sb(v) and the formation of artefact Sb species. The analysis of solid samples using X-ray absorption spectroscopy should be considered as it has been shown to discriminate between Sb(iii) and Sb(v) as well as Sb minerals, oxides and adsorbed Sb species....
Combustion synthesis and photoluminescence study of silicate ...
Indian Academy of Sciences (India)
sorbable and durable materials for orthopaedic and dental implants, that are capable of bearing high stress ... Other studies showed that these silicate ceramics also possess good in vivo bioactivity (Hench 1998; ... ceramic powders without the intermediate decomposition and/or calcining steps has attracted a good deal of ...
Synthesis of non-siliceous mesoporous oxides.
Gu, Dong; Schüth, Ferdi
2014-01-07
Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.
Dielectric properties of plasma sprayed silicates
Czech Academy of Sciences Publication Activity Database
Ctibor, Pavel; Sedláček, J.; Neufuss, Karel; Dubský, Jiří; Chráska, Pavel
-, č. 31 (2005), s. 315-321 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GA202/03/0708 Institutional research plan: CEZ:AV0Z20430508 Keywords : Optical microscopy * electrical properties * silicates * insulators * plasma spraying Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.702, year: 2005
Selective silicate-directed motility in diatoms
DEFF Research Database (Denmark)
Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen
2016-01-01
the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under d...
Community Detection for Correlation Matrices
Directory of Open Access Journals (Sweden)
Mel MacMahon
2015-04-01
Full Text Available A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with “hard” cores and “soft” peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect “soft stocks” that alternate between communities; and discuss implications for portfolio optimization and risk management.
Community Detection for Correlation Matrices
MacMahon, Mel; Garlaschelli, Diego
2015-04-01
A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.
21 CFR 582.2122 - Aluminum calcium silicate.
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...
21 CFR 182.2122 - Aluminum calcium silicate.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...
Suppressive effects of a polymer sodium silicate solution on ...
African Journals Online (AJOL)
Sodium silicate was dissolved in water in either a monomer form or polymer form; the effects of both forms of sodium silicate aqueous solution on rose powdery mildew and root rot diseases of miniature rose were examined. Both forms of sodium silicate aqueous solution were applied to the roots of the miniature rose.
40 CFR 721.9513 - Modified magnesium silicate polymer (generic).
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section for...
Evaluation of the technical feasibility of new conditioning matrices for long-lived radionuclides
International Nuclear Information System (INIS)
Deschanels, X.
2004-01-01
Several matrices have been selected for the conditioning of long-lived radioactive wastes: a compound made of a iodo-apatite core coated with a densified matrice of vanadium-phosphorus-lead apatite for iodine; the hollandite ceramic for cesium; the britholite, zirconolite, thorium phosphate diphosphate, and the monazite-brabantite solid solution for minor actinides; and a Nb-based metal alloy and phosphate or titanate-type ceramics for technetium. This report presents the results of the researches carried out between 2002-2004 during the technical feasibility step. The main points described are: - the behaviour of matrices under irradiation. These studies were performed thanks to an approach combining the characterization of natural analogues, the doping of matrices with short-lived radionuclides and the use of external irradiations; - the behaviour of these matrices with respect to water alteration; - the sensibility of these structures with respect to the incorporation of chemical impurities; - a package-process approach including the optimization of the process and preliminary studies about the package concept retained. These studies show that important work remains to be done to develop conditioning matrices suitable for iodine and technetium, while for cesium and minor actinides, the first steps of the technical feasibility are made. However, it remains impossible today to determine the structure having the best global behaviour. (J.S.)
The Antitriangular Factorization of Saddle Point Matrices
Pestana, J.
2014-01-01
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
Core Formation on Asteroid 4 Vesta: Iron Rain in a Silicate Magma Ocean
Kiefer, Walter S.; Mittlefehldt, David W.
2017-01-01
Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft, suggest that Vesta resembles H chondrites in bulk chemical composition, possibly with about 25% of a CM-chondrite like composition added in. For this model, the core is 15% by mass (or 8 volume %) of the asteroid. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. Melting in the Fe-Ni-S system begins at a cotectic temperature of 940 deg. C. Only about 40% of the total metal phase, or 3-4 volume % of Vesta, melts prior to the onset of silicate melting. Liquid iron in solid silicate initially forms isolated pockets of melt; connected melt channels, which are necessary if the metal is to segregate from the silicate, are only possible when the metal phase exceeds about 5 volume %. Thus, metal segregation to form a core does not occur prior to the onset of silicate melting.
The importance of the Maillard-metal complexes and their silicates in astrobiology
Liesch, Patrick J.; Kolb, Vera M.
2007-09-01
The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.
Energy Technology Data Exchange (ETDEWEB)
Pilette, M.A.; Charpentier, T.; Berthault, P. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, Lab. de Structure et Dynamique par Resonance Magnetique Lab. Claude Frejacques - CEA/CNRS URA 331, DSM/DRECAM/SCM, 91 - Gif sur Yvette (France)
2007-07-01
The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)
Synchronous correlation matrices and Connes’ embedding conjecture
Energy Technology Data Exchange (ETDEWEB)
Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
Discrete canonical transforms that are Hadamard matrices
International Nuclear Information System (INIS)
Healy, John J; Wolf, Kurt Bernardo
2011-01-01
The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
The Antitriangular Factorization of Saddle Point Matrices
Pestana, J.; Wathen, A. J.
2014-01-01
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle
Flux Jacobian Matrices For Equilibrium Real Gases
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
Supercritical fluid extraction behaviour of polymer matrices
International Nuclear Information System (INIS)
Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.
2007-01-01
Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)
Elmore, Amy R
2005-01-01
Potassium Silicate, Sodium Metasilicate, and Sodium Silicate combine metal cations with silica to form inorganic salts used as corrosion inhibitors in cosmetics. Sodium Metasilicate also functions as a chelating agent and Sodium Silicate as a buffering and pH adjuster. Sodium Metasilicate is currently used in 168 formulations at concentrations ranging from 13% to 18%. Sodium Silicate is currently used in 24 formulations at concentrations ranging from 0.3% to 55%. Potassium Silicate and Sodium Silicate have been reported as being used in industrial cleaners and detergents. Sodium Metasilicate is a GRAS (generally regarded as safe) food ingredient. Aqueous solutions of Sodium Silicate species are a part of a chemical continuum of silicates based on an equilibrium of alkali, water, and silica. pH determines the solubility of silica and, together with concentration, determines the degree of polymerization. Sodium Silicate administered orally is readily absorbed from the alimentary canal and excreted in the urine. The toxicity of these silicates has been related to the molar ratio of SiO2/Na2O and the concentration being used. The Sodium Metasilicate acute oral LD50 ranged from 847 mg/kg in male rats to 1349.3 mg/kg in female rats and from 770 mg/kg in female mice to 820 mg/kg in male mice. Gross lesions of variable severity were found in the oral cavity, pharynx, esophagus, stomach, larynx, lungs, and kidneys of dogs receiving 0.25 g/kg or more of a commercial detergent containing Sodium Metasilicate; similar lesions were also seen in pigs administered the same detergent and dose. Male rats orally administered 464 mg/kg of a 20% solution containing either 2.0 or 2.4 to 1.0 ratio of sodium oxide showed no signs of toxicity, whereas doses of 1000 and 2150 mg/kg produced gasping, dypsnea, and acute depression. Dogs fed 2.4 g/kg/day of Sodium Silicate for 4 weeks had gross renal lesions but no impairment of renal function. Dermal irritation of Potassium Silicate, Sodium
Insight into silicate-glass corrosion mechanisms
Energy Technology Data Exchange (ETDEWEB)
Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)
2008-07-01
The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)
Sorption of Europium in zirconium silicate
International Nuclear Information System (INIS)
Garcia R, G.
2004-01-01
Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)
Effects of ionization on silicate glasses
International Nuclear Information System (INIS)
Primak, W.
1982-02-01
This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures
Stability constants for silicate adsorbed to ferrihydrite
DEFF Research Database (Denmark)
Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten
1994-01-01
Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...
Crystallisation mechanism of a multicomponent lithium alumino-silicate glass
International Nuclear Information System (INIS)
Wurth, R.; Pascual, M.J.; Mather, G.C.; Pablos-Martín, A.; Muñoz, F.; Durán, A.; Cuello, G.J.; Rüssel, C.
2012-01-01
A base glass of composition 3.5 Li 2 O∙0.15 Na 2 O∙0.2 K 2 O∙1.15 MgO∙0.8 BaO∙1.5 ZnO∙20 Al 2 O 3 ∙67.2 SiO 2 ∙2.6 TiO 2 ∙1.7 ZrO 2 ∙1.2 As 2 O 3 (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi 2 O 6 with nanoscaled crystals forms at 750 °C. Quantitative Rietveld refinement of samples annealed at 750 °C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, β-eucryptite-like structure (2 × 2 × 2 cell) with Li ordered in the structural channels. The Avrami parameter (n ∼ 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 ± 20 kJ mol −1 . - Highlights: ► Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. ► Combined X-ray and neutron diffraction structural refinement. ► β-Eucryptite-like structure (2 × 2×2 cell) with Li ordered in the structural channels. ► 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. ► Usage and validation of an alternative approach to calculate the Avrami parameter.
SILICATE EVOLUTION IN BROWN DWARF DISKS
International Nuclear Information System (INIS)
Riaz, B.
2009-01-01
We present a compositional analysis of the 10 μm silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 μm, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of ∼2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of ∼87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a ∼26% crystalline mass fraction for this object.
Adsorption of dimeric surfactants in lamellar silicates
Energy Technology Data Exchange (ETDEWEB)
Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: mkozak@amu.edu.pl [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)
2015-12-01
Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.
Lead-silicate glass optical microbubble resonator
Energy Technology Data Exchange (ETDEWEB)
Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)
2015-02-09
Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.
Protein matrices for wound dressings =
Vasconcelos, Andreia Joana Costa
Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was
MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD
Directory of Open Access Journals (Sweden)
N. A. Balonin
2014-05-01
Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by
A Brief Historical Introduction to Matrices and Their Applications
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Energy Technology Data Exchange (ETDEWEB)
Gurevich, S A; Ekimov, A I; Kudryavtsev, I A [AN SSSR, Leningrad (Russian Federation). Fiziko-Tekhnicheskij Inst.
1994-05-01
Regularities of CdS semiconductor hanocrystal growth in amorphous media (silicate glasses and SiO{sub 2} thin films) are investigated. Dependences of crystal mean dimension on the annealing time show that in accordance with the theory of phase decomposition the crystal growth has the successive stages of nuclei formation and diffusion growth. By means of the nuclei mean radius dependences on the annealing temperature are determined the temperatures of CdS solubility in the matrix material. Effect of the annealing atmosphere composition on the growth and optical properties of CdS nanocrystals is shown.
d'Hendecourt, L; Dartois, E
2001-03-15
Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.
Modelling the Long Term Leaching Behaviour of 137CS from Different Stabilized Waste Matrices
International Nuclear Information System (INIS)
El-Kamash, A.M.
2013-01-01
Leaching characteristics of ''1''3''7Cs from immobilized waste matrices in different cement-based grouts have been assessed to investigate the influence of the additives on the leaching behavior of the solid waste matrices. The International Atomic Energy's Agency (IAEA) standard leach method has been employed to study the leach pattern of 137 Cs radionuclide from the immobilized waste form. The examination of the leaching data revealed that clay additives reduces the leach rate for the studied radionuclide. The controlling leaching mechanism has been studied and the transport parameters were calculated for all studied waste matrices. Simplified analytical models have been derived to predict the Cumulative Leach Fraction (CLF) of radionuclides over the studied experimental period. These simplified research models could be used as a screening tool to assess the performance of the waste matrix under repository conditions. (author)
Influence of silicate ions on the formation of goethite from green rust in aqueous solution
International Nuclear Information System (INIS)
Kwon, Sang-Koo; Kimijima, Ken'ichi; Kanie, Kiyoshi; Suzuki, Shigeru; Muramatsu, Atsushi; Saito, Masatoshi; Shinoda, Kozo; Waseda, Yoshio
2007-01-01
We investigated the influence of silicate ions on the formation of goethite converted from hydroxysulphate green rust, which was synthesized by neutralizing mixed solution of Fe 2 (SO 4 ) 3 and FeSO 4 with NaOH solution, by O 2 in an aqueous solution. The pH and oxidation-reduction potential of the suspension and the Fe and Si concentrations in supernatant solutions were analyzed. X-ray diffraction results for the solid particles formed during the conversion were consistent with the results of the solution analyses. The results indicated that silicate ions suppressed the conversion from green rust to α-FeOOH and distorted the linkages of FeO 6 octahedral units in the α-FeOOH structure
10 micron Spectroscopy with OSCIR: Silicate Minerology and The Origins of Disks & Protoplanetesimals
Woodward, Chick; Wooden, Diane; Harker, David; Rodgers, Bernadette; Butner, Harold
1999-02-01
The analysis of the silicate mineralogy of pre-main sequence Herbig Ae/Be (HeAeBe) stars to main sequence (beta)-Pic systems, probes the chemical and physical conditions in these potentially planet-forming environments, the condensation of dust from the gas-disk, and the aggregation and accretion of these solids into planetesimals and comets. We propose to obtain 10 micron OSCIR spectra of a selected list of HeAeBe and (beta)-Pic like systems. Use of our ground-based data, combined with the ISO SWS database, and our extensive analytical modeling efforts will permit us to develop a fundamental understanding of connections between silicate mineralogy and the origins and evolution of disks and protoplanetesimals. This program will provide a framework to extend our understanding of planetary formation processes and the mineralogy of dust in differing circumstellar environs and comets to be studied with the NASA STARDUST and SIRTF missions.
International Nuclear Information System (INIS)
Martinez, I.M.; Velasquez, P.A.; De Aza, P.N.
2010-01-01
The aim of this study was to synthesize materials of α-tricalcium phosphate doped with small amounts of dicalcium silicate, by solid state reaction, at high temperature and slow cooling to room temperature. The obtained materials were characterized by X-ray diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy, showing that there is a region between 0.5 and 4.0 wt.% of dicalcium silicate where solid solution α-tricalcium phosphate (α-TCPss) is stable to room temperature.
Environmental assessment of waste matrices contaminated with arsenic.
Sanchez, F; Garrabrants, A C; Vandecasteele, C; Moszkowicz, P; Kosson, D S
2003-01-31
The use of equilibrium-based and mass transfer-based leaching tests has been proposed to provide an integrated assessment of leaching processes from solid wastes. The objectives of the research presented here are to (i) validate this assessment approach for contaminated soils and cement-based matrices, (ii) evaluate the use of diffusion and coupled dissolution-diffusion models for estimating constituent release, and (iii) evaluate model parameterization using results from batch equilibrium leaching tests and physical characterization. The test matrices consisted of (i) a soil contaminated with arsenic from a pesticide production facility, (ii) the same soil subsequently treated by a Portland cement stabilization/solidification (S/S) process, and (iii) a synthetic cement-based matrix spiked with arsenic(III) oxide. Results indicated that a good assessment of contaminant release from contaminated soils and cement-based S/S treated wastes can be obtained by the integrated use of equilibrium-based and mass transfer-based leaching tests in conjunction with the appropriate release model. During the time scale of laboratory testing, the release of arsenic from the contaminated soil matrix was governed by diffusion and the solubility of arsenic in the pore solution while the release of arsenic from the cement-based matrices was mainly controlled by solubilization at the interface between the matrix and the bulk leaching solution. In addition, results indicated that (i) estimation of the activity coefficient within the matrix pore water is necessary for accurate prediction of constituent release rates and (ii) inaccurate representation of the factors controlling release during laboratory testing can result in significant errors in release estimates.
Synthesis of silicated hydroxyapatite Ca10(PO4)6-x(SiO4)x(OH)2-x
International Nuclear Information System (INIS)
Palard, Mickael; Champion, Eric; Foucaud, Sylvie
2008-01-01
The preparation of silicated hydroxyapatite Ca 10 (PO 4 ) 6-x (SiO 4 ) x (OH) 2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by a heat treatment. X-ray diffraction and Rietveld refinement, Fourier transformed IR (FTIR) spectroscopy, elemental analyses, transmission electron microscopy and thermal analyses were used to characterize the samples. The raw materials were composed of a partially silicated and carbonated apatite and a secondary minor phase containing the excess silicon. Single phase silicated hydroxyapatites, with 0≤x≤1, could be synthesized after a thermal treatment of the raw powders above 700 deg. C. The presence of carbonate groups in the raw apatite played an important role in the incorporation of silicates during heating. From the different results, the mechanisms of formation of SiHA are discussed. - Graphical abstract: The preparation of pure silicated hydroxyapatite Ca 10 (PO 4 ) 6-x (SiO 4 ) x (OH) 2-x powders with controlled silicon content was investigated. The synthesis route included a precipitation in aqueous media. It required an additional high temperature solid-state reaction to fully incorporate the silicon into the apatite crystals
Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.
Diclofenac sodium sustained release hot melt extruded lipid matrices.
