WorldWideScience

Sample records for solid product materials

  1. Extraction products of solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-04

    A method is described for the manufacture of liquid products from pressure extracts of solid carbon-containing material by destructive hydrogenation, characterized in that the pressure extracts are hydrogenated in admixture with products of high-molecular weight formed during a previous destructive hydrogenation of another part of the same or other pressure extract and which has been collected as liquid without extensive cooling of the hot products of the reaction, which came from the reaction chamber where the previous destructive hydrogenation took place.

  2. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  3. Separation of volatile products from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    White, W W

    1915-10-19

    A process is set forth for the separation of volatile products from solid carbonaceous materials, in which the vapors produced from the carbonaceous material at higher temperatures and withdrawn into the separate vapor chamber are led in succession through the lower temperature vapors as continuously to deposit their condensible ingredients in the chamber by the action of the successive cooler vapors.

  4. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  5. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  6. Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms

    Directory of Open Access Journals (Sweden)

    Evert Fuenmayor

    2018-04-01

    Full Text Available Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms.

  7. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  8. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  9. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In a process of distilling solid carbonaceous materials with by-product recovery, the time factor and the temperature gradient during the distillation period are so controlled that a temperature difference exceeding 150/sup 0/C is avoided between the temperatures at the center and periphery of any suitable size of material or thickness of fuel bed. The material is heated by direct contact with an inert gas, such as water gas, producer gas, or combustion gases, which is passed in counterflow to the material and whose volume is such as to lower the vapor tension or partial pressure of the volatilizable oils and to withdraw the oils without cracking of the oil vapors. The material may be subjected to a preliminary heat treatment by gases containing 2 to 3 percent of free oxygen to reduce its coking properties, and free oxygen may be added either to the heating gases during the heat treatment, or to the retort and heating gases and vapors to polymerize resinous bodies prior to condensation or during condensation and while the oils are still wholly or partially in the vapor state.

  10. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  11. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  12. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  13. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  14. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  15. Method and apparatus for semi-solid material processing

    Science.gov (United States)

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-02-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  16. Electricity production from municipal solid waste in Brazil.

    Science.gov (United States)

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  17. UTILIZATION OF PINE NEEDLES AS BED MATERIAL IN SOLID STATE FERMENTATION FOR PRODUCTION OF LACTIC ACID BY LACTOBACILLUS STRAINS

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Ghosh

    Full Text Available Pine needles, which are abundantly found as underexploited biomass in coniferous forests, are responsible for fire hazards and air pollution. Utilization of pine needles as bed material in lactic acid production with solid state fermentation (SSF has been studied here. This investigation compared lactic acid production by pure strains of Lactobacilli, (1 L. delbrueckii (NCIM2025; (2 L. pentosus (NCIM 2912; (3 Lactobacillus sp. (NCIM 2734; (4 Lactobacillus sp. (NCIM2084; and a co-culture of the first two strains. The studies required 6 g per flask powdered dry pine needles as bed material, 2 g/L (inoculum, liquid production media based on pure glucose or whey substituted glucose, at 60, 80, and 120 g/L sugar levels, 37 oC, and an initial pH of 6.5. Co-culture attained a maximum lactic acid concentration of 45.10 g/L, followed by that of strain-1, 43.87 g/L and strain-4, 26.15 g/L, in 80 g/L pure glucose media. With 120g/L total sugar in whey-substituted media, the co-culture attained maximum lactic acid production of 44.88 g/L followed by that of strain-1, 43.67 g/L. The present experimental studies indicated better compatibility of pine needle bed with co-culture in solid state fermentation of lactic acid, which may prove to be an eco-friendly technology for utilization of biomass as well as minimizing fires in coniferous forests.

  18. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Secondary Metabolites Production by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barrios-González, J.

    2005-01-01

    Full Text Available Microbial secondary metabolites are useful high value products with an enormous range of biological activities. Moreover, the past two decades have been a phase of rapid discovery of new activities and development of major compounds for use in different industrial fields, mainly pharmaceuticals, cosmetics, food, agriculture and farming. Many of these metabolites could be produced advantageously in industry by solid–state fermentation (SSF. Two types of SSF can be distinguished, depending on the nature of the solid phase used: 1 Solid cultures of one support-substrate phase in which solid phase is constituted by a material that assumes, simultaneously, the functions of support and of nutrients source; and 2 Solid cultures of two substrate-support phases: solid phase is constituted by an inert support impregnated with a liquid medium. Besides good production performance, two phases systems have provided a convenient model for basic studies. Studies in our laboratory, as well as in others, have shown that physiology of idiophase (production phase in SSF share several similarities with the physiology in liquid medium, so similar strategies must be adapted for efficient production processes. However, our studies indicate the need to develop special strains for SSF since overproducing strains, generated for liquid fermentation, cannot be relied upon to perform well in SSF. On the other hand, there are important parameters, specific for SSF, that have to be optimized (pretreatment, initial moisture content, medium concentration and aeration. Respiration studies of secondary metabolites SSF, performed in our laboratory, have shown more subtle aspects of efficient production in SSF. This indicates that there are certain particularities of physiology in SSF that represent the point that needs a better understanding, and that promise to generate knowledge that will be the basis for efficient processes development and control strategies, as well as for

  20. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  1. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  2. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  3. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  4. Production, properties, and applications of hydrocolloid cellular solids.

    Science.gov (United States)

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical

  5. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  6. Products eco-sustainability analysis using CAD SolidWorks software

    Directory of Open Access Journals (Sweden)

    Popa Luminița I.

    2017-01-01

    Full Text Available This article is focused on the analysis of environmental impact and Eco-sustainability of models designed using CAD SolidWorks software. We have evaluated the material it was made the whole ansamble, in terms of strength, durability and environmental pollution considering the carbon footprint, energy consumption, air acidification and eutrophication. We considered the whole product life-cycle management, from raw material extraction, processing it, piece production, assembly it, and use it until the end of his life, considering the mode of transport and the distance between these stages. The case study presents the virtual model of the product and Sustainability Report.

  7. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  8. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    Science.gov (United States)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  9. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes

    International Nuclear Information System (INIS)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S.

    2016-01-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  10. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  11. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  12. Behavior of solid fission products in irradiated fuel

    International Nuclear Information System (INIS)

    Song, Ung Sup; Jung, Yang Hong; Kim, Hee Moon; Yoo, Byun Gok; Kim, Do Sik; Choo, Yong Sun; Hong, Kwon Pyo

    2004-01-01

    Many fission products are generated by fission events in UO 2 fuel under irradiation in nuclear reactor. Concentration of each fission product is changed by conditions of neutron energy spectrum, fissile material, critical thermal power, irradiation period and cooling time. Volatile materials such as Cs and I, the fission products, degrade nuclear fuel rod by the decrease of thermal conductivity in pellet and the stress corrosion cracking in cladding. Metal fission products (white inclusion) make pellet be swelled and decrease volume of pellet by densification. It seems that metal fission products are filled in the pore in pellet and placed between UO 2 lattices as interstitial. In addition, metal oxide state may change structural lattice volume. Considering behavior of fission products mentioned above, concentration of them is important. Fission products could be classified as bellows; solid solution in matrix : Sr, Zr, Nb, Y, La, Ce, Pr, Nd, Pm, Sm - metal precipitates : Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te - oxide precipitates : Ba, Zr, Nb, Mo, (Rb, Cs, Te) - volatile and gases : Kr, Xe, Br, I, (Rb, Cs, Te)

  13. Review of the Production of Biodiesel from Waste Cooking Oil using Solid Catalysts

    Directory of Open Access Journals (Sweden)

    N.H. Said

    2015-06-01

    Full Text Available The need for fossil fuels and the emissions generated from these fuels are increasing daily. Researchers are concerned with global warming as well as climate change; and energy sustainability and material usages are important issues today. Waste cooking oil (WCO can be processed into biodiesel as an alternative fuel to replace diesel. Production of biodiesel using WCO as the feedstock has been of growing interest for the last two decades. A number of research papers related to the improvements in production, raw materials and catalyst selection have been published. This paper reviews the various types of heterogeneous solid catalyst in the production of biodiesel via the transesterification of WCO. The catalysts used can be classified according to their state presence in the transesterification reaction as homogeneous or heterogeneous catalysts. Homogeneous catalysts act in the same liquid phase as the reaction mixture, whereas heterogeneous catalysts act in a solid phase with the reaction mixture. Heterogeneous catalysts are non-corrosive, a green process and environmentally friendly. They can be recycled and used several times, thus offering a more economic pathway for biodiesel production. The advantages and drawbacks of these heterogeneous catalysts are presented. Future work focuses on the application of economically and environmentally friendly solid catalysts in the production of biodiesel using WCO as the raw material.

  14. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  15. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  16. Use of spent mushroom substrate for production of Bacillus thuringiensis by solid-state fermentation.

    Science.gov (United States)

    Wu, Songqing; Lan, Yanjiao; Huang, Dongmei; Peng, Yan; Huang, Zhipeng; Xu, Lei; Gelbic, Ivan; Carballar-Lejarazu, Rebeca; Guan, Xiong; Zhang, Lingling; Zou, Shuangquan

    2014-02-01

    The aim of this study was to explore a cost-effective method for the mass production of Bacillus thuringiensis (Bt) by solid-state fermentation. As a locally available agroindustrial byproduct, spent mushroom substrate (SMS) was used as raw material for Bt cultivation, and four combinations of SMS-based media were designed. Fermentation conditions were optimized on the best medium and the optimal conditions were determined as follows: temperature 32 degrees C, initial pH value 6, moisture content 50%, the ratio of sieved material to initial material 1:3, and inoculum volume 0.5 ml. Large scale production of B. thuringiensis subsp. israelensis (Bti) LLP29 was conducted on the optimal medium at optimal conditions. High toxicity (1,487 international toxic units/milligram) and long larvicidal persistence of the product were observed in the study, which illustrated that SMS-based solid-state fermentation medium was efficient and economical for large scale industrial production of Bt-based biopesticides. The cost of production of 1 kg of Bt was approximately US$0.075.

  17. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  18. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In the distillation of solid carbonaceous materials with by-product recovery by direct heating with a gas such as water gas, producer gas, or combustion gas which is passed in counter-flow to the materials, the volume of the gas used is such as to lower the vapor tension of the volatiles to enable the oil vapor to be liberated at temperatures not exceeding 450 to 500/sup 0/C and so that the gaseous mixture may be cooled to from 80 to 100/sup 0/C without causing the highest boiling oil fraction to condense. Coking coals may be subjected to a preliminary heat treatment with gases containing an oxygen content of from 2 to 8 percent to reduce their coking properties, and oxygen may be added to the heating gases to assist the polymerization of resinous bodies. Lubricating oil may be obtained by treating the primary oil with caustic soda to remove tar acids, refining the residue with sulfuric acid, distilling off 25 percent of the refined oil and passing the remainder through a filter press at -5/sup 0/C to extract the paraffin wax. The residue of wax-free oil is distilled to yield a lubricating oil which at normal temperatures has a static coefficient of friction of from .1 to .185. Other specifications are referred to.

  19. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    Feldman, L.C.; Lupke, G.; Tolk, N.H.; Lopez, R.; Haglund, R.F.; Haynes, T.E.; Boatner, L.A.

    2003-01-01

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  20. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  1. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  2. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  3. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  4. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  5. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  6. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  7. Radiation processes for the development, production and examination of materials

    International Nuclear Information System (INIS)

    Wiesner, L.

    1984-01-01

    The process of doping semi-conductors by irradiating them with beams of ions, called ion implantation, has long been part of the industrial mass production of electronic solid components as the basis of the micro-electronics revolution. The use of electron and X-ray beams has made the manufacture of small silicon chips possible, so as to increase the memory and microprocessor capacity of a wafer. Using electron and γ rays, many compound materials based on polymers, have been manufactured, where only a small part of the nearly infinite number of combinations has been touched so far. The applications of radiation hardening extend from the treatment of coatings and paints for surface protection to glues and printed colours. The multiplicity of nuclear examination processes for solids and their surfaces has produced knowledge on the structure of materials, which accelerates the purposeful development of improved and new materials and makes it easier, sometimes even making it possible. Radiation methods are an important aid for quality control and assurance for material production. (orig./HP) [de

  8. Systems for production of polymer encapsuated solids

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Baker, Sarah E.; Duoss, Eric B.; Maiti, Amitesh; Roberts, Jeffery J.; Spadaccini, Christopher M.; Stolaroff, Joshuah K.; Vericella, John J.; Lewis, Jennifer A.; Hardin, IV, James O.; Floyd, III, William C.

    2017-11-21

    Encapsulated solids are made by first encapsulating precursor materials in a polymer shell. The precursors are some combination of solids, liquids, gases, and/or gels. The precursors are then transformed into solids by emplacement of the capsule in an environment where gas or fluid transport into or out of the polymer shell causes transformation into solids.

  9. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  10. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  11. Lithium ceramics as the solid breeder material in fusion reactors

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Reuther, T.C.; Johnson, C.E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding

  12. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  13. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  14. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  15. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  16. Solid targets for production of radioisotopes with cyclotron

    International Nuclear Information System (INIS)

    Paredes G, L.; Balcazar G, M.

    1999-01-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  17. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  18. Production of proteases from organic wastes by solid-state fermentation: downstream and zero waste strategies.

    Science.gov (United States)

    Marín, Maria; Artola, Adriana; Sánchez, Antoni

    2018-04-01

    Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w : v solid-solvent in static mode is advised for SF, and 1:2 w : v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.

  19. Production of Solid sustainable Energy Carriers from biomass by means of TORrefaction (SECTOR)

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Bienert, Kathrin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Zwart, Robin; Kiel, Jaap; Englisch, Martin; Wojcik, Magdalena

    2012-07-01

    SECTOR is a large-scale European project with a strong consortium of over 20 partners from industry and science. The project is focussed on the further development of torrefaction-based technologies for the production of solid bioenergy carriers up to pilot-plant scale and beyond, and on supporting the market introduction of torrefaction-based bioenergy carriers as a commodity renewable solid fuel. The torrefaction of biomass materials is considered to be a very promising technology for the promotion of the large-scale implementation of bioenergy. During torrefaction biomass is heated up in the absence of oxygen to a temperature of 250-320 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density commodity solid fuel or bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage, and also with superior properties in many major end-use applications. Torrefaction has the potential to provide a significant contribution to an enlarged raw material portfolio for biomass fuel production inside Europe by including both agricultural and forestry biomass. In this way, the SECTOR project is expected to shorten the time-to-market of torrefaction technology and to promote market introduction within stringent sustainability boundary conditions. The European Union provides funding for this project within the Seventh Framework Programme. The project has a duration of 42 months and started in January 2012. (orig.)

  20. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  1. Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products

    Directory of Open Access Journals (Sweden)

    Musaalbakri Abdul Manan

    2017-12-01

    Full Text Available The promise of industrial biotechnology has been around since Chaim Weizmann developed acetone–butanol–ethanol fermentation at the University of Manchester in 1917 and the prospects nowadays look brighter than ever. Today’s biorefinery technologies would be almost unthinkable without biotechnology. This is a growing trend and biorefineries have also increased in importance in agriculture and the food industry. Novel biorefinery processes using solid state fermentation (SSF technology have been developed as alternative to conventional processing routes, leading to the production of added-value products from agriculture and food industry raw materials. SSF involves the growth of microorganisms on moist solid substrate in the absence of free-flowing water. Future biorefineries based on SSF aim to exploit the vast complexity of the technology to modify biomass produced by agriculture and the food industry for valuable by-products through microbial bioconversion. In this review, a summary has been made of the attempts at using modern microbial SSF technology for future biorefineries for the production of many added-value products ranging from feedstock for the fermentation process and biodegradable plastics to fuels and chemicals.

  2. [Amylase production by Aureobasidium pullulans in liquid and solid media].

    Science.gov (United States)

    Lodato, P B; Forchiassin, F; Segovia de Huergo, M B

    1997-01-01

    Amylase production by a strain of Aureobasidium pullulans isolated in the laboratory was evaluated in liquid media (complex and synthetic) and in solid medium (wheat bran). There was an inhibitory effect in amylase production or amylase secretion by glucose. Asparagine was the best nitrogen source for amylase production (4-6 g/l). Only chlamidospores and melanin but not, amylase activity, were obtained with ammonium sulfate. Amylase production in solid culture was higher than the production obtained in the liquid media assayed. Optimum initial moisture content in solid culture ranged between 57 and 74%. No difference was observed in amylase production between solid media inoculated with cells grown in liquid or solid media.

  3. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  4. Regulation Concepts for Clearance Level of Radionuclide in Solid Materials

    International Nuclear Information System (INIS)

    Nanang Triagung Edi Hermawan

    2008-01-01

    Practices of nuclear energy have expanded in some fields such as researches and development, educations, agricultures, medicines and industries. Every practice beside give much benefit, could generate residue or waste. Radioactive waste needs management to ensure the safety of workers, member of the public, and for the eternal of environment. The product of radioactive waste management, in generally, is some containment of radionuclide concentration in solid matrix material after immobilization or conditioning process. Some kind of processed radioactive wastes with short half live then decay faster to stabile condition. The decay will reach clearance level in sometimes, so from the radiation protection views is harmless. This materials above didn’t need control and must be cleared from all determinate and regulation aspects of radioactive material practices. There is clearance for harmless material off course will be simplify management task and efficiency of money. So the regulation about clearance levels will be important as law basic for technical practices in field. (author)

  5. Chemical properties and colors of fermenting materials in salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content) and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce ( moromi ), and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format.

  6. Solid-state fermentation from dried sweet sorghum stalk for bioethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Almodares, A.; Etemadifar, Z.; Omidi, A. [Univ. of Isfahan, Biology Dept., Univ. of Isfahan, Isfahan (Iran, Islamic Republic of)], e-mail: aalmodares@yahoo.com

    2012-11-01

    Due to depletion of global crude oil, countries are interested to alternate fuel energy resources. Presently bioethanol as a source of energy has been a subject of great interest for the industrialized countries. Therefore, there is need for efficient bioethanol production with low cost raw material and production process. Among energy crops, sweet sorghum is the best candidate for bioethanol production. It has been identified as having higher drought tolerance, lower input cost and higher biomass yield than other energy crops. In addition it has wide adoptability and tolerance to abiotic stresses. Moreover due to the shortage of water in dry and hot countries there is a need to reduce water requirement for bioethanol production and solid state fermentation could be the best process for making bioethanol in these countries. The purpose of this study is to achieve the highest ethanol production with lowest amount of water in solid state fermentation using sweet sorghum stalk. In this study the sweet sorghum particles were used for solid state fermentation. Fermentation medium were: sweet sorghum particles with nutrient media, active yeast powder and different moisture contents. The fermentation medium was incubated for 2-3 days at 30 deg C temperature. The results showed sweet sorghum particles (15% w/w) fermented in medium containing 0.5% yeast inoculums, 73.5% moisture content and 3 days incubation period produced the highest amount of ethanol (13% w/w sorghum)

  7. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    International Nuclear Information System (INIS)

    Sharifi, Hamid; Larouche, Daniel

    2015-01-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)

  8. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  9. Solid waste and materials systems alternatives study summary

    International Nuclear Information System (INIS)

    Kasper, J.R.; Smith, S.T.

    1996-01-01

    The Hanford Site is a 560-sq.-mi. area in southeastern Washington State owned and operated by the U.S. Department of Energy (DOE). Previous weapons program activities and recent environmental cleanup activities at the Hanford Site have resulted in an accumulation of large quantities of solid wastes and materials. Future Decontamination and Decommissioning (D ampersand D) and Environmental Remediation activities will generate additional wastes. This paper provides a summary of a recently completed analysis of the Hanford Site Solid Wastes and Materials. The analysis involved development and compilation of waste stream and material information including type, classification. location current and project volumes, and curie content. Current program plans for treatment, storage, and disposal/disposition (TSD) have also been included in this analysis

  10. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  11. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  12. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  13. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  14. Solid ionic: these unusual materials applications in high-energy-density

    International Nuclear Information System (INIS)

    Shriver, D.F.; Farrington, G.C.

    1985-01-01

    The idea that ions can diffuse as rapidly in a solid as in an aqueous salt solution may seem strange to many chemists. But a variety of solids with high ionic conductivities are known. Compounds have been discovered that conduct anions (including F - and O 2- ) and cations (including monovalent, divalent, and trivalent cations). These substances range from hard, refractory materials, such as sodium β-alumina, through softer compounds, such as silver iodide (AgI) to the very soft polymer electrolytes. They include compounds that are stoichiometric (AgI), nonstoichiometric (sodium β-alumina), or doped (calcia-stabilized zirconia). A variety of names have been applied to these materials: among them, solid electrolytes, superionic conductors, and fast-ion conductors. Fast-ion transport in solids is a lively area of study in solid-state chemistry and physics. High-conductivity solid electrolytes have revolutionized conventional concepts of ionic compounds, and their potential uses range from high-energy-density battery and fuel-cell electrolytes to chemical sensors and from lasers to phosphors. Devices using solid electrolytes are already available commercially-oxygen detectors for automotive pollution-control systems employ solid O 2- electrolytes, and solid-state batteries using solid electrolytes are employed in heart pacemakers

  15. Improvements in or relating to process for the production of fuel gas from a carbonaceous solid

    Energy Technology Data Exchange (ETDEWEB)

    1952-12-03

    A process was designed for the generation of fuel gas from a solid carbonaceous fuel containing volatilizable constituents, which comprises admixing the solid carbonaceous fuel in particle form with sufficient water to form a fluid suspension, passing the suspension through a heating zone at an elevated temperature such that substantially all of the water is vaporized, thereby forming a dispersion of coal in steam and causing the dispersion to attain a velocity of at least 60 ft. per second to shatter the particles of coal by collision, passing the resulting dispersion into a fluidized bed of solid carbonaceous material in a methanization zone into contact with carbon monoxide and hydrogen at a temperature within the range of from 900/sup 0/ to 1,800/sup 0/F whereby carbon monoxide and hydrogen are converted to methane and volatilizable constituents of the solid carbonaceous material are distilled therefrom, withdrawing carbonaceous material from the methanization zone and passing it into contact with oxygen and steam in dilute phase in a gasification zone maintained at a temperature within the range of 2,000/sup 0/ to about 3,000/sup 0/F, passing the resulting gases comprising carbon monoxide and hydrogen from the gasification zone into the methanization zone as the source of carbon monoxide and hydrogen, and discharging the gaseous products of the methanization zone as the raw-product fuel gas.

  16. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  17. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber.

    Science.gov (United States)

    Zhang, Bo-Bo; Xing, Hong-Bo; Jiang, Bing-Jie; Chen, Lei; Xu, Gan-Rong; Jiang, Yun; Zhang, Da-Yong

    2018-03-01

    In this study, various grains such as rice, millet, corn, barley and wheat were used as raw materials for monacolin K production by solid-state fermentation of Monascus ruber. Among these substrates, millet was found to be the best one for monacolin K production, by which the yield reached 7.12 mg/g. For enhanced monacolin K production, the effects of fermentation time, charge amount, initial moisture content and inoculum volume were systematically investigated in the solid-state fermentation of M. ruber. Moreover, complementary carbon source and nitrogen source were added for further improving the production of monacolin K. Results showed that the maximum production of monacolin K (19.81 mg/g) could be obtained at the optimal conditions. Compared with the traditional red mold rice, using millet as substrate is promising for high production of monacolin K in the solid-state fermentation of M. ruber. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  19. Hybrid Composite Material and Solid Particle Erosion Studies

    Science.gov (United States)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  20. Lightweight Materials for Automotive Application: An Assessment of Material Production Data for Magnesium and Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    The use of lightweight materials in vehicle components, also known as “lightweighting,” can result in automobile weight reduction, which improves vehicle fuel economy and generally its environmental footprint. Materials often used for vehicle lightweighting include aluminum, magnesium, and polymers reinforced with either glass or carbon fiber. However, because alternative materials typically used for vehicle lightweighting require more energy to make on a per part basis than the material being replaced (often steel or iron), the fuel efficiency improvement induced by a weight reduction is partially offset by an increased energy for the vehicle material production. To adequately quantify this tradeoff, reliable and current values for life-cycle production energy are needed for both conventional and alternative materials. Our focus here is on the production of two such alternative materials: magnesium and carbon fibers. Both these materials are low density solids with good structural properties. These properties have enabled their use in applications where weight is an issue, not only for automobiles but also for aerospace applications. This report addresses the predominant production methods for these materials and includes a tabulation of available material and energy input data necessary to make them. The life cycle inventory (LCI) information presented herein represents a process chain analysis (PCA) approach to life cycle assessment (LCA) and is intended for evaluation as updated materials production data for magnesium and carbon fiber for inclusion into the Greenhouse gases, Regulated Emissions, and Energy use in Transportation model (GREET2_2012). The summary life-cycle metrics used to characterize the cradle-to-gate environmental performance of these materials are the cumulative energy demand (CED) and greenhouse gas emissions (GHG) per kilogram of material.

