Sample records for solid phase adsorption

  1. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    Tovbin, Yu. K.


    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  2. A solid-phase extraction approach for the identification of pharmaceutical-sludge adsorption mechanisms

    Laurence Berthod; Gary Roberts; Graham A. Mills


    It is important to understand the adsorption mechanism of chemicals and active pharmaceu-tical ingredients (API) on sewage sludge since wastewater treatment plants are the last barrier before the release of these compounds to the environment. Adsorption models were developed considering mostly hydrophobic API-sludge interaction. They have poor predictive ability, especially with ionisable compounds. This work proposes a solid-phase extraction (SPE) approach to estimate rapidly the API-sludge interaction. Sludge-filled SPE cartridges could not be percolated with API spiked mobile phases so different powders were tested as SPE sludge supports. Polytetrafluoroethylene (PTFE) was selected and tested at different PTFE/sludge ratios under eight different adsorption conditions with three API ionisable compounds. The PTFE/sludge mixtures with 50% or less sludge could be used in SPE mode for API sorption studies with methanol/water liquid phases. The results gave insights into API-sludge interactions. It was found that π-π, hydrogen-bonding and charge-charge interactions were as important as hydrophobicity in the adsorption mechanism of charged APIs on sludge.

  3. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    Vera, R; Fontàs, C; Anticó, E


    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g(-1), respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L(-1) were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L(-1) level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  4. Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium.

    Song, Qiang; Ma, Lijian; Liu, Jun; Bai, Chiyao; Geng, Junxia; Wang, Hang; Li, Bo; Wang, Liyue; Li, Shoujian


    A new solid-phase extraction adsorbent was prepared by employing a two-step "grafting from" approach to anchor a multidentate N-donor ligand, 5-azacytosine onto hydrothermal carbon (HTC) microspheres for highly selective separation of U(VI) from multi-ion system. Fourier-transform infrared and X-ray photoelectron spectroscopies were used to analyze the chemical structure and properties of resultant HTC-based materials. The adsorption behavior of U(VI) onto the adsorbent was investigated as functions of pH, contact time, ionic strength, temperature, and initial U(VI) concentration using batch adsorption experiments. The U(VI) adsorption was of pH dependent. The adsorption achieved equilibrium within 30 min and followed a pseudo-second-order equation. The adsorption amount of U(VI) increased with raising the temperature from 283.15 to 333.15K. Remarkably, high ionic strength up to 5.0 mol L(-1) NaNO(3) had only slight effect on the adsorption. The maximum U(VI) adsorption capacity reached 408.36 mg g(-1) at 333.15K and pH 4.5. Results from batch experiments in a simulated nuclear industrial effluent, containing 13 co-existing cations including uranyl ion, showed a high adsorption capacity and selectivity of the adsorbent for uranium (0.63 mmol U g(-1), accounting for about 67% of the total adsorption amount).

  5. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois


    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  6. Adsorption-Induced Deformation of Mesoporous Solids

    Gor, Gennady Yu


    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  7. Effects of natural organic compounds on adsorption of actinoid on solid phase and interaction between colloid

    Tominaga, Takeshi; Minai, Yoshitaka; Takahashi, Yoshio; Kohashi, Asaya [Tokyo Univ. (Japan); Yoshida, Zenko; Meguro, Yoshihiro; Kimura, Takaumi


    Two problems were studied such as, at first, the effects of calcium and magnesium on formation of complex of actinoid (III) and humic acid and, second, estimation of number of hydrate of europium (III) in polycarbonic acid complex by fluorescence lifetime measurements. With adding calcium and magnesium, the solubility of humic acid and apparent complex formation constant of actinoid (III)-humic acid complex decreased and amount of adsorption of humic acid on kaolinite increased. Apparent complex formation constant increased with increasing the dissociation degree but decreased with increasing the concentration of supporting electrolyte as same as that of humic acid. This result can be explained by the model of polymer electrolyte on the static electrical interaction with metal ions, because polycarbonic acid is polymer electrolyte with many dissociation groups in a molecule. (S.Y.)

  8. Adsorption at the solid-liquid interface as the source of contact angle dependence on the curvature of the three-phase line.

    Ward, C A; Sefiane, K


    We review the thermodynamic approach to determining the surface tension of solid-fluid interfaces. If the pressure is in the narrow range where the contact angle, θ, can exist, then for isothermal systems, adsorption at the solid-liquid interface affects γ(SL) or θ, but γ(SV) is very nearly equal γ(LV), the surface tension of the adsorbing fluid. For a liquid partially filling a cylinder, the pressure in the liquid phase at the three-phase line, x(3)(L), depends on the curvature of the three-phase line, C(cl), but the line tension can play no role, since it acts perpendicular to the cylinder wall. C(cl) is decreased as the cylinder diameter is increased; x(3)(L) is increased; and θ increases. For a given value of C(cl), x(3)(L) can be changed by rotating the cylinder or by changing the height of the three-phase line in a gravitational field. In all cases, for water in borosilicate glass cylinders, the value of θ is shown to increase as x(3)(L) is increased. This behaviour requires the Gibbsian adsorption at the solid-liquid interface to be negative, indicating the liquid concentration in the interphase is less than that in the bulk liquid. For sessile droplets, the value of θ depends on both x(3)(L) and C(cl). If the value of θ for spherical sessile droplets is measured as a function of C(cl), the adsorption at the solid-liquid interface that would give that dependence can be determined. It is unnecessary to introduce the line tension hypothesis to explain the dependence of θ on C(cl). Adsorption at the solid-liquid interface gives a full explanation.

  9. Investigation of diarrhetic shellfish toxins in Lingshan Bay, Yellow Sea, China, using solid-phase adsorption toxin tracking (SPATT).

    Li, Feng-Ling; Li, Zhao-Xin; Guo, Meng-Meng; Wu, Hai-Yan; Zhang, Ting-Ting; Song, Cai-Hu


    Early detection of toxin contamination in shellfish (i.e., prior to harvest) would be of considerable advantage to fish farmers, researchers and food safety administrators. In 2004, a solid-phase adsorption toxin tracking (SPATT) technique was developed to study algal toxins in New Zealand shellfish harvesting areas. In subsequent years, the basic idea have been further developed. Using a SPATT method, an investigation into diarrhetic shellfish toxins (DSTs) was conducted over a 10.5-month period in 2012 in shellfish farming areas in Lingshan Bay (Yellow Sea, China). This paper discusses the relationship among DSTs in toxic algae, seawater and contaminated shellfish. OA, DTX1 and PTX2 toxins were found in this shellfish farming area from summer to autumn. In shellfish the maximum concentrations of OA and DTX1 were 81 and 41 ng g(-1) respectively. PTX2 was very low. The maximum levels of OA and DTX1 in seawater were 165 and 56 ng g(-1) respectively, and were detected on June, separated by a 14-day period. Shellfish had accumulated the highest levels of OA and DTX1 recorded in this study. Comparison of the variations in DST levels in seawater showed there to be about 2 weeks for administrators to warn of the potential for toxin contamination in shellfish. Further research to explore the relationship between the variables of seawater temperature, sunlight and salinity, and DSTs in shellfish may help to establish a more suitable model for forecasting DST contamination in shellfish.

  10. Monitoring Domoic Acid production by Solid Phase Adsorption Toxin Tracking off the Santa Cruz Municipal Warf, Santa Cruz, California

    Nolan, M.; Ziccarelli, L.; Kudela, R. M.


    Certain species of the diatom genus Pseudo-nitzschia are producers of the neurotoxin, domoic acid (DA). DA is known to cause amnesic shellfish poisoning also known as domoic acid poisoning, which can lead to permanent brain damage in humans and marine mammals. DA accumulates at higher trophic levels, generally due to consumption of toxic cells or through trophic transfer, and can potentially cause death of both humans and marine wildlife. The Santa Cruz Municipal Warf experiences periodic rises in DA concentrations, which can reach toxic levels in shellfish, fish, and other marine organisms. While these increases in toxicity often occur during Pseudo-nitzschia blooms, several periods of elevated DA have occurred when diatom abundance is restricted and/or dominated by non-toxic species, and there is increasing evidence that DA dissolved in seawater may be prevalent. One theory suggests that senescent or dead Pseudo-nitzschia cells sink to the benthos while retaining their toxin and are buried in sediment following the death of a bloom. Therefore, DA may accumulate in the benthos, where it is eventually released during storms or wave and tide conditions that disturb the sediment. We sampled DA in situ using Solid Phase Adsorption Toxin Tracking (SPATT) bags SPATT uses a synthetic resin to capture dissolved DA, allowing for the determination of integrated DA concentrations at known time intervals. The alternative method is mussel biotoxin monitoring, but it is less accurate due to uncertainties in the time of DA accumulation within the mussel, and the lack of uptake of dissolved DA by the mussel. We deployed and collected SPATT off the Santa Cruz Municipal Wharf at multiple depths beginning in February 2013. We expect to see increasing DA following the death of a harmful algal bloom. Under pre-bloom conditions, little to no DA has been detected in mussels or surface SPATT, but DA from SPATT is frequently observed at depth, suggesting that the sediment is exposed to

  11. Solid phase extraction of chromium(VI) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column.

    Rajesh, N; Jalan, Rohit Kumar; Hotwany, Pinky


    A method has been developed for the solid phase extraction of chromium(VI) based on the adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column. The influence of acidity, stability of the column, sample volume, flow rate and interfering ions were studied in detail. The adsorbed complex could be eluted using acetone-sulfuric acid mixture and the concentration of chromium was determined using visible spectrophotometry. A detection limit of 6 microg L(-1) could be achieved. A preconcentration factor of 27 could be obtained for 400 mL sample volume. The validity of the method was checked in spiked water samples and electroplating wastewater.

  12. Ion adsorption components in liquid/solid systems

    WU Xiao-fu; HU Yue-li; ZHAO Fang; HUANG Zhong-zi; LEI Dian


    Experiments on Zn2+ and Cd2+ adsorptions on vermiculite in aqueous solutions were conducted to investigate the widely observed adsorbent concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 25-500 mg/L and adsorbent range 10-150 g/L. The results showed that the equilibrium ion adsorption density did not correspond to a unique equilibrium ion concentration in liquid phase. Three adsorbate/adsorbent ratios, the equilibrium adsorption density, the ratio of equilibrium adsorbate concentration in liquid phase to adsorbent concentration, and the ratio of initial adsorbate concentration to adsorbent concentration, were found to be related with unique values in the tested range. Based on the assumption that the equilibrium state of a liquid/solid adsorption system is determined by four mutually related components: adsorbate in liquid phase, adsorbate in solid phase, uncovered adsorption site and covered adsorption site, and that the equilibrium chemical potentials of these components should be equalized, a new model was presented for describing ion adsorption isotherm in liquid/solid systems. The proposed model fit well the experimental data obtained from the examined samples.