Vithani, K; Cuppok, Y; Mostafa, S; Slipper, I J; Snowden, M J; Douroumis, D
2014-08-01
Sustained release diclofenac sodium (Df-Na) solid lipid matrices with Compritol® 888 ATO were developed in this study. The drug/lipid powders were processed via cold and hot melt extrusion at various drug loadings. The influence of the processing temperatures, drug loading and the addition of excipients on the obtained dissolution rates was investigated. The physicochemical characterization of the extruded batches showed the existence of crystalline drug in the extrudates with a small amount being solubilized in the lipid matrix. The drug content and uniformity on the tablet surface were also investigated by using energy dispersive X-ray microanalysis. The dissolution rates were found to depend on the actual Df-Na loading and the nature of the added excipients, while the effect of the processing temperatures was negligible. The dissolution mechanism of all extruded formulations followed Peppas-Korsemeyer law, based on the estimated determination coefficients and the dissolution constant rates, indicating drug diffusion from the lipid matrices.
Kim, Wun-gwi
2011-06-21
Nanoporous layered silicate materials contain 2D-planar sheets of nanoscopic thickness and ordered porous structure. In comparison to porous 3D-framework materials such as zeolites, they have advantages such as significantly increased surface area and decreased diffusion limitations because the layers can potentially be exfoliated or intercalated into polymers to form nanocomposite materials. These properties are particularly interesting for applications as materials for enhancing molecular selectivity and throughput in composite membranes. In this report, the swelling and surface modification chemistry of two attractive nanoporous layered silicate materials, AMH-3 and MCM-22, were studied. We first describe a method, using long-chain diamines instead of monoamines, for swelling of AMH-3 while preserving its pore structure to a greater extent during the swelling process. Then, we describe a stepwise functionalization method for functionalizing the layer surfaces of AMH-3 and MCM-22 via silane condensation reactions. The covalently attached hydrocarbon chain molecules increased the hydrophobicity of AMH-3 and MCM-22 layer surfaces and therefore allow the possibility of effectively dispersing these materials in polymer matrices for thin film/membrane applications. © 2011 American Chemical Society.
Regularities in Low-Temperature Phosphatization of Silicates
Savenko, A. V.
2018-01-01
The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.
Random matrices and random difference equations
International Nuclear Information System (INIS)
Uppuluri, V.R.R.
1975-01-01
Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models
Quantum Entanglement and Reduced Density Matrices
Purwanto, Agus; Sukamto, Heru; Yuwana, Lila
2018-05-01
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.
Forecasting Covariance Matrices: A Mixed Frequency Approach
DEFF Research Database (Denmark)
Halbleib, Roxana; Voev, Valeri
This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...
Advanced incomplete factorization algorithms for Stiltijes matrices
Energy Technology Data Exchange (ETDEWEB)
Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)
1996-12-31
The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.
New silicates of rare earths and calcium
International Nuclear Information System (INIS)
Andreev, I.F.; Shevyakov, A.M.; Smorodina, T.P.; Semenov, N.E.
1975-01-01
The complex silicates of the third subgroup elements of lanthanides and calcium were synthesized: Ca 3 Er 2 Si 6 O 18 , Ca 3 Lu 2 Si 6 O 18 and Ca 3 Yb 2 Si 6 O 18 . To specify these compounds their physical and chemical properties were studied by means of roentgenographic, IR spectroscopic and crystaloptical methods. The values of Ng, Np,Δn,m,p were determined, the elementary cell parameters: a,b,c,α,β,γ were computed. Existence of such compounds and their analogy in ternary systems MeO-Ln 2 O 3 -SiO 2 were forcasted
Tribo-exoemission from some silicate materials
International Nuclear Information System (INIS)
Holzapfel, G.; Lesz, J.; Otto, W.
1983-01-01
The tribo-exoemission from some minerals has been investigated in view of applications in the porcelain industries. Milling and sample preparation were performed under defined (liquid and solvent free) conditions. Quartz and the members of the alumo-silicate family feldspar, kaolin, and pegmatite are characterised by a strongly overlapped TSEE-peak between 100 0 C and 200 0 C, growing strongly with the mechanical dispersion of the powders. Thermal (TSEE) as well as optical (OSEE) stimulation reveal pegmatite as the strongest emitter with a very low fading of the tribo-signal at room temperature. (author)
Structure peculiarities of mixed alkali silicate glasses
International Nuclear Information System (INIS)
Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.
1980-01-01
The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)
Wishart and anti-Wishart random matrices
International Nuclear Information System (INIS)
Janik, Romuald A; Nowak, Maciej A
2003-01-01
We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks
Topological expansion of the chain of matrices
International Nuclear Information System (INIS)
Eynard, B.; Ferrer, A. Prats
2009-01-01
We solve the loop equations to all orders in 1/N 2 , for the Chain of Matrices matrix model (with possibly an external field coupled to the last matrix of the chain). We show that the topological expansion of the free energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly discuss the limit of an infinite chain of matrices (matrix quantum mechanics).
Partitioning sparse rectangular matrices for parallel processing
Energy Technology Data Exchange (ETDEWEB)
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Location of silicic caldera formation in arc settings
Energy Technology Data Exchange (ETDEWEB)
Hughes, Gwyneth R; Mahood, Gail A [Department of Geological and Environmental Sciences, Stanford University, 450 Serra, Mall, Building 320, Stanford, CA 94305-2115 (United States)
2008-10-01
Silicic calderas are the surface expressions of silicic magma chambers, and thus their study may yield information about what tectonic and crustal features favor the generation of evolved magma. The goal of this study is to determine whether silicic calderas in arc settings are preferentially located behind the volcanic front. After a global analysis of young, arc-related calderas, we find that silicic calderas at continental margins do form over a wide area behind the front, as compared to other types of arc volcanoes.
Tip-induced nanoreactor for silicate
Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin
2015-09-01
Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales.
Thermochemistry of dense hydrous magnesium silicates
Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra
1994-01-01
Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.
Evidence for seismogenic fracture of silicic magma.
Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R
2008-05-22
It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.
A New Biphasic Dicalcium Silicate Bone Cement Implant
Directory of Open Access Journals (Sweden)
Fausto Zuleta
2017-07-01
Full Text Available This study aimed to investigate the processing parameters and biocompatibility of a novel biphasic dicalcium silicate (C2S cement. Biphasic α´L + β-C2Sss was synthesized by solid-state processing, and was used as a raw material to prepare the cement. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid (SBF and human adipose stem cell cultures. Two critical-sized defects of 6 mm Ø were created in 15 NZ tibias. A porous cement made of the high temperature forms of C2S, with a low phosphorous substitution level, was produced. An apatite-like layer covered the cement’s surface after soaking in SBF. The cell attachment test showed that α´L + β-C2Sss supported cells sticking and spreading after 24 h of culture. The cement paste (55.86 ± 0.23 obtained higher bone-to-implant contact (BIC percentage values (better quality, closer contact in the histomorphometric analysis, and defect closure was significant compared to the control group (plastic. The residual material volume of the porous cement was 35.42 ± 2.08% of the initial value. The highest BIC and bone formation percentages were obtained on day 60. These results suggest that the cement paste is advantageous for initial bone regeneration.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying
2015-01-01
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
Theoretical origin of quark mass matrices
International Nuclear Information System (INIS)
Mohapatra, R.N.
1987-01-01
This paper presents the theoretical origin of specific quark mass matrices in the grand unified theories. The author discusses the first natural derivation of the Stech-type mass matrix in unified gauge theories. A solution to the strong CP-problem is provided
Malware Analysis Using Visualized Image Matrices
Directory of Open Access Journals (Sweden)
KyoungSoo Han
2014-01-01
Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2013-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Moment matrices, border bases and radical computation
Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2011-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Malware analysis using visualized image matrices.
Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu
2014-01-01
This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Generation speed in Raven's Progressive Matrices Test
Verguts, T.; Boeck, P. De; Maris, E.G.G.
1999-01-01
In this paper, we investigate the role of response fluency on a well-known intelligence test, Raven's (1962) Advanced Progressive Matrices (APM) test. Critical in solving this test is finding rules that govern the items. Response fluency is conceptualized as generation speed or the speed at which a
Inversion of General Cyclic Heptadiagonal Matrices
Directory of Open Access Journals (Sweden)
A. A. Karawia
2013-01-01
Full Text Available We describe a reliable symbolic computational algorithm for inverting general cyclic heptadiagonal matrices by using parallel computing along with recursion. The computational cost of it is operations. The algorithm is implementable to the Computer Algebra System (CAS such as MAPLE, MATLAB, and MATHEMATICA. Two examples are presented for the sake of illustration.
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-11-30
We approximate large non-structured Matérn covariance matrices of size n×n in the H-matrix format with a log-linear computational cost and storage O(kn log n), where rank k ≪ n is a small integer. Applications are: spatial statistics, machine learning and image analysis, kriging and optimal design.
DEFF Research Database (Denmark)
Thomsen, Birgitte Raagaard; Yesiltas, Betül; Sørensen, Ann-Dorit Moltke
2016-01-01
The aim of this study was to compare three different collection methods; purge and trap, solid phase micro extraction and automated dynamic headspace/thermal desorption, all followed by GC–MS analysis used for the measurements of concentrations of volatile oxidation products in three different food...... of the calibration curves depending on the collection method. However, some challenges were observed for solid phase micro extraction and automated dynamic headspace/thermal desorption, namely, competition problems and overestimation of concentration by calibration curves, respectively. Based on the results, we...... suggest mainly to apply solid phase micro extraction on simple matrices and to be cautious with more complex matrices such as enriched milk and highly oxidized oils. Thereby, the study confirmed some challenges observed by other authors regarding competition problems on the fiber when using solid phase...
Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications
International Nuclear Information System (INIS)
Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.
2005-01-01
Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance
Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M
2017-09-08
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.
Energy Technology Data Exchange (ETDEWEB)
Noirfontaine, M.N. de
2000-01-01
Anhydrous (Portland) cement is mainly composed of a synthetic material, the clinker, whose major compound is tri-calcium silicate (Ca{sub 3}SiO{sub 5}), often referred as C{sub 3}S with the compact oxides notations, C = CaO et S = SiO{sub 2}. The polymorphism of C{sub 3}S, still not well known, is the main subject of the thesis. Various crystal structures (rhombohedral R, monoclinic M1, M2, M3 and triclinic T1, T2, T3) can be found, depending on temperature and impurities. The only known structures are T1, M1 and M3, involving large unit cells with an orientational disorder of silicate tetrahedra. The single crystal studies exhibit no clear relation between the various polymorphs. Starting from known results from literature single crystal experiments, we establish the metric and structural relations between the different structures. Averaged structures for the T1, M1 and M3 polymorphs are proposed, together with all the matrices of transformation between the unit cells. We also introduce new 1-D, 2-D, and 3-D structural units, which make easier the understanding of the structures of C{sub 3}S, with the result of a better description of the orientational disorder. The effects of impurities on the structure are discussed. In industrial clinkers, impurities stabilize mainly M1 and M3 monoclinic forms. We propose a space group (Pc) and two structural models (a superstructure and an approximate averaged structure) for the M1 form. All the models are validated on synthetic compounds (M3, M2, M1 et T1) and industrial clinkers analysed by X-Ray powder diffraction with Rietveld analysis. (author)
Study of Cu+, Ag+ and Au+ ion implantation into silicate glasses
Czech Academy of Sciences Publication Activity Database
Švecová, B.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Kolitsch, A.; Machovič, V.; Stara, S.; Míka, M.; Špirková, J.
2010-01-01
Roč. 356, 44-49 (2010), s. 2468-2472 ISSN 0022-3093. [XII International Conference on the Physics of Non-Crystalline Solids. Foz do Iguaçu, PR, Brazil , 06.09.-09.09.2009] R&D Projects: GA MŠk(CZ) LC06041; GA ČR GA106/09/0125 Institutional research plan: CEZ:AV0Z10480505 Keywords : Ion implantation * Silicate glasses * Metal nanoparticles * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2010
Crystallisation mechanism of a multicomponent lithium alumino-silicate glass
Energy Technology Data Exchange (ETDEWEB)
Wurth, R. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany); Pascual, M.J., E-mail: mpascual@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Mather, G.C.; Pablos-Martin, A.; Munoz, F.; Duran, A. [Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Cuello, G.J. [Institut Laue-Langevin, Boite Postale 156, 38042 Grenoble Cedex 9 (France); Ruessel, C. [Otto-Schott-Institut, Jena University, Fraunhoferstr. 6, 07743 Jena (Germany)
2012-06-15
A base glass of composition 3.5 Li{sub 2}O Bullet-Operator 0.15 Na{sub 2}O Bullet-Operator 0.2 K{sub 2}O Bullet-Operator 1.15 MgO Bullet-Operator 0.8 BaO Bullet-Operator 1.5 ZnO Bullet-Operator 20 Al{sub 2}O{sub 3} Bullet-Operator 67.2 SiO{sub 2} Bullet-Operator 2.6 TiO{sub 2} Bullet-Operator 1.7 ZrO{sub 2} Bullet-Operator 1.2 As{sub 2}O{sub 3} (in wt.%), melted and provided by SCHOTT AG (Mainz), was used to study the crystallisation mechanism of lithium alumino-silicate glass employing X-ray diffraction combined with neutron diffraction and non-isothermal differential scanning calorimetry (DSC). A high-quartz solid solution of LiAlSi{sub 2}O{sub 6} with nanoscaled crystals forms at 750 Degree-Sign C. Quantitative Rietveld refinement of samples annealed at 750 Degree-Sign C for 8 h determined a crystallised fraction of around 59 wt.%. The room temperature crystallised phase adopts an ordered, {beta}-eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. The Avrami parameter (n {approx} 4), calculated from DSC data using different theoretical approaches, indicates that bulk crystallisation occurs and that the number of nuclei increases during annealing. The activation energy of the crystallisation is 531 {+-} 20 kJ mol{sup -1}. - Highlights: Black-Right-Pointing-Pointer Nanoscaled high-quartz crystals from a multicomponent lithium alumino-silicate glass. Black-Right-Pointing-Pointer Combined X-ray and neutron diffraction structural refinement. Black-Right-Pointing-Pointer {beta}-Eucryptite-like structure (2 Multiplication-Sign 2 Multiplication-Sign 2 cell) with Li ordered in the structural channels. Black-Right-Pointing-Pointer 3-Dimensional bulk crystallisation mechanism with an increasing number of nuclei. Black-Right-Pointing-Pointer Usage and validation of an alternative approach to calculate the Avrami parameter.
Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo
2014-12-03
We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.
Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.
2018-06-01
Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.
The formation of molecular hydrogen on silicate dust analogs: The rotational distribution
Energy Technology Data Exchange (ETDEWEB)
Gavilan, L.; Lemaire, J. L. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Université de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Syracuse University, Physics Department, Syracuse, NY 13244-1320, USA. (United States); Sabri, T.; Jæger, C., E-mail: lisseth.gavilan@obspm.fr [Laboratory Astrophysics and Cluster Physics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena (Germany)
2014-02-01
Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ∼5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 ≤ J'' ≤ 5) of v'' = 0 of the ground electronic state of H{sub 2}. The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T {sub rot} ∼ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ∼310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the 'cartwheel' rotation mode. A search for hot hydrogen, predicted as a result of H{sub 2} formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.
UTILIZATION OF RICE HUSK AS RAW MATERIAL IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41
Directory of Open Access Journals (Sweden)
Suyanta Suyanta
2011-12-01
Full Text Available The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2 was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB, 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.
Stress-corrosion mechanisms in silicate glasses
International Nuclear Information System (INIS)
Ciccotti, Matteo
2009-01-01
The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.
Cesium titanium silicate and method of making
Balmer, Mari L.
1997-01-01
The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.
Radiation effects on lead silicate glass surfaces
International Nuclear Information System (INIS)
Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.
1996-01-01
Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)
Redox kinetics and mechanism in silicate melts
International Nuclear Information System (INIS)
Cochain, B.
2009-12-01
This work contributes to better understand iron redox reactions and mechanisms in silicate melts. It was conducted on compositions in both Na 2 O-B 2 O 3 -SiO 2 -FeO and Na 2 O-Al 2 O 3 -SiO 2 -FeO systems. The influence of boron-sodium and aluminum-sodium substitutions and iron content on properties and structure of glasses and on the iron redox kinetics has been studied by Raman, Moessbauer and XANES spectroscopies at the B and Fe K-edges. In borosilicate glasses, an increase in iron content or in the Fe 3+ /ΣFe redox state implies a structural rearrangement of the BO 4 species in the glass network whereas the BO 3 and BO 4 relative proportions remain nearly constant. In all studied glasses and melts, Fe 3+ is a network former in tetrahedral coordination, unless for aluminosilicates of ratio Al/Na≥1 where Fe 3+ is a network modifier in five-fold coordination. Near Tg, diffusion of network modifying cations controls the iron redox kinetics along with a flux of electron holes. At liquidus temperatures, oxygen diffusion is considered to be the mechanism that governs redox reactions. This study shows the role played by the silicate network polymerization on the redox kinetics. In borosilicate melts, iron redox kinetics depends on the boron speciation between BO 3 and BO 4 that depends itself on the sodium content. Furthermore, an increase in the network-former/network-modifier ratio implies a decrease in oxygen diffusion that results in a slowing down of the redox kinetics. The obtained results allow a description of the iron redox kinetics for more complex compositions as natural lavas or nuclear waste model glasses. (author)
Uranium and thorium phosphate based matrices; syntheses, characterizations and lixiviation
International Nuclear Information System (INIS)
Dacheux, N.