  1. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  2. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  3. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Primary energy production from solid biomass (wood, wood waste and other solid vegetal and animal materials) reached 62,4 million tons oil equivalent (Mtoe) in 2006, i-e 3,1 more than in 2005. The primary energy coming from the direct combustion of renewable origin solid urban waste in incineration unit scan also be added to this figure. In 2006 this represented a production of 5,3 Mtoe, i-e 0,1 Mtoe more than in 2005. (author)

  4. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)

    2003-08-01

    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  5. Materials flow through the household and reduction in domestic solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    Energy conservation programs are usually designed to reduce the waste associated with direct energy use for example, heating and lighting levels, and use of appliances. But householders can also influence energy consumption in other sectors. Their buying and consuming habits will affect the energy involved in extraction, production, transportation, use and disposal of commodities. Their attitudes and behavior will affect their neighbours' efforts at reducing materials throughput. Therefore, the household must be an important target in any effort to alter energy use patterns throughout society. The purpose of this study was to determine whether practical programs could be developed to reduce materials flows through the hosuehold. Since solid waste output is a very reliable measure of these flows, the question was posed from the perspective of reducing the generation of residential solid waste. In this context particular attention was given to the range of possible actions open to the householder himself. It would have been unrealistic, however, to ignore environmental design and other legislative options. The study is divided into three parts. The first attempts to identify those actions by the householder which will have the greatest effect in reducing the total environmental impact (including energy use) of the materials moving through the household. The second deals with the problem of persuading people to engage in these actions. The final part combines promising strategies with significant actions. The result is a series of program options which are assessed with respect to four criteria: potential significance for residential solid waste reduction, chances of success, ease of implementation, and costs. 15 refs., 7 figs., 3 tabs.

  6. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  7. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  8. Product removal and solids transport from fluidized-bed calciners

    International Nuclear Information System (INIS)

    Grimmett, E.S.; Munger, D.H.

    1978-09-01

    Methods of removing the solid product from pilot-plant and production fluidized-bed calciners, and transporting product to underground storage vaults are reported here. Testing of dense-phase solids transport systems in test loops during development of a 15-cm-diam. and 30-cm-diam. calciner are described. A lean-phase solid transport system is used with the Waste Calcining Facility. The results of some recent tests done in a lean-phase transport system connected to the 30-cm-diam. calciner are included in this report

  9. Improvements in or relating to a fluidizing process and apparatus for treating comminuted solid materials

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-15

    A fluidizing process of treating comminuted solid materials cyclically with different gaseous materials in different treatment zones, which comprises fluidizing comminuted solid material in contiguous treatment zones with different gaseous materials, and establishing unequal fluid-static heads in said zones to effect cyclic flow of said solid material through said zones which are in communication adjacent their respective top and bottom portions and permit the overflow of said solid material from one of said zones to another.

  10. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  11. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  12. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  13. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  14. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  15. Chemical properties and colors of fermenting materials in salmon fish sauce production

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Nakano

    2018-02-01

    Full Text Available This data article reports the chemical properties (moisture, pH, salinity, and soluble solid content and colors of fermenting materials in salmon fish sauce products. The fish sauce was produced by mixing salt with differing proportions of raw salmon materials and fermenting for three months; the salmon materials comprised flesh, viscera, an inedible portion, and soft roe. Chemical properties and colors of the unrefined fish sauce (moromi, and the refined fish sauce, were analyzed at one, two, and three months following the start of fermentation. Data determined for all products are provided in table format. Keywords: Fish sauce, Chum salmon, Fermentation, Chemical properties, Color

  16. Potential of solid state fermentation for production of ergot alkaloids

    OpenAIRE

    Trejo Hernandez, M.R.; Raimbault, Maurice; Roussos, Sevastianos; Lonsane, B.K.

    1992-01-01

    Production of total ergot alkaloids by #Claviceps fusiformis$ in solid state fermentation was 3.9 times higher compared to that in submerged fermentation. Production was equal in the case of #Claviceps purpurea$ but the spectra of alkaloids were advantageous with the use of solid state fermentation. The data establish potential of solid state fermentation which was not explored earlier for production of ergot alkaloids. (Résumé d'auteur)

  17. New materials for biodiesel production. The use of MgAl hydrotalcites solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Joao F.P.; Puna, Jaime F.B.; Goncalves, L. [Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa (Portugal). Chemical Engineering Dept.; Bordado, Joao C. [Instituto Superior Tecnico (IST), Lisboa (Portugal). Inst. of Biotechnology and Bioengineering

    2010-07-01

    This work, reports preliminary studies and experimental work done so far in this field, using new solid basic catalysts: Double oxides of Mg and Al, produced by the calcination, at high temperature, of MgAl lamellar structures, the hidrotalcites. A brief introduction of its characterization, utilisation and synthesis of these catalysts, experimental conditions, experimental results and respective conclusions are described, here, with specific detail. The oil treatment procedure, the biodiesel production and purification processes and their respective morphological and textural characterizations are also described, with appropriate tables and figures, using, for instance, SEM, X-Ray Diffraction, Thermo gravimetric analysis (TG) and Middle Infrared Spectroscopy (MIR). (orig.)

  18. Occurrence of 1,4-dioxane in cosmetic raw materials and finished cosmetic products.

    Science.gov (United States)

    Black, R E; Hurley, F J; Havery, D C

    2001-01-01

    Surveys of cosmetic raw materials and finished products for the presence of the carcinogen 1,4-dioxane have been conducted by the U.S. Food and Drug Administration since 1979. Analytical methods are described for the determination of 1,4-dioxane in ethoxylated cosmetic raw materials and cosmetic finished products. 1,4-Dioxane was isolated by azeotropic atmospheric distillation and determined by gas chromatography using n-butanol as an internal standard. A solid-phase extraction procedure based on a previously published method for the determination of 1,4-dioxane in cosmetic finished products was also used. 1,4-Dioxane was found in ethoxylated raw materials at levels up to 1410 ppm, and at levels up to 279 ppm in cosmetic finished products. Levels of 1,4-dioxane in excess of 85 ppm in children's shampoos indicate that continued monitoring of raw materials and finished products is warranted.

  19. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    Science.gov (United States)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  20. Improvement of Cellulase Production and its Characteristics by Inducing Mutation on Trichoderma reesei 2414 under Solid State Fermentation on Rice By-products

    Directory of Open Access Journals (Sweden)

    Nazanin Darabzadeh

    2018-01-01

    Full Text Available  Background and Objective: Solid State Fermentation is an economic technology to produce value-added products. Also, the use of agricultural by-products, as a waste management strategy, has recently been considered. On the other hand, the new mutants are interesting for the production of enzymes. The aim of this study was to investigate the effect of mutation on the improvement of cellulase quality. Therefore, rice by-products were used under solid state fermentation for production of cellulase. Moreover, the characteristics of the new cellulose produced from the new mutated strain was studied.Material and Methods: Cellulase was produced under solid state fermentation process. Spore suspensions of Trichoderma reesei were subjected to Co60 γ irradiation and mutated. The activities of cellulases (from parent and mutants were compared. The effects of temperature and pH on cellulase activity and the stability of cellulase in optimum condition were investigated.Results and Conclusion: Cellulase was successfully produced under solid state fermentation on the mixture of rice by-products as substrate. The results showed that mutation had a significant effect on cellulase activity and Characteristics. Trichoderma reesei B (a mutated strain had about 30% filter Paperase and 23% Carboxymethyl Cellulase higher than its parent. Cellulase activity of Trichoderma reesei B was 47% higher than its parent at the optimum temperature (50°C. In other temperatures, the activity of cellulase extracted from Trichoderma reesei B was significantly higher than that of the others; for example, at 60°C, the enzyme activity was 120% higher than its parent. It is notable that an 84% increase in the enzyme activity was observed at the optimum pH (4.5 after mutation and cellulase activity increased from 0.72 U g-1 dry solid to 1.31 U g-1 dry solid.Conflict of interest: The authors declare no conflict of interest.

  1. Cultivation and Characterization of Cynara Cardunculus for Solid Biofuels Production in the Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Nicholas G. Danalatos

    2008-07-01

    Full Text Available Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L. is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop’s production potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600. A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality.

  2. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  3. Estimation of product specific emissions from municipal solid waste landfills for the inventory phase in LCA

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    is frequently given as a quantity of solid wasteand possibly some recovered energy from waste incineration.Since product specific emissions can not be calculated or measured directly at the landfills, they must be estimated by modeling oflandfill processes. This paper presents a landfill model based on a large......), and inorganic non-metals (e.g. chlorine,) which are considered individually. The computer toolLCA-LAND is useful for estimation of emissions from specific waste products disposed in municipal solid waste landfills in Europeancountries (for the present Denmark, Germany and The Netherlands). Input data...... of materials and components and the manufacture, transportation and use of the product to thefinal disposal and possible recycling of the product. Although LCA has developed significantly during recent years, product specific emissions from disposed waste have only got minorattention in the literature leaving...

  4. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull.

    Science.gov (United States)

    Zhang, Jianguo; Hu, Bo

    2012-02-01

    Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH₂PO₄ 1.2 mg and MgSO₄ 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

  6. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  7. Torrefaction Processing for Human Solid Waste Management

    Science.gov (United States)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  8. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  9. Cleaner production for solid waste management in leather industry ...

    African Journals Online (AJOL)

    Cleaner production for solid waste management in leather industry. ... From the processes, wastes are generated which include wastewater effluents, solid wastes, and hazardous wastes. In developing countries including Ethiopia, many ... The solid waste inventory of the factory has been carried out. The major problems ...

  10. Bioethanol production from residual lignocellulosic materials: A review – Part 1

    Directory of Open Access Journals (Sweden)

    CRISTIAN-TEODOR BURUIANA

    2013-08-01

    Full Text Available Lignocellulosic materials (LCM are produced in large quantities and without clear application and their use as raw material for bioethanol production shows economic and ecologic benefits. LCM are composed mainly of three polymers: cellulose made up of glucose units, hemicellulose made up of several sugars (as xylose or arabinose, and lignin made up of phenylpropane units, interconnected in a strong structure. Pretreatment is an important step for bioethanol production from LCM, causing the solubilisation of hemicellulosic fraction (leading to the recovery of hemicellulose-derived saccharides in order to obtain a solid phase enriched in cellulose and more susceptible to enzymatic attack. This study provides a comparative data regarding the chemical composition of various LCM used for bioethanol production, as well as different pretreatment technologies for improving the enzymatic hydrolysis of LCM.

  11. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  12. Failure criterion effect on solid production prediction and selection of completion solution

    Directory of Open Access Journals (Sweden)

    Dariush Javani

    2017-12-01

    Full Text Available Production of fines together with reservoir fluid is called solid production. It varies from a few grams or less per ton of reservoir fluid posing only minor problems, to catastrophic amount possibly leading to erosion and complete filling of the borehole. This paper assesses solid production potential in a carbonate gas reservoir located in the south of Iran. Petrophysical logs obtained from the vertical well were employed to construct mechanical earth model. Then, two failure criteria, i.e. Mohr–Coulomb and Mogi–Coulomb, were used to investigate the potential of solid production of the well in the initial and depleted conditions of the reservoir. Using these two criteria, we estimated critical collapse pressure and compared them to the reservoir pressure. Solid production occurs if collapse pressure is greater than pore pressure. Results indicate that the two failure criteria show different estimations of solid production potential of the studied reservoir. Mohr–Coulomb failure criterion estimated solid production in both initial and depleted conditions, where Mogi–Coulomb criterion predicted no solid production in the initial condition of reservoir. Based on Mogi–Coulomb criterion, the well may not require completion solutions like perforated liner, until at least 60% of reservoir pressure was depleted which leads to decrease in operation cost and time.

  13. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  14. Some issues for blast from a structural reactive material solid

    Science.gov (United States)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  15. Scientific and Regulatory Considerations in Solid Oral Modified Release Drug Product Development.

    Science.gov (United States)

    Li, Min; Sander, Sanna; Duan, John; Rosencrance, Susan; Miksinski, Sarah Pope; Yu, Lawrence; Seo, Paul; Rege, Bhagwant

    2016-11-01

    This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.

  16. Methane productivity of manure, straw and solid fractions of manure

    DEFF Research Database (Denmark)

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    are in the same range (282-301 m(3) CH4 LU-1). Pre-treatment of manure by separation is a way of making fractions of the manure that have a higher gas potential per volume. Theoretical methane potential and biodegradability of three types of fractions deriving from manure separation were tested. The volumetric...... methane yield of straw was found to be higher than the yield from total manure and the solid fractions of manure, due to the higher VS content, and hence the use of straw as bedding material will increase the volumetric as well as the livestock-based methane productivity....

  17. Ion-solid interactions for materials modification and processing

    International Nuclear Information System (INIS)

    Poker, D.B.; Ila, D.; Cheng, Y.T.; Harriott, L.R.; Sigmon, T.W.

    1996-01-01

    Topics ranged from the very fundamental ion-solid interactions to the highly device-oriented semiconductor applications. Highlights of the symposium featured in this volume include: nanocrystals in insulators, plasma immersion ion implantation. Focused ion beams, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. Separate abstracts were prepared for most papers in this volume

  18. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    Science.gov (United States)

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  20. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...... such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been...

  1. Solid targets for 99mTc production on medical cyclotrons

    International Nuclear Information System (INIS)

    Hanemaayer, V.; Buckley, K.R.; Klug, J.; Ruth, T.J.; Schaffer, P.; Zeisler, S.K.; Benard, F.; Kovacs, M.; Leon, C.

    2014-01-01

    Recent disruptions in the molybdenum-technetium generator supply chain prompted a review of non-reactor based production methods for both 99 Mo and 99m Tc. Small medical cyclotrons (E p ∼ 16-24 MeV) are capable of producing Curie quantities of 99m Tc from isotopically enriched 100 Mo using the 100 Mo(p,2n) 99m Tc reaction. Unlike most other metallic target materials for routine production of medical radioisotopes, molybdenum cannot be deposited by reductive electroplating from aqueous salt solutions. To overcome this issue, we developed a new process for solid molybdenum targets based on the electrophoretic deposition of fine 100 Mo powder onto a tantalum plate, followed by high temperature sintering. The targets obtained were mechanically robust and thermally stable when irradiated with protons at high power density. (author)

  2. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  3. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    International Nuclear Information System (INIS)

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  4. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  5. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  6. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  7. Abstracts of 12. Conference on Solid State Crystals Materials Science and Applications

    International Nuclear Information System (INIS)

    1996-01-01

    The solid state crystals are the modern materials being very interesting from the view point of actual and possible applications in microelectronics, optics, laser materials, detectors etc. 12. Conference on Solid State Crystals, Materials Science and Applications, Zakopane'99 created the review forum for broad range of investigations on topics related to; crystal growth and doping, new materials preparation, thin layer structure, physical properties and special methods for electrical, magnetic, optical and mechanical properties measurements of obtained materials. The insulating, semiconducting and superconducting monocrystals, polycrystals and also amorphous glasses have been investigated and their possible applications discussed. 52 oral lectures and 128 posters have been presented in the course of the conference

  8. Solid wood timber products consumption in major end uses in the United States, 1950-2009 : a technical document supporting the Forest Service 2010 RPA assessment

    Science.gov (United States)

    David B. McKeever; James L. Howard

    2011-01-01

    Solid wood timber products provide important raw materials to the construction, manufacturing, and shipping sectors of the U.S. economy. Nearly all new single-family houses and low-rise multifamily residential structures are wood framed and sheathed. Large amounts of solid wood timber products are also used in the construction of new nonresidential buildings, and in...

  9. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  11. Data on volatile compounds in fermented materials used for salmon fish sauce production.

    Science.gov (United States)

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2018-02-01

    This article describes the analysis of volatile compounds in fermented materials used for salmon fish sauce production via gas chromatography/mass spectrometry (GC/MS). Ten types of fish sauces were produced from raw salmon materials, including various proportions of flesh, viscera, inedible portion (heads, fins, and backbones), and soft roe, by mixing them with salt and allowing them to ferment for up to three months. The volatile compounds were captured by a solid-phase microextraction method and then applied to GC/MS for separation and identification of the compounds in the fish sauce products. The number of volatile compounds identified in the starting materials varied from 15 to 29 depending on the ingredients. The number of compounds in the final fish sauce products was reduced by 3.4-94.7% of that in the original material. The retention times and names of the identified compounds, as well as their relative peak areas, are provided in a Microsoft Excel Worksheet.

  12. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  13. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  14. Use of solid waste from sand beneficiation process in the ceramic tile industry and its influence on the physical properties of the ceramic products

    International Nuclear Information System (INIS)

    Biff, Sergio; Silva, Manoel Ribeiro da

    2016-01-01

    The current paper had as main aim characterize and assess the use viability of a solid waste from sand beneficiation process in the production of ceramic tiles. To determine the main components the solid waste was characterized by X-ray fluorescence and the main crystalline phases were determined by X-ray diffraction. To evaluate the addition effects of the solid waste over the solid waste was introduced into a ceramic composition in proportions of 5% and 10%. The ceramics materials obtained were subjected to the linear retraction, water absorption and flexural strength analysis according to the Brazilian standard NBR 13818 (1997). Additionally, the solid waste and the ceramic materials obtained in this study were classified according to the Brazilian standard NBR 10004 (2004) to assess the potential environmental impact. The main solid waste constituents identified were silicon dioxide and aluminum oxide, respectively 50.2% e 19.2%, distributed in the crystal forms of quartz and kaolinite. The ceramic materials obtained after firing at 1100 deg C, without and with 10% of solid waste presented respectively flexural strength of 13.86 MPa and 14,52Mpa. The results of water absorption without and with addition of 10% of solid waste were respectively 16.96% and 16.63%, both appropriate performances for use in ceramic tiles according to the Brazilian standard NBR 13818 (1997). On the other hand, the ceramic materials obtained with the addition of 10% of solid waste were classified as inert materials according to Brazilian standard NBR 10004 (2004), showing the capability of incorporating solid waste in ceramic materials. (author)

  15. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...

  16. Nonmetallic and composite materials as solid superleaks

    International Nuclear Information System (INIS)

    Goldschvartz, J.M.

    1982-01-01

    This chapter discusses the devices in general solid porous materials in which the so-called diameter of the pores, gaps, inter-crystalline spaces, or small channels, etc, are equal or smaller than 100 0 A. Examines silicon carbide, wonderstone, talc-stone, rocks as superleaks, magnetic superleaks, the onset point of a superleak, determination of the onset point, and some applications of superleaks (as a filter, as an isotope separator, as a separator in the 3 He- 4 He dilution refrigerator, in a vortex refrigerator, in a servo-valve for liquid helium two (the cocatron), method of measuring the size of sub-microscopic pores, ultra cold neutrons, superconductors pressed into porous materials)

  17. Residual thermal stresses in a solid sphere cast from a thermosetting material

    Science.gov (United States)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  18. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  19. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    International Nuclear Information System (INIS)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the data in predicting the time for a solid skin to form on the molten material

  20. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  1. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  2. Production of Solid Fuel Briquettes from Agricultural and Wood ...

    African Journals Online (AJOL)

    Fibrous agricultural and wood waste materials have been compressed with suitable adhesive into solid fuel briquettes in a compressing machine, which was designed and constructed for this purpose. Nine samples of fibrous waste materials were prepared into different categories:- Category A (100% saw-dust, 100% ...

  3. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  4. Biogas production from solid pineapple waste

    Energy Technology Data Exchange (ETDEWEB)

    Tanticharoen, M.; Bhumiratana, S.; Tientanacom, S.; Pengsobha, L.

    1984-01-01

    Solid pineapple waste composed of shell and core was used as substrate in anaerobic fermentation producing CH4. The experiments were carried out using four 30-L vessels and no mixing, a 200-L plug-flow reactor, and a 5-cubic m stirred tank. Because of high acidity of the substrate, the loading rate is as low as 2.5 g dry solid added/L-day. The average gas yield is 0.3-0.5 L/g dry substrate. A pretreatment of wet solid with sludge effluent prior loading to the digester resulted in better stability of the biodigester than without pretreatment. These studies showed that loading rate can be much higher than those previously used. The 2-stage process was tested to determine a conversion efficiency of high loading and at much shorter reactor retention times. The results of the entire program indicated that biogas production from cannery pineapple waste is technically feasible.

  5. Drug product immobilization in recycled polyethylene/polypropylene reclaimed from municipal solid waste: experimental and numerical assessment.

    Science.gov (United States)

    Saad, Walid; Slika, Wael; Mawla, Zara; Saad, George

    2017-12-01

    Recently, there has been a growing interest in identifying suitable routes for the disposal of pharmaceutical wastes. This study investigates the potential of matrix materials composed of recycled polyethylene/polypropylene reclaimed from municipal solid wastes at immobilizing pharmaceutical solid wastes. Diclofenac (DF) drug product was embedded in boards of recycled plastic material, and leaching in water was assessed at various temperatures. DF concentrations were determined by high-performance liquid chromatography and revealed a maximum leachable fraction of 4% under accelerated conditions of 70°C, and less than 0.3% following 39 days of exposure at 20°C. The Ensemble Kalman Filter was employed to characterize the leaching behavior of DF. The filter verified the occurrence of leaching through diffusion, and was successful in predicting the leaching behavior of DF at 50°C and 70°C.

  6. Challenges and opportunities of the bio-pesticides production by solid-state fermentation: filamentous fungi as a model.

    Science.gov (United States)

    De la Cruz Quiroz, Reynaldo; Roussos, Sevastianos; Hernández, Daniel; Rodríguez, Raúl; Castillo, Francisco; Aguilar, Cristóbal N

    2015-01-01

    In recent years, production and use of bio-pesticides have increasing and replacing some synthetic chemical pesticides applied to food commodities. In this review, biological control is focused as an alternative, to some synthetic chemical treatments that cause environmental, human health, and food quality risks. In addition, several phytopathogenic microorganisms have developed resistance to some of these synthetic chemicals and become more difficult to control. Worldwide, the bio-pesticides market is growing annually at a rate of 44% in North America, 20% in Europe and Oceania, 10% in Latin and South American countries and 6% in Asia. Use of agro-industrial wastes and solid-state fermentation (SSF) technology offers an alternative to bio-pesticide production with advantages versus conventional submerged fermentations, as reduced cost and energy consumption, low production of residual water and high stability products. In this review, recent data about state of art regarding bio-pesticides production under SSF on agroindustrial wastes will be discussed. SSF can be defined as a microbial process that generally occurs on solid material in the absence of free water. This material has the ability to absorb water with or without soluble nutrients, since the substrate must have water to support the microorganism's growth and metabolism. Changes in water content are analyzed in order to select the conditions for a future process, where water stress can be combined with the best spore production conditions, obtaining in this way an inexpensive biotechnological option for modern agriculture in developing countries.

  7. Treating carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-08-26

    To separate the constituents or conversion products, which are liquid or which liquefy when heated, from solid distillable carbonaceous materials such as coals, oil shales, or other bituminous substances, the initial materials are subjected to a destructive hydrogenation under mild conditions so that the formation of benzines is substantially avoided, after which the material is subjected to an extraction treatment with solvents. The constituents of high boiling point range, suitable for the production of lubricating oils and solid paraffins, obtained by the said destructive hydrogenation are separated off before or/and after the said extraction treatment.

  8. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  9. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  10. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    Science.gov (United States)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-08

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  11. Development of сertified reference materials set for opened porosity of solid substances and materials (imitators

    Directory of Open Access Journals (Sweden)

    E. P. Sobina

    2016-01-01

    Full Text Available The article deals with data of research for development of certified reference materials set for opened porosity of solid substances and materials (imitators (OPTB SO UNIIM Set Certified Reference Materials GSO 10583-2015. The certified values of opened porosity of metal cylinders were established by the method of hydrostatic weighing before and after boring of holes in. The certified reference materials are intended for calibration and verification of measuring instruments of opened porosity, based on the Boyle - Mariotte's law.

  12. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Science.gov (United States)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  13. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  14. The physics of solid-state neutron detector materials and geometries.

    Science.gov (United States)

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  15. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  16. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    Science.gov (United States)

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  17. Distillation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Burney, C D

    1918-08-31

    A method of distilling carbonaceous material at low or moderate temperatures is described in which the main supply of gases for heating the material under treatment is generated in a combustion chamber located externally of the retort chamber from which combustion chamber the gases are withdrawn and passed under control through hollow elements located within the retort chamber in such manner as to insure the production of the desired temperature gradient along the length of the retort, the said elements being so constructed that they serve to bring the heating gases into indirect contact with the material undergoing treatment while also moving the material progressively through the retort in the opposite direction to that in which the heating gases flow.