  13. The adsorptive properties of powdered carbon materials with a strongly differentiated porosity and their applications in electroanalysis and solid phase microextraction.

    Kuśmierek, K; Sankowska, M; Skrzypczyńska, K; Świątkowski, A


    The adsorption of 4-chlorophenol from an aqueous solution on carbonaceous materials (one carbon black and two powdered activated carbons) with a strongly differentiated porosity was investigated. The kinetic data were fitted well to the pseudo-second order model. The amount of 4-chlorophenol adsorbed at equilibrium was increased with an increase in the specific surface area of the tested materials. The adsorption isotherms were analyzed using the Langmuir and Freundlich models. The Langmuir isotherm was slightly favorable (R(2)>0.99) rather than the Freundlich isotherm (R(2)>0.98). Carbon materials were also used for the modification of carbon paste electrodes as well as for the preparation of novel solid phase microextraction fibers. The peak current of the differential pulse voltammetry curves was increased along with the amount of added carbon paste electrode modifier. The signal response was closely related to the porosity of the materials used, and increased with the increase in the specific surface area. The amount of 4-chlorophenol extracted from the samples by the solid phase microextraction fiber's surface was also correlated with the specific surface area of the tested materials. All the novel fibers were better than the commercially available fibers prepared from polidimethylosiloxane.

  14. Aspects of vapor adsorption on solids

    Beaglehole, David


    The paper describes three unexpected phenomena which were observed during studies of the vapour adsorption onto solids. A quadratic variation of the adsorption of water onto borosilicate glass is found at low pressures. Water films condensed onto mica start to conduct electricity at a thickness of almost exactly one monolayer, with fluctuations in the conductivity in the region of onset. Diffusion through a background atmosphere slows the adsorption process and asymetrical fluctuations in thickness are observed.

  15. Preparation and characterization of porous DVB copolymers and their applicability for adsorption (solid-phase extraction) of phenol compounds

    Sobiesiak, Magdalena; Podkoscielna, Beata


    Using DVB, three new porous copolymers in the form of microspheres were prepared, characterized and used as adsorbents for phenol and its chlorinated derivatives. As the monomers: 4,4'-bis(maleimidodiphenyl)methane (BM), 2,3-bis(2-hydroxy-3-methylacryloyloxy-propoxy)naphthalene (2,3-NAF) and 2,3-epoxypropyl methacrylate (GLY) were used. All the studied materials were synthesized under the same conditions by means of suspension copolymerization. The DVB copolymers were characterized by elemental analysis, FTIR spectroscopy, TG and DSC analyses and N 2 sorption. The off-line solid-phase extraction method (SPE) was used to estimate sorption properties of the copolymers. The results show that the newly obtained materials are mesoporous but their shape of pores and chemical structures are different. BM-DVB and GLY-DVB are characterized by slit-shaped pores and wide pore size distribution. 2,3-NAF-DVB also possesses slit pores but distribution of pore size is narrower. Of those studied BM-DVB is the most interesting material. It has good sorption properties and heat resistance.

  16. Reuse of Solid Waste in Adsorption of the Textile Dye

    Meziti, Chafika; Boukerroui, Abdelhamid

    This work presents the study of the reuse of a regenerated spent bleaching earth (RSBE). The RSBE material was tested in the removal of a basic textile dye presents in aqueous solution. The effect of physicochemical parameters such as stirring speed, initial concentration, contact time and temperature have been invested and thermodynamic nature of the adsorption process was determined by calculating the ΔH°, ΔS° and ΔG° values The results obtained show that the adsorption mechanism was described by the Langmuir model and the adsorption capacity, qmax (72.41 to 82.37 mg.g-1), increases with temperature (20-50 °C). The thermodynamic parameters show a presence of a strong affinity between two phases (liquid-solid) and an endothermic equilibrium adsorption process. However, the phenomenon of the adsorption kinetic follows the pseudo second order kinetic model.

  17. Mechanisms of fibrinogen adsorption at solid substrates.

    Adamczyk, Zbigniew; Bratek-Skicki, Anna; Żeliszewska, Paulina; Wasilewska, Monika


    The aim of this work was to critically review recent results pertinent to fibrinogen adsorption at solid/electrolyte interfaces with the emphasis focused on a quantitative analysis of these processes in terms of the electrostatic interactions. Accordingly, in the first part, the primary chemical structure of fibrinogen is analyzed. Physicochemical data pertinent to the bulk properties derived from hydrodynamic, dynamic light scattering and micro-electrophoretic measurements aided by theoretical modeling are discussed. Possible conformations and the effective charge distribution over the fibrinogen molecule for various pH an ionic strength are defined, especially the semi-collapsed conformation prevailing at physiological conditions. Adsorption kinetics of fibrinogen at hydrophilic and hydrophobic (polymer modified) substrates determined by various techniques is described. Adsorption at polymeric carrier particles, pertinent to immunological assays, studied in terms of electrokinetic and concentration depletion methods, are also considered. The reversibility of adsorption, fibrinogen molecule orientations and maximum coverages are thoroughly discussed. The stability of fibrinogen monolayers formed at these carrier particles in respect to pH and ionic strength cyclic changes is also discussed. In the final section interactions and deposition of model colloid particles on fibrinogen monolayers are analyzed which allows one to derive valuable information about molecule orientations. Based on the physicochemical data, adsorption kinetics and colloid particle deposition measurements, probable adsorption mechanisms of fibrinogen on solid/electrolyte interfaces are defined.

  18. Solid phase extraction and spectrophotometric determination of mercury by adsorption of its diphenylthiocarbazone complex on an alumina column.

    Rajesh, N; Gurulakshmanan, G


    A simple method has been developed for the preconcentration of mercury based on the adsorption of its diphenylthiocarbazone complex on a neutral alumina column. The influence of acidity, eluting agents, stability of the column, sample volume and interfering ions has been investigated in detail. The adsorbed complex could be eluted using environmentally benign polyethylene glycol (PEG 400) and the concentration of mercury was determined by visible spectrophotometry at a wavelength maximum of 520nm. A detection limit of 4microgL(-1) could be achieved and the developed procedure was successfully applied for the determination of mercury in spiked water samples and city waste incineration ash (CRM176). The preconcentration factor attainable for quantitative recovery (>95%) of mercury(II) was 100 for a 1000mL sample volume.

  19. Adsorptive removal of Methylene blue and Methyl orange from aqueous media by carboxylated diaminoethane sporopollenin: On the usability of an aminocarboxilic acid functionality-bearing solid-stationary phase in column techniques

    Ayar, Ahmet [Nigde University, Faculty of Science and Art, Department of Chemistry, 51100 Nigde (Turkey); Gezici, Orhan [Nigde University, Faculty of Science and Art, Department of Chemistry, 51100 Nigde (Turkey) and Selcuk University, Institution of Natural and Applied Sciences, Konya (Turkey)]. E-mail:; Kuecuekosmanoglu, Muhittin [Nigde University, Faculty of Science and Art, Department of Chemistry, 51100 Nigde (Turkey)


    The adsorption phenomena of Methylene blue (MB) and Methyl orange (MO) on a carboxylated diaminoethane sporopollenin (CDAE-S) solid phase were investigated in a column arrangement by using breakthrough technique. The adsorption phenomena were evaluated using some common adsorption isotherm models and Scatchard plot analysis, and obtained results were interpreted for evaluating the usability of CDAE-S for removal, recovery and preconcentration of the studied dyes both at the laboratory and industrial scales. On the basis of Scatchard plot analysis, the interaction types between the CDAE-S and the studied dyes were criticized in terms of affinity phenomena. Thus, the usability of a biomacromolecule-derived material, CDAE-S, as a cheap, environmentally-friendly and effective solid-stationary phase exhibiting both cation-exchange and anion-exchange characteristics at the same time, is discussed through the present study. Besides, from the obtained results, the protonated CDAE-S, which functionally resembles an amino acid structure, are presented as a two-in-one solid-stationary phase, and its adaptability to common processes performed under column conditions is also drawn in detail.

  20. The usage of activated carbon from teak sawdust (tectona grandis l.f.) and zeolite for the adsorption of Cr(VI) and its analysis using solid-phase spectrophotometry (sps)

    Saputro, S.; Masykuri, M.; Mahardiani, L.; Mulyani, B.; Qorina, I.; Yoshimura, K.; Takehara, K.; Matsuoka, S.


    This study aims to evaluate the usage of teak sawdust and zeolite as an adsorbent of Cr(VI) ion; optimal composition ratio of the composite adsorbent; and the sensitivity of solid-phase spectrophotometry (SPS) as a method to determine the levels of Cr(VI) ion as an adsorption results of adsorbents. The adsorbent used were teak sawdust activated carbon and zeolite as a single and composite adsorbents. The teak sawdust carbonization using muffle furnace and then activated with H3PO4 10% while the zeolite with H2SO4 10%. The contacting process of the adsorbents with Cr(VI) was done by varying the compositions. Analysis of Cr(VI) level was done using SPS method. Characterization of adsorbent before and after being activated is done using a FTIR. The results showed that teak sawdust and zeolite can be used as adsorbents to adsorb Cr(VI) in the simulated liquid waste with the adsorption capacity 1.19 µg/g the optimum composition ratio of teak sawdust activated carbon and zeolite was 75%:25% with the percentage of adsorption was 62.72%. Solid-phase spectrophotometry is a sensitive method to analyze the decreased levels of Cr(VI) as an adsorption results in µg/L level with the limit of detection (LOD) was 0.03 µg/L.

  1. Visualizing Gas Adsorption on Porous Solids: Four Simple, Effective Demonstrations

    Cheung, Ocean


    Gas adsorption on porous solids is a topic that is often discussed in an undergraduate chemistry or chemical engineering course. The idea of porosity and gas adsorption on a porous solid is usually discussed with adsorption isotherms recorded using commercially available equipment. This discussion can be rather abstract and can be difficult for…

  2. Solid phase transformations II

    Čermák, J


    This topical volume includes ten invited papers that cover selected areas of the field of solid phase transformations. The first two contributions represent a burgeoning branch; that of the computer simulation of physical phenomena. The following three articles deal with the thermodynamics of phase transformations as a basic theory for describing the phenomenology of phase changes in matter. The next paper describes the interconnections between structural stability and the electronic structure of phases. Two further articles are devoted to displacive transformations; a field where there are ma

  3. Solid-phase microextraction

    Nilsson, Torben

    The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...