1995-03-01
In the framework of the search for a ceramic material usable in the radioactive waste storage, uranium and thorium phosphates have been investigated. Their experimental synthesis conditions have been entirely reviewed, they lead to the preparation of four new compounds: U(UO 2 )(PO 4 ) 2 , U 2 O(PO 4 ) 2 , UC1PO 4 ,H 2 O, and Th 4 (PO 4 ) 4 , U 2 O 3 P 2 O 7 and Th 3 (PO 4 ) 4 . Characterization by several techniques (X-rays and neutron powder diffractions, UV-Visible and Infra-red spectroscopies, XPS,...) were performed. The ab initio structure determination of U(UO 2 )(PO 4 ) 2 has been achieved by X-rays and refined by neutron diffractions. Through its physico-chemical analysis, we found that this compound was a new mixed valence uranium phosphate in which U 4+ and UO 2 2+ ions are ordered in pairs along parallel chains according to a new type of arrangement. Reaction mechanism, starting from UC1PO 4 , 4H 2 O and based on redox processes of uranium in solid state was set up. From two main matrices U(UO 2 )(PO 4 ) 2 and Th 4 (PO 4 ) 4 P 2 O 7 , solid solutions were studied. They consist of replacement of U(IV) by Th(IV) and reversely. The leaching tests on pure, loaded and doped matrices were performed in terms of storage time, pH of solutions, and determined by the use of solids labelled with 230 U or by the measurement of uranyl concentration by Laser-Induced Time-Resolved Spectrofluorometry. Average concentration of uranium in the liquid phase is around 10 -4 M to 10 -6 M. Taking into account the very low solubilities of the studied phosphate ceramics, we estimated their chemical performances promising as an answer to the important nuclear waste problem, if we compare them to the glasses used at the present time. (author). 47 figs., 23 tabs., 6 appendixes
On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers
Directory of Open Access Journals (Sweden)
Zhaolin Jiang
2014-01-01
inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively.
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
Evolutionary Games with Randomly Changing Payoff Matrices
Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun
2015-06-01
Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.
An algorithmic characterization of P-matricity
Ben Gharbia , Ibtihel; Gilbert , Jean Charles
2013-01-01
International audience; It is shown that a matrix M is a P-matrix if and only if, whatever is the vector q, the Newton-min algorithm does not cycle between two points when it is used to solve the linear complementarity problem 0 ≤ x ⊥ (Mx+q) ≥ 0.; Nous montrons dans cet article qu'une matrice M est une P-matrice si, et seulement si, quel que soit le vecteur q, l'algorithme de Newton-min ne fait pas de cycle de deux points lorsqu'il est utilisé pour résoudre le problème de compl\\émentarité lin...
Introduction to random matrices theory and practice
Livan, Giacomo; Vivo, Pierpaolo
2018-01-01
Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum. The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory). Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.
Teaching Fourier optics through ray matrices
International Nuclear Information System (INIS)
Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F
2005-01-01
In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics
The recurrence sequences via Sylvester matrices
Karaduman, Erdal; Deveci, Ömür
2017-07-01
In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.
Joint Matrices Decompositions and Blind Source Separation
Czech Academy of Sciences Publication Activity Database
Chabriel, G.; Kleinsteuber, M.; Moreau, E.; Shen, H.; Tichavský, Petr; Yeredor, A.
2014-01-01
Roč. 31, č. 3 (2014), s. 34-43 ISSN 1053-5888 R&D Projects: GA ČR GA102/09/1278 Institutional support: RVO:67985556 Keywords : joint matrices decomposition * tensor decomposition * blind source separation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 5.852, year: 2014 http://library.utia.cas.cz/separaty/2014/SI/tichavsky-0427607.pdf
Tensor Permutation Matrices in Finite Dimensions
Christian, Rakotonirina
2005-01-01
We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...
Fast Approximate Joint Diagonalization Incorporating Weight Matrices
Czech Academy of Sciences Publication Activity Database
Tichavský, Petr; Yeredor, A.
2009-01-01
Roč. 57, č. 3 (2009), s. 878-891 ISSN 1053-587X R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : autoregressive processes * blind source separation * nonstationary random processes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.212, year: 2009 http://library.utia.cas.cz/separaty/2009/SI/tichavsky-fast approximate joint diagonalization incorporating weight matrices.pdf
Photoluminescence of nanocrystals embedded in oxide matrices
International Nuclear Information System (INIS)
Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.
2006-12-01
We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)
Equiangular tight frames and unistochastic matrices
Czech Academy of Sciences Publication Activity Database
Goyeneche, D.; Turek, Ondřej
2017-01-01
Roč. 50, č. 24 (2017), č. článku 245304. ISSN 1751-8113 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : equiangular tight frames * unistochastic matrices * SIC POVM Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.857, year: 2016
Simplifications of rational matrices by using UML
Tasić, Milan B.; Stanimirović, Ivan P.
2013-01-01
The simplification process on rational matrices consists of simplifying each entry represented by a rational function. We follow the classic approach of dividing the numerator and denominator polynomials by their common GCD polynomial, and provide the activity diagram in UML for this process. A rational matrix representation as the quotient of a polynomial matrix and a polynomial is also discussed here and illustrated via activity diagrams. Also, a class diagram giving the links between the c...
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-07
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander
2015-01-05
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
PHAGOCYTOSIS AND REMODELING OF COLLAGEN MATRICES
Abraham, Leah C.; Dice, J Fred.; Lee, Kyongbum; Kaplan, David L.
2007-01-01
The biodegradation of collagen and the deposition of new collagen-based extracellular matrices are of central importance in tissue remodeling and function. Similarly, for collagen-based biomaterials used in tissue engineering, the degradation of collagen scaffolds with accompanying cellular infiltration and generation of new extracellular matrix is critical for integration of in vitro grown tissues in vivo. In earlier studies we observed significant impact of collagen structure on primary lun...
Preconditioners for regularized saddle point matrices
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe
2011-01-01
Roč. 19, č. 2 (2011), s. 91-112 ISSN 1570-2820 Institutional research plan: CEZ:AV0Z30860518 Keywords : saddle point matrices * preconditioning * regularization * eigenvalue clustering Subject RIV: BA - General Mathematics Impact factor: 0.533, year: 2011 http://www.degruyter.com/view/j/jnma.2011.19.issue-2/jnum.2011.005/jnum.2011.005. xml
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(n log n). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and optimal design
Hierarchical matrix approximation of large covariance matrices
Litvinenko, Alexander; Genton, Marc G.; Sun, Ying; Tempone, Raul
2015-01-01
We approximate large non-structured covariance matrices in the H-matrix format with a log-linear computational cost and storage O(nlogn). We compute inverse, Cholesky decomposition and determinant in H-format. As an example we consider the class of Matern covariance functions, which are very popular in spatial statistics, geostatistics, machine learning and image analysis. Applications are: kriging and op- timal design.
International Nuclear Information System (INIS)
Karim, D.; Lam, D.J.
1979-01-01
The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure
Energy Technology Data Exchange (ETDEWEB)
Ikeda, Takuji [AIST Tohoku, Sendai (Japan). Research Center for Compact Chemical System; Ideta, Chiaki; Yamamoto, Katsutoshi [Kitakyushu Univ. (Japan). Faculty of Environmental Engineering
2013-07-01
A new strontium-containing layered silicate, alkaline earth-containing silicate (AES)-18 [chemical composition: Si{sub 16}O{sub 24}(OH){sub 16} . {Sr(OH)_2}{sub 8} . (KOH){sub 2}], was synthesized utilizing a mechanochemical reaction in which an admixture of strontium hydroxide, which unfavorably precipitates in conventional syntheses, and a fumed silica (Aerosil) was allowed to react in the solid phase. The crystal structure of AES-18 was elucidated by the charge-flipping method using powder X-ray diffraction data, and the obtained structure was refined by a combination with the Rietveld method and the maximum entropy method (MEM). The structure analyses showed a tetragonal symmetry with a = 0.912738(3) nm, c = 1.628120(8) nm, and the space group P4{sub 2}/mnc. Two silicate layers composed of Q{sup 3} local structure [(-SiO){sub 3}Si-OH], 7-coordinated Sr{sup 2+} cations, and K{sup +} cations were included in a unit cell, and a Sr{sub 4}(OH){sub 17} cluster was formed between adjacent silicate layers. The framework topology of AES-18 containing 4- and 8-Si-membered rings was similar to that of paracelsian.
Group inverses of M-matrices and their applications
Kirkland, Stephen J
2013-01-01
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f
International Nuclear Information System (INIS)
Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich
2016-01-01
Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen
2013-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588
International Nuclear Information System (INIS)
Takesue, Masafumi; Suino, Atsuko; Hakuta, Yukiya; Hayashi, Hiromichi; Smith, Richard Lee
2008-01-01
Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa at reaction times from 1 to 4320 min was studied in the relation to its phase formation mechanism. Appearance of luminescent ZSM from green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation at a reaction time of 2 min. Luminescence appeared at a much lower temperature and at shorter reaction times than the conventional solid-state reaction. Needle-like-shaped α-ZSM was the most stable particle shape and phase in the supercritical water reaction environment and particles formed via two routes: a homogenous nucleation route and a heterogenous route that involves solid-state diffusion and recrystallization. - Graphical abstract: Luminescence appearance of Mn-doped zinc silicate (Zn 2 SiO 4 :Mn 2+ , ZSM) formed in supercritical water at 400 deg. C and 29 MPa were studied in the relation to its phase formation mechanism. Green emission by α-ZSM and yellow emission by β-ZSM occurred over the same time period during the onset of phase formation
Wooden, Diane H.; Lindsay, S. S.; Harker, D. E.; Kelley, M. S.; Woodward, C. E.; Richard, D. T.; Kolokolova, L.; Moreno, F.
2010-10-01
Spitzer IRS spectra of short-period Ecliptic Comets (ECs) have silicate features, and many have distinct crystalline silicate peaks. These Spitzer spectra, when fitted with thermal models after subtraction of the relatively strong contribution of the nuclear flux to the IR spectrum (e.g., Harker et al. 2007), demonstrate ECs have weaker silicate features than long-period Nearly-Isotropic Comets (NICs). There are exceptions, however, as some NICs also have weak features like most ECs. Grains with lower porosities (lower fraction of vacuum) can explain weaker silicate features (Kelley and Wooden 2009; Kolokolova et al. 2007). Alternatively, omitting the smallest (submicron) solid grains can reduce the contrast of the silicate feature (Lisse et al. 2006). However, so far, only models for solid submicron crystals fit the crystalline peaks in spectra of comets with weak silicate features. This presents a dilemma: how can the coma be devoid of small grains except for the crystals? The Spitzer spectra of the Deep Impact event with EC 9P/Tempel 1 provides a data set to model larger porous grains with crystal inclusions because the post-impact coma was a time-of-flight experiment: an impulsive release of grains were size-sorted in time by their respective gas velocities so that the smaller grains departed the inner coma quicker than larger grains. A velocity law derived from fitting small beam Gemini spectra (Harker et al. 2007) indicates that at 20 hour post-impact the (pre-impact subtracted) Spitzer IRS spectrum contained grains larger than 10-20 micron radii, moving at 20 m/s, that produced a weak silicate feature with an 11.2 micron crystalline olivine peak. Furthermore, this feature looks like the silicate feature from the nominal coma. We present some results of a computational effort to model discrete crystals and mixed-mineral porous aggregate grains with silicate crystal inclusions using DDSCAT on the NAS Pleiades supercomputer.
Chemistry of the subalkalic silicic obsidians
MacDonald, Ray; Smith, Robert L.; Thomas, John E.
1992-01-01
Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various
Energy Technology Data Exchange (ETDEWEB)
Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)
2014-01-10
Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.
Place, Benjamin J; Kleber, Markus; Field, Jennifer A
2013-03-01
Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic structure calculations of calcium silicate hydrates
International Nuclear Information System (INIS)
Sterne, P.A.; Meike, A.
1995-11-01
Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases
Calcium Isotopic Composition of Bulk Silicate Earth
Kang, J.; Ionov, D. A.; Liu, F.; Zhang, C.; Zhang, Z.; Huang, F.
2016-12-01
Ca isotopes are used to study the accretion history of the Earth and terrestrial planets, but, Ca isotopic composition of the Bulk Silicate Earth (BSE) remains poorly constrained [1]. To better understand the Ca isotopic composition of BSE, we analyzed 22 well studied peridotite xenoliths from Tariat (Mongolia), Vitim (southern Siberia) and Udachnaya (Siberian Craton). These samples include both fertile and highly depleted garnet and spinel peridotites that show no or only minor post-melting metasomatism or alteration. Ca isotope measurements were done on a Triton-TIMS using double spike method at the Guangzhou Institute of Geochemistry, CAS. The data are reported as δ44/40Ca (relative to NIST SRM 915a). Results for geostandards are consistent with those from other laboratories. 2 standard deviations of SRM 915a analyses are 0.13‰ (n=48). δ44/40Ca of both and fertile and refractory peridotites range from 0.79 to 1.07‰ producing an average of 0.93±0.12‰ (2SD). This value defines the Ca isotopic composition of the BSE, which is consistent with the average δ44/40Ca of oceanic basalts ( 0.90‰)[2,3]. [1] Huang et al (2010) EPSL 292; [2] Valdes et al (2014) EPSL 394; [3]DePaolo (2004) RMG 55.
Suppressive effects of a polymer sodium silicate solution on ...
African Journals Online (AJOL)
Mohsen
2015-10-21
Oct 21, 2015 ... suppressive effects of sodium silicate in the polymer form were confirmed against powdery mildew and ... crops (such as rice) controls diseases and could reduce ... negative charge and sodium ions with a positive charge.
Conversion of rice hull ash into soluble sodium silicate
Directory of Open Access Journals (Sweden)
Edson Luiz Foletto
2006-09-01
Full Text Available Sodium silicate is used as raw material for several purposes: silica gel production, preparation of catalysts, inks, load for medicines, concrete hardening accelerator, component of detergents and soaps, refractory constituent and deflocculant in clay slurries. In this work sodium silicate was produced by reacting rice hull ash (RHA and aqueous sodium hydroxide, in open and closed reaction systems. The studied process variables were time, temperature of reaction and composition of the reaction mixture (expressed in terms of molar ratios NaOH/SiO2 and H2O/SiO2. About 90% silica conversion contained in the RHA into sodium silicate was achieved in closed system at 200 °C. The results showed that sodium silicate production from RHA can generate aggregate value to this residue.
Energy Technology Data Exchange (ETDEWEB)
Kumar, P A; Garg, A N; Ehmann, W D [Kentucky Univ., Lexington (USA). Dept. of Chemistry
1977-01-01
A precise, sensitive and rapid analytical technique has been developed for the simultaneous determination of Zr and Hf in natural silicate matrices. The technique is based on radiochemical neutron activation analysis and employs a rapid fusion dissolution of the sample and simultaneous precipitation of the Zr-Hf pair with p-hydroxybenzene arsenic acid in an acidic medium. The indicator radionuclides, /sup 95/Zr and /sup 181/Hf, are counted and the /sup 95/Zr activity is corrected for the contribution from U fission. The chemical yields of the radiochemical separation are based on Hf carrier. The yield is determined by reactivation of the processed samples and standards with a /sup 252/Cf isotopic neutron source and by counting the 18.6 sec half-life sup(179m)Hf. The RNAA procedure for Zr and Hf has been shown to be precise and accurate for natural silicate samples, based on replicate analyses of samples containing Zr in the range of 1 ..mu..g/g to over 600 ..mu..g/g. The procedure is relatively rapid with a total chemical processing time of approximately 3 hours. At least 4 samples are processed simultaneously. Ten additional elements (Fe, Cr, Co, Sc, Eu, La, Lu, Ce, Th and Tb) can be determined by direct Ge(Li) spectrometry (INAA) on the samples prior to dissolution for the RNAA determination of Zr and Hf. Corrections for the U fission contribution can be made on the basis of the known U content or from the INAA Th content, based on the relatively constant natural Th/U ratio.
1982-02-17
CuSi4015 Others are agrellite, NaCa2Si4O0oF, 1 6 narsarsukite, Na2TiSi4O 1 7 miserite, KCa5 i2 07 Si601 5 (OH)F,18 and probably canasite , Na4K2Ca 5...and canasite are rare. Litidionite is apparently very rare, the only reported occurrence of it being in the crater of Mt. Vesuvius. Both litidionite1...narsarsukite, miserite, and probably canasite contain, like 13-19 lititionite, tube silicate ions. The first three contain ions that are the same as that in
Comparison of silicon nanoparticles and silicate treatments in fenugreek.