  18. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  19. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  20. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  2. TECHNOLOGY FOR EFFICIENT USAGE OF HYDROCARBON-CONTAINING WASTE IN PRODUCTION OF MULTI-COMPONENT SOLID FUEL

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2016-01-01

    Full Text Available The paper considers modern approaches to usage of hydrocarbon-containing waste as energy resources and presents description of investigations, statistic materials, analysis results on formation of hydrocarbon-containing waste in the Republic of Belarus. Main problems pertaining to usage of waste as a fuel and technologies for their application have been given in the paper. The paper describes main results of the investigations and a method for efficient application of viscous hydrocarbon-containing waste as an energy-packed component and a binding material while producing a solid fuel. A technological scheme, a prototype industrial unit which are necessary to realize a method for obtaining multi-component solid fuel are represented in the paper. A paper also provides a model of technological process with efficient sequence of technological operations and parameters of optimum component composition. Main factors exerting significant structure-formation influence in creation of structural composition of multi-component solid fuel have been presented in the paper. The paper gives a graphical representation of the principle for selection of mixture particles of various coarseness to form a solid fuel while using a briquetting method and comprising viscous hydrocarbon-containing waste. A dependence of dimensionless concentration g of emissions into atmosphere during burning of two-component solid fuel has been described in the paper. The paper analyzes an influence of the developed methodology for emission calculation of multi-component solid fuels and reveals a possibility to optimize the component composition in accordance with ecological function and individual peculiar features of fuel-burning equipment. Special features concerning storage and transportation, advantages and disadvantages, comparative characteristics, practical applicability of the developed multi-component solid fuel have been considered and presented in the paper. The paper

  3. Lovastatin production by Aspergillus terreus in solid state and ...

    African Journals Online (AJOL)

    user

    Department of Biochemistry of Physiologically Active Compounds, Institute of ... Keywords: lovastatin, submerged fermentation, solid state fermentation, production ... water need in up-stream processing which minimizes production expense (Holker .... authors, a slowly utilizable carbon source is preferable for high lovastatin ...

  4. Lovastatin production by Aspergillus terreus in solid state and ...

    African Journals Online (AJOL)

    user

    Department of Biochemistry of Physiologically Active Compounds, Institute of ... Keywords: lovastatin, submerged fermentation, solid state fermentation, production ... water need in up-stream processing which minimizes production expense (Holker et .... Effect of carbon and nitrogen sources on lovastatin yield by Aspergillus ...

  5. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    Science.gov (United States)

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, Pwinery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Decontamination of materials contaminated with Francisella philomiragia or MS2 bacteriophage using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M

    2014-08-01

    The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    Science.gov (United States)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  8. Process for the restoration of solids contaminated with hydrocarbons and heavy organic compounds

    International Nuclear Information System (INIS)

    Bala, G.A.; Thomas, C.P.; Jackson, J.D.; McMillin, R.A.

    1994-01-01

    Processes have been developed for the restoration of environments contaminated with hydrocarbons and heavy organics. The intended product is a field deployable materials handling system and phase separation process ranging in size from 1 yd 3 /hr to 50 yd 3 /hr for commercial application to environmental problems associated with the exploration, production, refining and transport of petroleum, petroleum products and organic chemicals. Effluents from contaminated sites will be clean solids (classified by size if appropriate), and the concentrated contaminant. The technology is based on biochemical solvation, liquid/liquid and liquid/solid extractions, materials classification, mechanical and hydraulic scrubbing, and phase separation of organic and aqueous phases. Fluid use is minimized through utilization of closed-loop (recycle) systems. Contaminants that are removed from the solid materials may be destroyed, disposed of using existing technologies, or used on-site for cogeneration of /power for plant operations. Additionally, if the contaminant is a valued product, the material may be recovered for application or sale. Clean solid material is not sterilized and may be returned to normal agricultural, commercial, residential or recreational use in most instances

  9. Distillation apparatus for solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Lurmann, F

    1860-06-26

    The distillation room is continuously charged by the charging mechanism with the material to be distilled. The distillation products pass into the chamber, where they are drawn out through the tube for purifying. The distillation residue is finally pushed out by the fresh material from the room and falls in the common room, from which it is removed through the air-tight door. In the canals enclosing the room heating gas circulates, which carries to the room the heat necessary for the distillation.

  10. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  11. Enhanced amylase production by fusarium solani in solid state fermentation

    International Nuclear Information System (INIS)

    Bakri, Y.; Jawhar, M.; Arabi, M.I.E.

    2014-01-01

    The present study illustrates the investigation carried out on the production of amylase by Fusarium species under solid state fermentation. All the tested Fusarium species were capable of producing amylase. A selected F. solani isolate SY7, showed the highest amylase production in solid state fermentation. Different substrates were screened for enzyme production. Among the several agronomic wastes, wheat bran supported the highest yield of amylase (141.18 U/g of dry substrate) after 3 days of incubation. Optimisation of the physical parameters revealed the optimum pH, temperature and moisture level for amylase production by the isolate as 8.0, 25 C and 70%, respectively. The above results indicate that the production of amylase by F. solani isolate SY7 could be improved by a further optimisation of the medium and culture conditions. (author)

  12. Reducing environmental burdens of solid-state lighting through end-of-life design

    International Nuclear Information System (INIS)

    Hendrickson, C T; Matthews, D H; Ashe, M; Jaramillo, P; McMichael, F C

    2010-01-01

    With 20% of US electricity used for lighting, energy efficient solid-state lighting technology could have significant benefits. While energy efficiency in use is important, the life cycle cost, energy and environmental impacts of light-emitting diode (LED) solid-state lighting could be reduced by reusing, remanufacturing or recycling components of the end products. Design decisions at this time for the nascent technology can reduce material and manufacturing burdens by considering the ease of disassembly, potential for remanufacturing, and recovery of parts and materials for reuse and recycling. We use teardowns of three commercial solid-state lighting products designed to fit in conventional Edison light bulb sockets to analyze potential end-of-life reuse strategies for solid-state lighting and recommend strategies for the industry. Current lamp designs would benefit from standardization of part connections to facilitate disassembly and remanufacturing of components, and fewer material types in structural pieces to maximize homogeneous materials recovery. The lighting industry should also start now to develop an effective product take-back system for collecting future end-of-life products.

  13. Reducing environmental burdens of solid-state lighting through end-of-life design

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, C T; Matthews, D H; Ashe, M; Jaramillo, P; McMichael, F C, E-mail: cth@cmu.ed [Green Design Institute, Carnegie Mellon University (United States)

    2010-01-15

    With 20% of US electricity used for lighting, energy efficient solid-state lighting technology could have significant benefits. While energy efficiency in use is important, the life cycle cost, energy and environmental impacts of light-emitting diode (LED) solid-state lighting could be reduced by reusing, remanufacturing or recycling components of the end products. Design decisions at this time for the nascent technology can reduce material and manufacturing burdens by considering the ease of disassembly, potential for remanufacturing, and recovery of parts and materials for reuse and recycling. We use teardowns of three commercial solid-state lighting products designed to fit in conventional Edison light bulb sockets to analyze potential end-of-life reuse strategies for solid-state lighting and recommend strategies for the industry. Current lamp designs would benefit from standardization of part connections to facilitate disassembly and remanufacturing of components, and fewer material types in structural pieces to maximize homogeneous materials recovery. The lighting industry should also start now to develop an effective product take-back system for collecting future end-of-life products.

  14. Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    Science.gov (United States)

    Giro-Paloma, J.; Ribas-Manero, V.; Maldonado-Alameda, A.; Formosa, J.; Chimenos, J. M.

    2017-10-01

    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2 - 3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0 - 5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested

  15. Structure - materials - production

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Gammel, Peder; Busch, Jens

    2002-01-01

    For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies.......For the last six years th Aarhus School of Architecture has introduced the first year students (there are about 200 students admitted each year) to structure, materials, design and production through a five week course in collaboration with a group of local companies....

  16. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    Science.gov (United States)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are

  17. Anaerobic digestion of organic solid poultry slaughterhouse waste--a review.

    Science.gov (United States)

    Salminen, E; Rintala, J

    2002-05-01

    This work reviews the potential of anaerobic digestion for material recovery and energy production from poultry slaughtering by-products and wastes. First, we describe and quantify organic solid by-products and wastes produced in poultry farming and poultry slaughterhouses and discuss their recovery and disposal options. Then we review certain fundamental aspects of anaerobic digestion considered important for the digestion of solid slaughterhouse wastes. Finally, we present an overview of the future potential and current experience of the anaerobic digestion treatment of these materials.

  18. Protein production by Arthrospira (Spirulina platensis in solid state cultivation using sugarcane bagasse as support

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Pelizer

    2015-03-01

    Full Text Available The genus Arthrospira comprises a group of filamentous multicellular cyanobacteria and can be used for animal feed and human food. Solid state fermentation or cultivation (SSF involves the use of a culture medium composed of solid material with given moisture content. No studies have been published about the cultivation of microalgae or cyanobacteria on solid medium. Furthermore, although sugar-cane bagasse is used as source of energy in alcohol distilleries in Brazil, the excess could be a support to photosynthetic microorganism growth. The experimental design methodology was used to evaluate the protein production by Arthrospira platensis under SSF using sugarcane bagasse as support, taking into account the moisture content of the medium, light intensity and inoculum concentration. Moisture was found to have a strong influence on the performance of the process. The best conditions were: moisture of 98.8%; inoculum concentration of 0.15 g biomass·kg wet culture medium−1 and light intensity of 6.0 klx.

  19. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  20. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  1. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  2. Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation.

    Science.gov (United States)

    Banerjee, D; Mondal, K C; Pati, B R

    2007-06-01

    Tannase an industrially important enzyme was produced by Aspergillus aculeatus DBF9 through a solid-state fermentation (SSF). The organism produced good amount of enzyme and gallic acid in wheat bran among the solid substrate used in SSF. Maximum enzyme and gallic acid production occurred in 5% tannic acid after 72 h. Eighty percent initial substrate moisture and 30 degrees C temperature was found suitable for tannase production.

  3. Simulated study of solid materials used as phantoms

    International Nuclear Information System (INIS)

    Belmonte, Eduardo P.; Pinheiro, Christiano J.G.; Pinto, Nivia G.Villela; Braz, Delson; Pereira Junior, Sielso B.; Lima, Gilberto S.

    2005-01-01

    The aim of this study is to analyze the behavior of electrons in water and compares them with the behavior in the materials you want to analyze. It were simulated, using Monte Carlo code EGS4 (MC), 24 irradiation with electrons of 6 and 20 MeV in different materials (polyethylene C 2 H 4 ) n , polystyrene (C 8 H 8 ) n , lucite (C 5 H 8 O 2 ), nylon (C 6 H 11 NO), water (H 2 O) and solid water (55% polyethylene, polystyrene and 5% 40% calcium oxide). The data show that for the two energies most of radiation does not interact with the first 20 mm materials. However, when analyzed plates of 1 cm, most of the energy is deposited in the first 4 plates in case 6 MeV and in the first ten to 20 MeV electrons, for all materials. In case of similarity in behavior of radiation in water and other materials, it is observed that is in polyethylene and polystyrene that the behaviour of electrons more resembles the behavior in water

  4. Development of an instrument for measuring moisture deep into solid materials

    International Nuclear Information System (INIS)

    Westin, R.; Walletun, H.

    1993-01-01

    It is of value in some applications to be able to detect humidity rather deep into a solid material, for example when determining the moisture content in the frame of buildings, in insulation or in biofuels. Common to these measurement problems is that it is difficult to measure moisture in the bulk of a solid, in contrast to the surface layers. In this report is described the principle and the functioning of an instrument to measure moisture at larger depths than other instruments that are available today. It is intended for use primarily on solid materials, not on gases or liquids. Field experience is also reported here. The principle of the measuring technique is nuclear: we have utilized the ability of hydrogen atoms to moderate (or brake) high energy neutrons. If there is hydrogen in the sample, fast neutrons will interact with the hydrogen atoms and one may detect and count low energy, so called thermal neutrons. The intensity of the slow neutron flux is proportional to the water content, if one assumes that hydrogen atoms are water, i.e. moisture

  5. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  6. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  7. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    Blowers, Paul; Caborn, Jane; Dell, Tony; Gingell, Terry; Harms, Arvic; Long, Stephanie; Sleep, Darren; Stewart, Charlie; Walker, Jill; Warwick, Phil E.

    2011-01-01

    An intercomparison exercise to determine the 14 C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14 C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  8. Cellulase production by Trichoderma harzianum in static and mixed solid-state fermentation reactors under nonaseptic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, F.; Giuliano, C.; Asther, M.; Huet, M.C.; Roussos, S.

    1985-09-01

    Cellulase production from lignocellulosic materials was studied in solid-state cultivation by both static and mixed techniques under nonaseptic conditions. The effects of fermentation conditions, such as moisture content, pH, temperature, and aeration, on cellulase production by Trichoderma harzianum using a mixture of wheat straw (80%) and bran (20%) were investigated. With a moisture content of 74% and a pH of 5.8, 18 IU filter paper activity and 198 IU endoglucanase activity/g initial substrate content were obtained in 66 hours. The extension from static column cultivation to stirred tank reactor of 65 l capacity gave similar yields of cellulase.

  9. Citric acid production from orange peel wastes by solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Ana María Torrado

    2011-03-01

    Full Text Available Valencia orange (Citrus sinensis peel was employed in this work as raw material for the production of citric acid (CA by solid-state fermentation (SSF of Aspergillus niger CECT-2090 (ATCC 9142, NRRL 599 in Erlenmeyer flasks. To investigate the effects of the main operating variables, the inoculum concentration was varied in the range 0.5·10³ to 0.7·10(8 spores/g dry orange peel, the bed loading from 1.0 to 4.8 g of dry orange peel (corresponding to 35-80 % of the total volume, and the moisture content between 50 and 100 % of the maximum water retention capacity (MWRC of the material. Moreover, additional experiments were done adding methanol or water in different proportions and ways. The optimal conditions for CA production revealed to be an inoculum of 0.5·10(6 spores/g dry orange peel, a bed loading of 1.0 g of dry orange peel, and a humidification pattern of 70 % MWRC at the beginning of the incubation with posterior addition of 0.12 mL H2O/g dry orange peel (corresponding to 3.3 % of the MWRC every 12 h starting from 62 h. The addition of methanol was detrimental for the CA production. Under these conditions, the SSF ensured an effective specific production of CA (193 mg CA/g dry orange peel, corresponding to yields of product on total initial and consumed sugars (glucose, fructose and sucrose of 376 and 383 mg CA/g, respectively. These results, which demonstrate the viability of the CA production by SSF from orange peel without addition of other nutrients, could be of interest to possible, future industrial applications.

  10. Pharmaceutical cocrystals:formation mechanisms, solubility behaviour and solid-state properties

    OpenAIRE

    Alhalaweh, Amjad

    2012-01-01

    The primary aim of pharmaceutical materials engineering is the successful formulation and process development of pharmaceutical products. The diversity of solid forms available offers attractive opportunities for tailoring material properties. In this context, pharmaceutical cocrystals, multicomponent crystalline materials with definite stoichiometries often stabilised by hydrogen bonding, have recently emerged as interesting alternative solid forms with potential for improving the physical a...

  11. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  12. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  13. McPhy-Energy’s proposal for solid state hydrogen storage materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    Jehan, Michel, E-mail: michel.jehan@mcphy.com [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Fruchart, Daniel, E-mail: daniel.fruchart@grenoble.cnrs.fr [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Institut Néel and CRETA, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Mechanical alloying with nano-structurizing highly reactive magnesium metal hydrides particles. •Solid reversible hydrogen storage at scale of kg to tons of hydrogen using MgH{sub 2} composite discs. •Natural Expanded Graphite draining heat of reaction during sorption. •Change Phase Material storing reversibly heat of reaction within tank storage as adiabatic system. •Technology fully adapted for renewable energy storage and network energy peak shavings through H{sub 2}. -- Abstract: The renewable resources related, for instance, to solar energies exhibit two main characteristics. They have no practical limits in regards to the efficiency and their various capture methods. However, their intermittence prevents any direct and immediate use of the resulting power. McPhy-Energy proposes solutions based on water electrolysis for hydrogen generation and storage on reversible metal hydrides to efficiently cover various energy generation ranges from MW h to GW h. Large stationary storage units, based on MgH{sub 2}, are presently developed, including both the advanced materials and systems for a total energy storage from ∼70 to more than 90% efficient. Various designs of MgH{sub 2}-based tanks are proposed, allowing the optional storage of the heat of the Mg–MgH{sub 2} reaction in an adjacent phase changing material. The combination of these operations leads to the storage of huge amounts of hydrogen and heat in our so-called adiabatic-tanks. Adapted to intermittent energy production and consumption from renewable sources (wind, sun, tide, etc.), nuclear over-production at night, or others, tanks distribute energy on demand for local applications (on-site domestic needs, refueling stations, etc.) via turbine or fuel cell electricity production.

  14. Material and energy productivity.

    Science.gov (United States)

    Steinberger, Julia K; Krausmann, Fridolin

    2011-02-15

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives.

  15. A choice of renewable or upgraded material from oil palm solid wastes

    International Nuclear Information System (INIS)

    Farid Nasir Ani; Wong Chuan Chin; Hussin Mohd Nor

    2006-01-01

    Malaysian palm oil industries are producing a large amount of solid wastes from the palm oil mills. Malaysia generates around 1.10 million tons of oil palm shells in year 1980 but this amount increased up to 4.11 million tons in year 2002 as wastes. Disposal of these wastes created environmental problems. Thus, a process was designed to reuse and recycle these wastes into value added products. This research used oil palm shells as a renewable material resource by thermo-chemical process to produce pyrolysis oil. The oil could be utilized as fuel or converted to valued added products. Since it contain a significant amount of phenols, it was extracted using solvent extraction technique to gain the useful phenol and phenolic compounds. The extracted oil-palm-shell-based phenol was used in the manufacturing of phenol formaldehyde wood adhesives. Then the capability of wood bonding was tested comparing with the petroleum-based phenol formaldehyde wood adhesives. For the commercial values of this research, the total global consumption of phenol in 2000 was 11.3 million metric ton that worth USD 10.0 billions. Thus, the commercial potentiality of this research is very high as the oil-palm-shell-based phenol could replace the petroleum-based phenol. The methods and products utilize low manufacturing cost from relatively simple technology and locally abundant raw material, comparable performances in wood bonding and competitive in price. It is estimated that around USD 900 / ton for petroleum-based, but just USD 250 / ton for palm-shell-based phenol

  16. Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections

    International Nuclear Information System (INIS)

    Chick, L.A.; Bates, J.L.

    1992-01-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFC's. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFC's, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions

  17. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  18. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  19. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  20. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Exner, Stephan; Jørgensen, Anne-Mette

    1998-01-01

    This paper presents and verifies the computer tool LCA-LAND for estimation of emissions from specific waste products disposed in municipal solid waste landfills in European countries for use in the inventory analysis of LCA. Examples of input data (e.g. distribution of the waste product...... in different countries, composition of the product and physical/chemical/biological properties of waste product components) and output data (e.g. estimated emissions to atmosphere and water) are given for a fictive waste product made of representative types of components (toluene, cellulose, polyvinylchloride...... (PVC), copper and chloride). Since waste products from different processes in the product system may be disposed at different landfills where they are mixed with waste originating outside the product system, the estimated emissions from specific waste products cannot be compared with measured emissions...

  1. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  2. Production of α-amylase by solid state fermentation by Rhizopus ...

    African Journals Online (AJOL)

    2015-02-18

    Feb 18, 2015 ... However, only a few strains of fungi and bacteria meet the criteria for production of ... amylase production, but solid-state fermentation (SSF) is emerging as a ..... synthesis of lactic acid in R. oryzae and Rhizopus arrhizus using ...

  3. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    Science.gov (United States)

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Material efficiency: providing material services with less material production.

    Science.gov (United States)

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst

    2013-03-13

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  5. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  6. Solid triphenylmethanol: A molecular material that undergoes multiple internal reorientational processes on different timescales

    International Nuclear Information System (INIS)

    Kitchin, Simon J.; Xu Mingcan; Serrano-Gonzalez, Heliodoro; Coates, Laura J.; Zaka Ahmed, S.; Glidewell, Christopher; Harris, Kenneth D.M.

    2006-01-01

    In solid triphenylmethanol, the molecules are arranged in hydrogen-bonded tetramers, and it is already well established that the hydrogen bonding in this material undergoes a dynamic switching process between different hydrogen bonding arrangements. In addition to this motion, we show here, from solid-state 2 H NMR studies of the deuterated material (C 6 D 5 ) 3 COH, that each phenyl ring in this material undergoes a 180 deg.-jump reorientation about the C 6 D 5 -C(OH) bond, with an activation energy of ca. 50 kJ mol -1 . The timescale for the phenyl ring dynamics is several orders of magnitude longer than the timescale for the hydrogen bond dynamics in this material, and is uncorrelated with the dynamics of the hydrogen bonding arrangement

  7. Solid oxide fuel cells and hydrogen production

    International Nuclear Information System (INIS)

    Dogan, F.

    2009-01-01

    'Full text': A single-chamber solid oxide fuel cell (SC-SOFC), operating in a mixture of fuel and oxidant gases, provides several advantages over the conventional SOFC such as simplified cell structure (no sealing required). SC-SOFC allows using a variety of fuels without carbon deposition by selecting appropriate electrode materials and cell operating conditions. The operating conditions of single chamber SOFC was studied using hydrocarbon-air gas mixtures for a cell composed of NiO-YSZ / YSZ / LSCF-Ag. The cell performance and catalytic activity of the anode was measured at various gas flow rates. The results showed that the open-circuit voltage and the power density increased as the gas flow rate increased. Relatively high power densities up to 660 mW/cm 2 were obtained in a SC-SOFC using porous YSZ electrolytes instead of dense electrolytes required for operation of a double chamber SOFC. In addition to propane- or methane-air mixtures as a fuel source, the cells were also tested in a double chamber configuration using hydrogen-air mixtures by controlling the hydrogen/air ratio at the cathode and the anode. Simulation of single chamber conditions in double chamber configurations allows distinguishing and better understanding of the electrode reactions in the presence of mixed gases. Recent research efforts; the effect of hydrogen-air mixtures as a fuel source on the performance of anode and cathode materials in single-chamber and double-chamber SOFC configurations,will be presented. The presentation will address a review on hydrogen production by utilizing of reversible SOFC systems. (author)

  8. Resource planning of solid waste materials through process modelling as contribution to sustainable resource management; Ressourcenplanung fester Abfallstoffe mit Hilfe der Prozessmodellierung als Beitrag zum nachhaltigen Ressourcenmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Bremen Univ. (Germany). BIK, Institut fuer integrierte Produktentwicklung

    2010-10-15

    Raw materials are essential to satisfy our needs in energy and products. Many raw materials are restricted and far away from being endless available; therefore there is a strong intention of developing raw material- and energy-efficient production processes. Recycling processes provide a substantial contribution to sustainable resource management due to the supply of valuable secondary raw materials for new applications. Processing solid waste materials generate new secondary resources from residues as resources for new products. This saves primary resources and keeps up a long material life cycle. But material characterisation is an important issue to look at. Material properties ascertain the following application possibilities. It has to be noted that no processing technique can guarantee solely material flows with properties to substitute primary raw materials. There are always material flows that are of minor quality. This makes it difficult to assess the future potential of secondary raw materials to be available for following applications with specific quality demands. (orig.)

  9. Extracting solid carbonaceous materials with solvents

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-08

    Solvent extraction of solid carbonaceous materials is performed in the presence of powdered catalysts together with alkaline substances. Oxides of nickel or iron or nickel nitrate have been used together with caustic soda or potash solutions or milk of lime. Solvents used include benzenes, middle oils, tars, tetrahydronaphthalene. The extraction is performed at 200 to 500/sup 0/C under pressures of 20 to 200 atm. Finely ground peat was dried and mixed with milk of lime and nickel nitrate and an equal quantity of middle oil. The mixture was heated for 3 h at 380/sup 0/C at 90 atm. 88.5% of the peat was extracted. In a similar treatment brown coal was impregnated with solutions of caustic soda and ferric chloride.

  10. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    Science.gov (United States)

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  12. Product specific emissions from municipal solid waste landfills

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Hauschild, Michael Zwicky

    1998-01-01

    For the inventory analysis of environmental impacts associated with products in LCA there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured...... directly at the landfills, they must be estimated by modelling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection...... systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided...