  4. Solid phases of tenoxicam.

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M


    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  5. Solid phase transformations

    Čermák, J


    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  6. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Tóth, Blanka; Horvai, George


    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  7. Solid-Phase Random Glycosylation

    Agoston, K.; Kröger, Lars; Dekany, Gyula


    Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...

  8. Adsorption of polylysines at solid-liquid interfaces

    Bonekamp, B.C.


    Adsorption properties of the polyelectrolytes poly-L-lysine (PL-L) and poly-DL-lysine (PL-DL) on hydrophobic (polystyrene latex, silver iodide) and hydrophilic (silica) negatively charged solid particles were studied.
    Adsorbed amounts as a function of concentration, ionic strength, surface

  9. Solid-phase peptide synthesis

    Jensen, Knud Jørgen


    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  10. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu


    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix.

  11. Adsorption by powders and porous solids principles, methodology and applications

    Rouquerol, Jean; Llewellyn, Philip; Maurin, Guillaume; Sing, Kenneth SW


    The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolit



    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin isreported. 2-Polystyrylsuifonamidoethanol resin 1 was reacted with acryloyl chloride to afford2-polystyrylsulfonylamidoethyl acrylate resin 2, which was further reacted with brominatedaldoximes by [3+2] cycioaddition to give isoxazoline resin 4. Resin 4 was treated with aqueous 6mol/L HCI solution to obtain isoxazolines in good yield and purity.

  13. Multiple solid-phase microextraction

    Koster, EHM; de Jong, GJ


    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that


    SUNWeimin; LUOJuntao; 等


    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin is reported.2-Polystyrylsulfonamidoethanol resin 1 was reacted with acryloyl chloride to afford 2-polystyrylsulfonylamidoethyl acrylate resin 2,which was further reacted with brominated aldoximes by [3+2] cycloaddition to give isoxazoline resin 4.Resin 4 was treated with aqueous 6 mol/L HCl solution to obtain isoxazolines in good yield and purity.

  15. Study on New Sensitive Method of Determination of Phosphorus by Solid Phase Spectrophotometry


    The use of solid phase spectrophotometry for the determination of trace phosphorus in the system of phosphomolybdate-fructose is described. The adsorption of the system on anion-exchange resin is reported.

  16. Adsorption of comb copolymers on weakly attractive solid surfaces

    Striolo, A.; Jayaraman, A.; Genzer, J.; Hall, C. K.


    In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

  17. New findings on the influence of carbon surface curvature on energetics of benzene adsorption from gaseous phase

    Terzyk, Artur P.; Furmaniak, Sylwester; Wiśniewski, Marek; Werengowska, Karolina; Gauden, Piotr A.; Kowalczyk, Piotr


    In this Letter, new results of calorimetric study on benzene adsorption from the gaseous phase are presented. According to some of recently published reports, the energy of solid-fluid, interactions increases with the rise in carbon nanotube curvature during adsorption. The recent considerations [Chem. Phys. Lett. 619 (2015) 219] on thermodynamics of adsorption from aqueous solutions on a series of carbon nanotubes have confirmed this observation. Although comparable 'energy-tube diameter' relations for benzene adsorption from the solution and from the gaseous phase are observed, remarkable differences between the mechanisms of the both processes caused by surface heterogeneity are noticeable.

  18. Solid phase syntheses of oligoureas

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)


    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  19. Homogeneous Diffusion Solid Model as a Realistic Approach to Describe Adsorption onto Materials with Different Geometries

    Sabio, E.; Zamora, F.; González-García, C. M.; Ledesma, B.; Álvarez-Murillo, A.; Román, S.


    In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.

  20. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)


    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  1. A comparison of observables for solid-solid phase transitions

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory


    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  2. A computational study of carbon dioxide adsorption on solid boron.

    Sun, Qiao; Wang, Meng; Li, Zhen; Du, Aijun; Searles, Debra J


    Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.

  3. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  4. The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc.

    Conidi, Daniela; Parker, Wayne J


    The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.

  5. Solid-solid phase transitions via melting in metals

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.


    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  6. Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.

    Do, D D; Do, H D; Nicholson, D


    We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.

  7. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes.

    Nakagawa, Kyuya; Namba, Akio; Mukai, Shin R; Tamon, Hajime; Ariyadejwanich, Pisit; Tanthapanichakoon, Wiwut


    Activated carbons were produced from several solid wastes, namely, waste PET, waste tires, refuse derived fuel and wastes generated during lactic acid fermentation from garbage. Activated carbons having various pore size distributions were obtained by the conventional steam-activation method and via the pre-treatment method (i.e., mixture of raw materials with a metal salt, carbonization and acid treatment prior to steam-activation) that was proposed by the authors. The liquid-phase adsorption characteristics of organic compounds from aqueous solution on the activated carbons were determined to confirm the applicability of these carbons, where phenol and a reactive dye, Black5, were employed as representative adsorbates. The hydrophobic surface of the carbons prepared was also confirmed by water vapor adsorption. The characteristics of a typical commercial activated carbon were also measured and compared. It was found that the activated carbons with plentiful mesopores prepared from PET and waste tires had quite high adsorption capacity for large molecules. Therefore they are useful for wastewater treatment, especially, for removal of bulky adsorbates.

  8. A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling

    Espinoza, D. N.; Vandamme, M.; Dangla, P.; Pereira, J.-M.; Vidal-Gilbert, S.


    Understanding the adsorption-induced swelling in coal is critical for predictable and enhanced coal bed methane production. The coal matrix is a natural anisotropic disordered microporous solid. We develop an elastic transverse isotropic poromechanical model for microporous solids which couples adsorption and strain through adsorption stress functions and expresses the adsorption isotherm as a multivariate function depending on fluid pressure and solid strains. Experimental data from the literature help invert the anisotropic adsorptive-mechanical properties of Brzeszcze coal samples exposed to CO2. The main findings include the following: (1) adsorption-induced swelling can be modeled by including fluid-specific and pressure-dependent adsorption stress functions into equilibrium equations, (2) modeling results suggest that swelling anisotropy is mostly caused by anisotropy of the solid mechanical properties, and (3) the total amount of adsorbed gas measured by immersing coal in the adsorbate overestimates adsorption amount compared to in situ conditions up to ˜20%. The developed fully coupled model can be upscaled to determine the coal seam permeability through permeability-stress relationships.

  9. Comments on "Ion adsorption components in liquid/solid systems"

    LI Wei; PAN Gang


    @@ Recently, Wu et al. (J Environ Sci 18(2006) 1167-1175) published a paper entitled as above. In the paper, the authors proposed a plotting method for describing adsorption isotherm, where adsorption density (q e) was plotted against the ratio of equilibrium concentration/particle concentration (Ce/W0) rather than (Ce) as traditionally defined. The authors claimed that this plot can eliminate the "particle concentration effect" (i.e., adsorption isotherm declines with increasing particle concentration), which may otherwise be inevasible with traditionally defined adsorption isotherms. We think that their conclusion is conceptually flawed and the plot may cause substantial inconstancy problems in practice.

  10. Molecular Modeling of Solid Fluid Phase Behavior

    Peter A. Monson


    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  11. Binary Solid-Liquid Phase Equilibria

    Ellison, Herbert R.


    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  12. Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.

    Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N


    The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications.

  13. Solid phase sequencing of biopolymers

    Cantor, Charles R.; Hubert, Koster


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  14. Solid phase sequencing of biopolymers

    Cantor, Charles (Del Mar, CA); Koster, Hubert (La Jolla, CA)


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  15. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.


    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  16. Structural phases of adsorption for flexible polymers on nanocylinder surfaces.

    Gross, Jonathan; Vogel, Thomas; Bachmann, Michael


    By means of generalized-ensemble Monte Carlo simulations, we investigate the thermodynamic behavior of a flexible, elastic polymer model in the presence of an attractive nanocylinder. We systematically identify the structural phases that are formed by competing monomer-monomer and monomer-substrate interactions. The influence of the relative surface attraction strength on the structural phases in the hyperphase diagram, parameterized by cylinder radius and temperature, is discussed as well. In the limiting case of the infinitely large cylinder radius, our results coincide with previous outcomes of studies of polymer adsorption on planar substrates.

  17. Comparative study of DNA extration of bloodstain on the iflter paper with four methods of solid phase adsorption%4种固相颗粒吸附法提取滤纸血痕DNA效果的比较

    巴华杰; 马骏; 刘亚楠; 朱爱华; 林子清


    Objective To discuss the effect of DNA extraction of bloodstain on the filter paper with four methods of solid phase absorption.Methods 180 bloodstain samples on the iflter paper, each one contains 1 microlitre anticoagulation peripheral venous blood, divided into 4 groups with 45 samples, respectively. All samples were treated with four methods of solid phase absorption, i.e. DNA IQ™ System, D-shield sensitive DNA Extraction Kit, High efficiency Silica Bead DNA Extraction Kit and Conventional silica bead method. The concentration of DNA and the results of STR typing of four groups were compared each other.Results The concentration of DNA was 3.764±1.790μg/mL and 3.634±1.112μg/mL by using D-shield sensitive DNA Extraction Kit and High efifciency Silica Bead DNA Extraction Kit, respectively. However, the concentration of DNA by using Conventional silica bead method group (3.350±1.250) was not signiifcantly different from each other (P0.05),但均高于DNA IQ™系统(1.864±1.207)(P<0.001);D盾超敏DNA提取试剂盒、超高效硅珠纯化DNA提取试剂盒及常规硅珠法样本图谱峰高大于DNA IQ™系统(P<0.001),超高效硅珠纯化DNA提取试剂盒和常规硅珠法样本图谱峰高大于D盾超敏DNA提取试剂盒(P<0.01)。结论 D盾超敏DNA提取试剂盒、超高效硅珠纯化DNA提取试剂盒及常规硅珠法对于滤纸血痕的DNA提取效率高于DNA IQ™系统;超高效硅珠纯化DNA提取试剂盒和常规硅珠提取到的DNA溶液可能具有更高的质量。

  18. Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids.