Nazaralian, Sanam; Majd, Ahmad; Irian, Saeed; Najafi, Farzaneh; Ghahremaninejad, Farrokh; Landberg, Tommy; Greger, Maria
2017-06-01
Silicon (Si) fertilization improves crop cultivation and is commonly added in the form of soluble silicates. However, most natural plant-available Si originates from plant formed amorphous SiO 2 particles, phytoliths, similar to SiO 2 -nanoparticles (SiNP). In this work we, therefore, compared the effect by sodium silicate and that of SiNP on Si accumulation, activity of antioxidative stress enzymes catalase, peroxidase, superoxide dismutase, lignification of xylem cell walls and activity of phenylalanine ammonia-lyase (PAL) as well as expression of genes for the putative silicon transporter (PST), defensive (Tfgd 1) and phosphoenolpyruvate carboxykinase (PEPCK) and protein in fenugreek (Trigonella foenum-graecum L.) grown in hydroponics. The results showed that Si was taken up from both silicate and SiNP treatments and increasing sodium silicate addition increased the translocation of Si to the shoot, while this was not shown with increasing SiNP addition. The silicon transporter PST was upregulated at a greater level when sodium silicate was added compared with SiNP addition. There were no differences in effects between sodium silicate and SiNP treatments on the other parameters measured. Both treatments increased the uptake and accumulation of Si, xylem cell wall lignification, cell wall thickness, PAL activity and protein concentration in seedlings, while there was no effect on antioxidative enzyme activity. Tfgd 1 expression was strongly downregulated in leaves at Si addition. The similarity in effects by silicate and SiNP would be due to that SiNP releases silicate, which may be taken up, shown by a decrease in SiNP particle size with time in the medium. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
PETROLOGY AND GEOCHEMISTRY OF CALC-SILICATE SCHISTS ...
African Journals Online (AJOL)
DR OKONKOWO
2012-02-29
silicate reaction bands have higher contents of CaO and Sr and lower concentrations of K2O, Rb, Ni, and Ba relative to the calc-silicate schists; and relatively higher SiO2, TiO2, Al2O3, Fe2O3, MgO, Na2O, K2O and P2O5 and lower ...
Determination of coefficient matrices for ARMA model
International Nuclear Information System (INIS)
Tran Dinh Tri.
1990-10-01
A new recursive algorithm for determining coefficient matrices of ARMA model from measured data is presented. The Yule-Walker equations for the case of ARMA model are derived from the ARMA innovation equation. The recursive algorithm is based on choosing appropriate form of the operator functions and suitable representation of the (n+1)-th order operator functions according to ones with the lower order. Two cases, when the order of the AR part is equal to one of the MA part, and the optimal case, were considered. (author) 5 refs
Algebraic Graph Theory Morphisms, Monoids and Matrices
Knauer, Ulrich
2011-01-01
This is a highly self-contained book about algebraic graph theory which iswritten with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures -like roads, computers, telephones -instances of abstract data structures -likelists, stacks, trees -and functional or object orient
Coherence and extensions of stochastic matrices
Directory of Open Access Journals (Sweden)
Angelo Gilio
1995-11-01
Full Text Available In this paper a review of some general results on coherence of conditional probability assessments is given. Then, a necessary and sufficient condition on coherence of two finite families of discrete conditianal probability distributions, represented by two stochastic matrices P and Q, is obtained. Moreover, the possible extensions of the assessment (P,Q to the marginal distributions are examined and explicit formulas for them are given in some special case. Finally, a general algorithm to check coherence of (P,Q and to derive its extensions is proposed.
2D gravity and random matrices
International Nuclear Information System (INIS)
Zinn-Justin, J.
1990-01-01
Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods
Hydration water and microstructure in calcium silicate and aluminate hydrates
International Nuclear Information System (INIS)
Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero
2006-01-01
Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide
Roy, S.; Gaillardet, J.; Allègre, C. J.
1999-05-01
are transported in a solid form, the rest being transported in solution. CO 2 consumption by carbonate weathering approaches 400 × 10 3 mol/km 2/yr. In the Seine river at Paris, about 2-3 mg/l of dissolved cations are found to originate from the chemical weathering of silicates. By taking dissolved silica into accounts, the total dissolved load derived from silicate weathering is about 6-7 mg/l. This value is minimal because biological uptake of silica probably occur in the Seine river. The chemical weathering rate of aluminosilicates is estimated to be 2 t/km 2/yr . The ratio of physical over chemical weathering of silicates range between 1 and 3 and the total (chemical and physical) erosion rates of sedimentary silicates are about 2-3 mm/kyr. The CO 2 consumption by silicate weathering 15-24 × 10 3 mol/km 2/yr and is independent of dissolved silica concentration. Silicate consumption is thus 20 times less than carbonate consumption in the Paris basin. Compared to the neighboring granitic areas, the sedimentary region drained by the Seine river has 2 to 3 times lower CO 2 consumption rates. We attribute this difference to the cation-depleted nature of the Seine basin aluminosilicates, which are of sedimentary origin. At a world scale, the chemical denudation rates found for the Seine basin are very low and comparable to those given for tropical lowland rivers draining silicates, such as the rivers of the Congo and Amazon basins, in spite of huge climatic differences. We attribute this similarity to the low mechanical denudation that characterizes these two types of regions.
The application of silicon and silicates in dentistry: a review.
Lührs, A-K; Geurtsen, Werner
2009-01-01
Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials.
High Pressure/Temperature Metal Silicate Partitioning of Tungsten
Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.
2010-01-01
The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.
International Nuclear Information System (INIS)
Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.
2014-01-01
Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)
Directory of Open Access Journals (Sweden)
Maria Fernanda Cruz
2013-01-01
Full Text Available The control of Asian Soybean Rust (ASR, caused by Phakopsora pachyrhizi, has been difficult due to the aggressiveness of the pathogen and the lack of resistant cultivars. The objective of this study was to evaluate the effects of spray of potassium silicate (PS and soil amendment with calcium silicate (CS on soybean resistance to ASR. The PS solution was sprayed to leaves 24 hours prior to fungal inoculation while CS was amended to the soil at thirty-five days before sowing. The infection process of P. pachyrhizi was investigated by scanning electron microscopy. The uredia on leaves of plants sprayed with PS were smaller and more compact than those observed on the leaves of plants grown in soil amended with CS or in soil non-amended with CS (control treatment. On leaves of plants from the control treatment, uredia produced many urediniospores at 9 days after inoculation, and the ASR severity was 15, 8 and 9%, respectively, for plants from control, PS and CS treatments. In conclusion, the spray of PS contributed to reduce the number of uredia per cm² of leaf area and both PS spray and CS resulted in lower ASR symptoms.
Energy Technology Data Exchange (ETDEWEB)
Wagner, C.
1996-12-31
In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.
Spectral evidence for amorphous silicates in least-processed CO meteorites and their parent bodies
McAdam, Margaret M.; Sunshine, Jessica M.; Howard, Kieren T.; Alexander, Conel M.; McCoy, Timothy J.; Bus, Schelte J.
2018-05-01
Least-processed carbonaceous chondrites (carbonaceous chondrites that have experienced minimal aqueous alteration and thermal metamorphism) are characterized by their predominately amorphous iron-rich silicate interchondrule matrices and chondrule rims. This material is highly susceptible to destruction by the parent body processes of thermal metamorphism or aqueous alteration. The presence of abundant amorphous material in a meteorite indicates that the parent body, or at least a region of the parent body, experienced minimal processing since the time of accretion. The CO chemical group of carbonaceous chondrites has a significant number of these least-processed samples. We present visible/near-infrared and mid-infrared spectra of eight least-processed CO meteorites (petrologic type 3.0-3.1). In the visible/near-infrared, these COs are characterized by a broad weak feature that was first observed by Cloutis et al. (2012) to be at 1.3-μm and attributed to iron-rich amorphous silicate matrix materials. This feature is observed to be centered at 1.4-μm for terrestrially unweathered, least-processed CO meteorites. At mid-infrared wavelengths, a 21-μm feature, consistent with Si-O vibrations of amorphous materials and glasses, is also present. The spectral features of iron-rich amorphous silicate matrix are absent in both the near- and mid-infrared spectra of higher metamorphic grade COs because this material has recrystallized as crystalline olivine. Furthermore, spectra of least-processed primitive meteorites from other chemical groups (CRs, MET 00426 and QUE 99177, and C2-ungrouped Acfer 094), also exhibit a 21-μm feature. Thus, we conclude that the 1.4- and 21-μm features are characteristic of primitive least-processed meteorites from all chemical groups of carbonaceous chondrites. Finally, we present an IRTF + SPeX observation of asteroid (93) Minerva that has spectral similarities in the visible/near-infrared to the least-processed CO carbonaceous chondrites
Critical statistics for non-Hermitian matrices
International Nuclear Information System (INIS)
Garcia-Garcia, A.M.; Verbaarschot, J.J.M.; Nishigaki, S.M.
2002-01-01
We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical statistics: the asymptotic linear behavior of the number variance is already approached for energy differences of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an open disordered system close to an Anderson transition
Tensor Dictionary Learning for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2015-11-01
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
Virial expansion for almost diagonal random matrices
International Nuclear Information System (INIS)
Yevtushenko, Oleg; Kravtsov, Vladimir E
2003-01-01
Energy level statistics of Hermitian random matrices H-circumflex with Gaussian independent random entries H i≥j is studied for a generic ensemble of almost diagonal random matrices with (vertical bar H ii vertical bar 2 ) ∼ 1 and (vertical bar H i≠j vertical bar 2 ) bF(vertical bar i - j vertical bar) parallel 1. We perform a regular expansion of the spectral form-factor K(τ) = 1 + bK 1 (τ) + b 2 K 2 (τ) + c in powers of b parallel 1 with the coefficients K m (τ) that take into account interaction of (m + 1) energy levels. To calculate K m (τ), we develop a diagrammatic technique which is based on the Trotter formula and on the combinatorial problem of graph edges colouring with (m + 1) colours. Expressions for K 1 (τ) and K 2 (τ) in terms of infinite series are found for a generic function F(vertical bar i - j vertical bar ) in the Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and in the crossover between them (the almost unitary Gaussian ensemble). The Rosenzweig-Porter and power-law banded matrix ensembles are considered as examples
Generalized Eigenvalues for pairs on heritian matrices
Rublein, George
1988-01-01
A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.
Fine-grained sheet silicate rocks
International Nuclear Information System (INIS)
Weaver, C.E.
1977-09-01
Considerable interest has been shown in the possibility of using shales as repositories for radioactive waste and a variety of other waste products, and it appears that over the next few years much money and effort will be expended to investigate and test a wide variety of shales. If shales are to be studied in detail by a large number of investigators, it is important that all concerned have the same concept of what constitutes a shale. The term shale and other terms for fine-grained rocks have been used for many years and have been continually redefined. Most definitions predate the development of modern instrumentation and are based on field observations and intuition; however, the main problem is the diversity of definitions. An attempt is made here to develop a simple, rational classification of fine-grained sediments, and it is hoped that this classification will eliminate some of the present ambiguity. In order that the classification be pertinent, mineral composition and textural data were compiled and evaluated. The data on unconsolidated and consolidated sediments were contrasted and the effects of burial diagenesis assessed. It was found necessary to introduce a new term, physil, to describe all sheet silicate minerals. In contrast to the term clay mineral, the term physil has no size connotation. A simple classification is proposed that is based on the percentage of physils and grain size. In Part II the fine-grained physil rocks are classified on the basis of physil type, non-physil minerals, and texture. Formations are listed which have the mineral and textural characteristics of the most important rock types volumetrically. Selected rock types, and the formations in which they can be found, are recommended for laboratory study to determine their suitability for the storage of high-level radioactive waste
Meet and Join Matrices in the Poset of Exponential Divisors
Indian Academy of Sciences (India)
... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.
The 'golden' matrices and a new kind of cryptography
International Nuclear Information System (INIS)
Stakhov, A.P.
2007-01-01
We consider a new class of square matrices called the 'golden' matrices. They are a generalization of the classical Fibonacci Q-matrix for continuous domain. The 'golden' matrices can be used for creation of a new kind of cryptography called the 'golden' cryptography. The method is very fast and simple for technical realization and can be used for cryptographic protection of digital signals (telecommunication and measurement systems)
Generalized Perron--Frobenius Theorem for Nonsquare Matrices
Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David
2013-01-01
The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...
Revisiting classical silicate dissolution rate laws under hydrothermal conditions
Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand
2015-04-01
In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an
Intrinsic Density Matrices of the Nuclear Shell Model
International Nuclear Information System (INIS)
Deveikis, A.; Kamuntavichius, G.
1996-01-01
A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs
COMPARISON OF SOL-GEL SILICATE COATINGS ON Ti SUBSTRATE
Directory of Open Access Journals (Sweden)
DIANA HORKAVCOVÁ
2012-12-01
Full Text Available The objective of the submitted work was to prepare and to characterize two types of silicate coatings prepared by the sol-gel method using the dip-coating technique on a titanium substrate. Efforts have been made to use mechanical properties of bio-inert titanium and bioactive properties of a silicate layer enriched with an admixture of compounds identified below. The first group consisted of silicate coatings containing silver, brushite and monetite. The other group of silicate coatings contained calcium nitrate and triethyl phosphate. Mechanically and chemically treated titanium substrates were dipped into sols and dried and fired. Silicate coatings from the first group were also chemically treated in 10 mol.l-1 solution of sodium hydroxide. All coatings were measured to determine their adhesive and bioactive properties and furthermore the antibacterial properties were tested in the case of first group. Surfaces of the coated substrates were investigated after the firing and after the individual tests with optical and electron microscopy and X-ray microdiffraction. A tape test demonstrated excellent adhesive property of all coatings to the substrate, classified with degree 5. A static in vitro test demonstrated bioactivity of nearly all the coatings. The basic silicate coating from the first group and one type of coating from the second group were identified as inert. Antibacterial properties of silicate coatings containing silver showed to be different when tested against Escherichia coli bacteria. A complete inhibition of the growth of bacteria under our experimental conditions was observed for the coating containing silver and monetite and a partial inhibition of the growth of bacteria for coatings containing silver and silver in combination with brushite.
Noisy covariance matrices and portfolio optimization II
Pafka, Szilárd; Kondor, Imre
2003-03-01
Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the
A subsurface Fe-silicate weathering microbiome
Napieralski, S. A.; Buss, H. L.; Roden, E. E.
2017-12-01
Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained
Equiangular tight frames and unistochastic matrices
International Nuclear Information System (INIS)
Goyeneche, Dardo; Turek, Ondřej
2017-01-01
We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d , denoted ETF ( d , N ), exists if and only if a certain bistochastic matrix, univocally determined by N and d , belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit–qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors. (paper)
Colonization of bone matrices by cellular components
Shchelkunova, E. I.; Voropaeva, A. A.; Korel, A. V.; Mayer, D. A.; Podorognaya, V. T.; Kirilova, I. A.
2017-09-01
Practical surgery, traumatology, orthopedics, and oncology require bioengineered constructs suitable for replacement of large-area bone defects. Only rigid/elastic matrix containing recipient's bone cells capable of mitosis, differentiation, and synthesizing extracellular matrix that supports cell viability can comply with these requirements. Therefore, the development of the techniques to produce structural and functional substitutes, whose three-dimensional structure corresponds to the recipient's damaged tissues, is the main objective of tissue engineering. This is achieved by developing tissue-engineering constructs represented by cells placed on the matrices. Low effectiveness of carrier matrix colonization with cells and their uneven distribution is one of the major problems in cell culture on various matrixes. In vitro studies of the interactions between cells and material, as well as the development of new techniques for scaffold colonization by cellular components are required to solve this problem.
Computing with linear equations and matrices
International Nuclear Information System (INIS)
Churchhouse, R.F.
1983-01-01
Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)
Matrices over runtime systems at exascale
Agullo, Emmanuel
2012-11-01
The goal of Matrices Over Runtime Systems at Exascale (MORSE) project is to design dense and sparse linear algebra methods that achieve the fastest possible time to an accurate solution on large-scale multicore systems with GPU accelerators, using all the processing power that future high end systems can make available. In this poster, we propose a framework for describing linear algebra algorithms at a high level of abstraction and delegating the actual execution to a runtime system in order to design software whose performance is portable accross architectures. We illustrate our methodology on three classes of problems: dense linear algebra, sparse direct methods and fast multipole methods. The resulting codes have been incorporated into Magma, Pastix and ScalFMM solvers, respectively. © 2012 IEEE.
Sparse random matrices: The eigenvalue spectrum revisited
International Nuclear Information System (INIS)
Semerjian, Guilhem; Cugliandolo, Leticia F.
2003-08-01
We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum. (author)
From Pauli Matrices to Quantum Ito Formula
International Nuclear Information System (INIS)
Pautrat, Yan
2005-01-01
This paper answers important questions raised by the recent description, by Attal, of a robust and explicit method to approximate basic objects of quantum stochastic calculus on bosonic Fock space by analogues on the state space of quantum spin chains. The existence of that method justifies a detailed investigation of discrete-time quantum stochastic calculus. Here we fully define and study that theory and obtain in particular a discrete-time quantum Ito formula, which one can see as summarizing the commutation relations of Pauli matrices.An apparent flaw in that approximation method is the difference in the quantum Ito formulas, discrete and continuous, which suggests that the discrete quantum stochastic calculus differs fundamentally from the continuous one and is therefore not a suitable object to approximate subtle phenomena. We show that flaw is only apparent by proving that the continuous-time quantum Ito formula is actually a consequence of its discrete-time counterpart
Heterogeneous nucleation of protein crystals on fluorinated layered silicate.
Directory of Open Access Journals (Sweden)
Keita Ino
Full Text Available Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface.
Relationships between mineralization and silicic volcanism in the central Andes
Energy Technology Data Exchange (ETDEWEB)
Francis, P.W.; Halls, C.; Baker, M.C.W.