  13. Solid domestic wastes as a renewable resource: European experience

    Science.gov (United States)

    Fridland, V. S.; Livshits, I. M.

    2011-01-01

    Ways in which different types of solid domestic wastes, such as wastepaper, crushed glass, plastics and worn-out tires, can be efficiently included into the production, raw-material, and energy balances of the national economy are shown taking Germany and other European countries an example. Methods for recycling these solid domestic wastes and application fields of the obtained products are discussed.

  14. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  15. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    Science.gov (United States)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  16. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2017-10-01

    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  17. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  18. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  19. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  20. Protocol for production of a chewable material for masticatory function tests (Optocal - Brazilian version

    Directory of Open Access Journals (Sweden)

    Rafael de Liz Pocztaruk

    2008-12-01

    Full Text Available The present article aimed to present a standardized protocol for the production of a chewable test material that has been used in masticatory efficiency and performance studies. This chewable material has advantages in respect to its physical properties when compared to other artificial and natural test foods. It is constituted by mixing condensation silicon (58.3% by weight, common plaster (10.2% by weight, alginate (12.5% by weight, solid vaseline (11.5% by weight, tooth paste (7.5% by weight, and catalyst paste (20.8 mg/g, adding also three drops of mint essence. The mixed material is then inserted into an acrylic mould with perforations of 12 mm in diameter and 5 mm in height to produce rounded tablets with those measures after polymerization. It was named "Optocal - Brazilian version". A volume of 3 cm³ is indicated for a chewing test, which corresponds to 12 tablets using the present methodology. The present protocol can make the production of this chewable material easier, helping in its standardization for studies on masticatory function.

  1. Process for producing volatile hydrocarbons from hydrocarbonaceous solids

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-03

    In a process for producing volatile hydrocarbons from hydrocarbonaceous solids, a hydrocarbonaceus solid is passed in subdivided state and in the form of a bed downwardly through an externally unheated distilling retort wherein the evolution of volatiles from the bed is effected while solid material comprising combustible heavy residue is discharged from the lower portion of the bed and retort, combustibles are burned from the discharged solid material. The admixture resultant combustion gases with the vapours evolved in the retort is prevented, and a stream of hydrocarbon fluid is heated by indirect heat exchange with hot combustion gases produced by burning to a high temperature and is introduced into the distilling retort and direct contact with bed, supplying heat to the latter for effecting the evolution of volatiles from the hydrocarbonaceous solid. The improvement consists of subjecting the volatile distillation products evolved and removed from the bed to a fractionation and separating selected relatively light and heavy hydrocarbon fractions from the distillation products, withdrawing at least one of the selected fractions from the prcess as a product heating at least one other of the selected fractions to high temperature by the indirect heat exchange with hot combustion gases, and introducing the thus heated hydrocarbon fraction into direct contact with the bed.

  2. Sheared solid materials

    Indian Academy of Sciences (India)

    ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic ... We expect that m is a key order parameter for amorphous solids or glasses. .... It satisfies the mechanical equilibrium condition and can be calculated ...

  3. Production of Biofuels from Selected Cellulosic Waste materials

    Directory of Open Access Journals (Sweden)

    Jathwa Abdul Kareem Ibrahim

    2017-08-01

    Full Text Available In this study four types of cellulose-rich municipal solid wastes (residuals of orange, banana peel, corn residues, and saw dust were used as raw materials. These cellulosic substrates usually have a lot of lignin content which prevents the process of saccharification by microorganisms. Thus pretreatment methods of enzymatic, acid or base with enzymatic treatment and dilute acid followed by autoclaving were necessary to dignify these wastes and to obtain higher reducing sugar yields and hence higher ethanol production. Dilute HCl acid of 1% followed by autoclaving at 121℃ for 30 min proved to give good result where significant amounts of reducing sugars were obtained at the end of the saccharification process. Orange peel proved to give the highest glucose concentration of an average of 6000 mg/l on day 4 of the saccharification process. Fermentation was carried out for the hydrolyzed samples using Saccharomyces cerevisiae yeast. The amount of ethanol produced after fermentation was found to be the highest for orange peel having a value of 1300 mg/l after 96h of incubation. As science is proceeding, engineered microorganisms could help to produce sustainable fuels from cellulose-rich municipal solid wastes in the future.

  4. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  5. Radioactive solid waste management study of generated in the source production laboratory for brachytherapy

    International Nuclear Information System (INIS)

    Barbosa, Nayane K.O.; Carvalho, Vitória S.; Marques, José R.O.; Costa, Osvaldo L.; Baptista, Tatyana S.; Vicente, Roberto; Rostelato, M.E.C.M.; Zeituni, Carlos A.; Souza, Daiane C.B.

    2017-01-01

    A management system for radioactive solid wastes generated during seed production in the Laboratório de Produção de Fontes para Radioterapia (LPFRT) was developed. For this, the volume and the mass of each item of solid wastes generated in Glove box were estimated. It is possible to estimate, per week, how much reject will enter the warehouse, what space it will occupy and also its weight. In the final step of the characterization, the decay calculation is applied to define the time the reject will be stored for later disposal in the collection system. After the characterization process, it is noticed that the rate of volume and radioactivity decreases as the retention time of the rejects increases due to the release of the materials, and also, there is the decay of the radioactivity present in the reservoir. It is also observed that the rate of entry and exit of the wastes is proportional

  6. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  7. Status of the solid breeder materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Lorenzetto, P.; Noda, K.; Roux, N.

    1995-01-01

    The databases for solid breeder ceramics (Li 2 O, Li 4 SiO 4 , Li 2 ZrO 3 , and LiAlO 2 ) and beryllium multiplier material were critically reviewed and evaluated as part of the ITER/CDA design effort (1988-1990). The results have been documented in a detailed technical report. Emphasis was placed on the physical, thermal, mechanical, chemical stability/compatibility, tritium retention/release, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Materials properties correlations were selected for use in design analysis, and ranges for input parameters (e.g., temperature, porosity, etc.) were established. Also, areas for future research and development in blanket materials technology were highlighted and prioritized. For Li 2 O, the most significant increase in the database has come in the area of tritium retention as a function of operating temperature and purge flow composition. The database for postirradiation inventory from purged in-reactor samples has increased from four points to 20 points. These new data have allowed an improvement in understanding and modeling, as well as better interpretation of the results of laboratory annealing studies on unirradiated and irradiated material. In the case of Li 2 ZrO 3 , relatively little data were available on the sensitivity of the mechanical properties of this ternary ceramic to microstructure and moisture content. The increase in the database for this material has allowed not only better characterization of its properties, but also optimization of fabrication parameters to improve its performance. Some additional data are also available for the other two ternary ceramics to aid in the characterization of their performance. In particular, the thermal performance of these materials, as well as beryllium, in packed-bed form has been measured and characterized

  8. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  9. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  10. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied

  11. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-06-14

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied.

  12. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  13. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  14. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    International Nuclear Information System (INIS)

    Santaoja, K.

    1997-01-01

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable 'equivalent tensile flow stress in the matrix material' denoted by σ M . Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for σ M . This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor σ and σM. Investigation of the Clausius-Duhem inequality shows that in compression, states occur which are not

  15. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  16. Obtaining fuel briquets from the solid municipal waste

    International Nuclear Information System (INIS)

    Armenski, Slave; Kachurkov, Gjorgji; Vasilevski, Goce

    1998-01-01

    Recycling systems for solid waste materials are designed to reduce the amount of solid waste materials going to land fields. Through the Trash Separation Systems, clean municipal waste are reused in production of fuel pellets. Other waste streams such as coal fines, sawdust, wood chips, coke breeze and agricultural waste can be blended with these pellets along with a high thermal value binder and/or used motor oil to form a quality clean burning alternative fuel. (Author)

  17. Solid-wood production from temperate eucalypt plantations: a ...

    African Journals Online (AJOL)

    Since 1988, there has been a major focus in Tasmania on research for the management of temperate eucalypt plantations for solid wood. This coincided with the formal transfer of large areas of native forest that had previously been part of the production forest estate into reserves, a decision that triggered the establishment ...

  18. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  20. Sealing materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P.H.

    1999-02-01

    A major obstacle in the achievement of high electrical efficiency for planar solid oxide fuel cell stacks (SOFC) is the need for long term stable seals at the operational temperature between 850 and 1000 deg. C. In the present work the formation and properties of sealing materials for SOFC stacks that fulfil the necessary requirements were investigated. The work comprises analysis of sealing material properties independently, in simple systems as well as tests in real SOFC stacks. The analysed sealing materials were based on pure glasses or glass-ceramic composites having B{sub 2}O{sub 3}, P{sub 2}O{sub 5} or siO{sub 2} as glass formers, and the following four glass systems were investigated: MgO/caO/Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SiO{sub 2} and BaO/Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}. (au) 32 tabs., 106 ills., 107 refs.

  1. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  2. CONSTRUCTION MATERIALS FROM WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Тахира Далиевна Сидикова

    2016-02-01

    Full Text Available We have studied the physical and chemical processes occurring during the thermal treatment of ceramic masses on the basis of compositions of natural raw materials and waste processing facilities. The study of structures of ceramic samples species has shown different types of crystalline phases.The results have shown that the waste of Kaytashsky tungsten-molybdenum ores (KVMR may be used as the main raw material to develop new compositions for ceramic materials. The optimal compositions of ceramic tiles for the masses and technological parameters of obtaining sintered materials based on the compositions of kaolin fireclay KVMR have been developed.It has been found that the use of the waste of Kaytashskoy tungsten-molybdenum ore (KVMR in the composition of the ceramic material will expand the raw material base of ceramic production, reduce the roasting temperature and the cost of ceramic materials and products.

  3. THE DETERMINATION OF VOLATILE COMPOSITION OF SOLID FUELS BY CHROMATOGRAPHY

    OpenAIRE

    BICA Marin; SOFRONIE Sorin; CERNAIANU Corina Dana

    2014-01-01

    The volatile materials released during the heating of solid fuels ignite at relatively low temperatures releasing heat function of their quantity and quality. This heat raises the temperature of the solid residue creating the conditions for his ignition and burning. In the case of burning of the pulverized coal the phenomenon of production, ignition and burning of volatile materials are studied in different articles.

  4. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  5. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2001-01-01

    The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can c...... a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics....

  6. Material and process selection using product examples

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2002-01-01

    The objective of the paper is to suggest a different procedure for selecting materials and processes within the product development work. The procedure includes using product examples in order to increase the number of alternative materials and processes that is considered. Product examples can c...... a search engine, and through hyperlinks can relevant materials and processes be explored. Realising that designers are very sensitive to user interfaces do all descriptions of materials, processes and products include graphical descriptions, i.e. pictures or computer graphics....

  7. Urban solid waste in the production of Lafoensia pacari seedlings

    Directory of Open Access Journals (Sweden)

    Alan H. M. de Abreu

    Full Text Available ABSTRACT This study aimed to verify the potential of urban solid wastes as substrate for production of seedlings of Lafoensia pacari. Five treatments were tested, four with solid wastes and one standard substrate, namely: sewage sludge from Alegria Wastewater Treatment Plant (WTP; sewage sludge from Ilha do Governador WTP; sewage sludge from Sarapuí WTP; domestic garbage compost (Fertlurb; and a commercial substrate made of biostabilized pine bark (standard substrate. The wastes received 20% (in volume of shredded coconut fiber. At 105 days after sowing, the seedlings were evaluated for different quality parameters. Seedlings produced with Sarapuí WTP sewage sludge showed the best results in all the parameters, followed by seedlings produced with sewage sludge from Alegria and Ilha do Governador WTPs, which did not differ. Seedlings produced with domestic garbage compost showed satisfactory results, higher than the ones observed for seedlings produced with commercial substrate. The urban solid wastes with 20% of coconut fiber showed high potential and can be recommended for the composition of substrate in the production of Lafoensia pacari seedlings.

  8. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    Science.gov (United States)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  9. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  10. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  11. Liquid and Solid Meal Replacement Products Differentially Affect Postprandial Appetite and Food Intake in Older Adults

    Science.gov (United States)

    Stull, April J.; Apolzan, John W.; Thalacker-Mercer, Anna E.; Iglay, Heidi B.; Campbell, Wayne W.

    2008-01-01

    Liquid and solid foods are documented to elicit differential appetitive and food intake responses. This study was designed to assess the influences of liquid vs solid meal replacement products on postprandial appetite ratings and subsequent food intake in healthy older adults. This study used a randomized and crossover design with two 1-day trials (1 week between trials), and 24 adults (12 men and 12 women) aged 50 to 80 years with body mass index (calculated as kg/m2) between 22 and 30 participated. After an overnight fast, the subjects consumed meal replacement products as either a beverage (liquid) or a bar (solid). The meal replacement products provided 25% of each subject's daily estimated energy needs with comparable macro-nutrient compositions. Subjects rated their appetite on a 100 mm quasilogarithmic visual analog scale before and 15, 30, 45, 60, 90, 120, and 150 minutes after consuming the meal replacement product. At minute 120, each subject consumed cooked oatmeal ad libitum to a “comfortable level of fullness.” Postprandial composite (area under the curve from minute 15 to minute 120) hunger was higher (P=0.04) for the liquid vs solid meal replacement products and desire to eat (P=0.15), preoccupation with thoughts of food (P=0.07), and fullness (P=0.25) did not differ for the liquid vs solid meal replacement products. On average, the subjects consumed 13.4% more oatmeal after the liquid vs solid (P=0.006) meal replacement product. These results indicate that meal replacement products in liquid and solid form do not elicit comparable appetitive and ingestive behavior responses and that meal replacement products in liquid form blunt the postprandial decline in hunger and increase subsequent food intake in older adults. PMID:18589034

  12. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  13. Co-digestion of solid waste: Towards a simple model to predict methane production.

    Science.gov (United States)

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes; Caracterizacao de residuos solidos da industria de celulose tipo kraft visando sua aplicacao no desenvolvimento de materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S. [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2016-07-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  15. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Science.gov (United States)

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.

    Science.gov (United States)

    Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L

    2015-01-01

    Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.

  17. Solid targets for production of radioisotopes with cyclotron; Blancos solidos para produccion de radioisotopos con ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [Instituto Nacional de Investigaciones Nucleares, Direccion de Investigacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  18. Enzyme treatment to decrease solids and improve digestion of ...

    African Journals Online (AJOL)

    The aim of anaerobic digestion of primary sewage sludge is to convert the carbonaceous material contained in the solids into methane and carbon dioxide. The products of digestion are therefore gases, stabilised sludge solids which are subsequently dewatered and disposed of, and sludge liquor which is generally further ...

  19. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  20. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    Highlights: ► This study evaluates the effects of co-gasification of MSW with MSW bottom ash. ► No significant difference between MSW treatment with and without MSW bottom ash. ► PCDD/DFs yields are significantly low because of the high carbon conversion ratio. ► Slag quality is significantly stable and slag contains few hazardous heavy metals. ► The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by

  1. Gas production in anaerobic dark-fermentation processes from agriculture solid waste

    Science.gov (United States)

    Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.

    2017-03-01

    Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.

  2. Consumer Products Containing Radioactive Materials

    Science.gov (United States)

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  3. Directory of crystal growth and solid state materials production and research

    International Nuclear Information System (INIS)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M.

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire

  4. Directory of crystal growth and solid state materials production and research

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  5. Techno-economic analysis of lipase enzyme production from agro-industry waste with solid state fermentation method

    Science.gov (United States)

    Hidayatullah, I. M.; Arbianti, R.; Utami, T. S.; Suci, M.; Sahlan, M.; Wijanarko, A.; Gozan, M.; Hermansyah, H.

    2018-03-01

    Needs for this kind of catalyst derived from biological raw materials (biocatalysts) has increased along with development of products based on eco-friendly. To achieve the needs of biocatalyst (enzyme), large production is necessary. This study aimed to get the best conditions and design equipment to produce lipase enzyme based on solid state fermentation using SuperPro Designer v9.0. Several equipment such as Tray Bioreactor, Mixing Tank 1, Filter Press, centrifuge, Mixing Tank 2, and a dryer have been improved during the simulation. Economic analysis in the form of NPV, IRR, Payback Period, and the Benefit Cost Ratio was evaluated respectively. The result showed that production of 10 kg enzyme with NPV Rp112.796.147.423,00; IRR 54.20%; Payback Period 1.95 years; and Benefit Cost Ratio of 3.36 was more advantageous.

  6. Production of 6-pentyl-α-pyrone by trichoderma harzianum in solid-state fermentation.

    Science.gov (United States)

    de Souza Ramos, Aline; Fiaux, Sorele Batista; Leite, Selma Gomes Ferreira

    2008-10-01

    Many Trichoderma species are able to produce 6-pentyl-α-pyrone (6-PP), a lactone with coconut-like aroma. In the present work, several culture parameters were studied to enhance the production of 6-PP by Trichoderma harzianum 4040 in solid-state fermentation. Green coir powder added to a nutrient solution was used as support material for fermentation. A Plackett-Burman screening technique was applied, followed by a fractionary factorial design. The best culture conditions within the experimental domain studied were (100 g support)(-1): sucrose, 3 g; NaNO3, 0.24 g; (NH4)2SO4, 0.18 g; KH2PO4, 0.1 g; inoculum concentration, 2.2 × 10(6) spores; moisture level, 55%. The temperature established was 28°C. The fermentation under the selected conditions led to a 6-PP production six times higher (5.0 mg/g dry matter) than the initial one (0.8 mg/g dry matter) after seven days of cultivation.

  7. Development and mastering of production of dysprosium hafnate as absorbing material for control rods of promising thermal neutron reactors

    International Nuclear Information System (INIS)

    Zakharov, A.V.; Risovany, V.D.; Muraleva, E.M.; Sokolov, V.F.

    2011-01-01

    The main advantages of dysprosium hafnate as an absorbing material for LWR control rods are the following: -) unlimited radiation resistance; - two absorbing components, Dy and Hf, increasing physical efficiency of the material compared to Dy 2 O 3 -TiO 2 and alloy 80% Ag - 15% In - 5% Cd; -) variability of physical efficiency by changing a composition, but maintaining other performance characteristics of the material; -) high process-ability due to the absence of phase transients and single-phase structure (solid solution); -) production of high density pellets. Lab-scale mastering of dysprosium hafnate pellets production showed a possibility of material synthesis using a solid-phase method, as well as of dysprosium hafnate pellets production by cold pressing and subsequent sintering. Within a whole range of examined compositions (23 mol% - 75 mol% Dy 2 O 3 ), a single-phase material with a highly radiation resistant fluorite-like structure was produced. Experiments on cold pressing and sintering of pellets confirmed a possibility of producing high quality dysprosium hafnate pellets from synthesized powder. A pilot batch of dysprosium hafnate pellets with standard sizes was produced. The standard sizes corresponded to the absorbing elements of the WWER-1000 control rods and met the main requirements to the absorbing element columns. The pilot batch size was approximately 6 kg. Acceptance testing of the pilot batch of dysprosium hafnate pellets was conducted, fulfillment of the requirements of technical conditions was checked and preirradiation properties of the pellets were examined. High quality of the produced pellets was confirmed, thus, demonstrating a real possibility of producing large batches of the dysprosium hafnate pellets. The next step is the production of test absorbing elements and cluster assemblies for the WWER-1000 control rods with their further installation for pilot operation at one of the Russian nuclear power plants

  8. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  9. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  10. Utilization of red mud and bagasse for production of gas absorption materials

    Science.gov (United States)

    Thang, Nguyen Hoc; Quyen, Pham Vo Thi Ha; Nhung, Le Thuy; Phong, Dang Thanh; Tuyen, Nguyen Ngoc Kim

    2018-04-01

    Gas treatment or/and gas absorption is field which has more investigation from researchers. They are finding optimal solutions from catalyst or synthesized materials to obtain the best benefit for factories and community. This study would like to introduce a method to synthesis the gas absorption materials responding requirements for the process of gas treatment. More specially, raw materials used to produce the materials are industrial waste impacting negatively on the environment. In which, red mud is solid waste of Bayer process from bauxite mining which is being the hard problem to have solutions for its management and utilization, and bagasse is industrial waste of sugar factories. Both red mud and bagasse were dried, ground, and sieved and then mixed with bentonite and water for forming by wet pressing method. Continuously, the mixtures were passed processes of heat treatment at 400°C. The final samples were tested physic-chemical properties and characterized for microstructure. The productions were also tested for gas absorption capacity with data obtained very positive in comparison with others.

  11. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  12. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  13. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  14. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  15. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  16. Past, present and future of materials, methodology and instrumentation in particle tracks in solids

    International Nuclear Information System (INIS)

    Espinosa, G.

    1991-01-01

    In this presentation I would like to give a brief review of the development of materials, methods and instrumentation in Solid State Nuclear Track Detection, nowadays referred to by the more general term of Particle Tracks in Solids (PTS). We all are convinced of the advantages, good characteristics and qualities of this method which has served to establish a number of procedures in several areas such as Environmental and Personal Dosimetry, Radon Research, Geology, Nuclear Physics, etc. Nevertheless, we have to be conscious of its disadvantages and limitations and above all, the future developments, taking into account all aspects, ranging from track formation models to etching and reading procedures. Above all, I want to emphasize the importance of doing research in new materials with improved properties. The other important challenge refers to instrumentation development, mainly that concerned with reading systems, which is necessary if standard procedures for the measurement and evaluation of particle tracks in solids are to be established. (author)

  17. Material balance of two sewage sludge incineration systems; Methods and results - disposal of solid residues. Stoffflussanalyse bei zwei Klaerschlammverbrennungsanlagen; Methodik und Ergebnisse - Entsorgung der festen Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Staeubli, B. (Abt. Abfallwirtschaft des Amtes fuer Gewaesserschutz und Wasserbau des Kantons Zuerich (Switzerland)); Keller, C. (Elektrowatt Ingenieurunternehmung AG, Zurich (Switzerland))

    1993-02-01

    Material balances were analyzed in two Swiss sewage sludge combustion plants. The methodology is described. Aspects of the standards set for waste management in Switzerland are described. The two incinerations are described. The volumes and compositions of the sewage sludges and all gaseous, liquid, and solid products are gone into. The possibilities of recycling and dumping of combustion products are reviewed in consideration of the volumes and compositions of combustion products. The text is supplemented by tables and flowsheets. (orig.)

  18. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  19. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  20. Production of lignin peroxidase by Ganoderma leucidum using solid ...

    African Journals Online (AJOL)

    The main objectives of this study were to optimize the culture conditions for the production of lignin peroxidase by Ganoderma leucidum, economic utilization of waste corn cobs as inducers substrate by pollution free fermentation technology and to optimize the solid state fermentation (SSF) process for lignin peroxidase ...

  1. Amylase production under solid state fermentation by a bacterial ...

    African Journals Online (AJOL)

    This study was concerned with the screening of a suitable isolate and optimization of cultural conditions for the biosynthesis of thermostable amylase under solid state fermentation (SSF). Twenty seven isolates were screened for amylase production out of which one isolate designated as W74 showed maximal amylase ...

  2. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.

    Science.gov (United States)

    Mata-Gómez, Marco; Mussatto, Solange I; Rodríguez, Raul; Teixeira, Jose A; Martinez, Jose L; Hernandez, Ayerim; Aguilar, Cristóbal N

    2015-06-01

    Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10(-2) mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs.

  3. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  4. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  5. High-volume recycled materials for sustainable pavement construction.

    Science.gov (United States)

    2017-05-01

    The main objective of this research is to evaluate the feasibility of using high-volume recycled materials for concrete production in rigid pavement. The goal was to replace 50% of the solids with recycled materials and industrial by-products. The pe...

  6. Low-temperature solid-state preparation of ternary CdS/g-C_3N_4/CuS nanocomposites for enhanced visible-light photocatalytic H_2-production activity

    International Nuclear Information System (INIS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Highlights: • CdS/g-C_3N_4/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C_3N_4/CuS show enhanced visible-light photocatalytic H_2 evolution activity. • The enhanced photocatalytic H_2 production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C_3N_4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C_3N_4/CuS composite exhibits a high visible-light photocatalytic H_2-production rate of 57.56 μmol h"−"1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na_2S/Na_2SO_3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C_3N_4/CuS composites show the enhanced visible-light photocatalytic H_2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C_3N_4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H_2-production activity.

  7. Petrographic characterization of the solid products of coal- pitch coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Kybett, B.D.; McDougall, W.J.; Nambudiri, E.M.V.; Rahimi, P.; Price, J.T.