    Gibbons, Meaghan K; Gagnon, Graham A


    Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Q(max) = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Q(max) = 640 mg/kg), lime (Q(max) = 160 mg/kg) and alum (Q(max) = 93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.

  19. Multiplexed Colorimetric Solid-Phase Extraction

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.


    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  20. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David


    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  1. A QCM study on the adsorption of colloidal laponite at the solid/liquid interface.

    Xu, Dan; Hodges, Chris; Ding, Yulong; Biggs, Simon; Brooker, Anju; York, David


    The adsorption of colloidal laponite at the solid/liquid interface on various substrates and over a range of laponite concentrations (10-1000 ppm) has been investigated. Although a wide range of surfaces were studied, only on a positively charged poly(diallyldimethylammonium chloride) (PDADMAC) surface was any adsorption of the laponite observed. This shows that when fully wetted, laponite adsorption depends primarily on the surface charge rather than the degree of hydrophobicity of the surface. The adsorption of spherical Ludox silica nanoparticles on PDADMAC surfaces was also examined for comparison with the disklike laponite. The QCM data for both laponite and Ludox show strong adsorption on PDADMAC surfaces; however, larger frequency shifts were seen for Ludox than laponite at all concentrations tested. Within the concentration range examined in this work, the dissipation data from the QCM suggested a simple monolayer formation for Ludox but a monolayer to multilayer transition for laponite as the concentration increases.

  2. Adsorption of Carboxylic Acids on Reservoir Minerals from Organic and Aqueous Phase

    Madsen, Lene; Lind, Ida


    Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests that ...

  3. Phase 2, Solid waste retrieval strategy

    Johnson, D.M.


    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  4. Megabar pressure phases of solid hydrogen

    Chen, Nancy Hueling

    The behavior of solid Hsb2, Dsb2, and HD at low temperatures high pressures was investigated. The experimental data were obtained by combining high pressure diamond anvil cell apparatus with cryogenic and spectroscopic techniques. Megabar pressures (1 bar = 10sp5 Pa) and liquid helium temperatures were accessible. The observed phases and phase lines are discussed with respect to orientational order, crystal structure, and electronic properties. The orientational order-disorder phase transition in HD was studied by Raman spectroscopy. Due to the distinguishability of the nuclei in an HD molecule, the observed phase line exhibits surprising behavior relative to that expected for the homonuclear molecules Hsb2 and Dsb2. The megabar pressure phase diagram of solid Dsb2 was investigated by infrared and Raman spectroscopy. The broken symmetry phase (BSP) transition line and the D-A phase line were observed to meet at a triple point. The relative arrangement of phase lines in P-T space, combined with group theoretical analysis of observed infrared and Raman spectra within the phases, sets symmetry restrictions on the allowed crystal structures. The electronic properties of the high pressure H-A and D-A phases were examined, since these recently discovered phases were suspected of being metallic. Acquired broadband infrared absorption spectra extending to 10 mum were analyzed in terms of the Drude model for metals. No evidence indicating metallic behavior was found. Refinements in high pressure techniques were explored, in order to increase the maximum pressures attainable. A method of extending ruby fluorescence pressure measurements to multimegabar pressures was developed, which involved excitation of ruby fluorescence with red, rather than blue or green laser light.

  5. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent.

    Al-Ghouti, Mohammad A; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N M


    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu(2+)), and cadmium ion (Cd(2+)) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu(2+), and Cd(2+) onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu(2+) and Cd(2+) ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g(-1), respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu(2+), and Cd(2+) onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu(2+) and Cd(2+). For Cu(2+), binding two cellulose/lignin units together is the predominant mechanism. For Cd(2+), the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit. 2009 Elsevier B.V. All rights reserved.

  6. Isothermal Adsorption Measurement for the Development of High Performance Solid Sorption Cooling System

    Saha, Bidyut Baran; Koyama, Shigeru; Alam, K. C. Amanul; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao; Ng, Kim Choon; Chua, Hui Tong

    Interest in low-grade thermal heat powered solid sorption system using natural refrigerants has been increased. However, the drawbacks of these adsorption systems are their poor performance. The objective of this paper is to improve the performance of thermally powered adsorption cooling system by selecting new adsorbent-refrigerant pairs. Adsorption capacity of adsorbent-refrigerant pair depends on the thermophysical properties (pore size, pore volume and pore diameter) of adsorbent and isothermal characteristics of the adsorbent-refrigerant pair. In this paper, the thermophysical properties of three types of silica gels and three types of pitch based activated carbon fibers are determined from the nitrogen adsorption isotherms. The standard nitrogen gas adsorption/desorption measurements on various adsorbents at liquid nitrogen of temperature 77.4 K were performed. Surface area of each adsorbent was determined by the Brunauer, Emmett and Teller (BET) plot of nitrogen adsorption data. Pore size distribution was measured by the Horvath and Kawazoe (HK) method. Adsorption/desorption isotherm results showed that all three carbon fibers have no hysteresis and had better adsorption capacity in comparison with those of silica gels.

  7. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N


    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  8. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  9. Solid phase synthesis of bifunctional antibodies.

    DeSilva, B S; Wilson, G S


    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.



    The flow injection analysis was firstly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.

  11. [Solid phase techniques in blood group serology].

    Uthemann, H; Sturmfels, L; Lenhard, V


    As alternatives to hemagglutination, solid-phase red blood cell adherence assays are of increasing importance. The adaptation of the new techniques to microplates offers several advantages over hemagglutination. Using microplates the assays may be processed semiautomatically, and the results can be read spectrophotometrically and interpreted by a personal computer. In this paper, different red blood cell adherence assays for AB0 grouping, Rh typing, Rh phenotyping, antibody screening and identification, as well as crossmatching will be described.

  12. Recent advances in solid phase peptide synthesis

    White, P.D.


    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  13. Lattice Boltzmann simulation of the gas-solid adsorption process in reconstructed random porous media

    Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.


    The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.

  14. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    Stout, R B


    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface

  15. Development of headspace solid-phase microextraction method for ...

    ... solid-phase microextraction method for the analysis of pesticide residues in fruit and ... Journal of Applied Sciences and Environmental Management ... interface temperature) and solid phase microextraction parameters (fiber coating type, ...

  16. Silica supported Fe(3)O(4) magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds.

    Moliner-Martinez, Y; Vitta, Yosmery; Prima-Garcia, Helena; González-Fuenzalida, R A; Ribera, Antonio; Campíns-Falcó, P; Coronado, Eugenio


    This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.

  17. Wax Precipitation Modeled with Many Mixed Solid Phases

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan


    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub...

  18. Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of florfenicol in food samples.

    Sadeghi, Susan; Jahani, Moslem


    A molecularly imprinted polymer (MIP) for the selective solid phase extraction (SPE) of florfenicol (FF) was prepared using FF as template and 4-vinyl pyridine (4-VP) as functional monomer. For comparison, non-imprinted polymer (NIP) was synthesized in the absence of FF. The synthesized polymers were characterised by infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and differential thermal analysis (DTA). A molecularly imprinted solid phase extraction (MISPE) procedure was performed in column method by spectrophotometry detection technique. The prepared FF-MIP showed higher adsorption capacity than the non-imprinted polymer (NIP) and the maximum static adsorption capacities of FF on the MIP and the NIP were 4.32 and 2.88mgg(-1), respectively. Kinetics of the adsorption was fast and the adsorption equilibrium was achieved in 30min. The accuracy of the developed method was satisfactory for determination of FF in fish, chicken meat and honey samples.


    ZHAOYechun; XIHongxia; 等


    The parameter identification model is proposed for determining the linear adsorption isotherms and the solid diffusion coefficients by using adsorption chromatorgaphy.Axial dispersion coefficients is firstly determined by pulse-respond experiment technique with an inert substance as tracer,then the elution curves of chromatography separating the isomer mannitol and sorbitol are determined by the chromatographic measuring technique,and pinally the adsorption isotherms and the solid diffusion coefficients of mannitol and sorbitol on Ca2+ resins are estimated by using this model.The results show that the axial dispersion coefficients increase with fluid velocity increasing,The adsorption equilibrium constants decrease with temperature rising;and the solid diffusion coefficients increase with temperature rising.The theoretical elution curves are good agreement with the experimental elution curves of the liquid adsorption chromatography separating the mannitol and the sorbitol.The model provides a simple and reliable procedure to estimate the kinetic and thermodynamic parmeters of the adsorption.

  20. Modulation of mixed-phase titania photoluminescence by oxygen adsorption

    Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P. [Dipartimento di Fisica, Universitá degli Studi di Napoli “Federico II,” Via Cintia, I-80126 Napoli (Italy); Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy); Lettieri, S., E-mail: [Institute for Superconductors, Oxides and Innovative Materials and Devices, CNR-SPIN, U.O.S. Napoli, Via Cintia, I-80126 Napoli (Italy)


    We investigate the effect of oxygen (O{sub 2}) adsorption on photoluminescence properties of mixed-phase titania nanoparticle films deposited by femtosecond pulsed laser deposition, aiming to assess preliminary conclusions about the feasibility of opto-chemical sensing based on titania. We evidence that O{sub 2} produces opposite responses in rutile and anatase photoluminescence efficiency, highlighting interesting potentialities for future double-parametric optical sensing based on titania. The results evidence an important role of lattice oxygen atoms, suggesting that the standard Schottky barrier mechanism driving the response toward gas species in most used metal-oxide sensors (e.g., tin dioxide) is not the only active mechanism in titania.

  1. Parallel solid-phase synthesis of diaryltriazoles

    Matthias Wrobel


    Full Text Available A series of substituted diaryltriazoles was prepared by a solid-phase-synthesis protocol using a modified Wang resin. The copper(I- or ruthenium(II-catalyzed 1,3-cycloaddition on the polymer bead allowed a rapid synthesis of the target compounds in a parallel fashion with in many cases good to excellent yields. Substituted diaryltriazoles resemble a molecular structure similar to established terphenyl-alpha-helix peptide mimics and have therefore the potential to act as selective inhibitors for protein–protein interactions.