1983-10-01
Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.
Dirac matrices for Chern-Simons gravity
Energy Technology Data Exchange (ETDEWEB)
Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)
2012-10-06
A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Viscous hydrophilic injection matrices for serial crystallography
Directory of Open Access Journals (Sweden)
Gabriela Kovácsová
2017-07-01
Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new
Analysis of TPH and Aliphatic and Aromatic Hydrocarbons Fractions in Environmental Interest Matrices
International Nuclear Information System (INIS)
Pindado, O.; Perez, R. M.; Garcia, S.
2014-01-01
Analytical methods to analyze TPH and several aliphatic and aromatic fractions present in soil and groundwater samples contaminated by hydrocarbons are showed. As a part of BIOXISOIL project, analyzing these parameters is fundamental and indispensable to know the initial contamination level, design an adequate method to decontaminate it and eventually assess decontamination accomplished. Analysis of both matrices involve different extraction stages such as microwave radiation, clean up steps based on solid phase extraction and finally a chromatograph analysis with flame ion detector. Analytical procedures have showed satisfactory analytical quality parameters and have been validated against several certified reference materials. (Author)
New insight into atmospheric alteration of alkali-lime silicate glasses
International Nuclear Information System (INIS)
Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel
2017-01-01
Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.
Energy Technology Data Exchange (ETDEWEB)
Subannajui, Kittitat, E-mail: kittitat.sub@mahidol.ac.th [Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Center of Nanoscience and Nanotechnology Research Unit, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand)
2016-12-01
The commercial heating oven usually consumes the power around 2500–3000 Watt and the temperature inside the oven is still below 350 °C. If we need to increase a temperature above 500 °C, a special heating setup with a higher power furnace is required. However, in this work, we propose a composite material that interacts with 2.45 GHz 500 Watt microwave and rapidly redeems the thermal energy with the temperature around 600–900 °C. The composite amorphous material easily forms liquid ceramics phase with a high temperature output and responds to the microwave radiation better than that of the solid phase. During the heating process, phase transformation occurs. This method is very effective and can be used to drastically reduce the power consumption of any heating process. - Highlights: • Amorphous phase transforms to liquid phase by microwave radiation. • Pure sodium silicate and pure bentonite cannot show temperature overshoot. • Silicate-bentonite composite shows a high temperature overshoot above 700 °C. • A rapid heating crucible for the annealing application is fabricated.
Energy Technology Data Exchange (ETDEWEB)
Abdel Raouf, M W [Hot Lab. Centre, Atomic Energy Authority, Cairo (Egypt); Sharaf El-deen, A N; El-Dessouky, M M [Military Technical College, Kobry El-Kobbah, Cairo (Egypt)
1995-10-01
Immobilization of the simulated high-level liquid waste (HLLW) was performed via the gelation with sodium silicate hydrosol at room temperature. The simulated waste in this study, was represented by the electrolytes of Li, Na, K, Cs, Co and Sr at different concentrations. Specific loading of the liquid waste with 0.6 M Mg (NO{sub 3})2 and tailoring with Al salts were tried during most of the gelation processes. Mineral acid (HCl or {sub 3}) were added during the gelation processes to achieve the gel point, especially when lower concentrations of the simulated waste were used. The obtained hydrogel were dried to obtain the solid gel form. The gelation processes were investigated in terms of the different factors that affected them, namely: temperature, pH, changes in the concentration of the initial hydrosol and the used electrolytes. The efficiency of the gelation processes was investigated from the ratio of the amount of simulated waste reacted (m mole) to the initial silicate used (m mole), i.e. X value. Lower X values were observed when using multi valent cations (higher polarizing power). A special effect of increasing the sorption of metal cations in the silica matrix was observed when Al{sup 3+} replaced Si{sup 4+} in the three-dimensional network structure of the matrix. 3 figs., 7 tabs.
2016-07-01
5 Table 3. Residual Silicates avec Flocculation in Glass Beaker or Polyethylene Cone ................ 8 Table 4...is formed. Since the concentration of silicates in soil or sediment is high (up to 70-75% in silicon dioxide ( SiO2 ) in some cases), the condensation...flux, for the fusion of acidic samples such as solids containing a significant portion of SiO2 . Conversely, lithium tetraborate, an acidic flux, will
Geometrical setting of solid mechanics
International Nuclear Information System (INIS)
Fiala, Zdenek
2011-01-01
Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan
2012-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the ...
The influence of inorganic matrices on the decomposition of Eucalyptus litter
International Nuclear Information System (INIS)
Skene, T.M.; Oades, J.M.; Clarke, P.J.; Skjemstad, J.O.; Oades, J.M.; Skjemstad, J.O.
1997-01-01
The decomposition of Eucalyptus litter (EL) in the presence and absence of inorganic matrices [sad (S), sand+kaolin (S+K), loamy sand (LS)] with and without added N (urea) was followed over 48 weeks using chemical and spectroscopic means. At the end of the incubation, the residual organic matter in different density and particle size fractions was examined. Urea addition inhibited the mineralisation of C from the litter in all treatments except EL+S+N, whereas the inorganic matrices had little influence on mineralisation. Solid state 13 C CP/MAS NMR spectra of the whole samples suggested there were no differences in the treatments, despite significant differences in the amount of C mineralized. The NMR spectra of the whole samples suggest that a reaction between aromatic-C and urea occurred during thr first week of the incubation which may have rendered the N unavailable to microorganisms. The results were quite different from a similar study on the decomposition of straw. these differences suggest that, for high quality substrates, physical protection by inorganic matrices is the limiting factor to decomposition, whereas for low quality substrates, chemical protection is the limiting factor. 13 refs., 2 tabs., 6 figs
Binary Positive Semidefinite Matrices and Associated Integer Polytopes
DEFF Research Database (Denmark)
Letchford, Adam N.; Sørensen, Michael Malmros
2012-01-01
We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...
CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES
Riyaz Ahmad Padder; P. Murugadas
2016-01-01
Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.
Propositional matrices as alternative representation of truth values ...
African Journals Online (AJOL)
The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...
The Modern Origin of Matrices and Their Applications
Debnath, L.
2014-01-01
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Din, Rameez Ud; Bordo, Kirill; Tabrizian, Naja; Jellesen, Morten Stendahl; Ambat, Rajan
2017-11-01
Surface treatment of aluminium alloy AA6060 using an industrially applicable pilot steam jet system with and without silicate chemistry has been investigated. Treatment using steam alone and steam with silicate, resulted in an oxide layer formation with thickness ∼425 nm and ∼160 nm, respectively. Moreover, the use of sodium silicate resulted in the formation of distinct microstructure and incorporation of silicate into the oxide film. These oxide films reduced the anodic activity 4 times, while the corrosion protection by silicate containing oxide was the function of its concentration. Further, in acid salt spray and filiform corrosion tests, oxide layer containing silicate exhibited two times higher corrosion resistance.
Rubber curing chemistry governing the orientation of layered silicate
Directory of Open Access Journals (Sweden)
2007-11-01
Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.
Crystallochemical characteristics of alkali calcium silicates from charoitites
International Nuclear Information System (INIS)
Rozhdestvenskaya, I.V.; Nikishova, L.V.
2002-01-01
The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)
Energetic Processing of Interstellar Silicate Grains by Cosmic Rays
Energy Technology Data Exchange (ETDEWEB)
Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W
2007-03-28
While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.
Synthesis and luminescence properties of erbium silicate thin films
International Nuclear Information System (INIS)
Miritello, Maria; Lo Savio, Roberto; Iacona, Fabio; Franzo, Giorgia; Bongiorno, Corrado; Priolo, Francesco
2008-01-01
We have studied the structure and the room temperature luminescence of erbium silicate thin films deposited by rf magnetron sputtering. Films deposited on silicon oxide layers are characterized by good structural properties and excellent stability. The optical properties of these films are strongly improved by rapid thermal annealing processes performed in the range of temperature 800-1250 deg. C. In fact through the reduction of the defect density of the material, a very efficient room temperature photoluminescence at 1535 nm is obtained. We have also investigated the influence of the annealing ambient, by finding that treatments in O 2 atmosphere are significantly more efficient in improving the optical properties of the material with respect to processes in N 2 . Upconversion effects become effective only when erbium silicate is excited with high pump powers. The evidence that all Er atoms (about 10 22 cm -3 ) in erbium silicate films are optically active suggests interesting perspectives for optoelectronic applications of this material
Abel-grassmann's groupoids of modulo matrices
International Nuclear Information System (INIS)
Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.
2016-01-01
The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)
International Nuclear Information System (INIS)
Kazemi, Elahe; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas
2016-01-01
This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L"−"1, a detection limit of 0.21 μg L"−"1, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L"−"1 level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L"−"1, a detection limit of 0.016 μg L"−"1 and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L"−"1 level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. - Graphical abstract: A novel, sensitive, fast, simple and convenient mixed hemimicelles dispersive micro solid
Energy Technology Data Exchange (ETDEWEB)
Kazemi, Elahe; Haji Shabani, Ali Mohammad [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Abbasi, Amir [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Rashidian Vaziri, Mohammad Reza [Laser and Optics Research School, 14155-1339, Tehran (Iran, Islamic Republic of); Behjat, Abbas [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of)
2016-01-28
This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L{sup −1}, a detection limit of 0.21 μg L{sup −1}, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L{sup −1} level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L{sup −1}, a detection limit of 0.016 μg L{sup −1} and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L{sup −1} level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. - Graphical abstract: A novel, sensitive, fast, simple and convenient mixed hemimicelles
Roberto Gerardo Pellerano; Cesar Hamilton Romero; Hugo Arnoldo Acevedo; Francisco Antonio Vazquez
2007-01-01
A method for determining copper by solid phase spectrophotometry (SPS) was optimized using the Doehlert design. Copper(II) was sorbed on a styrene-divinylbenzene anion-exchange resin as a Cu(II)-1-(2-pyridylazo)-2-naphthol (PAN) complex, at pH 7.0. Resin phase absorbances at 560 and 800 nm were measured directly. The detection limit was found to be 2.5 µg L-1. The relative standard deviation on ten replicate determinations of 10 µg Cu(II) in 1000 mL samples was 1.1%. The linear range of the d...
Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates
Energy Technology Data Exchange (ETDEWEB)
Schneider, E.
1985-11-01
The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.
Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates
International Nuclear Information System (INIS)
Schneider, E.
1985-11-01
The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si
Leaf application of silicic acid to upland rice and corn
Directory of Open Access Journals (Sweden)
Carlos Alexandre Costa Crusciol
2013-12-01
Full Text Available This study aimed to evaluate the effect of Si (stabilized silicic acid, Silamol® leaf application on mineral nutrition and yield in upland rice and corn crops. The treatments were the control (without Si and Si foliar split spraying using 2 L ha-1 of the Silamol® commercial product, with 0.8% soluble Si as concentrated stabilized silicic acid. Silicon leaf application increased the concentrations of K, Ca and Si in rice and corn leaves, the number of panicles per m2 of rice and the number of grains per ear of corn; accordingly, the Si leaf application provided a higher grain yield in both crops.
Czech Academy of Sciences Publication Activity Database
Samoylovich, M.I.; Rinkevich, A.B.; Bovtun, Viktor; Belyanin, A.F.; Kempa, Martin; Nuzhnyy, Dmitry; Tsvetkov, M.Ju.; Klescheva, S.M.
2012-01-01
Roč. 56, 1-2 (2012), s. 11-25 R&D Projects: GA ČR GAP204/12/0232 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocomposite * opal matrices * effective dielectric properties * multiferroics Subject RIV: BM - Solid Matter Physics ; Magnetism
Jardine, M. A.; Miller, J. A.; Becker, M.
2018-02-01
Texture is one of the most basic descriptors used in the geological sciences. The value derived from textural characterisation extends into engineering applications associated with mining, mineral processing and metal extraction where quantitative textural information is required for models predicting the response of the ore through a particular process. This study extends the well-known 2D grey level co-occurrence matrices methodology into 3D as a method for image analysis of 3D x-ray computed tomography grey scale volumes of drill core. Subsequent interrogation of the information embedded within the grey level occurrence matrices (GLCM) indicates they are sensitive to changes in mineralogy and texture of samples derived from a magmatic nickel sulfide ore. The position of the peaks in the GLCM is an indication of the relative density (specific gravity, SG) of the minerals and when interpreted using a working knowledge of the mineralogy of the ore presented a means to determine the relative abundance of the sulfide minerals (SG > 4), dense silicate minerals (SG > 3), and lighter silicate minerals (SG < 3). The spread of the peaks in the GLCM away from the diagonal is an indication of the degree of grain boundary interaction with wide peaks representing fine grain sizes and narrow peaks representing coarse grain sizes. The method lends itself to application as part of a generic methodology for routine use on large XCT volumes providing quantitative, timely, meaningful and automated information on mineralogy and texture in 3D.
Czech Academy of Sciences Publication Activity Database
Staněk, S.; Nekvindová, P.; Švecová, B.; Vytykáčová, S.; Míka, M.; Oswald, Jiří; Macková, Anna; Malinský, Petr; Špirková, J.
2016-01-01
Roč. 371, Mar (2016), s. 350-354 ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ion implantation * silicate glass * silver * nanoparticles * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 1.109, year: 2016
Calcium silicate hydrate: Crystallisation and alkali sorption
International Nuclear Information System (INIS)
Hong, S.
2000-01-01
Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, R d , was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. R d is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of R d indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant R d value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases R d , indicating enhancement of alkali binding. However, the dependence of R d on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH) 2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH) 2 is exsolved and occurs as nano-sized crystallites. (author)
Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.
Al-Nimry, Suhair S; Alkhamis, Khouloud A
2018-04-01
Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range moisture content moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.
International Nuclear Information System (INIS)
Simoneti, J.A.
1992-01-01
Silicate and sulfide lattices are uniquely efficient luminescent materials to excitation by cathodic rays and furthermore the cathodoluminescence study of these compounds have been few investigated. In this work it has been prepared, characterized and investigated some spectroscopic properties of pure and Tb a+ - activated Gd 2 Si O 3 system and it has been tried to substitute oxygen by sulphur in order to obtain this or sulfide-silicate lattices. Products were characterized by vibrational infrared spectroscopy, powder X-ray diffraction patterns and electronic emission in UV-VIS region. (author)
Optical characterization of luminescent silicon nanocrystals embedded in glass matrices
Energy Technology Data Exchange (ETDEWEB)
Debieu, Olivier
2008-12-16
Interstellar dust in nebulae and in the Diffuse Interstellar Medium (DISM) of galaxies contains a component which exhibits efficient visible-near infrared luminescence ranging from 500 to 1000 nm, known as Extended Red Emission (ERE). Silicon nanocrystals (nc-Si) are discussed as possible carriers of the ERE. We employed the accelerator facilities of the Institute of Solid State Physics of the University of Jena to implant Si ions into fused silica windows. An excess concentration of silicon atoms is thus produced in the host SiO{sub 2} matrix which, by applying an annealing at 1100 C, condensates to silicon nanoparticles and crystallizes. Although the condensation and crystallization occur after an annealing of one minute,10, 15 the samples were annealed during one hour in order to well-passivate the nc-Si, that means, to reduce effectively the number of Si-dangling bonds at the nc-Si surface that are efficient non-radiative recombination centers. 10, 16 Upon excitation with UV light, most of our nc-Si/SiO{sub 2} samples revealed strong PL. We implanted into our luminescent nc-Si/SiO{sub 2} systems other atomic elements, as for instance magnesium and calcium, which form silicates if their oxide is combined with SiO{sub 2}. The purpose is to simulate the conditions for silicates containing nc-Si. In order to understand the effect of the incorporation of foreign atoms on the PL properties of our nc-Si/SiO{sub 2} systems, we proceeded to similar experiments with Er and Ge. As has been demonstrated by several authors, 17, 18 the presence of nc-Si in a glass matrix enhances considerably the emission of Er{sup 3+} ions at 1.536{mu}m. At the same time, the PL of nc-Si is considerably quenched. Since the solubility of Er in crystalline silicon is about 2 orders of magnitude lower than in SiO{sub 2}, the optically active Er{sup 3+} ions are believed to be localized outside the nc-Si core, demonstrating that ions present in the host SiO{sub 2} matrix influence the PL
Substituted amylose matrices for oral drug delivery
International Nuclear Information System (INIS)
Moghadam, S H; Wang, H W; El-Leithy, E Saddar; Chebli, C; Cartilier, L
2007-01-01
High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process
LIBS analysis of artificial calcified tissues matrices.
Kasem, M A; Gonzalez, J J; Russo, R E; Harith, M A
2013-04-15
In most laser-based analytical methods, the reproducibility of quantitative measurements strongly depends on maintaining uniform and stable experimental conditions. For LIBS analysis this means that for accurate estimation of elemental concentration, using the calibration curves obtained from reference samples, the plasma parameters have to be kept as constant as possible. In addition, calcified tissues such as bone are normally less "tough" in their texture than many samples, especially metals. Thus, the ablation process could change the sample morphological features rapidly, and result in poor reproducibility statistics. In the present work, three artificial reference sample sets have been fabricated. These samples represent three different calcium based matrices, CaCO3 matrix, bone ash matrix and Ca hydroxyapatite matrix. A comparative study of UV (266 nm) and IR (1064 nm) LIBS for these three sets of samples has been performed under similar experimental conditions for the two systems (laser energy, spot size, repetition rate, irradiance, etc.) to examine the wavelength effect. The analytical results demonstrated that UV-LIBS has improved reproducibility, precision, stable plasma conditions, better linear fitting, and the reduction of matrix effects. Bone ash could be used as a suitable standard reference material for calcified tissue calibration using LIBS with a 266 nm excitation wavelength. Copyright © 2013 Elsevier B.V. All rights reserved.