    1986-06-01

    Petrographic studies were conducted on four solid residues resulting from the hydrogenation process of 1) Forestburg sub- bituminous coal alone, 2) the coal with a non-coking solvent (anthracene oil), 3) pitch (Cold Lake vacuum-bottom deposits), and 4) a mixture of coal and pitch. The purpose was to determine the amounts of coal and pitch-derived solids in the residues. All the residues were produced under identical severe conditions of liquefaction to promote the formation of solids. The coal processed with anthracene oil gives a residue consisting mainly of isotropic huminitic solids. If the coal is hydrogenated under similar conditions but without a solvent, the predominant residual solids are anisotropic semicokes displaying coarse mosaic textures, which form from vitroplast. The residual products from the hydrogenated Cold Lake vacuum- bottom deposits are also dominantly anisotropic semicokes; these display coarse mosaics and flow textures, and form by the growth and coalescence of mesophase spherules. Both coal- and pitch-derived solids are identified in a residue produced by coprocessing the Forestburg coal with the pitch from the Cold Lake vacuum-bottom deposits. It is concluded that the huminite macerals in the coal generate the fine-grained, mosaic-textured semicokes, whereas the pitch produces the coarse mosaics and flow-textured semicokes.

  8. Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model.

    Science.gov (United States)

    Shen, Jiacheng; Zhu, Jun

    2016-01-01

    Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.

  9. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  10. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø, Lasse Arnt

    2016-02-02

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  11. A Toolbox of Solid-State NMR Experiments for the Characterization of Soft Organic Nanomaterials

    KAUST Repository

    Straasø , Lasse Arnt; Saleem, Qasim; Hansen, Michael Ryan

    2016-01-01

    Determining how organic molecules self-assemble into a solid material is a challenging and demanding task if a single crystal of the material cannot be produced. Solid-state NMR spectroscopy offers access to such molecular details via an appropriate selection of techniques. This report gives a selected overview of 1D and 2D solid-state NMR techniques for elucidating the structure of soft organic solids. We focus on how the solid-state NMR techniques are designed from the perspective of the different nuclear interactions, using average Hamiltonian theory and product operators. We also introduce recent methods for quantification and reduction of experimental artifacts. Finally, we highlight how the solid-state NMR techniques can be applied to soft organic materials by reviewing recent applications to semicrystalline polymers, π-conjugated polymers, natural silk, and graphene-related materials.

  12. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  13. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  14. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  15. Elaboration of building materials from industrial waste from solid granular diatomaceous earth

    International Nuclear Information System (INIS)

    Del Angel S, A.

    2015-01-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  16. PEA PEEL WASTE: A LIGNOCELLULOSIC WASTE AND ITS UTILITY IN CELLULASE PRODUCTION BY Trichoderma reesei UNDER SOLID STATE CULTIVATION

    Directory of Open Access Journals (Sweden)

    Nitin Verma

    2011-03-01

    Full Text Available A wide variety of waste bioresources are available on our planet for conversion into bioproducts. In the biological systems, microorganisms are used to utilize waste as an energy source for the synthesis of valuable products such as biomass proteins and enzymes. The large quantities of byproducts generated during the processing of plant food involve an economic and environmental problem due to their high volumes and elimination costs. After isolation of the main constituent, there are abundant remains which represent an inexpensive material that has been undervalued until now. Pea peel waste is one of the undervalued, unused sources of energy that can serve as a potential source for cellulase production. Batch experiments have been performed, using pea peel waste as a carbon source for cellulase production under solid state cultivation by Trichoderma reesei. It was observed that 30 oC temperature and pH 5.0 are the most favorable conditions for cellulase production by T. reesei. FPase activity significantly increases by incorporation of whey as well as wheat starch hydrolysate in the basal salt media used in the production study. The present study describes the utility of pea peel waste, whey as well as wheat starch hydrolysate in cellulase production by T. reesei. The utilization of economically cheap, pea peel waste for cellulase production could be a novel, cost effective, and valuable approach in cellulase production as well as in solid waste management.

  17. Enhanced stabilisation of municipal solid waste in bioreactor landfills

    NARCIS (Netherlands)

    Valencia Vázquez, R.

    2008-01-01

    The increasing development and urbanization of the society has led to an increase per-capita production of municipal solid waste (MSW) materials. These MSW materials are of organic and inorganic nature that can be of rapidly, moderately and slowly biodegradable or inert characteristics. With regard

  18. Solid-State Physics An Introduction to Principles of Materials Science

    CERN Document Server

    Ibach, Harald

    2009-01-01

    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. From a review of the original edition �...

  19. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products

    Science.gov (United States)

    García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel

    2018-05-01

    In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of

  20. High reliability solid refractive index matching materials for field installable connections in FTTH network

    Science.gov (United States)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio

    2015-06-01

    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  1. Biogas Production from Palm Oil Fruit Bunch in Anaerobic Biodigester through Liquid State (LS-AD and Solid State (SS-AD Method

    Directory of Open Access Journals (Sweden)

    Jos Bakti

    2018-01-01

    Full Text Available The crucial problem facing the world today is energy resources. Waste production of palm oil fruit bunch potentially produce as renewable energy resource. Palm oil fruit bunch contains 44% cellulose, 18% lignin and 34% hemicellulose. Organic carbon source is contained in biomass potentially produce biogas. Biogas is one of alternative energy, which is environmentally friendly and has been widely developed. This research is aimed to examine the effect of pretreatment in raw material of waste palm oil fruit bunch for the production of biogas, the effect of time, ratio C/N, and effect of microbial consortium. The variables are total solid (TS used 10% and 18% with a 40 mesh physical pretreatment, chemical pretreatment with NaOH 8% gr / gr TS, and biology 5% g/vol with microbial consortium. Biogas production process was conducted over 2 months in room temperature, the test response quantitative results in the form of biogas volume every 2 days and also flame test. The result of this research shows that the highest daily production rate of biogas obtained from this study was 5,73 ml/gr TS and the highest biogas production accumulation generated at 58,28 ml/gr TS produced through a 40 mesh sieve of waste oil palm empty fruit bunch, immersion in NaOH, through solid state fermentation and C/N 30. From this research, it can be concluded that the optimum production of biogas formation occurs with the value of C/N 30, physical and biological pretreatment, and solid state method.

  2. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    Science.gov (United States)

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  3. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    Science.gov (United States)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  4. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  5. Hazardous gas production by alpha particles in solid organic transuranic waste matrices. 1998 annual progress report

    International Nuclear Information System (INIS)

    LaVerne, J.A.

    1998-01-01

    'This project uses fundamental radiation chemical techniques to elucidate the basic processes occurring in the heavy-ion radiolysis of solid hydrocarbon matrices such as polymers and organic resins that are associated with many of the transuranic waste deposits or the transportation of these radionuclides. The environmental management of mixed waste containing transuranic radionuclides is difficult because these nuclides are alpha particle emitters and the energy deposited by the alpha particles causes chemical transformations in the matrices accompanying the waste. Most radiolysis programs focus on conventional radiation such as gamma rays, but the chemical changes induced by alpha particles and other heavy ions are typically very different and product yields can vary by more than an order of magnitude. The objective of this research is to measure the production of gases, especially molecular hydrogen, produced in the proton, helium ion, and carbon ion radiolysis of selected solid organic matrices in order to obtain fundamental mechanistic information on the radiolytic decomposition of these materials. This knowledge can also be used to directly give reasonable estimates of explosive or flammability hazards in the storage or transport of transuranic wastes in order to enhance the safety of DOE sites. This report summarizes the work after eight months of a three-year project on determining the production of hazardous gases in transuranic waste. The first stage of the project was to design and build an assembly to irradiate solid organic matrices using accelerated ion beams. It is necessary to measure absolute radiolytic yields, and simulate some of the conditions found in the field. A window assembly was constructed allowing the beam to pass consecutively through a collimator, a vacuum exit window and into the solid sample. The beam is stopped in the sample and the entire end of the assembly is a Faraday cup. Integration of the collected current, in conjunction

  6. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  7. Solid-state fermentation: a continuous process for fungal tannase production.

    Science.gov (United States)

    van de Lagemaat, J; Pyle, D L

    2004-09-30

    Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. Copyright 2004 Wiley Periodicals, Inc.

  8. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  9. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  10. Raw materials for aluminium production

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to to raw materials which used in aluminium production. Therefore, the using of alumina, and fluoride salts in aluminium production was considered. The physical properties of alumina were studied.

  11. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    Science.gov (United States)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  12. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  13. Atomistic modeling of the solid-state chemistry of actinide materials

    Science.gov (United States)

    Shuller, Lindsay C.

    Materials that incorporate actinides are critical to the nuclear fuel cycle, either as nuclear fuels or nuclear waste forms. In this thesis, I examine four materials: i) ThO2-UO2 solid solutions, ii) binary ThO2-CeO2-ZrO2 solid solutions, iii) Np-doped studtite, iv) Np-doped boltwoodite. Computational methods, particularly density functional theory (DFT) calculations and Monte-Carlo (MC) simulations, are used to determine the energetics and structures of these actinide-bearing materials. The solid-solution behavior of nuclear fuels and nuclear waste forms indicate the thermodynamic stability of the material, which is important for understanding the in-reactor fuel properties and long-term stability of used fuel. The ThxU1-xO2 and ThxCe 1-xO2 binaries are almost completely miscible; however, DeltaGmix reveals a small tendency for the systems to exsolve (e.g., DeltaEexsoln(Th xU1-xO2) = 0.13 kJ/(mol cations) at 750 K). Kinetic hindrances (e.g., interfacial energy) may inhibit exsolution, especially at the low temperatures necessary to stabilize the nanoscale exsolution lamellae observed in the ThxU1-xO2 and Ce xZr1-xO2 binaries. Miscibility in the Zr-bearing binaries is limited. At 1400 °C, only 3.6 and 0.09 mol% ZrO2 is miscible in CeO2 and ThO2, respectively. The incorporation of minor amounts of Np5+,6+ into uranium alteration phases, e.g., studtite [UO2O2 (H2O)4] or boltwoodite [K(UO2)(SiO 3OH)(H2O)1.5] , may limit the mobility of aqueous neptunyl complexes released from oxidized nuclear fuels. Np6+-incorporation into studtite requires less energy than Np5+-incorporation (e.g., with source/sink = Np2O5/UO 3 DeltaEincorp(Np6+) = 0.42 eV and DeltaEincorp(Np5+) = 1.12 eV). In addition, Np6+ is completely miscible in studtite at room temperature with respect to a hypothetical Np6+-studtite. Electronic structure calculations provide insight into Np-bonding in studtite. The Np 5f orbitals are within the band gap of studtite, resulting in the narrowing of the band gap

  14. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele

    2013-08-12

    In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  17. Solid tritium breeder materials-Li2O and LiAlO2: a data base review

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Billone, M.C.; Clemmer, R.G.; Fischer, A.K.; Hollenberg, G.W.; Tam, S.W.

    1985-01-01

    The fabrication, properties, and irradiation behavior of Li 2 O and γ-LiAlO 2 are reviewed and assessed to determine the potential of these materials to satisfy the basic solid breeder blanket performance requirements. Based on the data analysis and theoretical modeling, a set of major technical uncertainties is identified. These uncertainties include: fabricability of sphere-pac solid breeders; high fluence and burnup effects on thermal conductivity and microstructural stability; high fluence and burnup effects on tritium diffusion coefficients at low temperature; relationship among purge flow chemistry, surface adsorption, and species of released tritium; and mechanical properties and the loads imposed on the structural materials by the breeder during blanket operation. Resolution of these issues is important in assuring that solid breeder blankets can be designed with confidence

  18. A modern solid waste management strategy--the generation of new by-products.

    Science.gov (United States)

    Fudala-Ksiazek, Sylwia; Pierpaoli, Mattia; Kulbat, Eliza; Luczkiewicz, Aneta

    2016-03-01

    To benefit the environment and society, EU legislation has introduced a 'zero waste' strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms for residual bulk disposal. However, each of the aforementioned facilities generates by-products that must be treated. This project focuses on the leachates from landfill prisms, including modern prism (MP) that meet EU requirements and previous prism (PP) that provide for the storage of permitted biodegradable waste as well as technological wastewaters from sorting unit (SU) and composting unit (CU), which are usually overlooked. The physico-chemical parameters of the liquid by-products collected over 38 months were supported by quantitative real-time PCR (qPCR) amplifications of functional genes transcripts and a metagenomic approach that describes the archaeal and bacterial community in the MP. The obtained data show that SU and especially CU generate wastewater that is rich in nutrients, organic matter and heavy metals. Through their on-site pre-treatment and recirculation via landfill prisms, the landfill waste decomposition process may be accelerated because of the introduction of organic matter and greenhouse gas emissions may be increased. These results have been confirmed by the progressive abundance of both archaeal community and the methyl coenzyme M reductase (mcrA) gene. The resulting multivariate data set, supported by a principal component analysis, provides useful information for the design, operation and risk assessment of modern MSWPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  20. [Recycle of contaminated scrap metal]: Task 1.3.2, Bulk solids feed system. Topical report, October 1993-- January 1996

    International Nuclear Information System (INIS)

    1996-07-01

    A critical requirement in DOE's efforts to recycle, reuse, and dispose of materials from its decontamination and decommissioning activities is the design of a robust system to process a wide variety of bulk solid feeds. The capability to process bulk solids will increase the range of materials and broaden the application of Catalytic Extraction Processing (CEP). The term bulk solids refers to materials that are more economically fed into the top of a molten metal bath than by submerged injection through a tuyere. Molten Metal Technology, Inc. (MMT) has characterized CEP's ability to process bulk solid feed materials and has achieved significant growth in the size of bulk solid particles compatible with Catalytic Extraction Processing. Parametric experimental studies using various feed materials representative of the components of various DOE waste streams have validated design models which establish the reactor operating range as a function of feed material, mass flow rate, and particle size. MMT is investigating the use of a slurry system for bulk solid addition as it is the most efficient means for injecting soils, sludges, and similar physical forms into a catalytic processing unit. MMT is continuing to evaluate condensed phase product removal systems and alternative energy addition sources to enhance the operating efficiency of bulk solids CEP units. A condensed phase product removal system capable of on-demand product removal has been successfully demonstrated. MMT is also investigating the use of a plasma arc torch to provide supplemental heating during bulk solids processing. This comprehensive approach to bulk solids processing is expected to further improve overall process efficiency prior to the deployment of CEP for the recycle, reuse, and disposal of materials from DOE decontamination and decommissioning Activities

  1. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Sorghum bagasse as substrate for cellulase production by submerged and solid-state cultures of Trichoderma

    Directory of Open Access Journals (Sweden)

    Teodor Vintilă

    2014-05-01

    Full Text Available Sweet sorghum bagasse was used as cellulosic substrate in submerged and solid-state cultures of Trichoderma for cellulase production. Submerged liquid cultures (SLC were obtained by inoculation of Mandels media containing 1% cellulose with spores suspension of Trichoderma. Solid-state cultures (SSC were carried out in Erlenmayer flasks, where the substrate was distributed 1 cm layers. Comparing the yields of cellulases produced by Trichoderma strains in the systems applied in this study, using as substrate sorghum bagasse, we found the solid-state cultures as the system to produce the highest cellulase yields. The local strain of T. viride CMIT3.5. express high productivity in SSC system in laboratory conditions. The cellulolytic enzymes have maximum activity at 50oC, pH 4,8. The results recommend solid-state cultures of Trichoderma on sorghum bagasse as systems for producing cellulolytic products with higher activity than submerged cultures of Trichoderma on the same substrate.

  3. Lovastatin production by Aspergillus terreus in solid state and ...

    African Journals Online (AJOL)

    At submerged cultivation of A. terreus 4 and A. terreus 20 on five different glucose and lactose based media the highest titer of lovastatin has been obtained on lactose based media, namely 276 mg/l and 236 mg/l, respectively. Five various types of bran have been tested as solid substrates for production of lovastatin in SSF ...

  4. Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

    Directory of Open Access Journals (Sweden)

    Patrick T. Sekoai

    2016-12-01

    Full Text Available This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 °C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS, was achieved. Therefore, the utilization of immobilized cells could pave the way for a large-scale biohydrogen production process.

  5. Method of pyrolytic decomposition and coking of a mixture of finely distributed solid or semisolid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-09

    A method of pyrolytic decomposition and coking of a mixture of finely distributed of solid or semi-solid carbonaceous material and hydrocarbon oils is disclosed whereby the mixture is exposed to a decomposition temperature and later is brought into the zone of decomposition where vapors are separated from the unvaporized residue and the vapors are exposed to fractional condensation for the purpose of obtaining a light product of distillation. The method is characterized by the mixture being exposed to heating by means of indirect exchange of heat in a heating zone or by means of a direct addition of a hot heat-conducting medium, or by means of both the mentioned indirect exchange of heat and direct heat under such conditions that the unvaporized residue obtained from the thus-heated mixture in the decomposition zone is transformed to solid coke in this zone by being heated to coking temperature in a comparatively thin layer on the surface of the decomposition zone that has been heated to a high temperature.

  6. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    The production of cellulosic ethanol is a biochemical process of not edible biomasses which contain the cellulose. The process involves the use of enzymes to hydrolyze the cellulose in fermentable sugars to finally produce ethanol via fermentative microorganisms (i.e. yeasts). These biomasses...... are the leftover of agricultural productions (straws), not edible crops (giant reed) or wood, thus the ethanol so produced is also called second generation (or 2G ethanol), which differs from the first generation produced from starch (sugar beets mostly). In the industrial production of cellulosic ethanol high...... solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...

  7. Quantum chemistry of solids and materials technology: solid-phase compounds of d- and f-elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1988-01-01

    The results of studies aimed at the development of methods of theoretical calculations of the electronic structure of solid phase compounds of α- and f-elements and the modelling of physicochemical properties of materials developed on their basis, are presented. The possibilities of cluster and zone calculations of the electronic structure of refractory compounds of d-metals with light elements are considered. The regularities of changes in the chemical bond and properties during crystal lattice alloying with metals, metalloids are found. The methods of quantum chemical modeling of optically active and luminescent materials on the base of oxides, fluorides, chalcogenides of d- and f-metals are developed. The compositions of new optically active compositions and protective coatings are suggested. New approaches to the study of magnetic properties of metals, alloys and compounds are developed. The results of calculations of the energy spectra of high-temperature oxide superconductors are given

  8. Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

    International Nuclear Information System (INIS)

    Bannochie, C. J.; Wiedenman, B. J.

    2012-01-01

    Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted to SRNL for digestion and sample preparation followed by a round-robin analysis of the prepared samples by the DWPF Laboratory, F/H Laboratories, and SRNL for S and sulfate. The

  9. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  10. Simple material physics experiment for studying phase diagrams and solid state transformations in alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1977-09-01

    Study of phase diagram and accompanying solid state transformations is essential to determine the best possible composition, manufacturing techniques and physical properties of an alloy. A simple technique having wide applications in metallurgical industry is to study the temperature--time curve of the alloy undergoing cooling with an uniform rate. An experiment which uses this technique is described. It is widely applicable in the fields of materials science, applied solid state physics, physical metallurgy and physical chemistry.

  11. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination

  12. Biohydrogen production from specified risk materials co-digested with cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Li, Chunli; Hao, Xiying; McAllister, Tim A. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Chu, Angus [Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2010-02-15

    Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 x 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L{sup -1} volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g{sup -1} VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = -0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM. (author)

  13. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  14. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst

    International Nuclear Information System (INIS)

    Li, Yuesong; Lian, Shuang; Tong, Dongmei; Song, Ruili; Yang, Wenyan; Fan, Yong; Qing, Renwei; Hu, Changwei

    2011-01-01

    Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg-Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.

  15. Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products.

    Science.gov (United States)

    Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina

    2017-06-01

    The general aim of this study is the recovery of Automotive Shredder Residue (ASR). The ASR light fraction, or car fluff, that was collected at an Italian shredding plant was pyrolysed at various temperatures (500-800°C) in a lab-scale reactor. The condensable gases (tar) and solid residue yields increased with decreasing temperature, and these products were characterized to suggest a potential use to reclaim them. The higher heating value (HHV) of tar was 34-37MJ/kg, which is comparable with those of fossil fuels. Furthermore, the ash content was low (0.06-4.98%). Thus, tar can be used as an alternative fuel. With this prospect, the concentrations of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in tar were determined. The toxicity of tar changes with temperature (1-5ng I-TEQ/g), and the PCDFs significantly contribute to tar toxicity, which was 75-100% with a maximum of 99.6% at 700°C. Regarding the characterization of the solid residue, the low HHV (2.4-3.3MJ/kg) does not make it suitable for energy recovery. Regarding material recovery, we considered its use as a filler in construction materials or a secondary source for metals. It shows a high metal concentration (280,000-395,000mg/kg), which is similar at different pyrolysis temperatures. At 500°C, polycyclic aromatic hydrocarbons (PAHs) were not detected in the solid residue, whereas the maximum total PAH concentration (19.41ng/g, 700°C) was lower than that in fly ash from MSWI. In conclusion, 500°C is a suitable pyrolysis temperature to obtain valuable tar and solid residue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation of Solid Geologic Reference Materials for Uranium-Series Measurements via LA-ICPMS

    Science.gov (United States)

    Matthews, K. A.; Goldstein, S. J.; Norman, D. E.; Nunn, A. J.; Murrell, M. T.

    2008-12-01

    Uranium-series geochemistry and geochronology have a wide range of applications in paleoclimatology, volcanology and other disciplines. To further explore these fields, the geoanalytical community has now begun to exploit recent advances in in situ, micron-scale sampling via laser ablation-ICPMS. Unfortunately, improvements in instrumentation have generally outpaced development of the appropriate geologic reference materials required for in situ U-series work. We will report results for uranium and thorium isotopic ratios and elemental concentrations measured in a suite of solid standards from the USGS (e.g., BCR-2G, BHVO-2G, GSD-1G, MACS-1, NKT-2G), as well as those from the MPI-DING series (e.g., ATHO-G, T1-G, StHs6/80-G). Specifically created for microanalysis, two of these standards are synthetic (GSD-1G, MACS-1) and the remainder are naturally-sourced glasses. They cover a range of compositions, ages (± secular equilibrium), elemental concentrations and expected isotopic ratios. The U-series isotopics of some powdered source materials have been characterized (e.g., BCR-2, BHVO-2), although there is no confirmation of the same ratios in the glass. Bulk measurement of these solid standards via TIMS and solution multicollector-ICPMS can then be used to assess the performance of LA-ICPMS techniques which require matrix-matched solid standards for correction of U-series elemental and isotopic ratios. These results from existing, widely-available reference materials will also facilitate quantification and comparison of U-series data among laboratories in the broader geoscience community.

  17. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms

    Directory of Open Access Journals (Sweden)

    Fortunate Laker

    2018-01-01

    Full Text Available The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  18. Utilization of Solid Waste as a Substrate for Production of Oil from Oleaginous Microorganisms.

    Science.gov (United States)

    Laker, Fortunate; Agaba, Arnold; Akatukunda, Andrew; Gazet, Robert; Barasa, Joshua; Nanyonga, Sarah; Wendiro, Deborah; Wacoo, Alex Paul

    2018-01-01

    The overwhelming demand of oil and fats to meet the ever increasing needs for biofuel, cosmetics production, and other industrial purposes has enhanced a number of innovations in this industry. One such innovation is the use of microorganisms as alternative sources of oil and fats. Organic solid waste that is causing a big challenge of disposal worldwide is biodegradable and can be utilized as substrate for alternative oil production. The study evaluated the potential of isolated yeast-like colonies to grow and accumulate oil by using organic solid waste as substrate. Of the 25 yeast-like colonies isolated from the soil samples collected from three different suburbs in Kampala district, Uganda, 20 were screened positive for accumulation of lipid but only 2 were oleaginous. The NHC isolate with the best oil accumulation potential of 48.8% was used in the central composite design (CCD) experiments. The CCD experimental results revealed a maximum oil yield of 61.5% from 1.25 g/L cell biomass at 10 g/L of solid waste and temperature of 25°C. The study revealed that organic solid waste could be used as a substrate for microbial oil production.

  19. Methane potential of sterilized solid slaughterhouse wastes.

    Science.gov (United States)

    Pitk, Peep; Kaparaju, Prasad; Vilu, Raivo

    2012-07-01

    The aim of the current study was to determine chemical composition and methane potential of Category 2 and 3 solid slaughterhouse wastes rendering products (SSHWRP) viz. melt, decanter sludge, meat and bone meal (MBM), technical fat and flotation sludge from wastewater treatment. Chemical analyses showed that SSHWRP were high in protein and lipids with total solids (TS) content of 96-99%. Methane yields of the SSHWRP were between 390 and 978 m(3) CH(4)/t volatile solids (VS)(added). Based on batch experiments, anaerobic digestion of SSHWRP from the dry rendering process could recover 4.6 times more primary energy than the energy required for the rendering process. Estonia has technological capacity to sterilize all the produced Category 2 and 3 solid slaughterhouse wastes (SSHW) and if separated from Category 1 animal by-products (ABP), it could be further utilized as energy rich input material for anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  1. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  2. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved....