  2. Solid waste removes toxic liquid waste: adsorption of chromium(VI) by iron complexed protein waste.

    Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni


    The leather processing industry generates huge amounts of wastes, both in solid and liquid form. Fleshing from animal hides/skins is one such waste that is high in protein content. In this study, raw fleshing has been complexed with iron and is used for removal of chromium(VI). The effect of pH and the initial concentration of chromium(VI) on the removal of Cr(IV) by iron treated fleshing is presented. Iron treatment is shown to greatly improve adsorption of the fleshing for hexavalent chromium. The ultimate adsorption capacity of iron treated fleshing is 51 mg of chromium(VI) per gram of fleshing. That of untreated fleshing is 9 mg/g such that iron treatment increases the adsorption capacity of fleshing by 10-fold. The measured adsorption kinetics is well described by a pseudo-second-order kinetic model. The uptake of chromium(VI) by fleshing is best described by the Langmuir adsorption isotherm model. X-ray photoelectron spectroscopic (XPS) studies show that the iron is incorporated into the protein matrix. Shifts in XPS spectra suggest that dichromate binding occurs with iron at active adsorption sites and that iron treated fleshing removes chromium(VI) without reducing it to chromium(III).

  3. Adsorption of fluids on solid surfaces: A route toward very dense layers

    Sartarelli, S. A.; Szybisz, L.


    Adsorption of Xe on single planar walls is investigated in the frame of a density functional theory. The strength of the adsorbate-substrate attraction is changed by considering surfaces of Cs, Na, Li, and Mg. The behavior is analyzed by varying the temperature T (between the triple point Tt and the critical Tc) and the coverage Γℓ. The obtained adsorption isotherms exhibit a variety of wetting situations. Density profiles are reported. It is shown that for strongly attractive surfaces the adsorbed liquid becomes very dense reaching densities characteristic of solids.

  4. Adsorption of fluids on solid surfaces: A route toward very dense layers

    Sartarelli, S.A. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, San Miguel (Argentina); Szybisz, L., E-mail: [Laboratorio TANDAR, Departamento de Fisica, Comision Nacional de Energia Atomica, RA-1429 Buenos Aires (Argentina); Departamento de Fiica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, RA-1033 Buenos Aires (Argentina)


    Adsorption of Xe on single planar walls is investigated in the frame of a density functional theory. The strength of the adsorbate-substrate attraction is changed by considering surfaces of Cs, Na, Li, and Mg. The behavior is analyzed by varying the temperature T (between the triple point T{sub t} and the critical T{sub c}) and the coverage {Gamma}{sub Script-Small-L }. The obtained adsorption isotherms exhibit a variety of wetting situations. Density profiles are reported. It is shown that for strongly attractive surfaces the adsorbed liquid becomes very dense reaching densities characteristic of solids.

  5. Enhancing the adsorption of vapor-phase mercury chloride with an innovative composite sulfur-impregnated activated carbon.

    Ie, Iau-Ren; Chen, Wei-Chin; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Yuan-Chung; Tsai, Hsieh-Hung; Jen, Yi-Shiu


    Mercury chloride (HgCl(2)) is the major mercury derivate emitted from municipal solid waste incinerators, which has high risk to the environment and human health. This study investigated the adsorption of vapor-phase HgCl(2) with an innovative composite sulfurized activated carbon (AC), which was derived from the pyrolysis, activation, and sulfurization of waste tires. The composite sulfur-impregnation process impregnated activated carbon with aqueous-phase sodium sulfide (Na(2)S) and followed with vapor-phase elemental sulfur (S(0)). Thermogravimetric analysis (TGA) was applied to investigate the adsorptive capacity of vapor-phase HgCl(2) using the composite sulfurized AC. The operating parameters included the types of composite sulfurized AC, the adsorption temperature, and the influent HgCl(2) concentration. Experimental results indicated that the sulfur-impregnation process could increase the sulfur content of the sulfurized AC, but decreased its specific surface area. This study further revealed that the composite sulfurized AC impregnated with aqueous-phase Na(2)S and followed with vapor-phase S(0) (Na(2)S+S(0) AC) had much higher saturated adsorptive capacity of HgCl(2) than AC impregnated in the reverse sequence (S(0)+Na(2)S AC). A maximum saturated adsorptive capacity of HgCl(2) up to 5236 μg-HgCl(2)/g-C was observed for the composite Na(2)S+S(0) AC, which was approximately 2.00 and 3.17 times higher than those for the single Na(2)S and S(0) ACs, respectively.

  6. Adsorption of Carboxylic Acids on Reservoir Minerals from Organic and Aqueous Phase

    Madsen, Lene; Lind, Ida


    Adsorption of organic acids onto North Sea chalk and pure minerals from a hydrocarbon phase and an aqueous phase show that the maximum adsorption is larger for calcite than for silicate surfaces in the hydrocarbon phase. The opposite is observed, however, in the aqueous phase. This suggests that ...... that the available silicate surfaces and oil/water ratio may play a role in the wettability of chalk....

  7. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao


    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 邻苯二甲酸二甲酯印迹吸附材料的水相合成及固相萃取应用%Synthesis of dimethyl phthalate imprinted adsorption material in aqueous media and its application in solid phase extraction

    张进; 靳亚华; 左聪韵; 王超英


      在硅胶表面以邻苯二甲酸二甲酯(DMP)为模板分子,甲基丙烯酰胺(MAM)为功能单体,N,N-亚甲基双丙烯酰胺( MBAA)为交联剂在甲醇/水体系中制备了DMP印迹聚合物。采用紫外光谱法( UV)研究单体与模板间的相互作用,红外光谱分析印迹聚合物的结构特征。用平衡吸附实验方法研究聚合物对 DMP的结合性能,Scatchard法分析聚合物的吸附解离常数(Kd)和最大表观吸附容量(Qmax)。对不同底物的选择性实验表明聚合物对模板分子具有良好的亲和性和选择性。将MIP用作固相萃取( SPE )柱填料,对环境水样中的DMP进行富集试验,回收率为90.28-95.25%,相对标准偏差( RSD)为3.52-7.61%。%Molecularly imprinted polymers ( MIP) for dimethyl phthalate ( DMP) was synthesized on the surface of silica gel with DMP as template molecule , methylacrylamide ( MAM ) as functional monomer and N, N′-methylenebis acrylamide ( ( MBAA ) ) as a crosslinking agent in methanol-water system.The intermolecular interaction between MAM and DMP was confirmed by ultraviolet spectroscopy(UV)and the structure of MIP was analyzed by fourier transform infrared spectroscopy (FTIR).The binding properties of the MIP were evaluated by equilibrium adsorption experiment method.The dissociation constant ( Kd ) and the max adsorption ca-pacity(Qmax)of the template-polymer system was analyzed via scatchard plot.The experiments of binding different substrates indica-ted that the MIP possessed good affinity and selectivity for DMP.In addition,the MIP was successfully used as a stationary phase for solid-phase extraction ( SPE) to enrich DMP from several environmental water samples and the recoveries were in the range of 90.28-95.25%with RSD of 3.52-7.61%.

  9. A generalized adsorption-phase transition model to describe adsorption rates in flexible metal organic framework RPM3-Zn.

    Lueking, Angela D; Wang, Cheng-Yu; Sircar, Sarmishtha; Malencia, Christopher; Wang, Hao; Li, Jing


    Flexible gate-opening metal organic frameworks (GO-MOFs) expand or contract to minimize the overall free energy of the system upon accommodation of an adsorbate. The thermodynamics of the GO process are well described by a number of models, but the kinetics of the process are relatively unexplored. A flexible GO-MOF, RPM3-Zn, exhibits a significant induction period for opening by N2 and Ar at low temperatures, both above and below the GO pressure. A similar induction period is not observed for H2 or O2 at comparable pressures and temperatures, suggesting the rate of opening is strongly influenced by the gas-surface interaction rather than an external stress. The induction period leads to severe mass transfer limitations for adsorption and over-prediction of the gate-opening pressure. After review of a number of existing adsorption rate models, we find that none adequately describe the experimental rate data and similar timescales for diffusion and opening invalidate prior reaction-diffusion models. Statistically, the rate data are best described by a compressed exponential function. The resulting fitted parameters exceed the expectations for adsorption but fall within those expected for phase transition. By treating adsorption as a phase transition, we generalize the Avrami theory of phase transition kinetics to describe adsorption in both rigid and flexible hosts. The generalized theory is consistent with observed experimental trends relating to induction period, temperature, pressure, and gas-substrate interaction.

  10. Density-functional theory for fluid-solid and solid-solid phase transitions

    Bharadwaj, Atul S.; Singh, Yashwant


    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  11. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars


    , that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membraneactive peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show......Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely...... that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting...

  12. Analysis of air adsorptive on solid surfaces by AFM and XPS

    WANG Rong-guang; Mitsuo KIDO


    Solid surfaces of HOPG,pure copper,chromium,zinc,copper and SUS304 steel were observed in ambient air with an a.c. non-contact mode of atomic force microscope(AFM). A type of film-like-domains (adsorptive) was detected on the above surfaces. The thickness of the adsorptive was about 1.2-2.4 nm in this case. The film-like-adsorptive was confirmed to be a liquid layer by the static contact-mode scanning,the measurement of the elasticity and viscosity images,and the detection of the condensation/ evaporation phenomena when the relative humidity changed. The liquid layer is considered to be condensed water covered with organic contaminant.

  13. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping


    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%.

  14. Adsorptive

    Vinod Kumar Gupta


    Full Text Available This work explores the feasibility of natural fibers derived from Ficus carica plant as an alternative precursor for the preparation of activated carbon via microwave assisted H3PO4 activation. The properties of activated carbon were investigated by scanning electron microscope (SEM and Fourier transform spectroscopy (FTIR. The operational parameters, chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were investigated. Adsorption performance of Cu(II and Ni(II onto activated carbon was investigated as a function of pH, contact time, initial metal ion concentration and temperature. The adsorption capacity of Cu(II and Ni(II onto the adsorbent was found to be 23.08 and 18.78 mg/g, respectively. Adsorption of metal ions followed second order kinetics with best fit for Fraundlich adsorption isotherm. The values of thermodynamic parameters such as enthalpy change (ΔH°, entropy change (ΔS° and free energy change (ΔG° were evaluated for the adsorption of both the metal ions. Adsorption of metal ions onto activated carbon was spontaneous and endothermic in nature. The results suggested that activated carbon developed from natural fibers successfully improved the metal ions adsorption capacity. On the basis of our findings, the adsorbent could be used as a detoxifying agent for better management of industrial effluents.

  15. Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon.