Neutrino mass matrices with vanishing determinant
International Nuclear Information System (INIS)
Chauhan, Bhag C.; Pulido, Joao; Picariello, Marco
2006-01-01
We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and finite θ 13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and finite θ 13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments. Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and inverse hierarchies with θ 13 =0 no texture zeros nor any such equalities can exist apart from the obvious ones. For θ 13 ≠0 some texture zeros become possible. In normal hierarchy two texture zeros occur if 8.1x10 -2 ≤sinθ 13 ≤9.1x10 -2 while in inverse hierarchy three are possible, one with sinθ 13 ≥7x10 -3 and two others with sinθ 13 ≥0.18. All equalities between mass matrix elements are impossible with θ 13 ≠0
Calculating scattering matrices by wave function matching
International Nuclear Information System (INIS)
Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Brocks, G.; Kelly, P.J.; Xia, K.; Turek, I.; Bauer, G.E.W.
2008-01-01
The conductance of nanoscale structures can be conveniently related to their scattering properties expressed in terms of transmission and reflection coefficients. Wave function matching (WFM) is a transparent technique for calculating transmission and reflection matrices for any Hamiltonian that can be represented in tight-binding form. A first-principles Kohn-Sham Hamiltonian represented on a localized orbital basis or on a real space grid has such a form. WFM is based upon direct matching of the scattering-region wave function to the Bloch modes of ideal leads used to probe the scattering region. The purpose of this paper is to give a pedagogical introduction to WFM and present some illustrative examples of its use in practice. We briefly discuss WFM for calculating the conductance of atomic wires, using a real space grid implementation. A tight-binding muffin-tin orbital implementation very suitable for studying spin-dependent transport in layered magnetic materials is illustrated by looking at spin-dependent transmission through ideal and disordered interfaces. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Probing the Topology of Density Matrices
Directory of Open Access Journals (Sweden)
Charles-Edouard Bardyn
2018-02-01
Full Text Available The mixedness of a quantum state is usually seen as an adversary to topological quantization of observables. For example, exact quantization of the charge transported in a so-called Thouless adiabatic pump is lifted at any finite temperature in symmetry-protected topological insulators. Here, we show that certain directly observable many-body correlators preserve the integrity of topological invariants for mixed Gaussian quantum states in one dimension. Our approach relies on the expectation value of the many-body momentum-translation operator and leads to a physical observable—the “ensemble geometric phase” (EGP—which represents a bona fide geometric phase for mixed quantum states, in the thermodynamic limit. In cyclic protocols, the EGP provides a topologically quantized observable that detects encircled spectral singularities (“purity-gap” closing points of density matrices. While we identify the many-body nature of the EGP as a key ingredient, we propose a conceptually simple, interferometric setup to directly measure the latter in experiments with mesoscopic ensembles of ultracold atoms.
Visualizing complex (hydrological) systems with correlation matrices
Haas, J. C.
2016-12-01
When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011
Decellularized matrices for cardiovascular tissue engineering.
Moroni, Francesco; Mirabella, Teodelinda
2014-01-01
Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.
On some Toeplitz matrices and their inversions
Directory of Open Access Journals (Sweden)
S. Dutta
2014-10-01
Full Text Available In this article, using the difference operator B(a[m], we introduce a lower triangular Toeplitz matrix T which includes several difference matrices such as Δ(1,Δ(m,B(r,s,B(r,s,t, and B(r̃,s̃,t̃,ũ in different special cases. For any x ∈ w and m∈N0={0,1,2,…}, the difference operator B(a[m] is defined by (B(a[m]xk=ak(0xk+ak-1(1xk-1+ak-2(2xk-2+⋯+ak-m(mxk-m,(k∈N0 where a[m] = {a(0, a(1, …, a(m} and a(i = (ak(i for 0 ⩽ i ⩽ m are convergent sequences of real numbers. We use the convention that any term with negative subscript is equal to zero. The main results of this article relate to the determination and applications of the inverse of the Toeplitz matrix T.
Non-conservative controls on distribution of dissolved silicate in Cochin Backwaters
Digital Repository Service at National Institute of Oceanography (India)
Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.; Nair, M.
Cochin backwater system was studied with regard to dissolved silicate (DSi) to understand its seasonal distribution and behaviour during estuarine mixing. Silicate had a linear relationship with salinity during the high river discharge period...
Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars
Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.
2014-07-01
Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.
This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...
E-Beam-Cured Layered-Silicate and Spherical Silica Epoxy Nanocomposites (Preprint)
National Research Council Canada - National Science Library
Chen, Chenggang; Anderson, David P
2007-01-01
.... The nanofillers can be two dimensional (layered-silicate) and zero dimensional (spherical silica). Both the spherical silica epoxy nanocomposite and the layered-silicate epoxy nanocomposite can be cured to a high degree of curing...
In vitro bioactivity of polymer matrices reinforced with a bioactive glass phase
Directory of Open Access Journals (Sweden)
Oréfice Rodrigo L.
2000-01-01
Full Text Available Composites that can mimic the in vitro bioactive behavior of bioactive glasses were designed to fulfill two main features of bioactive glasses that are responsible for their high bond-to-bone rates: (1 capability of providing ions such as calcium and phosphate to the nearby environment and (2 ideal surface structure that allows fast heterogeneous precipitation of hydroxy-carbonate-apatite (HCA. The novel composites were prepared by incorporating bioactive glass particles into polymer matrices. The in vitro bioactivity test was performed by introducing samples into a buffered solution as well as into a simulated body fluid solution. FTIR was used to evaluate the kinetics of HCA (hydroxy-carbonate-apatite precipitation. The results showed that the obtained composites can supply ions, such as silicates and phosphates in rates and concentrations comparable or superior than bulk bioactive glasses. Moreover, the surface chemistry of the composites was altered to mimic the surface of bioactive glasses. It was demonstrated that the in vitro bioactivity of the composites was enhanced by chemically modifying polymer surfaces through the introduction of special alkoxysilane groups.
Dielectric properties of plasma sprayed silicates subjected to additional annealing
Czech Academy of Sciences Publication Activity Database
Ctibor, Pavel; Sedláček, J.; Nevrlá, Barbara; Neufuss, Karel
2017-01-01
Roč. 10, č. 2 (2017), s. 105-114 ISSN 2008-2134 Institutional support: RVO:61389021 Keywords : Annealing * Dielectric properties * Plasma spraying * Silicates * Electrical properties * Insulators Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films http://pccc.icrc.ac.ir/Articles/1/18/990/
Vesuvianite–wollastonite–grossular-bearing calc-silicate rock near ...
Indian Academy of Sciences (India)
Felsic layers are white in colour, whereas mafic layers range from green, brown to grey colour depending on the modal abundance of different mafic minerals. Layers rich in diopside are green coloured and those rich in garnet are brown. Keywords. Vesuvianite; wollastonite; grossular; diopside; calc-silicate rock. J. Earth ...
Decreased water flowing from a forest amended with calcium silicate
Mark B. Green; Amey S. Bailey; Scott W. Bailey; John J. Battles; John L. Campbell; Charles T. Driscoll; Timothy J. Fahey; Lucie C. Lepine; Gene E. Likens; Scott V. Ollinger; Paul G. Schaberg
2013-01-01
Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial...
Silicon K-edge XANES spectra of silicate minerals
Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.
1995-03-01
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.
Preparation and characterization of magnesium–aluminium–silicate ...
Indian Academy of Sciences (India)
A three-stage heating schedule involving calcination, nucleation and crystallization, has been evolved for the preparation of magnesium aluminium silicate (MAS) glass ceramic with MgF2 as a nucleating agent. The effect of sintering temperature on the density of compacted material was studied. Microstructure and ...
Effect of antioxidants and silicates on peroxides in povidone.
Narang, Ajit S; Rao, Venkatramana M; Desai, Divyakant S
2012-01-01
Reactive peroxides in povidone often lead to degradation of oxidation-labile drugs. To reduce peroxide concentration in povidone, the roles of storage conditions, antioxidants, and silicates were investigated. Povidone alone and its physical mixtures with ascorbic acid, propyl gallate, sodium sulfite, butylated hydroxyanisole (BHA), or butylated hydroxytoluene (BHT) were stored at 25 °C and 40 °C, at 11%, 32%, and 50% relative humidity. In addition, povidone solution in methanol was equilibrated with silicates (silica gel and molecular sieves), followed by solvent evaporation to recover povidone powder. Peroxide concentrations in povidone were measured. The concentration of peroxides in povidone increased under very-low-humidity storage conditions. Among the antioxidants, ascorbic acid, propyl gallate, and sodium sulfite reduced the peroxide concentration in povidone, whereas BHA and BHT did not. Water solubility appeared to determine the effectiveness of antioxidants. Also, some silicates significantly reduced peroxide concentration in povidone without affecting its functionality as a tablet binder. Porosity of silicates was critical to their ability to reduce the peroxide concentration in povidone. A combination of these approaches can reduce the initial peroxide concentration in povidone and minimize peroxide growth under routine storage conditions. Copyright © 2011 Wiley-Liss, Inc.
Mineralogy and trace element chemistry of the Siliceous Earth of ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka. Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing ...
In vitro bioactivity and cytocompatibility of tricalcium silicate
Indian Academy of Sciences (India)
tricalcium silicate powder showed that it could induce bone- like apatite formation after ... ated by soaking them in SBF, cell adhesion and MTT assay, respectively. 2. .... tibility, which might be used as one of the bioactive coating materials and ...
Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...
African Journals Online (AJOL)
The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.
Determination of reactivity rates of silicate particle-size fractions
Directory of Open Access Journals (Sweden)
Angélica Cristina Fernandes Deus
2014-04-01
Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Novel understanding of calcium silicate hydrate from dilute hydration
Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang
2017-01-01
The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10
Decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid
International Nuclear Information System (INIS)
Khomidi, A.K.; Mamatov, E.D.
2015-01-01
Present article is devoted to decomposition of pre calcined aluminium silicate ores of Afghanistan by hydrochloric acid. The physicochemical properties of initial aluminium silicate ores were studied by means of X-ray phase, differential thermal and silicate analysis. The chemical composition of aluminium containing ores was determined. The optimal conditions of interaction of initial and pre calcined siallites with hydrochloric acid were defined. The kinetics of acid decomposition of aluminium silicate ores was studied as well.
Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites
Schmidt, Daniel F.
2010-01-12
We report the first in-depth comparison of the mechanical properties and equilibrium solvent uptake of a range of polysiloxane nanocomposites based on treated and untreated montmorillonite and fumed silica nanofillers. We demonstrate the ability of equilibrium solvent uptake data (and, thus, overall physical and chemical cross-link density) to serve as a proxy for modulus (combining rubber elasticity and Flory-Rehner theory), hardness (via the theory of Boussinesq), and elongation at break, despite the nonideal nature of these networks. In contrast, we find that tensile and tear strength are not well-correlated with solvent uptake. Interfacial strength seems to dominate equilibrium solvent uptake and the mechanical properties it predicts. In the montmorillonite systems in particular, this results in the surprising consequence that equilibrium solvent uptake and mechanical properties are independent of dispersion state. We conclude that edge interactions play a more significant role than degree of exfoliation, a result unique in the field of polymer nanocomposites. This demonstrates that even a combination of polymer/nanofiller compatibility and thermodynamically stable nanofiller dispersion levels may not give rise to reinforcement. These findings provide an important caveat when attempting to connect structure and properties in polymer nanocomposites, and useful guidance in the design of optimized polymer/layered silicate nanocomposites in particular. © 2009 American Chemical Society.
Transition metal ions in silicate melts. I. Manganese in sodium silicate melts
Energy Technology Data Exchange (ETDEWEB)
Nelson, C; White, W B
1980-01-01
Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn/sup 3 +/ to be the dominant species for melts heated in air and Mn/sup 2 +/ to be the dominant species for melts heated at P/sub O/sub 2// = 10/sup -17/ bar. The absorption spectrum of Mn/sup 3 +/ consists of an intense band at 20,000 cm/sup -1/ with a 15,000 cm/sup -1/ satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn/sup 3 +/ complex in the melt. The spectrum of Mn/sup 2 +/ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn/sup 2 +/ has been tentatively interpreted as due to Mn/sup 2 +/ in interstitial sites in the network and Mn/sup 2 +/ coordiated by non-bridging oxygens.
International Nuclear Information System (INIS)
Michalik, J.; Kevan, L.
1978-01-01
The electron spin-lattice relaxation of trapped silver atoms in polycrystalline ice matrices and in methanol, ethanol, propylene carbonate, and 2-methyltetrahydrofuran organic glasses has been directly studied as a function of temperature by the saturation-recovery method. Below 40 K the dominant electron spin-lattice relaxation mechanism involves modulation of the electron nuclear dipolar interaction with nuclei in the radical's environment by tunneling of those nuclei between two nearly equal energy configurations. This relaxation mechanism occurs with high efficiency, has a characteristic linear temperature dependence, and is typically found in highly disordered matrices. The efficiency of this relaxation mechanism seems to decrease with decreasing polarity of the matrix. Deuteration experiments show that the tunneling nuclei are protons and in methanol it is shown that the methyl protons have more tunneling modes available than the hydroxyl protons. In polycrystalline ice matrices silver atoms can be stabilized with two different orientations of surrounding water molecules; the efficiency of the tunneling relaxation reflects this difference. From these and previous results on tunneling relaxation of trapped electrons in glassy matrices it appears that tunneling relaxation may be used to distinguish models with different geometrical configurations and to determine the relative rigidity of such configurations around trapped radicals in disordered solids. (author)
Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices
Pagaran, J.; Fritzsche, S.; Gaigalas, G.
2006-04-01
summation and integration rules are implemented to facilitate the algebraic simplification of expressions from the theories of angular momentum and the spherical tensor operators. Restrictions onto the complexity of the problem: The definition as well as the properties of the rotation matrices, as used in our implementation, are based mainly on the book of Varshalovich et al. [D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore, 1988], Chapter 4. From this monograph, most of the relations involving the Wigner D-functions and rotation matrices are taken into account although, in practice, only a rather selected set was needed to be implemented explicitly owing to the symmetries of these functions. In the integration over the rotation matrices, products of up to three Wigner D-functions or reduced matrices (with the same angular arguments) are recognized and simplified properly; for the integration over a solid angle, however, the domain of integration must be specified for the Euler angles α and γ. This restriction arose because MAPLE does not generate a constant of integration when the limits in the integral are omitted. For any integration over the angle β the range of the integration, if omitted, is always taken from 0 to π. Unusual features of the program: The RACAH program is designed for interactive use that allows a quick and algebraic evaluation of (complex) expression from Racah's algebra. It is based on a number of well-defined data structures that are now extended to incorporate the Wigner rotation matrices. For these matrices, the transformation properties, sum rules, recursion relations, as well as a variety of special function expansions have been added to the previous functionality of the RACAH program. Moreover, the knowledge about the orthogonality as well as the completeness of the Wigner D-functions is also implemented. Typical running time:All the examples presented in Section 4 take only
Information geometry of density matrices and state estimation
International Nuclear Information System (INIS)
Brody, Dorje C
2011-01-01
Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)
Chain of matrices, loop equations and topological recursion
Orantin, Nicolas
2009-01-01
Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.
Energetics of silicate melts from thermal diffusion studies. Final report
International Nuclear Information System (INIS)
Walker, D.
1997-01-01
Initially this project was directed towards exploiting Soret diffusion of silicate liquids to learn about the internal energetics of the constituents of the liquids. During the course of this project this goal was realized at the same time a series of intellectual and technical developments expanded the scope of the undertaking. Briefly recapping some of the highlights, the project was initiated after the discovery that silicate liquids were strongly Soret-active. It was possible to observe the development of strong diffusive gradients in silicate liquid composition in response to laboratory-imposed thermal gradients. The character of the chemical separations was a direct window into the internal speciation of the liquids; the rise time of the separation was a useful entree to quantitatively measuring chemical diffusivity; and the steady state magnitude of the separation proved to be an excellent determinant of the constituents' mixing energies. A comprehensive program was initiated to measure the separations, rise times, and mixing energies of a range of geologically and technically interesting silicate liquids. An additional track of activities in the DOE project has run in parallel to the Soret investigation of single-phase liquids in a thermal gradient. This additional track is the study of liquid-plus-crystal systems in a thermal gradient. In these studies solubility-driven diffusion introduced many useful effects, some quite surprising. In partially molten silicate liquids the authors applied their experiments to understanding magmatic cumulate rocks. They have also applied their understanding of these systems to aspects of evaporite deposits in the geological record. They also undertook studies of this sort in systems with retrograde solubility in order to form the basis for understanding remediation for brine migration problems in evaporite-hosted nuclear waste repositories such as the WIPP
Wastewater reuse in liquid sodium silicate manufacturing in alexandria, egypt.