  3. An overview of Engineering Aspects of Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Prabhakar, A.

    2005-01-01

    Full Text Available Solid substrate cultivation (SSC or solid state fermentation (SSF is envisioned as a prominent bio conversion technique to transform natural raw materials into a wide variety of chemical as well as bio-chemical products. This process involves the fermentation of solid substrate medium with microorganism in the absence of free flowing water. Recent developments and concerted focus on SSF enabled it to evolve as a potential bio- technology as an alternative to thetraditional chemical synthesis. SSF is being successfully exploited for food production, fuels, enzymes, antibiotics, animal feeds and also for dye degradation. This paper discusses the various micro and macro level engineering problems associated with SSF and some possible solutions for its full commercial realization.

  4. Study of C/N Ratio Effect on Biogas Production of Carica Solid Waste by SS-AD Method And LS-AD

    Directory of Open Access Journals (Sweden)

    Jos Bakti

    2018-01-01

    Full Text Available Biogas is a renewable energy which can be used as an alternative source to replace fossil fuels. Recently, the use of energy has become an important issue because the oil sources and natural gas are depleting. Utilization of carica waste to produce biogas can reduce the consumption of commercial energy sources such as kerosene as well as the use of firewood. Biogas is produced by the process of organic material digestion by certain anaerobic bacterial activity in anaerobic digester. In this study we studied the influence of LS-AD and SS-AD methods, the effect of C / N ratio on biogas yield obtained and kinetics of biogas production reaction. The study was conducted by making a total solid variation of 7%, 9%, 11%, 13%, 19%, 21%, 23% and C/N ratio 25 and 30. The study started with carica waste collection process and examination of the total composition of solids and water content. Thereafter, calculation and determination of variation of C / N ratio by mixing the substrate with inoculum and urea into the reactor. Observe the volume of biogas produced every two-day intervals. The highest biogas production rate of 1.7825 ml/g TS day was obtained from carica solid waste variable by liquid state anaerobic disgestion and C/N 25.

  5. SOLID-STATE FERMENTATIVE PRODUCTION AND BIOACTIVITY OF FUNGAL CHITOSAN

    Directory of Open Access Journals (Sweden)

    Barry Aigbodion Omogbai

    2013-10-01

    Full Text Available Chitosan production was investigated using a laboratory-scale solid substrate fermentation (SSF technique with four species of fungi: Penicillium expansum, Aspergillus niger, Rhizopus oryzae and Fusarium moniliforme.The peak growth for the organisms was after 16 days. Aspergillus niger had the highest growth with a maximal dry cell biomass of 15.8g/kg after 16 days cultivation on corn straw under solid substrate fermentation. This was closely followed by Rhizopus oryzae (14.6g/kg, Penicillium expansum (13.8g/kg and Fusarium moniliforme (10.6g/kg respectively. The fungus Rhizopus oryzae had the highest chitosan production with a maximum of 8.57g/kg in 16 days under solid substrate fermentation (SSF with a medium containing corn straw. Aspergillus niger showed a modest chitosan yield of 6.8g/kg. Penicillium expansum and Fusarium moniliforme had low chitosan yields of 4.31g/kg and 3.1g/kg respectively. The degree of deacetylation of fungal chitosans ranged between 75.3-91.5% with a viscosity of 3.6-7.2 centipoises (Cp.Chitosan extracted from Rhizopus oryzae was found to have antibacterial activity on some bacterial isolates. At a concentration of 50mg/L, Rhizopus oryzae chitosan paralleled crab chitosan in susceptibility testing against some food-borne bacterial pathogens. Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa and Bacillus subtilis showed inhibition rates of 83.2%, 67.9%, 63.8% and 62.4% respectively in response to 50mg/l Rhizopus oryzae chitosan in 24 h. The rate of inhibition (% increased with increase in chitosan concentration.

  6. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  7. Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact.

    Science.gov (United States)

    Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F

    2013-06-01

    A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    Science.gov (United States)

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    Science.gov (United States)

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Solid waste production and its management in dental clinics in Gorgan, northern Iran.

    Science.gov (United States)

    Nabizadeh, R; Faraji, H; Mohammadi, A A

    2014-10-01

    Waste produced in dental clinics has been the topic of investigations for many years. These waste materials have important health impacts and are hazardous to humans and the environment. To investigating solid waste production and its management in dental clinics in Gorgan, northern Iran. In this cross-sectional study, 45 of 143 public dental practices and 5 of 25 private dental practices were selected and studied. From each clinic, 3 samples were taken and analyzed at the end of successive working days (Tuesday and Wednesday). Samples were manually sorted into 50 components. The measured components were then classified on the basis of their characteristics, hazard potentials, and WHO classification. The total annual amount of dental waste produced in public and private dental practices in Gorgan was 12 015.1 and 3135.0 kg, respectively. Production percentages of infectious, domestic, chemical and pharmaceutical, and toxic waste in public dental practices were 38.4%, 33.7%, 6.6%, and 0.6%, respectively. The percentages for private practices were 8.7%, 10.6%, 1.1%, and 0.1%, respectively. Dental waste management in Gorgan is inadequate; dental waste is not properly segregated, collected, and disposed, as demanded by the WHO. Employees in dentist offices must be trained in correct handling of waste products and the associated risks.

  11. Optimization of Laccase Production using White Rot Fungi and Agriculture Wastes in Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Hendro Risdianto

    2012-07-01

    Full Text Available Laccase has been produced in a solid state fermentation (SSF using white rot fungi and various lignocellulosic based substrates. White rot fungi used were Marasmius sp, Trametes hirsuta, Trametes versicolor and Phanerochaete crysosporium. The solid substrates employed in this research were collected from agriculture waste which were empty fruit bunches (EFB, rice straw, corn cob, and rice husk. The objective of this research was to determine the most promising fungus, the best solid substrate and the optimal conditions for the production of laccase. The results showed that Marasmius sp. on all solid substrates displayed higher laccase activity than that of any other strain of white rot fungi. Marasmius sp. and solid substrate of rice straw demonstrated the highest laccase activity of 1116.11 U/L on day 10. Three significant factors, i.e. pH, temperature and yeast extract concentration were studied by response surface method on laccase production using Marasmius sp and rice straw. The optimized conditions were pH, temperature and yeast extract concentration of 4.9, 31ºC and 0.36 g/L respectively. The fermentation of Marasmius sp. in SSF on agricultural waste shows a great potential for the production of laccase.

  12. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... The feasibility of using banana peel for the production of cellulase by Trichoderma viride GIM 3.0010 in solid-state fermentation was evaluated in this study. The effect of incubation time, incubation temperature, initial moisture content of the medium, inoculum size and supplementation of carbon sources ...

  13. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  14. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    International Nuclear Information System (INIS)

    Schauenburg, H.; Weigert, P.

    1992-01-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.)

  15. Defined media and inert supports : their potential as solid-state fermentation production systems

    NARCIS (Netherlands)

    Ooijkaas, L.P.; Weber, F.J.; Buitelaar, R.M.; Tramper, J.; Rinzema, A.

    2000-01-01

    Solid-state fermentation (SSF) using inert supports impregnated with chemically defined liquid media has several potential applications in both scientific studies and in the industrial production of high-value products, such as metabolites, biological control agents and enzymes. As a result of its

  16. Solid Culturing of Bacillus amyloliquefaciens for α-Amylase Production

    Directory of Open Access Journals (Sweden)

    Dhanya Gangadharan

    2006-01-01

    Full Text Available Fourteen different agroresidues were screened for alpha amylase production using Bacillus amyloliquefaciens ATCC 23842. Among them, wheat bran (WB and groundnut oil cake (GOC in mass ratio of 1:1 was proved as the best substrate source. Supplementation with 0.01 M KH2PO4 and 1 % soluble starch enhanced the enzyme yield considerably. Maximum enzyme recovery from the solid mass was obtained when extracted with 0.1 M acetate buffer, pH=5.0. Maximum enzyme titer expressed as units per mass of dry substrate obtained was 62 470 U/g after 72 hours of fermentation at 37 °C by using the above solid substrate mixture (5 g with the initial moisture of 85 % and inoculated with Bacillus amyloliquefaciens of 2·109 CFU/mL.

  17. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  18. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  19. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  20. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  1. The Role of Solid Lubricants for Brake Friction Materials

    Directory of Open Access Journals (Sweden)

    Werner Österle

    2016-02-01

    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  2. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  3. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  4. Material property characterization of co-products from biofuel industries: Potential uses in value-added biocomposites

    International Nuclear Information System (INIS)

    Diebel, William; Reddy, Murali M.; Misra, Manju; Mohanty, Amar

    2012-01-01

    This paper gives an insight of biofuel production and the status -into the co-products obtained from this industry. Furthermore this work explores the possibility of these co-products as raw materials for value-added uses in material applications. This is achieved by understanding composition, solid density, and moisture content of prominent co-products such as soy meal, DDGS (distillers’ dried grains with solubles) and jatropha meal. Moisture content and density measurements showed no trend. Soy meal has the highest protein content, followed by jatropha and DDGS. Thermal stability of these co-products was analyzed by thermogravimetric analysis (TGA), which revealed that the thermal stabilities are ranked as soy meal>DDGS>jatropha meal. FT-IR spectroscopy was used to understand the functional groups in these meals and it showed that the amide group was prominent in all of these meals. In pursuit of finding value-added uses for these co-products of biofuel industries, biodegradable polymer, i.e. polycaprolactone (PCL), based biocomposites were prepared by melt processing technique using extrusion followed by injection molding. Tensile, flexural and impact properties were evaluated. Also, scanning electron microscopy (SEM) of fractured sections of the biocomposites was examined. -- Highlights: ► This paper gives an insight of biofuel production and its co-products. ► We have characterized biofuel co-products such as soy meal, DDGS and jatropha meal. ► Thermal stability and functional groups of these co-products were determined. ► Polycaprolactone based biocomposites were prepared by melt processing technique. ► Tensile, flexural and impact properties of these biocomposites were evaluated.

  5. Inverse problems in complex material design: Applications to non-crystalline solids

    Science.gov (United States)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  6. Sequential Optimization Methods for Augmentation of Marine Enzymes Production in Solid-State Fermentation: l-Glutaminase Production a Case Study.

    Science.gov (United States)

    Sathish, T; Uppuluri, K B; Veera Bramha Chari, P; Kezia, D

    There is an increased l-glutaminase market worldwide due to its relevant industrial applications. Salt tolerance l-glutaminases play a vital role in the increase of flavor of different types of foods like soya sauce and tofu. This chapter is presenting the economically viable l-glutaminases production in solid-state fermentation (SSF) by Aspergillus flavus MTCC 9972 as a case study. The enzyme production was improved following a three step optimization process. Initially mixture design (MD) (augmented simplex lattice design) was employed to optimize the solid substrate mixture. Such solid substrate mixture consisted of 59:41 of wheat bran and Bengal gram husk has given higher amounts of l-glutaminase. Glucose and l-glutamine were screened as a finest additional carbon and nitrogen sources for l-glutaminase production with help of Plackett-Burman Design (PBD). l-Glutamine also acting as a nitrogen source as well as inducer for secretion of l-glutaminase from A. flavus MTCC 9972. In the final step of optimization various environmental and nutritive parameters such as pH, temperature, moisture content, inoculum concentration, glucose, and l-glutamine levels were optimized through the use of hybrid feed forward neural networks (FFNNs) and genetic algorithm (GA). Through sequential optimization methods MD-PBD-FFNN-GA, the l-glutaminase production in SSF could be improved by 2.7-fold (453-1690U/g). © 2016 Elsevier Inc. All rights reserved.

  7. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  8. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  9. A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids.

    Science.gov (United States)

    da Silva, Jéssica Bassi; Khutoryanskiy, Vitaliy V; Bruschi, Marcos L; Cook, Michael T

    2017-08-07

    Mucosa-mimetic materials are synthetic substrates which aim to replace animal tissue in mucoadhesion experiments. One potential mucosa-mimetic material is a hydrogel comprised of N-acryloyl-d-glucosamine and 2-hydroxyethylmethacrylate, which has been investigated as a surrogate for animal mucosae in the mucoadhesion testing of tablets and solution formulations. This study aims to investigate the efficacy of this mucosa-mimetic material in the testing of thermogelling semi-solid formulations, which transition from solution to gel upon warming. Two methods for assessing mucoadhesion have been used; tensile testing and a flow-through system, which allow for investigation under dramatically different conditions. It was found that the mucosa-mimetic material was a good surrogate for buccal mucosa using both testing methods. This material may be used to replace animal tissue in these experiments, potentially reducing the number of laboratory animals used in studies of this type. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Correlation of macroscopic material properties with microscopic nuclear data

    International Nuclear Information System (INIS)

    Simons, R.L.

    1981-01-01

    Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area

  11. Neutron Cross Section Libraries for Cryogenic Aromatic Moderator Materials

    International Nuclear Information System (INIS)

    Cantargi, Florencia; Granada, J.R.; Sbaffoni, Maria Monica

    2008-01-01

    The dynamics of a set of aromatic hydrocarbons, such as benzene, toluene, mesitylene and a 3:2 mixture (by volume) of mesitylene and toluene, all of them in solid phase, was studied as potential moderator materials for cold neutron sources. Cross section libraries were generated for hydrogen bounded in those materials, at several temperatures in ACE format, and they were used in MCNP calculations to analyze their neutron production compared with traditional materials like solid methane and liquid hydrogen. In particular, cross section libraries were generated at 20 K, which is the operating temperature of the majority of the existing cold neutron sources. Although solid methane is the best moderator in terms of cold neutron production, it has very poor radiation resistance, causing spontaneous burping even at fairly low doses. Such effect is considerably reduced in the aromatic hydrocarbons. On the other hand, all of them show a similar and significant neutron production, with the exception of benzene. Even though those aromatic materials are very easy to handle, the solid phases that produce an enhanced flux of cold neutrons correspond to amorphous structures rich in low-energy excitations, and they can be created through lengthy cooling processes requiring in many cases additional annealing stages. The 3:2 mesitylene-toluene mixture, that forms in a simple and direct manner the appropriate disordered structure, constitutes an excellent cryogenic moderator material, as it is able to produce an intense flux of cold neutrons while presenting high resistance to radiation, thus conforming a new and advantageous alternative to traditional moderator materials. (authors)

  12. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    International Nuclear Information System (INIS)

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-01-01

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides

  13. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Shah, Rohan M; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H

    2017-08-01

    The microwave-assisted production of solid lipid nanoparticles (SLNs) is a novel technique reported recently by our group. The small particle size, solid nature and use of physiologically well-tolerated lipid materials make SLNs an interesting and potentially efficacious drug carrier. The main purpose of this research work was to investigate the suitability of microwave-assisted microemulsion technique to encapsulate selected ionic drug substances such as miconazole nitrate and econazole nitrate. The microwave-produced SLNs had a small size (250-300nm), low polydispersity (microwave-produced SLNs. Data fitting of drug release data revealed that the release of both drugs from microwave-produced SLNs was governed by non-Fickian diffusion indicating that drug release was both diffusion- and dissolution- controlled. Anti-fungal efficacy of drug-loaded SLNs was evaluated on C. albicans. The cell viability studies showed that cytotoxicity of SLNs was concentration-dependent. These encouraging results suggest that the microwave-assisted procedure is suitable for encapsulation of ionic drugs and that microwave-produced SLNs can act as potential carriers of antifungal drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Thermophilic cellulase production by Taralomyces sp. in solid-state cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N; Kurisu, H; Nagai, S

    1981-01-01

    The effects of substrate moisture content and culture temperature on the production of carboxymethyl cellulase (CMCase) and avicel hydrolyzing activity (avicelase) by Taralomyces sp. were studied in solid state cultivation using wheat bran. The moisture content of wheat bran was maintained at 40, 45, 50, 55 and 58/sup 0/C throughout the solid state cultures. The maximum avicelase formation was observed when the substrate moisture content and the culture temperature were maintained at 60% and 45/sup 0/C, respectively. The maximum CMCase formation was observed when the moisture content was maintained between 60 and 70% at 50/sup 0/C. Optimum reaction temperatures of CMCase and avicelase were 80 and 60/sup 0/C, respectively.

  15. Sulfur‐Limonene Polysulfide: A Material Synthesized Entirely from Industrial By‐Products and Its Use in Removing Toxic Metals from Water and Soil

    Science.gov (United States)

    Crockett, Michael P.; Evans, Austin M.; Worthington, Max J. H.; Albuquerque, Inês S.; Slattery, Ashley D.; Gibson, Christopher T.; Campbell, Jonathan A.; Lewis, David A.; Bernardes, Gonçalo J. L.

    2015-01-01

    Abstract A polysulfide material was synthesized by the direct reaction of sulfur and d‐limonene, by‐products of the petroleum and citrus industries, respectively. The resulting material was processed into functional coatings or molded into solid devices for the removal of palladium and mercury salts from water and soil. The binding of mercury(II) to the sulfur‐limonene polysulfide resulted in a color change. These properties motivate application in next‐generation environmental remediation and mercury sensing. PMID:26481099

  16. PRODUCTION OF AN EXTRACELLULAR CELLOBIASE IN SOLID STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ruchi Agrawal

    2013-02-01

    Full Text Available The bioethanol production from lignocellulosic biomass has attracted wide interest globally in last decade. One of the main reasons for the high cost of bioethanol production from lignocellulosic biomass is the expensive enzymes involved in enzymatic hydrolysis of cellulose (cellulase. The utilization of agro-industrial waste as a potential substrate for producing enzymes may serve a dual purpose of reducing the environmental pollution along with producing a high value commercial product. Twelve different agro-industrial wastes were evaluated for extracellular cellobiose or β-glucosidase production by a mutant of Bacillus subtilis on solid state fermentations (SSF. The Citrus sinensis peel waste was found to be the most suitable substrate with highest BGL titre (35 U/gds. Optimum incubation time, inoculum size, moisture content and volume of buffer for enzyme extraction were 72 h, 40 % v/w, 10 mL and 20 mL respectively.

  17. Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C. J.

    1995-02-01

    Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

  18. Theoretical backgrounds of non-tempered materials production based on new raw materials

    Science.gov (United States)

    Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.

    2018-03-01

    One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.

  19. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  20. Destructive hydrogenation of carbonaceous material, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-30

    A process is described for the destructive hydrogenation of solid distillable carbonaceous material, consisting of mixing the raw material in a paste by means of a mixture practically free from asphalt, from an oil obtained initially from the products coming out of the reaction space as vapor, particularly heavy oil, and oils obtained by pushing just to the state of pitch or coke the distillation of all the products which come out of the reaction space in any state but the vapor and which restrain some of the raw material intact and part of the products.

  1. Enhanced production of lovastatin by Omphalotus olearius (DC.) Singer in solid state fermentation.

    Science.gov (United States)

    Atlı, Burcu; Yamaç, Mustafa; Yıldız, Zeki; Isikhuemnen, Omoanghe S

    2015-01-01

    Although lovastatin production has been reported for different microorganism species, there is limited information about lovastatin production by basidiomycetes. The optimization of culture parameters that enhances lovastatin production by Omphalotus olearius OBCC 2002 was investigated, using statistically based experimental designs under solid state fermentation. The Plackett Burman design was used in the first step to test the relative importance of the variables affecting production of lovastatin. Amount and particle size of barley were identified as efficient variables. In the latter step, the interactive effects of selected efficient variables were studied with a full factorial design. A maximum lovastatin yield of 139.47mg/g substrate was achieved by the fermentation of 5g of barley, 1-2mm particle diam., at 28°C. This study showed that O. olearius OBCC 2002 has a high capacity for lovastatin production which could be enhanced by using solid state fermentation with novel and cost-effective substrates, such as barley. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.

    Science.gov (United States)

    Pinheiro, B C A; Holanda, J N F

    2013-03-30

    This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  4. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang

    2010-07-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  5. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-11-19

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination.

  6. Importance of material and friction characterisation for FE-aided process design of hybrid bevel gears

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Matthias, T.

    2017-10-01

    Solid-forming components are often used in areas where they are subjected to very high loads. For most solid components locally divergent and sometimes contradictory requirements exist. Despite these contradictory requirements, almost exclusively monomaterials are nowadays used for the production of solid components. These components often reach their material-specific limits because of increasing demands on the products. Thus a significant increase in product quality and profitability would result from combining different materials in order to create tailored properties. In the Collaborative Research Center (CRC) 1153 "Tailored Forming" at the Leibniz Universität Hannover, this topic is investigated. The primary objective of the CRC 1153 is to develop and investigate new tailored manufacturing processes to produce reliable hybrid solid semi-finished components. In contrast to existing production processes of hybrid solid components, semi-finished workpieces in the CRC 1153 are joined before the forming phase. Thus, it will be possible to produce complex and highly stressable solid components made of different metals, which cannot be produced yet with the current used technologies. In this work the material and friction characteristics are investigated and the forming tool for the production of hybrid bevel gears made of different steel alloys (C22 and 41Cr4) is designed by numerical simulations. For this purpose, flow curves of both materials are determined by means of upsetting tests at process-related forming temperatures and strain rates. The temperature range for the forming process of the semi-finished product is determined by comparing the respective flow curves regarding similar flow stresses. Furthermore, the friction between the tool and the joining materials is investigated by means of ring upsetting tests at a process-relevant temperature. Finally, a stress analysis of the forming tools is carried out.

  7. Structural Materials for Efficient Energy Production Systems

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    2009-01-01

    Increasing the efficiency of electric power production systems implies increasing the operating temperature above those of systems currently in operation. The viability of new systems depends completely on the availability of structural materials that withstand the operating conditions specified in the design: adequate features under mechanical stress at high temperatures and compatibility with the medium. In the case of nuclear systems (fission, fusion), an important requirement is their response to irradiation induced damage. In spite of the significant differences that exist in the design of nuclear power plants, fusion reactors, innovative fission systems, supercritical fossil plants, biomass plants, solar concentration thermal plants, etc., all of them have as a common characteristic the use of resistant materials at high temperatures. The qualification of existing materials for the new and more demanding operating conditions and the development of new materials is one of the challenges faced by the electric power production industry. The science of materials and the understanding of the basic processes that take place in structural materials on exposure to the operating conditions of energy production systems are the tools that are available to obtain safe and economically viable solutions. (Authors) 4 refs.

  8. A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks.

    Science.gov (United States)

    Kajita, Seiji; Ohba, Nobuko; Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-12-05

    Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last few decades. Especially to solid systems, however, their insufficient representations of three dimensionality of field quantities such as electron distributions and local potentials have critically hindered broad and practical successes of the solid-state MI. We develop a simple, generic 3D voxel descriptor that compacts any field quantities, in such a suitable way to implement convolutional neural networks (CNNs). We examine the 3D voxel descriptor encoded from the electron distribution by a regression test with 680 oxides data. The present scheme outperforms other existing descriptors in the prediction of Hartree energies that are significantly relevant to the long-wavelength distribution of the valence electrons. The results indicate that this scheme can forecast any functionals of field quantities just by learning sufficient amount of data, if there is an explicit correlation between the target properties and field quantities. This 3D descriptor opens a way to import prominent CNNs-based algorithms of supervised, semi-supervised and reinforcement learnings into the solid-state MI.

  9. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  10. Solid substrate fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tengerdy, R P

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  11. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    Science.gov (United States)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  12. Production of biogas from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Zuer, J.

    1980-12-01

    Different crop residues from agriculture and horticulture were investigated for feasibility of producing biogas. The anaerobic fermentation has been performed in batch system fermentation reactors (5 liters) at mesophilic conditions (35 degrees C). Content of volatile solids (VS/TS) in raw materials varied from 78.5 percent in silage from top of sugar beet to 97.3 percent in straw of rye. The highest content of lignin was found in stalks of Jerusalem artichoke (49.6 percent), stalks of horse bean (47.6 percent) and the lowest in leaves of cauliflower (9.5 percent), top of sugar beet and leaves of cabbage (11 percent) in both. Ratio of carbon to nitrogen was the highest in the straw of rye (60) and the lowest in silage from top of sugar beet (11) and in leaves of cauliflower (11). Rate of biogas production during the first 13 days of fermentation was about 27 liters per kg TS per day, achieved from top of sugar beet. Typical mean rate of biogas production, about 9 liters per kg TS per day, was performed during the first 40 days of retention time from straw of wheat and stalks of rape. Top of sugar beet and manure slurry have had the shortest effective retention time ca 20 days. Maximum total yield of biogas (427.0 liters per kg TS) was achieved from top of sugar beet. From manure slurry 257.5 liters biogas per kg TS was obtained. Methane content in biogas produced during the final 7 days of retention time was the highest from silage from top of artichoke (72.8 percent), stalks of horse bean (71.6 percent) and straw of wheat (71.0 percent). The lowest percentage of methane (59.0 percent) was found in biogas from top of sugar beet.