    Wang, Hang; Ma, Lijian; Cao, Kecheng; Geng, Junxia; Liu, Jun; Song, Qiang; Yang, Xiaodan; Li, Shoujian


    A new salicylideneimine-functionalized hydrothermal-carbon-based solid-phase extractant was developed for the purpose of separating uranium selectively for sustainability of uranium resources. The resulting adsorption material was obtained via hydrothermal carbonization, calcination at mild temperature (573.15K), amination, and grafting with salicylaldehyde in sequence. Both Fourier transform infrared spectra and elemental analysis proved the successful grafting of salicylideneimine onto hydrothermal carbon matrix. Adsorption behaviors of the extractant on uranium(VI) were investigated by varying pH values of solution, adsorbent amounts, contact times, initial metal concentrations, temperatures, and ionic strengths. An optimum adsorption capacity of 1.10 mmol g(-1) (261 mg g(-1)) for uranium(VI) was obtained at pH 4.3. The present adsorption process obeyed pseudo-second-order model and Langmuir isotherm. Thermodynamic parameters (ΔH=+8.81 kJ mol(-1), ΔS=+110 J K(-1)mol(-1), ΔG=-23.0 kJ mol(-1)) indicated the adsorption process was endothermic and spontaneous. Results from batch adsorption test in simulated nuclear industrial effluent, containing Cs(+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Zn(2+), La(3+), Ce(3+), Nd(3+), Sm(3+), and Gd(3+), showed the adsorbent could separate uranium(VI) from those competitive ions with high selectivity. The adsorbent might be promising for use in certain key steps in any future sustainable nuclear fuel cycle.

  16. Thermodynamic evaluation of activated charcoal as a poison antidote by high-performance liquid chromatography. I: Derivation and validation of an equation for Gibbs free energy of liquid-solid adsorption.

    Kleeman, W P; Bailey, L C


    An in vitro method utilizing high-performance liquid chromatography (HPLC) was developed in order to investigate the adsorptive process between activated charcoal and various drugs and toxic chemicals by measuring their Gibbs free energy of adsorption from various acetonitrile:water mobile phases. This report details the derivation and validation of the equation for calculating the Gibbs free energy of liquid-solid adsorption via HPLC. The derived equation incorporates the following experimental parameters: specific surface area of the adsorbent, specific retention volume of the solute, molar volume of the mobile phase, and surface concentration of the solute in a predefined standard state. This equation was validated by means of a closed thermodynamic cycle composed of three segments. Each segment represents a different physical process: gas-solid adsorption of methyl iodide on activated charcoal, gas-liquid solution of methyl iodide in n-hexadecane, and liquid-solid adsorption of methyl iodide on activated charcoal from n-hexadecane. The Gibbs free energy for each of these thermodynamic processes was determined by the appropriate chromatographic technique. Since the cycle did not balance because it did not account for the interaction of n-hexadecane and activated charcoal, it was altered to include a gas-liquid-solid chromatographic technique. When the Gibbs free energies of solution and gas-solid adsorption determined by this chromatographic technique were incorporated into the cycle, the resulting imbalance was only 0.213 kJ/mol (1.1%), thereby validating the derived equation.

  17. Manifestations of non-planar adsorption geometries of lead pyrenocyanine at the liquid-solid interface.

    Mali, Kunal S; Zöphel, Lukas; Ivasenko, Oleksandr; Müllen, Klaus; De Feyter, Steven


    In this work, we provide evidence for multiple non-planar adsorption geometries of a novel pyrenocyanine derivative at the liquid-solid interface under ambient conditions. When adsorbed at the organic liquid-solid interface, lead pyrenocyanine forms well-ordered monolayers that exhibit peculiar non-periodic contrast variation. The different contrast of the adsorbed molecules is attributed to dissimilar adsorption geometries which arise from the non-planar conformation of the molecules. The non-planarity of the molecular backbone in turn arises due to a combination of the angularly extended pyrene subunits and the presence of the large lead ion, which is too big to fit inside the central cavity and thus is located out of the aromatic plane. The two possible locations of the lead atom, namely below and above the aromatic plane, could be identified as depression and protrusion in the central cavity, respectively. The manifestation of such multiple adsorption geometries on the structure of the resultant monolayer is discussed in detail. The packing density of these 2D arrays of molecules could be tuned by heating of the sample wherein the molecular packing changes from a low-density, pseudo six-fold symmetric to a high-density, two-fold symmetric arrangement. Finally, a well-ordered two-component system could be constructed by incorporating C60 molecules in the adlayer of lead pyrenocyanine at the liquid-solid interface.

  18. Solid phase microextraction device using aerogel

    Miller, Fred S.; Andresen, Brian D.


    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  19. Molecular dynamics simulation of liquid phase adsorption of alkaloid on graphite surface

    Suzuki, M.; Wang, D.; Sakoda, A. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science


    A methodology for molecular dynamics simulation of alkaloid adsorption onto solid surfaces from solutions is developed by employing berberine as a model alkaloid, and water, methanol and N,N-dimethylformamide (DMF) as model solvents. A single berberine molecule and a salvation shell around it are considered as the solution model. The behavior of berberine at the vacuum-solid interface and at the solution-solid interface were simulated, and it is found that a berberine molecule adsorbed with its molecular plane parallel to the graphite surface is most stable, and the molecular conformation does not change considerably during dissolution in the solvents and adsorption onto the graphite. Also, the solvent effects on the adsorption are focused on by analyzing the potential energy change of berberine molecule being adsorbed onto the graphite surface from the solutions by molecular dynamics calculations, and discussed quantitatively by combining solvophobic theory and calculations of the potential energy by molecular simulation. It is known that the presence of water or methanol has little effect on the adsorption of berberine onto the graphite surface, and that the presence of DMF inhibits the adsorption of berberine significantly. It can be said that the methodology developed in this work is useful for studying the solvent effects on adsorption, and for choosing proper solvents in adsorptive separation and purification processes for alkaloids. 31 refs., 9 figs., 4 tabs.

  20. Comparison study of phosphorus adsorption on different waste solids: Fly ash, red mud and ferric-alum water treatment residues.

    Wang, Ying; Yu, Yange; Li, Haiyan; Shen, Chanchan


    The adsorption of phosphorus (P) onto three industrial solid wastes (fly ash, red mud and ferric-alum water treatment residual (FAR)) and their modified materials was studied systematically via batch experiments. Compared with two natural adsorbents (zeolite and diatomite), three solid wastes possessed a higher adsorption capacity for P because of the higher Fe, Al and Ca contents. After modification (i.e., the fly ash and red mud modified by FeCl3 and FARs modified by HCl), the adsorption capacity increased, especially for the modified red mud, where more Fe bonded P was observed. The P adsorption kinetics can be satisfactorily fitted using the pseudo-second-order model. The Langmuir model can describe well the P adsorption on all of the samples in our study. pH and dissolved organic matter (DOM) are two important factors for P adsorption. Under neutral conditions, the maximum adsorption amount on the modified materials was observed. With the deviation from pH7, the adsorption amount decreased, which resulted from the change of P species in water and surface charges of the adsorbents. The DOM in water can promote P adsorption, which may be due to the promotion effects of humic-Fe(Al) complexes and the pH buffer function exceeds the depression of competitive adsorption. Copyright © 2016. Published by Elsevier B.V.

  1. Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes


    REPORT Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report a novel solid phase...form poly-macromer brushes wherein macromonomers are linked via triazole groups. After each addition step, the terminal alkyne group can be deprotected...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Solid Phase Synthesis , polymers and copolymers Hernán R. Rengifo, Cristian Grigoras, Benjamin I

  2. Adsorption of Lead Content in Leachate of Sukawinatan Landfill Using Solid Waste of Tofu

    Sri Hartati


    Full Text Available A study on the adsorption of lead content in the leachate from the landfill by using solid waste of tofu. This study assed the effects of weight of the solid waste of tofu and the contact time on the efficiency of the Pb adsorption. The sample used in this study was artificial sample of a solution of Pb metal ion and the sample of the leachate of the landfill waste. The study was carried out with a batch system, with the variables of weight of waste of tofu of 0.5; 1.0; 1.5 g. While the variables of the contact time were 0, 30, 60, 90, 120 and 150 minutes. To determine the optimum conditions, the waste of tofu was dissolved in 50 mL of Pb metal ion solution with a concentration of 20.27 mg/L and stirred with a shaker for 30 minutes at a speed of 180 rpm. The same thing was done by varying the contact time. When the optimum condition was obtained, it was applied with varying concentrations of Pb metal ion solution and garbage landfill leachate. The initial and the final levels of the Pb metal ion solution were analyzed by using the Atomic Adsorption Spectroscopy (AAS. The initial and the final results of the heavy metals were analyzed for disclosing the adsorption efficiency. To reveal the effects of the weight of the waste of tofu and the contact time, the data were analyzed with graphs. The waste of tofu with a weight of 1.5 g and a contact time of 90 minutes, had an adsorption efficiency of 97.68% at a concentration of 20.27 mg / L for Pb ion solution and 28.57% for the leachate from the landfill waste in 100 mL of leachate.

  3. Adsorption

    Denis J.L. Guerra


    Full Text Available Nontronite is an important phyllosilicate with a high concentration of ferric iron in the octahedral layer. A new occurrence of Brazilian nontronite sample was used for the organofunctionalization process with 3-aminopropyltriethoxysilane. Due to the increment of basic centers attached to the pendant chains, the metal adsorption capability of the final chelating material, was found to be higher than its precursor. The ability of these materials to remove Pb2+, Mn2+, and Zn2+ from aqueous solutions was followed by a series of adsorption isotherms at room temperature and pH 6.0, in batch adsorption experiments in order to explain the adsorption mechanism. In order to evaluate the phyllosilicate samples as adsorbents in a dynamic system, a glass column was fulfilled with nontronite samples (1.5 g and it was fed with 2.1 mmol dm−3 divalent cations at pH 6.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. The effects of three divalent metals adsorption in the zero point of charge of each material were investigated.

  4. Modelling Gas Adsorption in Porous Solids: Roles of Surface Chemistry and Pore Architecture

    Satyanarayana Bonakala; Sundaram Balasubramanian


    Modelling the adsorption of small molecule gases such as N2 , CH4 and CO2 in porous solids can provide valuable insights for the development of next generation materials. Employing a grand canonical Monte Carlo simulation code developed in our group, the adsorption isotherms of CH4 and CO2 in many metal organic frameworks have been calculated and compared with experimental results. The isotherms computed within a force field approach are able to well reproduce the experimental data. Key functional groups in the solids which interact with gas molecules and the nature of their interactions have been identified. The most favorable interaction sites for CH4 and CO2 in the framework solids are located in the linkers which are directed towards the pores. The structure of a perfluorinated conjugated microporous polymer has been modelled and it is predicted to take up 10% more CO2 than its hydrogenated counterpart. In addition, the vibrational, orientational and diffusive properties of CO2 adsorbed in the solids have been examined using molecular dynamics simulations. Intermolecular modes of such adsorbed species exhibit a blue shift with increasing gas pressure.