Ismail, Gaber A; Abd El-Salam, Magda M; Arafa, Anwar K
2009-01-01
Soluble sodium silicates (waterglass) are liquids containing dissolved glass which have some water like properties. They are widely used in industry as sealants, binders, deflocculants, emulsifiers and buffers. Their most common applications in Egypt are in the pulp and paper industry (where they improve the brightness and efficiency of peroxide bleaching) and the detergent industry, in which they improve the action of the detergent and lower the viscosity of liquid soaps. The survey results showed that the production was carried out batch-wise, in an autoclave (dissolver). Sodium silicate in the state of crushed glass was charged in an autoclave (dissolver) with sodium hydroxide and water. The product is filtered through a press. The left over sludge (mud and silicates impurities) is emptied into the local sewer system. Also, sludge (silica gel) was discharged from the neutralization process of the generated alkaline wastewater and consequently clogging the sewerage system. So this study was carried out to modify the current wastewater management system which eliminates sludge formation, the discharge of higher pH wastewater to the sewer system, and to assess its environmental and economic benefits. To assess the characteristics of wastewater to be reused, physico-chemical parameters of 12 samples were tested using standard methods. The survey results showed that a total capacity of the selected enterprise was 540 tons of liquid sodium silicates monthly. The total amount of wastewater being discharged was 335 m3/month. Reusing of wastewater as feed autoclave water reduced water consumption of 32.1% and reduced wastewater discharge/month that constitutes 89.6% as well as saving in final product of 6 ton/month. It was concluded that reusing of wastewater generated from liquid sodium silicate manufacturing process resulted in cheaper and environmental-friendly product.
Silicate Phases on the Surfaces of Trojan Asteroids
Martin, Audrey; Emery, Joshua P.; Lindsay, Sean S.
2017-10-01
Determining the origin of asteroids provides an effective means of constraining the solar system’s dynamic past. Jupiter Trojan asteroids (hereafter Trojans) may help in determining the amount of radial mixing that occurred during giant planet migration. Previous studies aimed at characterizing surface composition show that Trojans have low albedo surfaces and are spectrally featureless in the near infrared. The thermal infrared (TIR) wavelength range has advantages for detecting silicates on low albedo asteroids such as Trojans. The 10 μm region exhibits strong features due to the Si-O fundamental molecular vibrations. Silicates that formed in the inner solar system likely underwent thermal annealing, and thus are crystalline, whereas silicates that accreted in the outer solar system experienced less thermal processing, and therefore are more likely to have remained in an amorphous phase. We hypothesize that the Trojans formed in the outer solar system (i.e., the Kuiper Belt), and therefore will have a more dominant amorphous spectral silicate component. With TIR spectra from the Spitzer Space Telescope, we identify mineralogical features from the surface of 11 Trojan asteroids. Fine-grain mixtures of crystalline pyroxene and olivine exhibit a 10 μm feature with sharp cutoffs between about 9 μm and 12 μm, which create a broad flat plateau. Amorphous phases, when present, smooth the sharp emission features, resulting in a dome-like shape. Preliminary results indicate that the surfaces of analyzed Trojans contain primarily amorphous silicates. Emissivity spectra of asteroids 1986 WD and 4709 Ennomos include small peaks in the 10 μm region, diagnostic of small amounts of crystalline olivine. One explanation is that Trojans formed in the same region as Kuiper Belt objects, and when giant planet migration ensued, they were swept into Jupiter’s stable Lagrange points where they are found today. As such, it is possible that an ancestral group of Kuiper Belt
Mastalska-Popiawska, J.; Izak, P.
2017-01-01
The poly(sodium acrylate)/sodium silicate hydrogels were synthesized in the presence of sodium thiosulphate and potassium persulphate as the redox initiators and N,N’-methylene-bisacrylamide as the cross-linking monomer. 20 wt% aqueous solution of sodium acrylate was polymerized together with water glass with different silicate modules (M) from 1.74 to 2.29, in three mass ratio of the monomer solution to the water glass 2:1, 1:1 and 1:2. Such obtained hybrid composites were rheologically tested using the oscillation method. It allowed to designate the crossover point during polymerization, as well as to define the viscoelastic properties of the casted hydrogel samples one week after the reaction. The obtained results of the oscillation measurements showed that cross-linking reaction proceeds very quickly and the lower the silicate module is, the process starts faster. After the completion of the reaction the silicate-polymer hydrogels are strongly elastic materials and the highest elasticity characterizes systems with the mass ratio 1:2, i.e. with the highest water glass content.
McCurdy, K.G.; Stein, H.N.
1973-01-01
Calcium and silicate ion concentrations during suspension hydration of C3S indicate that at pH 11.5 an equilibrium is established between one of the hydrates and the solution during about 80 minutes. The concentrations found in this period are indipendent of the particle size of the C3S and (within
Modular Extracellular Matrices: Solutions for the Puzzle
Serban, Monica A.; Prestwich, Glenn D.
2008-01-01
The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709
Comparison of eigensolvers for symmetric band matrices.
Moldaschl, Michael; Gansterer, Wilfried N
2014-09-15
We compare different algorithms for computing eigenvalues and eigenvectors of a symmetric band matrix across a wide range of synthetic test problems. Of particular interest is a comparison of state-of-the-art tridiagonalization-based methods as implemented in Lapack or Plasma on the one hand, and the block divide-and-conquer (BD&C) algorithm as well as the block twisted factorization (BTF) method on the other hand. The BD&C algorithm does not require tridiagonalization of the original band matrix at all, and the current version of the BTF method tridiagonalizes the original band matrix only for computing the eigenvalues. Avoiding the tridiagonalization process sidesteps the cost of backtransformation of the eigenvectors. Beyond that, we discovered another disadvantage of the backtransformation process for band matrices: In several scenarios, a lot of gradual underflow is observed in the (optional) accumulation of the transformation matrix and in the (obligatory) backtransformation step. According to the IEEE 754 standard for floating-point arithmetic, this implies many operations with subnormal (denormalized) numbers, which causes severe slowdowns compared to the other algorithms without backtransformation of the eigenvectors. We illustrate that in these cases the performance of existing methods from Lapack and Plasma reaches a competitive level only if subnormal numbers are disabled (and thus the IEEE standard is violated). Overall, our performance studies illustrate that if the problem size is large enough relative to the bandwidth, BD&C tends to achieve the highest performance of all methods if the spectrum to be computed is clustered. For test problems with well separated eigenvalues, the BTF method tends to become the fastest algorithm with growing problem size.
MATXTST, Basic Operations for Covariance Matrices
International Nuclear Information System (INIS)
Geraldo, Luiz P.; Smith, Donald
1989-01-01
1 - Description of program or function: MATXTST and MATXTST1 perform the following operations for a covariance matrix: - test for singularity; - test for positive definiteness; - compute the inverse if the matrix is non-singular; - compute the determinant; - determine the number of positive, negative, and zero eigenvalues; - examine all possible 3 X 3 cross correlations within a sub-matrix corresponding to a leading principal minor which is non-positive definite. While the two programs utilize the same input, the calculational procedures employed are somewhat different and their functions are complementary. The available input options include: i) the full covariance matrix, ii) the basic variables plus the relative covariance matrix, or iii) uncertainties in the basic variables plus the correlation matrix. 2 - Method of solution: MATXTST employs LINPACK subroutines SPOFA and SPODI to test for positive definiteness and to perform further optional calculations. Subroutine SPOFA factors a symmetric matrix M using the Cholesky algorithm to determine the elements of a matrix R which satisfies the relation M=R'R, where R' is the transposed matrix of R. Each leading principal minor of M is tested until the first one is found which is not positive definite. MATXTST1 uses LINPACK subroutines SSICO, SSIFA, and SSIDI to estimate whether the matrix is near to singularity or not (SSICO), and to perform the matrix diagonalization process (SSIFA). The algorithm used in SSIFA is generalization of the Method of Lagrange Reduction. SSIDI is used to compute the determinant and inertia of the matrix. 3 - Restrictions on the complexity of the problem: Matrices of sizes up to 50 X 50 elements can be treated by present versions of the programs
International Nuclear Information System (INIS)
Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.
2004-01-01
In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass
Directory of Open Access Journals (Sweden)
Jurkić Lela Munjas
2013-01-01
Full Text Available Abstract Silicon (Si is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4, as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K, the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel, silica gel (amorphous silicon dioxide, and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4 in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.
Joint Estimation of Multiple Precision Matrices with Common Structures.
Lee, Wonyul; Liu, Yufeng
Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Finiteness properties of congruence classes of infinite matrices
Eggermont, R.H.
2014-01-01
We look at spaces of infinite-by-infinite matrices, and consider closed subsets that are stable under simultaneous row and column operations. We prove that up to symmetry, any of these closed subsets is defined by finitely many equations.
Flexible Bayesian Dynamic Modeling of Covariance and Correlation Matrices
Lan, Shiwei; Holbrook, Andrew; Fortin, Norbert J.; Ombao, Hernando; Shahbaba, Babak
2017-01-01
Modeling covariance (and correlation) matrices is a challenging problem due to the large dimensionality and positive-definiteness constraint. In this paper, we propose a novel Bayesian framework based on decomposing the covariance matrix
Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).
Procrustes Problems for General, Triangular, and Symmetric Toeplitz Matrices
Directory of Open Access Journals (Sweden)
Juan Yang
2013-01-01
Full Text Available The Toeplitz Procrustes problems are the least squares problems for the matrix equation AX=B over some Toeplitz matrix sets. In this paper the necessary and sufficient conditions are obtained about the existence and uniqueness for the solutions of the Toeplitz Procrustes problems when the unknown matrices are constrained to the general, the triangular, and the symmetric Toeplitz matrices, respectively. The algorithms are designed and the numerical examples show that these algorithms are feasible.
An introduction to the theory of canonical matrices
Turnbull, H W
2004-01-01
Thorough and self-contained, this penetrating study of the theory of canonical matrices presents a detailed consideration of all the theory's principal features. Topics include elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. The final chapters explore several methods of canonical reduction, including those of unitary and orthogonal transformations. 1952 edition. Index. Appendix. Historical notes. Bibliographies. 275 problems.
Dynamical correlations for circular ensembles of random matrices
International Nuclear Information System (INIS)
Nagao, Taro; Forrester, Peter
2003-01-01
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric Hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number of Brownian particles at arbitrary number of times are shown to be written in the forms of quaternion determinants, similarly as in the case of Hermitian random matrix models
Complementary Set Matrices Satisfying a Column Correlation Constraint
Wu, Di; Spasojevic, Predrag
2006-01-01
Motivated by the problem of reducing the peak to average power ratio (PAPR) of transmitted signals, we consider a design of complementary set matrices whose column sequences satisfy a correlation constraint. The design algorithm recursively builds a collection of $2^{t+1}$ mutually orthogonal (MO) complementary set matrices starting from a companion pair of sequences. We relate correlation properties of column sequences to that of the companion pair and illustrate how to select an appropriate...
Open vessel microwave digestion of food matrices (T6)
International Nuclear Information System (INIS)
Rhodes, L.; LeBlanc, G.
2002-01-01
Full text: Advancements in the field of open vessel microwave digestion continue to provide solutions for industries requiring acid digestion of large sample sizes. Those interesting in digesting food matrices are particularly interested in working with large amounts of sample and then diluting small final volumes. This paper will show the advantages of instantaneous regent addition and post-digestion evaporation when performing an open vessel digestion and evaporation methods for various food matrices will be presented along with analyte recovery data. (author)
Quantum Algorithms for Weighing Matrices and Quadratic Residues
van Dam, Wim
2000-01-01
In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the ar...
Asymptotic Distribution of Eigenvalues of Weakly Dilute Wishart Matrices
Energy Technology Data Exchange (ETDEWEB)
Khorunzhy, A. [Institute for Low Temperature Physics (Ukraine)], E-mail: khorunjy@ilt.kharkov.ua; Rodgers, G. J. [Brunel University, Uxbridge, Department of Mathematics and Statistics (United Kingdom)], E-mail: g.j.rodgers@brunel.ac.uk
2000-03-15
We study the eigenvalue distribution of large random matrices that are randomly diluted. We consider two random matrix ensembles that in the pure (nondilute) case have a limiting eigenvalue distribution with a singular component at the origin. These include the Wishart random matrix ensemble and Gaussian random matrices with correlated entries. Our results show that the singularity in the eigenvalue distribution is rather unstable under dilution and that even weak dilution destroys it.
Synthesis of lithium silicates generators of tritium by a modified method of combustion
International Nuclear Information System (INIS)
Cruz G, D.
2003-01-01
The ceramics of lithium have been proposed as generating materials of tritium through the following reaction: 6 Li + 1 n → 4 He + 3 H . In previous works carried out by Pfeiffer and collaborators, the lithium silicates generators of tritium were prepared using the following methods: reactions of solid state, precipitation and sol-gel synthesis. Although those methods have advantages, it is required of heating at high temperatures (900 C during four hours) to be able to obtain the crystalline compounds. Those products found in these works were diverse crystallization forms of the lithium silicates and of SiO 2 , such as, Li 2 SiO 3 , Li 2 Si 2 0 5 , Li 4 SiO 4 , and quartz (SiO 2 ). The combustion method uses exothermic reactions to take place ceramic compounds. The precursor solutions are mixtures of the nitrate of metal oxidizer and the fuels (urea, glycine, carbohydrazide). However the reported method in the literature, it is not useful to prepare lithium silicates, for what was modified using non oxidizers compounds. The lithium hydroxide (LiOH) and the silicic acid (H 2 SiO 3 ) they were the compounds non oxidizers used, and the urea (CH 4 N 2 O) it was the one fuel. They were carried out two series of experiments; inside the series 1 of experiments are varied the molar ratio of lithium hydroxide and urea (LiOH : H 2 SiO 3 = 1, 2 and 3, LiOH : CH 4 N 2 O = 1, 2, 3, 4 and 5) and the prepared mixtures were taken to one muffle previously preheated to a temperature of 450 C during 5 minutes. In the series 2 of experiments was studied the effect of the temperature and of the washed with distilled water in the prepared samples with the following molar ratios: LiOH : H 2 SiO 3 : CH 4 N 2 O = 1:1:3, 2:1:3, 3:1:3 and 3:1:6, those which were heated to temperatures from 450 C up to 750 C and were washed. The obtained samples were characterized by X-ray diffraction (XRD), Infrared spectroscopy (I S), semiquantitative elemental analysis (EDS) and Thermal gravimetric
Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.
Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo
2013-09-01
We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.
Wind-eroded silicate as a source of hydrogen peroxide on Mars
DEFF Research Database (Denmark)
Bak, Ebbe Norskov; Merrison, Jonathan P.; Jensen, Svend Knak
-sists of silicates [4] that due to wind erosion has a very fine grained texture. Based on the composition of the surface material and investigations showing that crushing of silicates can give rise to reactive oxygen species [5], we hypothesized that wind erosion of silicates can explain the reactivity of Martian...... soil. Wind-erosion of silicate could thus be one of several causes of the soil’s reactivity. As our experiments show, the globally distributed wind eroded silicate dust can lead to the production of hydrogen peroxide which might explain the reactivity of the Martian soil. The reactivity of eroded...
Inference for High-dimensional Differential Correlation Matrices.
Cai, T Tony; Zhang, Anru
2016-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.
Estimated correlation matrices and portfolio optimization
Pafka, Szilárd; Kondor, Imre
2004-11-01
Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs
International Nuclear Information System (INIS)
Gleiter, H.
1991-01-01
Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)
Angelo, Joseph A
2011-01-01
Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S
Benedix, G. K.; McCoy, T. J.; Keil, K.
1995-09-01
IAB irons are the largest group of iron meteorites, exhibit a large range of siderophile element concentrations in their metal, and commonly contain silicate inclusions with roughly chondritic composition. They are closely related to IIICD irons [1,2] and their inclusions resemble winonaites [3]. It has been suggested that IAB's and IIICD's formed in individual impact melt pools [4,2] on a common parent body. However, it has also been suggested that fractional crystallization [5,6] of a S-saturated core could produce the observed siderophile element trends. Metal composition is correlated with silicate inclusion mineralogy in IIICD's [1], indicating reactions between solid silicates and the metallic magma in a core. These trends observed in IIICD's differ from those in IAB's, suggesting different parent bodies. A bi-modal grouping, based primarily on mineralogy and mineral abundances, was suggested for IAB inclusions [7]. However, recent recoveries of several new silicate-bearing IAB's, along with the emergence of new ideas on their origins, prompted a comprehensive study to document more fully the range of inclusions within IAB irons, to examine possible correlations between the compositions of the metallic host and the silicate inclusions, and to elucidate the origin of IAB irons. We are studying troilite-graphite-silicate inclusions in 24 IAB irons with Ni concentrations ranging from 6.6-25.0%. These include Odessa and Copiapo types [7], newly recovered meteorites (e.g., Lueders [8]) and meteorites with extreme Ni contents (e.g., Jenny's Creek, 6.8%; San Cristobal, 25.0% [9]). The inclusions exhibit a range of textures from recrystallized to partial melts (e.g., Caddo County [10]). Rigorous classification [7] is hampered by heterogeneities between group meteorites, between different samples of distinct meteorites, and within individual inclusions. While intergroup heterogeneities make comparisons between the suite of IAB's somewhat difficult, some general trends
International Nuclear Information System (INIS)
Pointeau, I.