  13. Kinetics of nitrous oxide production by denitrification in municipal solid waste.

    Science.gov (United States)

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei

    2015-04-01

    As one of the Nitrous Oxide (N2O) production pathways, denitrification plays an important role in regulating the emission of N2O into the atmosphere. In this study, the influences of different substrate concentrations and transient conditions on the denitrification rate and N2O-reducing activities were investigated. Results revealed that N2O production rates (i.e. denitrification rates) were stimulated by increased total organic carbon (TOC) concentration, while it was restrained under high oxygen concentrations. Moreover, the impact of nitrate concentrations on N2O production rates depended on the TOC/NO3--N ratios. All the N2O production rate data fitted well to a multiplicative Monod equation, with terms describing the influence of TOC and nitrate concentrations, and an Arrhenius-type equation. Furthermore, results demonstrated that high temperatures minimized the N2O-reducing activities in aged municipal solid waste, resulting in an accumulation of N2O. On the other hand, a transient condition caused by changing O2 concentrations may strongly influence the N2O production rates and N2O-reducing activities in solid waste. Finally, based on the results, we believe that a landfill aeration strategy properly designed to prevent rising temperatures and to cycle air injection is the key to reducing emissions of N2O during remediation of old landfills by means of in situ aeration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Some solid state properties of LiF:Mg,Cu,P TL-materials

    Energy Technology Data Exchange (ETDEWEB)

    Prokert, K [Dresden Univ. of Technology (Georgia). Inst. of Radiation Protection

    1996-12-31

    This paper describes some investigations of solid state characteristics of a LiF:Mg,Cu,P thermoluminofor. The investigations were carried out with LiF:Mg,Cu,P-thermoluminescence (TL)-material prepared by the chemical institute of the Moscow State University in form of powder and sintered pellets. Following methods were used: (1) Studies of the chemical composition was carried out by x-ray fluorescence analysis with `SPECTRO-X-LAB`-equipment with Rh-anode, B{sub 4}C-polarizator, LN{sub 2}-cooled 30 mm{sup 2} Si(Li)-detector with Be-window (energy resolution 155 keV for Mn-k{sub {alpha}}-radiation). The software of the equipment permits a qualitative and quantitative determination of elements with atomic numbers >10; (2) investigations of the crystal structure were taken by x-ray-diffractometry with a SIEMENS-diffractometer D 500 using Cu-k{sub {alpha}}-radiation. The integrated software permits to analyze the crystalline phases using the data of the measured material by comparison with standards spectra of various pure substances. The results of determination of the chemical composition and the crystal structure show that in the thermoluminofor LiF:Mg,Cu,P, besides the basic material LiF also Li{sub 3}PO{sub 4}- and Li{sub 4}P{sub 2}O{sub 7}-crystal regions exists. The occurrence of the two lithium phosphate phases follow from the high ammonium phosphate content in the mixture for the thermoluminofor production. The formation of the various lithium phosphates depends from state of dehydration of phosphoric acids, created by thermal decomposition of NH{sub 4}H{sub 2}PO{sub 4} before their reactions with LiF start. Therefore the content of these compounds can differ if thermoluminofors are prepared under various conditions. The maintenance of the needed equilibrium of special structures in the material depends on the preparation procedure, on the reading and annealing methods. Typically for such an equilibrium is its poor thermal stability. (Abstract Truncated)

  15. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  16. Solid Waste Production and Its Management in Dental Clinics in Gorgan, Northern Iran

    Directory of Open Access Journals (Sweden)

    R Nabizadeh

    2014-09-01

    Full Text Available Background: Waste produced in dental clinics has been the topic of investigations for many years. These waste materials have important health impacts and are hazardous to humans and the environment. Objective: To investigating solid waste production and its management in dental clinics in Gorgan, northern Iran. Methods: In this cross-sectional study, 45 of 143 public dental practices and 5 of 25 private dental practices were selected and studied. From each clinic, 3 samples were taken and analyzed at the end of successive working days (Tuesday and Wednesday. Samples were manually sorted into 50 components. The measured components were then classified on the basis of their characteristics, hazard potentials, and WHO classification. Results: The total annual amount of dental waste produced in public and private dental practices in Gorgan was 12 015.1 and 3135.0 kg, respectively. Production percentages of infectious, domestic, chemical and pharmaceutical, and toxic waste in public dental practices were 38.4%, 33.7%, 6.6%, and 0.6%, respectively. The percentages for private practices were 8.7%, 10.6%, 1.1%, and 0.1%, respectively. Conclusion: Dental waste management in Gorgan is inadequate; dental waste is not properly segregated, collected, and disposed, as demanded by the WHO. Employees in dentist offices must be trained in correct handling of waste products and the associated risks.

  17. Method of distilling solid materials, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Ramen, A

    1917-09-04

    A method of distilling compact materials, such as shales, containing volatile matter, is characterized by heating the material in an oven or other apparatus or in a section or zone of same in the presence of some condensable gas (such as steam) which is indifferent to the vapors distillated during the heating of the material. The gas together with these products is conducted through a condensation apparatus, containing water or some other liquid, where the volatile matters are condensed. The steam which is produced in the gas regenerator is, after preheating, forced through the hot remaining residue from the distillation either in the same retort or in another retort in order to heat further this residue for the purpose of making it possible for the steam, by being forced through freshly charged material in the first oven or apparatus to bring about its distillation. The patent contains ten additional claims.

  18. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  19. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  20. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  1. Developments of solid materials for UF6 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-11-15

    This project demonstrated that a device using majority Commercial Off the Shelf (COTS) components could be used to collect uranium hexafluoride samples safely from gaseous or solid sources. The device was based on the successful Cristallini method developed by ABACC over the past 10 years. The system was designed to capture and store the UF6 as an inert fluoride salt to ease transportation regulations. In addition, the method was considerably faster than traditional cryogenic methods, collected enough material to perform analyses without undue waste, and could be used either inside a facility or in the storage yard.

  2. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material

  3. Evaluation of Productivity of Zymotis Solid-State Bioreactor Based on Total Reactor Volume

    Directory of Open Access Journals (Sweden)

    Oscar F. von Meien

    2002-01-01

    Full Text Available In this work a method of analyzing the performance of solid-state fermentation bioreactors is described. The method is used to investigate the optimal value for the spacing between the cooling plates of the Zymotis bioreactor, using simulated fermentation data supplied by a mathematical model. The Zymotis bioreactor has good potential for those solid-state fermentation processes in which the substrate bed must remain static. The current work addresses two design parameters introduced by the presence of the internal heat transfer plates: the width of the heat transfer plate, which is governed by the amount of heat to be removed and the pressure drop of the cooling water, and the spacing between these heat transfer plates. In order to analyze the performance of the bioreactor a productivity term is introduced that takes into account the volume occupied within the bioreactor by the heat transfer plates. As part of this analysis, it is shown that, for logistic growth kinetics, the time at which the biomass reaches 90 % of its maximum possible value is a good estimate of the optimum harvesting time for maximizing productivity. Application of the productivity analysis to the simulated fermentation results suggests that, with typical fast growing fungi ( = 0.324 h–1, the optimal spacing between heat transfer plates is of the order of 6 cm. The general applicability of this approach to evaluate the productivity of solid-state bioreactors is demonstrated.

  4. Reusable Solid Rocket Motor - Accomplishments, Lessons, and a Culture of Success

    Science.gov (United States)

    Moore, Dennis R.; Phelps, Willie J.

    2011-01-01

    hardware segments. The reusable solid rocket motor achieved significant reliability via process control, ground test programs, and postflight assessment. Process control is mandatory for a solid rocket motor as an acceptance test of the delivered product is not feasible. Process control included process failure modes and effects analysis, statistical process control, witness panels, and process product integrity audits. Material controls and inspections were maintained throughout the sub tier vendors. Material fingerprinting was employed to assess any drift in delivered material properties. The RSRM maintained both full scale and sub-scale test articles. These enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. These unique challenges, features of the reusable solid rocket motor, materials and manufacturing issues, and design improvements will be discussed in the paper.

  5. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  6. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  7. Design to Robotic Production for Informed Materialization Processes

    Directory of Open Access Journals (Sweden)

    Sina Mostafavi

    2017-12-01

    Full Text Available Design to Robotic Production (D2RP establishes links between digital design and production in order to achieve informed materialization at an architectural scale. D2RP research is being discussed under the computation, automation and materialization themes, by reference to customizable digital design means, robotic fabrication setups and informed materialization strategies implemented by the Robotic Building group at Hyperbody, TU Delft.

  8. Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors

    International Nuclear Information System (INIS)

    Mattinen, Ulriika; Rabiej, Sylwia; Lewenstam, Andrzej; Bobacka, Johan

    2011-01-01

    Carbon cloth was studied as solid-contact material in potentiometric ion sensors by using electrochemical impedance spectroscopy and potentiometry. The ion-to-electron transduction process was studied by electrochemical impedance spectroscopy by using a two-electrode symmetrical cell where a liquid electrolyte was sandwiched between two solid electrodes, including bare glassy carbon (GC), GC/carbon cloth and GC/poly(3,4-ethylenedioxythiophene). Impedance data for different electrode/electrolyte combinations were evaluated and compared. Solid-contact K + -selective electrodes were fabricated by coating the carbon cloth with a conventional plasticized PVC-based K + -selective membrane via drop casting. These K + -sensors showed proper analytical performance and acceptable long-term potential stability (potential drift ≈ 1 mV/day). Solid contact reference electrodes were fabricated in an analogous manner by coating the carbon cloth with a plasticized PVC membrane containing a moderately lipophilic salt. The results indicate that carbon cloth can be used as a solid-contact material in potentiometric ion sensors and pseudo-reference electrodes.

  9. Solid-solid phase change thermal storage application to space-suit battery pack

    Science.gov (United States)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  10. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  11. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.

    Science.gov (United States)

    Robledo-Narváez, Paula N; Muñoz-Páez, Karla M; Poggi-Varaldo, Hector M; Ríos-Leal, Elvira; Calva-Calva, Graciano; Ortega-Clemente, L Alfredo; Rinderknecht-Seijas, Noemí; Estrada-Vázquez, Carlos; Ponce-Noyola, M Teresa; Salazar-Montoya, J Alfredo

    2013-10-15

    Hydrogen is a valuable clean energy source, and its production by biological processes is attractive and environmentally sound and friendly. In México 5 million tons/yr of agroindustrial wastes are generated; these residues are rich in fermentable organic matter that can be used for hydrogen production. On the other hand, batch, intermittently vented, solid substrate fermentation of organic waste has attracted interest in the last 10 years. Thus the objective of our work was to determine the effect of initial total solids content and initial pH on H2 production in batch fermentation of a substrate that consisted of a mixture of sugarcane bagasse, pineapple peelings, and waste activated sludge. The experiment was a response surface based on 2(2) factorial with central and axial points with initial TS (15-35%) and initial pH (6.5-7.5) as factors. Fermentation was carried out at 35 °C, with intermittent venting of minireactors and periodic flushing with inert N2 gas. Up to 5 cycles of H2 production were observed; the best treatment in our work showed cumulative H2 productions (ca. 3 mmol H2/gds) with 18% and 6.65 initial TS and pH, respectively. There was a significant effect of TS on production of hydrogen, the latter decreased with initial TS increase from 18% onwards. Cumulative H2 productions achieved in this work were higher than those reported for organic fraction of municipal solid waste (OFMSW) and mixtures of OFMSW and fruit peels waste from fruit juice industry, using the same process. Specific energetic potential due to H2 in our work was attractive and fell in the high side of the range of reported results in the open literature. Batch dark fermentation of agrowastes as practiced in our work could be useful for future biorefineries that generate biohydrogen as a first step and could influence the management of this type of agricultural wastes in México and other countries and regions as well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  13. Inulinase production in a packed bed reactor by solid state fermentation.

    Science.gov (United States)

    Dilipkumar, M; Rajamohan, N; Rajasimman, M

    2013-07-01

    In this work, production of inulinase was carried out in a packed bed reactor (PBR) under solid state fermentation. Kluyveromyces marxianus var. marxianus was used to produce the inulinase using pressmud as substrate. The parameters like air flow rate, packing density and particle size were optimized using response surface methodology (RSM) to maximize the inulinase production. The optimum conditions for the maximum inulinase production were: air flow rate - 0.82 L/min, packing density - 40 g/L and particle size - 0.0044 mm (mesh - 14/20). At these optimized conditions, the production of inulinase was found to be 300.5 unit/gram of dry substrate (U/gds). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  16. Conceptual and economic foundations of strategic management of solid waste products

    Directory of Open Access Journals (Sweden)

    Leyla Borisovna Leonova

    2015-11-01

    Full Text Available The article reviews existing global concept in the field of waste production and consumption.The purpose of this investigation is the development of a new hierarchy of waste mana-gement and adjustment of the existing waste management strategy, acceptable to Russia. To analyze the current situation of waste production and consumption there was studied foreign experience in waste management and considered the situation of waste in the Russian Federation and Sverdlovsk region. Analytical, statistical and theoretical methods of work were used.The new hierarchy of desirable waste management is based on the following order: selective collection of waste, particularly household, their recycling and thereby minimize them, and then their treatment and further disposal. This new hierarchy will significantly reduce the burden on the environment and land resources.The revised strategy for solid waste management should consist of 6 blocks, ranked in a logical sequence: organizational, legal, science and research, economic, controlling, educational. Each of them includes a list of activities. Term strategy implementation is 5 years, followed by a possible prolongation.To improve the efficiency of work in the field of solid waste management in Russia must be created a new waste recycling industry, which can be provided by necessary infrastructure for the collection, transportation, recycling and disposal of solid waste products. It is also required to monitor environmental pollution waste using geographic information systems and provide educational work among population and the leaders of the industrial and communal enterprises.In the article in addition to the world concept the authors took into account an economic component, which includes analysis of the costs of environmental protection measures and economic damage caused by waste disposal. The paper also provides an industry deformed structure of the Russian economy, which explains the inability to

  17. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    Science.gov (United States)

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  18. Glass-ceramic material and method of making

    Science.gov (United States)

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  19. Development of a new cellular solid breeder for enhanced tritium production

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Williams, Brian; Ghoniem, Nasr; Ghoniem, Adam; Shimada, Masashi; Ying, Alice

    2016-01-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  20. Development of a new cellular solid breeder for enhanced tritium production

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: sharams@gmail.com [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Williams, Brian [Ultramet, Pacoima, CA 91331-2210 (United States); Ghoniem, Nasr [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Ghoniem, Adam [Digital Materials Solutions, Inc., Westwood, CA 90024 (United States); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ying, Alice [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States)

    2016-11-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  1. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Tiihonen, J. [Imatran Voima Oy, Vantaa (Finland). R and D Section

    1995-12-31

    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  2. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Tiihonen, J [Imatran Voima Oy, Vantaa (Finland). R and D Section

    1996-12-31

    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  3. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Energy recovery from municipal solid waste by refuse derived fuel production in Malaysia

    International Nuclear Information System (INIS)

    Sanaz Saheri; Noorezlin Ahmad Baseri; Masoud Aghajani Mir; Malmasi Saeed

    2010-01-01

    Energy recovery from municipal solid waste (MSW) is so beneficial both for the energy and for the positive environmental implications. Mainly related to the saving of primary energy derived from fossil fuel. Malaysia as a fast growing population country has the average amount of municipal solid waste (MSW) generated around 0.5-0.8 kg/person/day and it has been increased to 1.7 kg/person/day in major cities. Regarding characterization exercise, the main parts of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80 % of the waste by weight. Furthermore, the average moisture content of the MSW was about 55 %, making incineration a challenging mission. In addition waste sectors in Malaysia contributes to 1.3 million ton of CH 4 compare to total CH 4 emission which is 2.2 MT. In order to overcome waste problem considering other technical, environmental and economical methods seems to be necessarily. Resource recovery centers recovers the maximum proportion of recyclable and recoverable resources from the mixed municipal solid waste .The resource recovery process itself is one of the step-by-step segregation and elimination of all non-combustibles , and separation of the combustibles in the desired form of fuel for good combustion. Then, a further mechanical separation process converts combustible materials to refuse derived fuel (RDF) with moisture content between 20 and 30 % and an average calorific fuel value of about 3450 kcal/kg. So, the aim of this paper is taking into account resource recovery from waste using refuse derived fuel as a secondary resource with regarding advantages and disadvantages of this kind of energy production in Malaysia as a developing country. (author)

  5. Application of mathematical modelling when determining the parameters effect of biomass densification process on solid biofuels quality

    Directory of Open Access Journals (Sweden)

    Križan Peter

    2018-01-01

    Full Text Available The main aim of this paper is to present the design of experiment (DOE and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.

  6. Agmatine Production by Aspergillus oryzae is Elevated by Low pH During Solid-State Cultivation.

    Science.gov (United States)

    Akasaka, Naoki; Kato, Saori; Kato, Saya; Hidese, Ryota; Wagu, Yutaka; Sakoda, Hisao; Fujiwara, Shinsuke

    2018-05-25

    Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pH to 3.0, 3.5, and 3.2, respectively, resulting in further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol min -1 μg -1 ) at pH 3.0 at 30°C; that from a submerged culture exhibited an extremely low activity (oryzae , even though A. oryzae lacks ADC orthologs and, instead, possesses four ornithine decarboxylases (ODC1-4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH 4.0>), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production. IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding for arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study, we first demonstrated that l-arginine was a feasible substrate for agmatine production by the fungus Aspergillus oryzae RW. We observed that the productivity of agmatine by A. oryzae RW was elevated at low pH only during solid-state cultivation. A. oryzae is utilized in the production of various oriental fermented foods. The

  7. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang; Melas-Kyriazi, John; Cevey-Ha, Ngoc-Le; Chittibabu, Kethinni G.; Zakeeruddin, Shaik M.; Grä tzel, Michael; McGehee, Michael D.

    2010-01-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells

  8. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.

  9. Combustion of large solid fuels in cement rotary kilns

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma

    (MBM), waste wood, sewage sludge, paper and plastics. The alternative fuel share of the total energy varies significantly from region to region, but the general trend is towards increased alternative fuel utilization. Solid alternative fuels typically have physical and chemical properties that differ...... from traditional solid fossil fuels. This creates a need for new combustion equipment or modification of existing kiln systems, because alternative fuels may influence process stability and product quality. Process stability is mainly influenced by exposing the raw material bed in the rotary kiln...... oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the material inlet end of rotary kilns due to the limited residence time. Several parameters control the rate of char oxidation: a) bulk oxygen concentration, b) mass transfer rate of oxygen to char particles...

  10. Bioprocess optimization for production of thermoalkali-stable protease from Bacillus subtilis K-1 under solid-state fermentation.

    Science.gov (United States)

    Singh, Satbir; Bajaj, Bijender Kumar

    2016-10-02

    Cost-effective production of proteases, which are robust enough to function under harsh process conditions, is always sought after due to their wide industrial application spectra. Solid-state production of enzymes using agro-industrial wastes as substrates is an environment-friendly approach, and it has several advantages such as high productivity, cost-effectiveness, being less labor-intensive, and less effluent production, among others. In the current study, different agro-wastes were employed for thermoalkali-stable protease production from Bacillus subtilis K-1 under solid-state fermentation. Agricultural residues such as cotton seed cake supported maximum protease production (728 U ml(-1)), which was followed by gram husk (714 U ml(-1)), mustard cake (680 U ml(-1)), and soybean meal (653 U ml(-1)). Plackett-Burman design of experiment showed that peptone, moisture content, temperature, phosphates, and inoculum size were the significant variables that influenced the protease production. Furthermore, statistical optimization of three variables, namely peptone, moisture content, and incubation temperature, by response surface methodology resulted in 40% enhanced protease production as compared to that under unoptimized conditions (from initial 728 to 1020 U ml(-1)). Thus, solid-state fermentation coupled with design of experiment tools represents a cost-effective strategy for production of industrial enzymes.

  11. Learning about materials science and technology by deconstructing modern products

    DEFF Research Database (Denmark)

    Horsewell, Andy

    Get the attention of young engineering students, interest and inspire them. Encourage them to think about materials science and technology by looking at the consumer products and gadgets that interest them. Analyse what modern products are constructed of, and how and why the materials...... teaching encourages and demands constant modernisation of the course and the materials being presented. A consideration of material and process selection for components in a modern product can be a dynamic starting point for a course on materials science and engineering; providing inspiration and showing...... and the processes have been chosen in their manufacture i.e. deconstruct modern products. Suitable items can easily be found in personal communication and entertainment, including all manner of sports goods. Further, the current pace of materials product development ensures that using these objects to focus...

  12. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  13. shaping-lathe headrig yields solid and molded-flake hardwood products

    Science.gov (United States)

    Peter Koch; R.A. Caughey

    1978-01-01

    A shaping-lathe headrig, operated one shift daily, can be used to manufacture hardwood cants to be resawed into pallet shook, one-piece and dowel-laminated crossties, posts and rails, and other solid wood products in lengths from 6 to 9 feet. Residual flakes machined by the headrig supply a three-shift operation in which molded pallets and 4- by 8-foot sheets of...

  14. Pyrolysis oil from carbonaceous solid wastes in Malaysia

    International Nuclear Information System (INIS)

    Islam, M.N.; Jamil, M.K.; Ani, F.N.; Zailani, R.

    2000-01-01

    The agro-industrial sector of Malaysia produces a huge amount of oil palm and paddy rice. These generate a significant amount of renewable biomass solid wastes in the forms of oil palm shell and rice husk. Apart from this a huge quantity of scrap tyre is generated from the country's faster increasing usage of transportation vehicles like motorcycle, car, bus and lorries. These wastes are producing pollution and disposal problems affecting the environment. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric analysis (TGA) studies of the wastes, it appeared that the wastes could be used for pyrolysis liquid oil production. Pyrolysis at present is deemed to be a potential method for the conversion of carbonaceous solid wastes into upgraded liquid products which can either be tried for liquid fuel or value-added chemical. A fluidized bed bench scale fast pyrolysis system was employed for this thermochemical conversion process of solid wastes. Silica sand was used as fluidized bed material and nitrogen gas as the fluidising medium. The products obtained were liquid oil, solid char and gas. The liquid oil and solid char were collected separately while the gas was flared. The maximum liquid product yield was found to vary with feedstock material fluidized bed temperature. The maximum liquid product yield was found to be 58, 53 and 40 wt. % of biomass fed at fluidized bed temperature at 500, 525 and 450 0 C respectively for oil palm shell, scrap tyre and rice husk. The solid char yield was 25, 36 and 53 wt. % of biomass fed at the condition of maximum liquid product yield for oil palm shell, scrap tyre and rice husk respectively. The oil products were subjected to FTIR, GC and GC/MS analysis for their group composition and detailed chemical compositions. The pyrolysis oil from scrap tyre was found to contain highest percentage of pure hydrocarbons (25 wt. % of total feed) with esters and oxygenated

  15. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  16. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope.

    Science.gov (United States)

    Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S

    2003-07-01

    A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use.

  17. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope

    International Nuclear Information System (INIS)

    Wester, D.W.; Steele, R.T.; Rinehart, D.E.; DesChane, J.R.; Carson, K.J.; Rapko, B.M.; Tenforde, T.S.

    2003-01-01

    A major limitation on the supply of the short-lived medical isotope 90 Y (t 1/2 =64 h) is the available quantity of highly purified 90 Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1500 Ci of 90 Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137 Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90 Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90 Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90 Sr immobilized on stainless steel filters for future use

  18. The Production of Material with Ultrafine Grain Structure in Al-Zn Alloy in the Process of Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymaneka M.

    2014-06-01

    Full Text Available In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion.

  19. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  20. Shape Does Matter : Designing materials in products

    NARCIS (Netherlands)

    Saakes, D.P.