  5. Verification of selected relationships for fractally porous solids by using adsorption isotherms calculated from density functional theory

    Jaroniec, Mietek; Kruk, Michal; Olivier, James


    Methods of calculating the fractal dimension (D) on the basis of single adsorption isotherms were critically tested by using argon composite adsorption isotherms for fractally porous solids. These isotherms were obtained from adsorption data for homogeneous slit-like pores calculated by employing the density functional theory (DFT). The composite adsorption isotherms were used to test the validity of the method based on the Frenkel-Halsey-Hill equation and so called "thermodynamic method" proposed by Neimark. The applicability of these methods was confirmed. However, our studies reveal new aspects of practical usage of both approaches, which need to be taken into consideration in analysis of experimental data.

  6. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids.

    Bi, Wentao; Zhou, Jun; Row, Kyung Ho


    Three anion-exchangeable, silica-confined ionic liquids were synthesized for solid phase extraction of lactic acid from fermentation broth, followed by high-performance liquid chromatography coupled to ultraviolet detection. By comparing the adsorption isotherms of lactic acid on different silica-confined ionic liquids, interactions between the lactic acid and sorbents were investigated. The adsorbed amounts were then fitted into different adsorption isotherm equations; finally, the Langmuir equation was selected. Then the imidazolium silica with the highest adsorption capacity of lactic acid was packed into a cartridge for solid phase extraction. The loading volume of the cartridge was optimized by the Langmuir equation and geometry. After washing with distilled water and eluting with 0.25 mol L(-1) of an HCl solution, the lactic acid was separated from interference with a recovery yield of 91.9%. Furthermore, this kind of anion-exchangeable material exhibited potential for industrial applications and separation of other anionic bioactive compounds.

  7. Determination of melamine in aquaculture feed samples based on molecularly imprinted solid-phase extraction.

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao


    This research highlights the application of highly efficient molecularly imprinted solid-phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine-imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid-phase extraction sorbents for the selective cleanup of melamine. An off-line molecularly imprinted solid-phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high-performance liquid chromatography analysis. Optimum molecularly imprinted solid-phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6-96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid-phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre-treatment of melamine in aquaculture feed samples.

  8. Structural Properties and Phase Transition of Na Adsorption on Monolayer MoS2.

    He, Hai; Lu, Pengfei; Wu, Liyuan; Zhang, Chunfang; Song, Yuxin; Guan, Pengfei; Wang, Shumin


    First-principles calculations are performed to investigate the structural stability of Na adsorption on 1H and 1T phases of monolayer MoS2. Our results demonstrate that it is likely to make the stability of distorted 1T phase of MoS2 over the 1H phase through adsorption of Na atoms. The type of distortion depends on the concentration of adsorbed Na atoms and changes from zigzag-like to diamond-like with the increasing of adsorbed Na atom concentrations. Our calculations show that the phase transition from 1H-MoS2 to 1T-MoS2 can be obtained by Na adsorption. We also calculate the electrochemical properties of Na adsorption on MoS2 monolayer. These results indicate that MoS2 is one of potential negative electrodes for Na-ion batteries.

  9. A First Principle Comparative Study on Chemisorption of H2 on C60, C80, and Sc3N@C80 in Gas Phase and Chemisorption of H2 on Solid Phase C60

    Hongtao Wang


    Full Text Available The chemisorptions of H2 on fullerenes C60 and C80, endofullerene Sc3C@C80 and solid C60 were comparatively studied. A chain reaction mechanism for dissociative adsorption of H2 on solid C60 is proposed under high pressure. The breaking of H–H bond is concerted with the formation of two C–H bonds on two adjacent C60 in solid phase. The adsorption process is facilitated by the application of high pressure. The initial H2 adsorption on two adjacent C60 gives a much lower barrier 1.36 eV in comparison with the barrier of adsorption on a single C60 (about 3.0 eV. As the stereo conjugate aromaticity of C60 is destructed by the initial adsorption, some active sites are created. Hence the successive adsorption becomes easier with much low barriers (0.6 eV. In addition, further adsorption can create new active sites for the next adsorption. Thus, a chain reaction path is formed with the initial adsorption dominating the whole adsorption process.

  10. Solid/liquid interfacial tension as a tool to study stability of lysozyme on adsorption to solid surfaces

    Krishnan, C. A.; Maheshwari, R.; Dhathathreyan, A.


    This work proposes the use of solid/liquid interfacial tension to study the stability of adsorbed lysozyme films on a solid surface using the contact angle of a liquid at the three phase contact line, in the presence of a denaturant, urea. Results suggest a direct correlation between this method with a standard technique like the fluorescence emission spectra and is measured with the same observable error as in the spectral methods. Further the technique provides a simple and direct handle to evaluate the homogeneity and degree of polarity of protein films on solid surfaces.

  11. Stable solid-phase Rh antigen.

    Yared, M A; Moise, K J; Rodkey, L S


    Numerous investigators have attempted to isolate the Rh antigens in a stable, immunologically reactive form since the discovery of the Rh system over 56 years ago. We report here a successful and reproducible approach to solubilizing and adsorbing the human Rh antigen(s) to a solid-phase matrix in an antigenically active form. Similar results were obtained with rabbit A/D/F red blood cell antigens. The antigen preparation was made by dissolution of the red blood cell membrane lipid followed by fragmentation of the residual cytoskeleton in an EDTA solution at low ionic strength. The antigenic activity of the soluble preparations was labile in standard buffers but was stable in zwitterionic buffers for extended periods of time. Further studies showed that the antigenic activity of these preparations was enhanced, as was their affinity for plastic surfaces, in the presence of acidic zwitterionic buffers. Adherence to plastic surfaces at low pH maintained antigenic reactivity and specificity for antibody was retained. The data show that this approach yields a stable form of antigenically active human Rh D antigen that could be used in a red blood cell-free assay for quantitative analysis of Rh D antibody and for Rh D antibody immunoadsorption and purification.

  12. The adsorption and degradation of chlorpyriphos-methyl, pendimethalin and metalaxyl in solid urban waste compost.

    Baglieri, Andrea; Gennari, Mara; Arena, Maria; Abbate, Cristina


    To evaluate the feasibility of using compost to prepare substrates for the disposal of pesticide residues, adsorption and degradation studies were carried out on three widely used agricultural pesticides: chlorpyriphos-methyl, pendimethalin and metalaxyl. Obtained from solid urban waste, this compost has been shown to be able to adsorb high levels of chlorpyriphos-methyl and pendimethalin (85%, 100%) whereas metalaxyl was only adsorbed at a level of 37%. However, adding smectite to the compost increased the adsorption of metalaxyl by 117%. Chlorpyriphos-methyl and pendimethalin degraded quickly with half-lives of 1.7 and 14.5 days, respectively, whereas metalaxyl proved more persistent (a half-life of 84 days). Adding ammonium nitrate to the compost accelerated metalaxyl degradation to a half-life of 15 days.

  13. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.


    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  14. Investigation of binary solid phases by calorimetry and kinetic modelling

    Matovic, M.


    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid

  15. Vapor phase adsorption of organic compounds on octyl silicas

    Roshchina, T. M.; Shoniya, N. K.; Tayakina, O. Ya.; Fadeev, A. Y.


    The influence of the modification of silica by octyltrichlorosilane with the formation of an oligomeric grafted layer (sample C8(II)) and additional silanization (sample C8(III)) on the thermodynamic adsorption characteristics (TACs) of different classes of organic compounds was investigated by gas chromatography. It was shown that the modification leads to decreased adsorption values for most of the investigated compounds (with the exception of alkanes, for which TACs on sample C8(II) approach the values observed on the initial support, due probably to additional interactions with silanol groups formed in modifying the surface with octyltrichlorosilane). It was established that blocking these silanol groups during additional silanization with trimethylsilane resulted in inert surfaces whose adsorption properties with respect to many compounds (including some capable of participating in strong specific interactions) approaches to the properties of octyl-silica with a close-packed grafted monolayer.

  16. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  17. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  18. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this



    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  20. Adsorption

    Sushmita Banerjee


    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  1. Analysis of solid-liquid phase change heat transfer enhancement

    张寅平; 王馨


    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  2. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    Golombeck, Rebecca A.

    The number and chemical identity of reactive sites on surfaces of glass affects the processing, reliability, and lifetime of a number of important commercial products. Surface site densities, distributions, and structural identities are closely tied to the formation and processing of the glass surface, and exert a direct influence on strength and coating performance. The surface of a glass sample may vary markedly from the composition and chemistry of the bulk glass. We are taking a physicochemical approach to understanding adsorption sites on pristine multicomponent glass fibers surfaces, directly addressing the effect of processing on surface reactivity. This project aimed to understand the energy distributions of surface adsorption sites, the chemical/structural identity of those sites, and the relationship of these glasses to glass composition, thermal history, and in future work, surface coatings. We have studied the bulk and surface structure as well as the surface reactivity of the glass fibers with solid-state nuclear magnetic resonance (NMR) spectroscopy, inverse gas chromatography (IGC), and computational chemistry methods. These methods, solid-state NMR and IGC, typically require high surface area materials; however, by using probe molecules for NMR experiments or packing a column at high density for IGC measurements, lower surface area materials, such as glass fibers, can be investigated. The glasses used within this study were chosen as representative specimens of fibers with potentially different reactive sites on their surfaces. The two glass compositions were centered around a nominal E-glass, which contains very little alkali cations and mainly alkaline earth cations, and wool glass, which contains an abundance of alkali cations. The concentration of boron was varied from 0 to 8 mole % in both fiber compositions. Fibers were drawn from each composition at a variety of temperatures and draw speeds to provide a range of glass samples with varying

  3. Studies on the Physical Adsorption Equilibria of Gases on Porous Solids over a Wide Temperature Range Spanning the Critical Region——Adsorption on Microporous Activated Carbon

    周亚平; 白书培; 周理; 杨斌


    Adsorption equilibria of nitrogen and methane on microporous (<2 nm) activated carbon were measured for a wide temperature range (103—298 K) spanning the critical region. Information relating to Henry constants, the isosteric heat of adsorption, and the amnount of limiting adsorption were evaluated. All isotherms show type-I features for both sub- and supercritical temperatures. A new isotherm equation and a consideration for the importance of the effect of the adsorbed phase volume allow this kind of isotherms to be modeled satisfactorily. The model parameter of the saturated amount of absolute adsorpaon (nt0) equals the limiting adsorption amount (nlim), leaving the physical meaning of the latter clarified, and the exponent parameter (q) proves to be an appropriate index of surface heterogeneity.