2000-09-01
This work attempts to investigate the modelling of radioisotopes (Cs + , Pb 2+ , Eu 3+ ) immobilization in cement matrix, in the frame of the design of engineered barrier of a deep radwaste repository. The model development concept consists of three major steps: - surface chemistry modelling of the calcium silicate hydrate CSH, used to simulate hydrated cement behaviour; - solid analysis of the batch sorption experiments: identification of the uptake mechanism; - both previous steps are used, with isotherm data, in the modelling of the radioisotopes immobilization in the CSH matrix. Final results: (all modelling are available for all the range of studied Ca/Si ratios and have been validated with predictive calculations). - A thermodynamic modelling of the CSH surface chemistry has been developed. The labile calcium and proton sorption constants on silanol sites (>SiOH) have been extracted. - Cs + is sorbed on two sites. The silanol site (weak site) has a high site density (10 sites.nm -2 ), which accounts for the CSH unsaturation in high [CS + ]. A strong site is also identified. - Pb 2+ immobilization in CSH matrix is modelled with surface equilibria and solubility equilibrium. - Eu 3+ fixation has been investigated with solid analysis: Site-Selective anti Time-Resolved Luminescence Spectroscopy, XPS and SEM-EDS. Eu 3+ thus does not precipitate in CSH water but is sorbed on the CSH surface (high hydroxylated environment). Europium is also (minority site) inserted in the CSH framework. (author)
Calc-silicate mineralization in active geothermal systems
Energy Technology Data Exchange (ETDEWEB)
Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.
1983-01-01
The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.
Charge trapping and dielectric breakdown in lead silicate glasses
International Nuclear Information System (INIS)
Weeks, R.A.; Kinser, D.L.; Lee, J.M.
1976-01-01
When irradiated with beams of energetic electrons or gamma rays, many insulating glasses and plastics exhibit a spontaneous electrical discharge producing permanent patterns in the materials (Lichtenberg figures). In the case of inorganic glasses, this effect is not observed in pure silicate, germanate, or phosphate glasses nor in their crystalline forms and has only been reported in mixed-oxide glasses with low alkali content. In a series of lead silicate glasses of composition [PbO]/sub (x)/[SiO 2 ]/sub [1-(x)]/, the effect is observed only for 0 less than x less than or equal to 0.40. Changes in electrical properties are related to structural changes in these glasses. Electron microscopy of these glasses confirms the existence of microphase separation in the range 0.2 less than or equal to x less than or equal to 0.5
Chemical bonding and structural ordering of cations in silicate glasses
International Nuclear Information System (INIS)
Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.
1997-01-01
The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)
Silica from triethylammonium tris (oxalato) silicate (IV) thermal decomposition
International Nuclear Information System (INIS)
Ferracin, L.C.; Ionashiro, M.; Davolos, M.R.
1990-01-01
Silica can be obtained from differents precursors by differents methods. In this paper it has been investigated the thermal decomposition of triethylammonium tris (oxalato) silicate (IV) to render silica. Among the trisoxalato-complexes of silicon preparation methods reviewed it has been used the Bessler's one with the reflux adaptaded in microwave oven. Thermal decomposition analysis of the compound has been made by TG-DTG and DTA curves. Silica powders obtained and heated between 300 to 900 0 C in a oven were characterized by infrared vibrational spectroscopy, X-ray powder difraction and nitrogen adsorption isotherm (BET). The triethylammonium tris (oxalato) silicate (IV) thermal decomposition takes place at 300 0 C and the silica powder obtained is non cristalline with impurities that are eliminated with heating at 400 0 C. (author) [pt
The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar
Horai, Ki-iti; Susaki, Jun-ichi
1989-06-01
The effect of high pressure up to 12 kbar on thermal conductivity of silicate rocks was determined. Measurements were made by the transient hot wire method on 23 samples. With the exception of one sedimentary rock, one meteorite and manufactured fused and crystalline quartz, the samples were igneous and metamorphic rocks of the oceanic and the continental lithospheres. The samples were of cylindrical shape, 24 mm long and 12 mm in diameter, containing a heater of 0.1 mm thick chromel wire along their axis and a thermocouple at the center. They were encased in cubes of 41 mm-edge-long pyrophyllite and then placed between slide-type cubic anvils of the IHI high-pressure apparatus, which transmitted quasi-hydrostatic pressure of more than 2 kbar to the sample through the solid pyrophyllite medium. The validity of the method was confirmed by comparing the conductivity of standard materials measured using the present method with literature values. The results show that the thermal conductivity of all samples increases with increasing pressure. The most rapid increase in the range below 2 kbar can be attributed to the closure of microcracks in the sample, and uniform, less pronounced increases above 2 kbar should be intrinsic to the material. The effect of temperature was also studied on a small number of selected samples. In the temperature range from 300 to 700 K, the thermal conductivities of crystalline rocks under quasi-hydrostatic compressive stresses of 4 and 10 kbar showed a monotonic decrease of thermal conductivity. The thermal conductivity of fused quartz, however, increased with temperature. Pressure appeared to have no appreciable effect on the temperature dependence of silicate thermal conductivity.
White light emission and color tunability of dysprosium doped barium silicate glasses
Energy Technology Data Exchange (ETDEWEB)
Mishra, Lokesh; Sharma, Anchal; Vishwakarma, Amit K.; Jha, Kaushal [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Jayasimhadri, M., E-mail: jayaphysics@yahoo.com [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Ratnam, B.V.; Jang, Kiwan [Department of Physics, Changwon National University, Changwon 641-77 (Korea, Republic of); Rao, A.S.; Sinha, R.K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India)
2016-01-15
The present work elucidates the synthesis of Dy{sup 3+} doped barium silicate glasses, along with the subsequent studies performed to evaluate its viability in solid state lighting applications. The synthesized photonic glasses were investigated via X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy. The photoluminescence properties were examined under ultraviolet (UV)/near UV (NUV) excitation. Photoluminescence spectrum exhibited characteristic emission bands at λ{sub em}=483 nm (blue) and λ{sub em}=576 nm (yellow) which are ascribed to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} transitions of Dy{sup 3+} ion, respectively. The chromaticity coordinates under excitation of λ{sub ex}=348 nm are (0.31, 0.34), which lies in the white region of CIE 1931 chromaticity diagram and are in excellent proximity with the standard equal energy white illuminant (0.333, 0.333). The calculated correlated color temperature and the yellow to blue (Y/B) ratio are found to be 6602 K and 1.12, respectively for the optimized sample. The synthesized photonic glass also offered the possibility of tuning the color as exemplified through the variation in CIE coordinates, correlated color temperature and the Y/B ratio. The results confirm the possibility of color tunability from the proposed glass and may be useful for various photonic device applications. - Highlights: • Successfully synthesized Dy{sup 3+} doped barium silicate glasses. • Structural properties thoroughly discussed by using XRD and FT-IR. • Photoluminescence and colorimetry properties have been investigated. • Y/B ratio and the reason for color tunability have been successfully explained. • CIE coordinates of Dy{sup 3+}:BBS glass confirm its suitability for w-LEDs.
EFFECT OF AGING TIME TOWARD CRYSTALLINITY OF PRODUCTS IN SYNTHESIS OF MESOPOROUS SILICATES MCM-41
Directory of Open Access Journals (Sweden)
Suyanta Suyanta
2010-12-01
Full Text Available Researches about the effects of aging time toward crystallinity of products in the synthesis of mesoporous silicates MCM-41 have been done. MCM-41 was synthesized by hydrothermal treatment to the mixture of sodium silicate, sodium hydroxide, cetyltrimetylammoniumbromide (CTMAB and aquadest in the molar ratio of 8Na2SiO3 : CTMAB : NaOH : 400H2O. Hydrothermal treatment was carried out at 110 °C in a teflon-lined stainless steel autoclave heated in the oven, with variation of aging time, i.e.: 4, 8, 12, 16, 24, 36, 48, and 72 h respectively. The solid phase were filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcinations at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined powders were characterized by using FTIR spectroscopy and X-ray diffraction method. The relative crystallinity of products was evaluated based on the intensity of d100 peaks. The best product was characterized by using N2 physisorption method in order to determine the specific surface area, mean pore diameter, lattice parameter, and pore walls thickness. It was concluded that the relative crystallinity of the products was sensitively influenced by the aging time. The highest relative crystallinity was achieved when used 36 h of aging time in hydrothermal treatment. In this optimum condition the product has 946.607 m2g-1 of specific surface area, 3.357 nm of mean pore diameter, 4.533 nm of lattice parameter, and 1.176 nm of pore walls thickness.
An optical fibre-type silicate glass thermoluminescent detector
International Nuclear Information System (INIS)
Zheng Zheng; Dai Honggui; Hu Shangze; Liu Jian; Fang Jie
1991-01-01
A description of dosimetric properties and the preparation method of an optical fibre-type silicate glass thermoluminescent detector (TLD) is presented. Results showed that this new phosphor is a good one which could be used as a routine dosimeter in the range 10 -1 -10 3 Gy. The preparation method is a new one which differs greatly from all previous ones. Furthermore this kind of detector is small and of low weight. (orig.)
Cracking phenomena in lithium-di-silicate glass ceramics
Indian Academy of Sciences (India)
Unknown
Abstract. Lithium-di-silicate glass ceramic (Li2O, SiO2) with uniformly oriented crystals was placed on a. Vickers indentation with extrusion axis horizontally parallel to the base axis. The material was rotated through. 0°– 90° and at each angle a 20 N load was applied to ascertain the crack path. It was observed that the crack.
Strength and impermeability recovery of siliceous mudstone from complete failure
International Nuclear Information System (INIS)
Sugita, Yutaka; Sanada, Masanori; Fujita, Tomoo; Hashiba, Kimihiro; Fukui, Katsunori; Okubo, Seisuke
2013-01-01
Radionuclide migration can be undesirably increased by weakening the mechanical properties of a rock mass in the excavated disturbed zone (EDZ) around the tunnels of a geological disposal facility for high level radioactive waste. Laboratory testing of loading stress and loading time on failed siliceous mudstone specimens has identified the potential for the long-term recovery of the strength and impermeability of the rock mass in the EDZ. (author)
On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices
Pestana, Jennifer
2014-01-01
Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1980-01-01
We consider semi-classical approximation to factorized S-matrices. We show that this new class of matrices, called s-matrices, defines Hamiltonian structures for isospectral deformation equations. Concrete examples of factorized s-matrices are constructed and they are used to define Hamiltonian structure for general two-dimensional isospectral deformation systems. (orig.)
Experimental weathering rates of aluminium silicates
International Nuclear Information System (INIS)
Gudbrandsson, Snorri
2013-01-01
80 C as a function of fluid saturation state. Analyses of the solids demonstrate that gibbsite precipitation occurred in all experiments. The comparison of gibbsite precipitation to the dissolution rates of plagioclase at pH 11 shows that the rates are close to equal. The precipitation rates of gibbsite, however, decrease faster with decreasing pH than plagioclase dissolution rates. As such it seem likely that plagioclase dissolution is faster than gibbsite precipitation at near to neutral pH, and the relatively slow rate of gibbsite precipitation influences plagioclase weathering in many Earth surface systems. Kaolinite is commonly the second secondary mineral formed during low temperature dissolution of plagioclase. Kaolinite precipitation rates were measured in mixed flow reactors as a function of fluid saturation state at pH=4 and 25 C. In total eight long-term precipitation experiments were performed in fluids mildly supersaturated with respect to kaolinite, together with a known quantity of cleaned low defect Georgia Kaolinite as seeds. Measured kaolinite precipitation rates are relatively slow compared with plagioclase dissolution rates. This observation suggests that kaolinite formation during weathering is limited by its precipitation rates rather than by the availability of aqueous species sourced from plagioclase dissolution. Taken together the results of this study provide some of the fundamental scientific basic for predicting the rates and consequences of crystalline basalt and plagioclase dissolution at both the Earth's surface and during the near surface injection of CO 2 as part of carbon storage efforts. Results indicate that although gibbsite precipitation rates are relatively rapid, the relatively slow precipitation rates of kaolinite may be the process controlling the formation of this mineral at the Earth's surface. (author)
Structure change of soda-silicate glass by mechanical milling
International Nuclear Information System (INIS)
Iwao, M; Okuno, M
2010-01-01
Structure change of ground soda-silicate glass (SiO 2 -Na 2 O binary systems) was investigated using X-ray diffraction (XRD) and infrared spectroscopy. The measurement results were discussed comparison to that of SiO 2 glass. With increasing Na 2 O concentrations, the XRD intensity around 2θ = 22 0 decreased and the intensity around 32 0 increased. The intensity around 22 0 and 32 0 maybe attributed to SiO 2 glass structure unit and soda-silicate glass unit, respectively. The peaks of Na 2 CO 3 crystal for 2SiO 2 -Na 2 O glass were observed with increasing milling time. This crystallization was suggested that Na + ion on 2SiO 2 -Na 2 O glass surface connected CO 2 in air. The intensity around 22 0 and 32 0 decreased and the intensity around 30 0 increased with increasing milling time. These may indicate that SiO 2 glass structure unit and soda-silicate glass structure unit were mixed by milling. In addition, IR absorption band near v = 1100 cm -1 was separated to two bands near 940 cm -1 and 1070 cm -1 with increasing Na 2 O concentrations. The band near 940 cm -1 decreased and the band near 1070 cm -1 increased with increasing milling time. These spectra changes were suggested due to decrease of Na 2 O concentrations in 2SiO 2 -Na 2 O glass with Na 2 CO 3 crystallization.
Development of Li+ alumino-silicate ion source
International Nuclear Information System (INIS)
Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.
2009-01-01
To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E < 5 MeV) kinetic energy beam and a thin target. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.
Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.
Elsaka, Shaymaa E; Elnaghy, Amr M
2016-07-01
The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
The thermodynamic activity of ZnO in silicate melts
Reyes, R. A.; Gaskell, D. R.
1983-12-01
The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.
Proton tunneling in low dimensional cesium silicate LDS-1
Matsui, Hiroshi; Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki
2015-07-01
In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi2O5), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm-1 are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O-O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm-1, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm-1 are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm-1) and asymmetric mode (155 and 1220 cm-1). The broad absorption at 100-600 cm-1 reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs+ but also with the proton oscillation relevant to the second excited state (n = 2).
Silicate bonding properties: Investigation through thermal conductivity measurements
Energy Technology Data Exchange (ETDEWEB)
Lorenzini, M; Cesarini, E; Cagnoli, G; Campagna, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F [INFN, Istituto Nazionale di Fisica Nucleare, Sez. di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Haughian, K; Hough, J; Martin, I; Reid, S; Rowan, S; Veggel, A A van, E-mail: lorenzini@fi.infn.i [SUPA, University of Glasgow, Department of Physics and Astronomy, Kelvin Building G12 8QQ Glasgow, Scotland (United Kingdom)
2010-05-01
A direct approach to reduce the thermal noise contribution to the sensitivity limit of a GW interferometric detector is the cryogenic cooling of the mirrors and mirrors suspensions. Future generations of detectors are foreseen to implement this solution. Silicon has been proposed as a candidate material, thanks to its very low intrinsic loss angle at low temperatures and due to its very high thermal conductivity, allowing the heat deposited in the mirrors by high power lasers to be efficiently extracted. To accomplish such a scheme, both mirror masses and suspension elements must be made of silicon, then bonded together forming a quasi-monolithic stage. Elements can be assembled using hydroxide-catalysis silicate bonding, as for silica monolithic joints. The effect of Si to Si bonding on suspension thermal conductance has therefore to be experimentally studied. A measurement of the effect of silicate bonding on thermal conductance carried out on 1 inch thick silicon bonded samples, from room temperature down to 77 K, is reported. In the explored temperature range, the silicate bonding does not seem to affect in a relevant way the sample conductance.
Lithium concentration dependence of implanted helium retention in lithium silicates
Energy Technology Data Exchange (ETDEWEB)
Szocs, D.E., E-mail: szocsd@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Szilagyi, E.; Bogdan, Cs.; Kotai, E. [KFKI Research Institute for Particle and Nuclear Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Horvath, Z.E. [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, P.O. Box 49 (Hungary)
2010-06-15
Helium ions of 500 keV were implanted with a fluence of 1.4 x 10{sup 17} ion/cm{sup 2} into various lithium silicates to investigate whether a threshold level of helium retention exists in Li-containing silicate ceramics similar to that found in SiO{sub x} in previous work. The composition and phases of the as prepared lithium silicates were determined by proton backscattering spectrometry (p-BS) and X-ray diffraction (XRD) methods with an average error of {+-}10%. Electrostatic charging of the samples was successfully eliminated by wrapping the samples in Al foil. The amounts of the retained helium within the samples were determined by subtracting the non-implanted spectra from the implanted ones. The experimental results show a threshold in helium retention depending on the Li concentration. Under 20 at.% all He is able to escape from the material; at around 30 at.% nearly half of the He, while over 65 at.% all implanted He is retained. With compositions expressed in SiO{sub 2} volume percentages, a trend similar to those reported of SiO{sub x} previously is found.
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Directory of Open Access Journals (Sweden)
Diego Santana Assis
Full Text Available The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates; sugarcane (3; and pasture (3. At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart. Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.