    2010-01-01

    In this thesis I investigate how to support designing the appearance of materials in products, specifically how to search for new materials and to explore the interactions between materials and shape. Central in this thesis is a novel design called Skin 2.0. Skin allows designers in the early

  1. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  2. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  3. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  4. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  5. Low-temperature solid-state preparation of ternary CdS/g-C{sub 3}N{sub 4}/CuS nanocomposites for enhanced visible-light photocatalytic H{sub 2}-production activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun, E-mail: xiangqj@mail.hzau.edu.cn

    2017-01-01

    Highlights: • CdS/g-C{sub 3}N{sub 4}/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C{sub 3}N{sub 4}/CuS show enhanced visible-light photocatalytic H{sub 2} evolution activity. • The enhanced photocatalytic H{sub 2} production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C{sub 3}N{sub 4}/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C{sub 3}N{sub 4}/CuS composite exhibits a high visible-light photocatalytic H{sub 2}-production rate of 57.56 μmol h{sup −1} with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na{sub 2}S/Na{sub 2}SO{sub 3} mixed aqueous solution as sacrificial agent. The ternary CdS/g-C{sub 3}N{sub 4}/CuS composites show the enhanced visible-light photocatalytic H{sub 2}-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C{sub 3}N{sub 4} in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H{sub 2}-production activity.

  6. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    Science.gov (United States)

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  7. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  8. Geopolymers based on the valorization of Municipal Solid Waste Incineration residues

    Science.gov (United States)

    Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.

    2017-10-01

    The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.

  9. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  10. U.S. Nuclear Regulatory Commission bases for control of solid materials

    International Nuclear Information System (INIS)

    Meck, R.A.; Cardille, F.P.; Feldman, C.; Gnugnoli, G.N.; Huffert, A.M.; Klementowicz, S.P.

    2002-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is considering whether to proceed with rulemaking on the control of solid materials with very low levels of associated radioactivity. The current implementation of clearance by NRC licensees is the context for the decision. Inputs to the decision include information gathering efforts of the Commission in the areas of public workshops, dose assessments and inventories, the recommendations of the National Academies' National Research Council (NAs) on regulatory alternatives, and participation in international efforts by the International Atomic Energy Agency (IAEA). (author)

  11. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  12. Quality Assessment of solid waste used for obtaining biogas

    International Nuclear Information System (INIS)

    Tamayo Cuellar, Ernesto Antonio; Menendez Perez, Manuel German

    2011-01-01

    The solid residuals are in our days an important factor in the processes of recycling of materials, composting and obtaining of biogas, however, sometimes doesn't keep in mind the quality of these for their productive acting. Therefore the present work has as objective, in the peculiar case of the biogas production, to propose a method to evaluate the quality of the solid residuals used in the biogas process starting from the biodegradable organic fraction contained in these. For the investigative development of the work theoretical methods were used as the hypothetical-deductive method, the systemic one, the structural-functional one and empiric methods as the scientific observation and the mensuration. The results of their application, although discreet still, have been evidenced in the evaluation of the quality of the solid residuals in the plant of recycling -composting of the City of Holguin in the compost production. The main conclusion to which you can arrive with the carried out investigation is that the evaluation of the quality of the solid residuals is important to make studies of feasibility in the design and implementation of new projects of recycling units, composting and biogas. (author)

  13. Europa Lander Material Selection Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heller, Mellisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input from the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.

  14. 14 CFR 21.125 - Production inspection system: Materials Review Board.

    Science.gov (United States)

    2010-01-01

    ... § 21.125 Production inspection system: Materials Review Board. Link to an amendment published at 74 FR... Materials Review Board action for at least two years. (b) The production inspection system required in § 21... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Production inspection system: Materials...

  15. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  16. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  17. A solid-state dielectric elastomer switch for soft logic

    International Nuclear Information System (INIS)

    Chau, Nixon; Slipher, Geoffrey A.; Mrozek, Randy A.; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-01-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  18. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  19. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  20. Production of hydrocarbons of value

    Energy Technology Data Exchange (ETDEWEB)

    1931-06-16

    A process is described for the production of hydrocarbons of great value by treating with heat and pressure carbonaceous materials such as coals, tars, mineral oils, and products of distillation and transformation of these materials, also for the refining with heat and pressure of mixed liquid hydrocarbons by means of hydrogen gas, preferably in the presence of catalysts, consisting in using as the hydrogenating gas that obtained by gasification of combustible solids after partial or complete cleaning at atmospheric or elevated pressures, by means of solid adsorbents, chemical agents or catalysts, or mixtures of these agents, the hydrocarbons being characterized by strong unsaturation, and the presence of oxygen, sulfur compounds, and oxides of nitrogen.

  1. Plastic raw materials in Neolithic pottery production

    Directory of Open Access Journals (Sweden)

    Alexander A. Bobrinsky

    2012-12-01

    Full Text Available The paper is dedicated to the investigation of various natural silts as the most ancient type of raw material used in pottery production. The authors describe the specific features of the composition of plain and mountain silts, and discover the same features in ancient ceramics from different regions in Russia. It can be concluded that silts were the earliest raw material used, a tradition that faded away during the evolution of pottery production.

  2. BIOGAS PRODUCTION IN DAIRY CATTLE SYSTEMS, USING BATCH DIGESTERS WITH AND WITHOUT SOLIDS SEPARATION IN THE SUBSTRATES

    OpenAIRE

    Anjos, Isis Dos; Toneli, Juliana T. C. L.; Sagula, Alex L.; Lucas Junior, Jorge de

    2017-01-01

    ABSTRACT This research aimed to evaluate the biogas production during the anaerobic biodigestion process of dairy cattle manure, with and without solids separation. Sixteen biodigesters of the batch type were used, each one with 2L of capacity, supplied with manure in four different conditions: (1) pure manure, after washing the floors of the free stall system; (2) manure after the solids separator; (3) manure after the solids separator and sand decanter and (4) manure with the solid retained...

  3. Introduction to PAC-experiments and hyperfine interaction measurements in solids

    International Nuclear Information System (INIS)

    Manasijevic, M.; Koicki, S.; Cekic, B.; Ivanovic, N.; Milosevic, Z.; Koteski, V.; Radisavljevic, I.; Cavor, J.; Marjanovic, D.

    2001-01-01

    Perturbed angular correlation (PAC) has for many years been a productive experimental technique for obtaining information about the static and dynamic behaviour of local and electronic structures of solids on a microscope scale, without changing the main properties of the material. This article contains an outline of the basic principles of PAC. A summary of the technique and experimental requirements is given, followed by a brief discussion of the parameters which can be extracted from the PAC measurements. Some examples then illustrate the recent developments in the applications to problems of interest for solid state physics nad materials science, performed in VINCA Institute. (author)

  4. Optimization of xylanase production by Mucor indicus, Mucor hiemalis, and Rhizopus oryzae through solid state fermentation

    Directory of Open Access Journals (Sweden)

    Sanaz Behnam

    2016-03-01

    Full Text Available Introduction: Xylan is the main hemicellulosic polymer in a number of lignocelluloses which can be hydrolyzed by xylanolytic enzymes. One of the main ways for enzymes production is solid state fermentation (SSF. The ability of three fungal strains (Mucor indicus, Mucor hiemalis, and Rhizopus oryzae for xylanase production on wheat bran by SSF was investigated. Materials and methods: The effects of cultivation temperature, medium moisture content, and cultivation time on the enzyme production were investigated. Experiments were designed with an orthogonal central composite design on three variables using response surface methodology (RSM. Analysis of variance was applied and the enzyme production was expressed with a mathematical equation as a function of the three factors. The optimum operating conditions for the enzyme production was obtained. Results: For xylanase production by M. indicus, M. hiemalis and R. oryzae the optimum temperatures were 40.0, 43.4 and 43.4ºC respectively. These values were 49.8, 54.2 and 71.8% for moisture percent and 51.3, 53.2 and 53.5 h for cultivation time. The highest enzyme activities per g of dry substrate (gds were 43.1, 43.8 and 25.9 U/gds for M. indicus, M. hiemalis and R. oryzae respectively. Discussion and conclusion: All the fungi were able to produce xylanase. Maximum xylanase production was predicted by M. indicus and M. hiemalis at similar optimum conditions, while R. oryzae produced relatively lower xylanase activity even at the best condition. 

  5. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  6. Municipal Solid Waste Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  7. Light quality and efficiency of consumer grade solid state lighting products

    DEFF Research Database (Denmark)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders

    2013-01-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality...... of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been...... on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light...

  8. Role of coal combustion products in sustainable construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Siddique, R.; Vaniker, S. [University of Wisconsin-Milwaukee, Milwaukee, WI (USA). UWM Center for Products Utilization, College of Engineering and Applied Science

    2003-07-01

    The paper describes various coal combustion products, CCPs produced in the process of power generation. These include fly ash, bottom ash, boiler slag and flue gas desulfurization products. Typical test protocol used for testing, analysis and evaluation of CCPs, as well as the current best recycling use options for these materials are discussed. Materials, productions, properties, and potential applications in the manufacture of emerging materials for sustainable construction, as well as environmental impact are also briefly discussed. 47 refs., 16 figs., 8 tabs.

  9. Development of LIBS for online analysis of solid nuclear materials

    International Nuclear Information System (INIS)

    Picard, Jessica

    2015-01-01

    With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials. LIBS based on laser-material interaction, it is relevant to seek a surrogate of material of interest from the viewpoint of the ablated mass. Thus, a complete study of laser ablation of several metals was enabled to build a predictive model of the ablation efficiency. Titanium and stainless steel were defined as surrogate materials of plutonium and uranium for laser ablation. Secondly, the VUV-LIBS setup analytical performances were optimized for several elements of interest in four metals. Then, two calibration methods are used to determine the analytical performances. The limits of quantification are of the order of a few hundreds of ppm for all studied matrices, which validates the objective of impurities quantitation in the 500-5000 ppm range. Uncertainty is lower than 3% in the best cases. Finally, the calibration transfer between the four matrices was studied. A normalization of the nickel net signal measured in three matrices was presented. (author) [fr

  10. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  11. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  12. Method for measurement of radon diffusion and solubility in solid materials

    Science.gov (United States)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  13. International Conference on Materials, Processing and Product Engineering 2015 (MPPE2015)

    International Nuclear Information System (INIS)

    Eck, S; Ebner, R; Ludwig, A

    2016-01-01

    The Materials Center Leoben Forschung GmbH (MCL) and the Austrian Society for Metallurgy and Materials (ASMET) have jointly organized the 'First International Conference on Materials, Processing and Product Engineering - MPPE' held in the Congress Center of Leoben from Nov. 3 rd to 5 th , 2015. The main topic of the conference was to present the state of the art in fundamental knowledge and technological expertise enabling and stimulating the development of knowledge based innovations across the entire product value chain starting from the material synthesis, proceeding with the processing of products and concluding with their in-service behaviour until the end of the product life time. Hence, the International Conference on Materials, Processing and Product Engineering MPPE 2015 focused on the core regions of industrial production chains, covering topics such as • Development and characterization of materials; • Materials synthesis and processing; • Dimensioning of components including integrated materials and process modelling; • Behaviour of materials and components during service. The scientific and technological goal was to present the state of the art of theoretical, experimental and numerical techniques and their combinations that are capable of improving the competitiveness of modern production facilities. (paper)

  14. New reference materials improvement of methods of measurements

    International Nuclear Information System (INIS)

    Marchandise, H.

    1985-01-01

    The report summarizes the development of about 120 reference materials in a variety of fields (non ferrous metals, trace element analysis, food products, biomedical analysis, physical and technical properties of solid materials). The document also provides practical advice for trace element analyses, describes the principles followed for certifying reference materials and provides recommendations for their use

  15. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    Science.gov (United States)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.

  16. Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves.

    Science.gov (United States)

    Kumar, Rakesh; Sharma, Jitender; Singh, Randhir

    2007-01-01

    Tannase producing fungal strains were isolated from different locations including garbages, forests and orchards, etc. The strain giving maximum enzyme yield was identified to be Aspergillus ruber. Enzyme production was studied under solid state fermentation using different tannin rich substrates like ber leaves (Zyzyphus mauritiana), jamun leaves (Syzygium cumini), amla leaves (Phyllanthus emblica) and jawar leaves (Sorghum vulgaris). Jamun leaves were found to be the best substrate for enzyme production under solid-state fermentation (SSF). In SSF with jamun leaves, the maximum production of tannase was found to be at 30 degrees C after 96 h of incubation. Tap water was found to be the best moistening agent, with pH 5.5 in ratio of 1:2 (w/v) with substrate. Addition of carbon and nitrogen sources to the medium did not increase tannase production. Under optimum conditions as standardized here, the enzyme production was 69 U/g dry substrate. This is the first report on production of tannase by A. ruber, giving higher yield under SSF with agro-waste as the substrate.

  17. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  18. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-01

    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.

  19. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households.

    Science.gov (United States)

    Hensgen, F; Richter, F; Wachendorf, M

    2011-11-01

    Green cut material is a potential source of renewable energy which is not fully exploited through conventional energy recovery systems. A new energy conversion process, the integrated generation of solid fuel and biogas from biomass (IFBB), which includes mechanical separation after hydro-thermal conditioning, was investigated. Ash softening temperature and lower heating value of the solid fuel were increased through the IFFB process in comparison to the untreated raw material. The net energy yield of IFBB at 40 °C conditioning temperature ranged between 1.96 and 2.85 kWh kg(-1) dry matter (DM) and for the direct combustion between 1.75 and 2.65 kWh kg(-1) DM. Conversion efficiencies for the IFBB system were 0.42-0.68 and for direct combustion 0.42-0.63. The IFBB system produces storable energy from material which is nowadays not used for energy conversion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  1. Management of solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.J. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Civil Engineering

    1996-12-31

    This chapter introduces the range of solid waste materials produced in the mining and mineral processing industries, with particular reference to Australia. The waste materials are characterised and their important geotechnical engineering properties are discussed. Disposal management techniques for metalliferous, coal, heavy mineral sand, fly ash and bauxite solid wastes are described. Geo-technical techniques for the management of potential contaminants are presented. Minimisation and utilisation of solid wastes, and the economics of solid waste management, are discussed from the perspectives of policy, planning, costing and rehabilitation. 19 figs., 2 tabs.

  2. Solid State production of manganese peroxidases using arecanut husk as substrate

    Directory of Open Access Journals (Sweden)

    Akhila Rajan

    2010-06-01

    Full Text Available The lignocellulosic biomass from arecanut husk (Areca catechu Linnaeus was evaluated as a new substrate for cultivation of Phanerochaete chrysosporium and Phanerochaete sp for solid state fermentation of manganese peroxidase (MnP. Arecanut had a moisture content of 79.84 % for ripe nut husk whereas green nut husk had 68.39 % moisture and a pH of 5.0, 3.0 and 7.0 for raw, ripe and dry husk. Reducing sugar content was 14.31, 19.21 and 1.77(mg/g of husk for raw, ripe and dry nut husk, respectively. Non reducing sugar was 1.04(mg/g of husk for raw and 0.68 (mg/g of husk for dry husk. Solid state fermentation carried out at different pH showed optimum enzyme production at pH 6.0 (52.60 IU/g for P.chrysosporium and pH 5.0 (44.08 IU/g for Phanerochaete sp. Optimum temperature was 30 ± 2º C for both the organisms. Lower concentration of MnSO4 (0.1 mM MnSO4 induced maximum enzyme production in P.chrysosporium whereas Phanerochaete sp. required 1 mM MnSO4 for induction. Absence of carbon and nitrogen stimulated enzyme production in P.chrysosporium while Phanerochaete sp. needed nitrogen. Enzyme was partially purified by ammonium sulphate precipitation followed by ion exchange chromatography.

  3. Solid wastes integrated management in Rio de Janeiro: input-output analysis

    International Nuclear Information System (INIS)

    Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.; Tolmansquim, M.T.

    2005-01-01

    This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin raw materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases

  4. Energy implications of integrated solid waste management systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  5. Pellet production from agricultural raw materials - A systems study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Daniel; Bernesson, Sven; Hansson, Per-Anders [Department of Energy and Technology, Swedish University of Agricultural Sciences, P.O. Box 7032, SE-75007 Uppsala (Sweden)

    2011-01-15

    The demand for biofuel pellets has increased considerably in recent years, causing shortage of the traditional raw materials sawdust and wood shavings. In this study, the costs and energy requirements for the production of pellets from agricultural raw materials were analysed. The materials studied were Salix, reed canary grass, hemp, straw, screenings, rape-seed meal, rape cake and distiller's waste. Four production scales were analysed, having an annual output of 80,000, 8000, 800 and 80 tonnes of pellets per year. It was concluded that the raw materials of greatest interest were Salix and reed canary grass. They had competitive raw material costs and acceptable fuel properties and could be mixed with sawdust in existing large-scale pelleting factories. Straw had low production costs but can cause serious ash-related problems and should, as also is the case for screenings, be avoided in small-scale burners. Hemp had high raw material costs and is of less commercial interest, while distiller's waste, rape-seed meal and rape cake had higher alternative values when used as protein feed. The scale of production had a crucial influence on production costs. The machinery was used much more efficiently in large-scale plants, resulting in clear cost savings. Small-scale pelleting, both static and mobile, required cheap raw materials, low labour costs and long utilisation times to be profitable. In most cases, briquetting would be more commercially viable. The energy use in manufacturing pellets from air-dried crops was generally no higher than when moist sawdust was used as the raw material. (author)

  6. Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Janny Coca Armas

    2006-01-01

    Full Text Available Lipase production in Aspergillus niger J-1 was tested using both submerged fermentation (SmF and solid-state fermentation (SSF on a mineral culture medium and wheat bran, respectively. The optimization of the culture medium was carried out for both SmF and SSF. The maximum lipase activity, 1.46 IU/mL, was obtained during the submerged fermentation in a medium containing glucose at 2 % and olive oil at 2 % under conditions of 1 vvm and 450 m–1. However, 9.14 IU/g of dry solid substrate equivalent to 4.8 IU/mL of lipase activity was reached using solid-state fermentation process with a medium containing 0.75 % of ammonium sulphate and 0.34 % of urea. The optimum pH and temperature for enzymatic activity were pH=6 and 40 °C, respectively. The enzyme also exhibited 80 % of its initial activity in neutral and mildly acid media and at temperatures between 20 and 30 °C for a period of 24 hours.

  7. Mapping ENM from consumer products in solid waste flows in Denmark

    DEFF Research Database (Denmark)

    Heggelund, Laura Roverskov; Boldrin, Alessio; Hansen, Steffen Foss

    To address the challenges regarding management of waste from ENM-enabled consumer products, we mapped the flow of these products available online in Denmark and the EU. To do this, we used the Nanodatabase (www.nanodb.dk). A representative sample of products from the database was analyzed......, and placed into suitable waste material fractions. Subsequently, the distribution of ENM in the individual waste fractions, by number of products, was found. Overall, the results showed that nanosilver was present in seven of the eight identified waste material fractions, whereas other ENMs (e.g. CNTs...... and silicon) were only present in one or two fractions. Furthermore, the waste material fraction "dirty plastic" was the most diversified, containing five different ENMs. To our knowledge this type of analysis has not previously been performed, and the results hold promise for gaining a better understanding...

  8. NATO Advanced Study Institute on the Physics of Structurally Disordered Solids

    CERN Document Server

    1976-01-01

    Structurally disordered solids are characterized by their lack of spatial order that is evidenced by the great variety of ordered solids. The former class of materials is commonly termed amorphous or glassy, the latter crystalline. However, both classes share, many of the other physical properties of solids, e. g. , me­ chanical stability, resistance to shear stress, etc. The traditional macroscopic distinction between the crystalline and the glassy states is that while the former has a fixed melting point, the latter does not. However, with the availability and production of a large number of materials in both crystalline and amorphous states, and their easy inter-convertability, simple de­ finitions are not possible or at best imprecise. For the present purpose, it is sufficient to say that in contrast to the crystalline state, in which the posi­ tions of atoms are fixed into adefinite structure, ex­ cept for small thermal vibrations, the amorphous state of the same material displays varying degrees of ...

  9. Characteristics of immobilized lactobacillus delbrueckii in a liquid-solid fluidized bed bioreactor for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henian; Seki, M.; Furusaki, S. [The Univ. of Tokyo (Japan). Faculty of Engineering

    1995-04-20

    A fluidized bed bioreactor was employed for lactic acid production using immobilized cells. First, the cell release rate was discussed. A liquid-solid fluidized bed reactor with immobilized cells was used to perform continuous lactic acid fermentation without any operational problems. The performance of the reactor was investigated under different conditions. Cell release rate and contribution of free cells to lactic acid production were studied quantitatively. The results showed that under low gel holdup and low dilution rate conditions, free cells played a significant role in lactic acid production. However, increasing solid holdup decreased the free cell concentration in the broth due to high lactic acid concentration and also decreased the contribution of the free cells to lactic acid production. The effects of growth nutrients on reactor performance were investigated. 16 refs., 12 figs.

  10. Removal of batteries from solid waste using trommel separation.

    Science.gov (United States)

    Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G

    2005-01-01

    This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.

  11. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    Science.gov (United States)

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Long, E-mail: zhaolong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Hou, Hong, E-mail: houhong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Zhu, Tengfei; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Terada, Akihiko; Hosomi, Masaaki [Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2015-12-15

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O{sub 8}CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  13. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    International Nuclear Information System (INIS)

    Zhao, Long; Hou, Hong; Zhu, Tengfei; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-01-01

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O_8CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  14. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  15. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin

    2015-01-01

    Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas. The commercialization of the SOEC technology can be promoted if SOECs can be operated at high current density with stable performance over ~5 years...... - 3 years (continuous operation, setting 1.5 V as the upper voltage defining “end of life”). The results provide technological input to future design of electrolysis plants for hydrogen production. © 2015 ECS - The Electrochemical Society...

  16. Productivity improvement with green approach to palm oil factory productivity

    Science.gov (United States)

    Matondang, N.

    2018-02-01

    The palm oil factory (POF) processes fresh fruit bunches into crude palm oil (CPO) and palm kernel oil (PKO) by products in the form of liquid and solid waste. One of the solid wastes produced in POF Tanjung Kasau is empty fruit bunches of palm oil (FBPO) which have been burned completely on incinerator tubes so that potentially produces pollutants that pollute the environment. If FBPO waste is managed properly, it will improve the productivity of the company. Therefore, it is necessary to conduct a study to find out how far the increased productivity of the company can reduce their impact on the environment, if FBPO is used as raw material of liquid smoke. The productivity improvement approach is done by Green Productivity concept, by looking at three aspects: environmental, social and economical. Green Productivity aims to protect the environment simultaneously by increasing the productivity of the company. One way is to turn FBPO waste into liquid smoke product is by pyrolysis process. The results showed that turning FBPO solid waste into liquid smoke will increase productivity by 18.18%. Implementation of Green Productivity can improve productivity through the improvement of FBPO waste treatment process which has been done by perfect combustion by pyrolysis process so that waste can be minimized to create environment industry POF clean and friendly environment.

  17. The role of ceramic materials in the production of hydrogen with simultaneous CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Barros, B.S. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: Hydrogen is considered one of the most promising alternatives to fossil fuels. However, it is mainly obtained from syngas resulting from natural gas steam reforming (SMR), producing a significant amount of carbon dioxide as a side product. Carbon dioxide emission (CO2) is a major contributor to global warming, and one-third of those emissions come from fuel combustion for power generation. A new interesting process has been described to control CO2 emission: the reforming optimized by CO2 sorption, which associates conventional methane reforming and in situ capture of CO2 via absorption in a solid oxide. Furthermore, this strategy can increase the H2 production and concentrate CO2 for the eventual use as chemicals or energy vectors. Alkaline and alkaline-earth ceramics have been proposed for CO2 capture through adsorption and chemisorption processes. These materials can be classified into two large groups: dense and porous ceramics. Dense ceramics mainly trap CO2 chemically: the CO2 is chemisorbed. Among these ceramics, CaO is the most studied one. CaO-based materials have been highlighted as the solid sorbents in the capture of CO2 because of their favorable thermodynamic and chemical properties. The main problem with CaO is the strong decrease in the sorption capacity after multiple carbonation–calcination cycles. This talk will cover some strategies to improve this sorption capacity, such as the deposition of calcium oxide on an inert support, Ca12Al14O33 (mayenite). This oxide has no sorption properties but presents a large surface area, and provides stable network inhibiting deactivation of CaO by sintering. (author)

  18. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  19. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  20. 15 years investigation of solids and materials by positrons at the Martin-Luther-University

    International Nuclear Information System (INIS)

    Dlubek, G.; Bruemmer, O.

    1985-01-01

    In reviewing 15 years of application at the Halle university, the positron annihilation is presented as important method for the investigation of electronic structure and crystal defects in solids and materials. The fundamentals of the measuring method positron annihilation and of the three measuring techniques positron lifetime spectra, angular correlation curves and Doppler broadening lines are discussed. For electronic structure studies the Fermi surface and pulse density are investigated in metals, alloys and semiconductor materials. The main part of research lies in the field of crystal defect investigations (formation and annealing mechanisms) in pure metals and nickel materials as well as of segregation processes in aluminium alloys. The method is important because of the possibility to get direct information about vacancy-like defects