  4. Phase IV testing of monosodium titanate adsorption with radioactive waste

    Hobbs, D.T.


    Testing examined the extent and rate of strontium, plutonium, uranium, and neptunium removal from radioactive waste solutions at 4.5M and 7.5M in Na concentration by adsorption onto monosodium titanate (MST) at 0.2 g/L. Results indicate that the extents and rates of strontium, plutonium, and neptunium removal in radioactive waste solutions agree well with those previously measured using simulated waste solutions. Uranium removal in the 7.5M Na radioactive waste solution proved similar to that observed with simulated waste solutions. Uranium removal in the 4.5M Na radioactive waste solution proved lower than expected from previous simulant tests. The authors conclude that MST adsorption data obtained from simulated waste solutions provide reliable predictions for use in facility design and flowsheet modeling studies in the Salt Disposition Alternatives program.

  5. Silica-Based Solid Phase Extraction of DNA on a Microchip

    陈晓芳; 沈科跃; 刘鹏; 郭旻; 程京; 周玉祥


    Micro total analysis systems for chemical and biological analysis have attracted much attention.However,microchips for sample preparation and especially DNA purification are still underdeveloped.This work describes a solid phase extraction chip for purifying DNA from biological samples based on the adsorption of DNA on bare silica beads prepacked in a microchannel.The chip was fabricated with poly-dimethylsiloxane.The silica beads were packed in the channel on the chip with a tapered microchannel to form the packed bed.Fluorescence detection was used to evaluate the DNA adsorbing efficiency of the solid phase.The polymerase chain reaction was used to evaluate the quality of the purified DNA for further use.The extraction efficiency for the DNA extraction chip is approximately 50% with a 150-nL extraction volume.Successful amplification of DNA extracted from human whole blood indicates that this method is compatible with the polymerase chain reaction.

  6. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites

    Qi, Long; Alamillo, Ricardo; Elliott, William A.; Andersen, Amity; Hoyt, David W.; Walter, Eric D.; Han, Kee Sung; Washton, Nancy M.; Rioux, Robert M.; Dumesic, James A.; Scott, Susannah L.


    In the liquid-phase catalytic processing of molecules using heterogeneous catalysts - an important strategy for obtaining renewable chemicals from biomass - many of the key reactions occur at solid-liquid interfaces. In particular, glucose isomerization occurs when the glucose is adsorbed in the micropores of a zeolite catalyst. Since solvent molecules are coadsorbed, the catalytic activity depends strongly and often nonmonotonically on the solvent composition. For glucose isomerization catalyzed by NaX and NaY zeolites, there is an initial steep decline when water is mixed with a small amount of the organic cosolvent γ-valerolactone (GVL), followed by a dramatic and surprising recovery as the GVL content in the mixed solvent increases. Here we elucidate the origin of this complex solvent effect using operando solid-state NMR spectroscopy. The glucopyranose tautomers immobilized in the zeolite pores were observed and their transformations into fructose and mannose followed in real time. The microheterogeneity of the solvent system, manifested by a nonmonotonic trend in the mixing enthalpy, influences the mobility and adsorption behavior of the carbohydrates, water, and GVL, which were studied using pulsed-field gradient (PFG) NMR diffusivity measurements. At low GVL concentrations, glucose is depleted in the zeolite pores relative to the solution phase and changes in the local structure of coadsorbed water serve to further suppress the isomerization rate. At higher GVL concentrations, this lower intrinsic reactivity is largely compensated by strong glucose partitioning into the pores, resulting in dramatic (up to 32×) enhancements in the local sugar concentration at the solid-liquid interface.

  7. Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs.

    Zhu, Guifen; Fan, Jing; Gao, Yanbu; Gao, Xia; Wang, Jianji


    A surface molecularly imprinted polymer (MIP) was synthesized by using imidazole as the template and modified silica particles as the support material. The static adsorption, solid phase extraction (SPE) and high-performance liquid chromatography (HPLC) experiments were performed to investigate the adsorption properties and selective recognition characteristics of the polymer for imidazole and its structural analogs. It was shown that the maximum binding capacities of imidazole on the MIP and the non-imprinted polymer (NIP) were 312 and 169 μmol g(-1), respectively. The adsorption was fast and the adsorption equilibrium was achieved in 30 min. The binding process could be described by pseudo-second order kinetics. Compared with the corresponding non-imprinted polymer, the molecularly imprinted polymer exhibited much higher adsorption performance and selectivity for imidazole. The selective separation of imidazole from a mixture of 1-hexyl-3-methylimidazolium bromide ([C(6)mim][Br]) and 2,4-dichlorophenol could be achieved on the MIP-SPE column. The recoveries of imidazole and [C(6)mim][Br] were 97.6-102.7% and 12.2-17.3%, respectively, but 2,4-dichlorophenol could not be retained on the column. The surface molecularly imprinted polymer presented here may find useful application as a solid phase absorbent to separate trace imidazole in environmental water samples. This may also form the basis for our research program on the preparation and application of alkyl-imidazolium imprinted polymers.

  8. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen


    The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...... variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements...

  9. Automated solid-phase synthesis of oligosaccharides containing sialic acids

    Chian-Hui Lai


    Full Text Available A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.


    B. S. Chandravanshi

    cation exchange-solid phase extraction (SCX-SPE) was investigated as an .... Stock solutions, with a concentration of 1.00 mg/mL were prepared ... Johannesburg, South Africa) connected to a vacuum pump (Vacuubrand, GMBH, Germany).

  11. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  12. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  13. Direct inference of site strength in basic solids upon CO2 adsorption: enthalpy-entropy compensation effects.

    Pera-Titus, M


    The adsorption of CO2 coupled to calorimetry is a state-of-the-art technique for characterizing the basic properties of solids. In this paper, we show that the differential heat and entropy curves measured upon CO2 adsorption on a basic solid can be reasonably estimated from a single CO2 isotherm with no need for any independent heat (calorimetric) measurement. Our method relies on two important observations: (1) formulation of generalized F-H-TS thermodynamic isotherms, the former (F) being directly generated from the raw CO2 isotherms, and (2) the presence of unexpected enthalpy-entropy compensation effects upon CO2 adsorption linking the integral enthalpy and entropy of adsorption until saturation for different solids. Our thermodynamic method has been validated using a broad library of basic solids with variable site strength and heterogeneity. Finally, a new scale of basicity is proposed using the parameters fitted from the thermodynamic isotherm (free energy basis) as descriptors of basic strength. This method opens an avenue to the inference of site strength of basic solids without the need for expensive calorimeters.

  14. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....

  15. Magnetic Solid Phase Extraction Applied to Food Analysis

    Israel S. Ibarra


    Full Text Available Magnetic solid phase extraction has been used as pretreatment technique for the analysis of several compounds because of its advantages when it is compared with classic methods. This methodology is based on the use of magnetic solids as adsorbents for preconcentration of different analytes from complex matrices. Magnetic solid phase extraction minimizes the use of additional steps such as precipitation, centrifugation, and filtration which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique which were applied in food analysis.

  16. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T


    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  17. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation.

    Ibrahim, Wan Aini Wan; Nodeh, Hamid Rashidi; Sanagi, Mohd Marsin


    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.

  18. Adsorption of Cr(VI) and Pb(II) from aqueous solution using agricultural solid waste.

    Geetha, A; Sivakumar, P; Sujatha, M; Palanisamy, P N


    Areca nut shell, an agricultural solid waste by-product, has been studied for the removal of heavy metals Cr(VI) and Pb(II) from aqueous solution. Parameters, such as equilibrium time, effect of initial metal ion concentration, effect of pH on the removal, were analyzed. An initial pH of 4.0 was found most favourable for Cr(VI) removal and 5.0 for Pb(II) removal. Two theoretical isotherm models, namely Langmuir and Freundlich, were analyzed for the applicability of the experimental data. The Langmuir adsorption capacity (Q0) was calculated. The results of thermodynamic parameters suggest the exothermic nature of the adsorption. The desorption studies were carried out using dilute hydrochloric acid. Maximum desorption of 88% for Cr(VI) and 91% for Pb(II) were achieved. Areca nut shell waste, the low cost adsorbent is found to be effective in the removal of Cr(VI) and Pb(II) ions, and hence it can be applied for the removal of heavy metals from industrial wastewater.

  19. Imprinted magnetic graphene oxide for the mini-solid phase extraction of Eu (III) from coal mine area

    Patra, Santanu; Roy, Ekta; Madhuri, Rashmi; Sharma, Prashant K.


    The present work represents the preparation of imprinted magnetic reduced graphene oxide and applied it for the selective removal of Eu (III) from local coal mines area. A simple solid phase extraction method was used for this purpose. The material shows a very high adsorption as well as removal efficiency towards Eu (III), which suggest that the material have potential to be used in future for their real time applications in removal of Eu (III) from complex matrices.

  20. N-Acyliminium Intermediates in Solid-Phase Synthesis

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.


    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  1. Solid phase extraction method for determination of mitragynine in ...

    mitragynine in urine and its application to mitragynine excretion ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high performance .... solution of MG (1 mg/mL) which was further ... Facility, Prince of Songkla University and carried ..... d), which permit unrestricted use, distribution,.

  2. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    Topolov, Vitaly


    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  3. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    Guan, Shu-Hui; Liu, Zhi-Pan


    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  4. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...

  5. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng


    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan.

  6. Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents.

    Osipovs, Sergejs


    Biomass tar mainly consists of stable aromatic compounds such as benzene and polyaromatic hydrocarbons, benzene being the biggest tar component in real biomass gasification gas. For the analysis of individual tar compounds, the solid-phase adsorption method was chosen. According to this method, tar samples are collected on a column with an amino-phase sorbent. With a high benzene concentration in biomass tar, some of the benzene will not be collected on the amino-phase sorbent. To get over this situation, we have installed another column with activated charcoal which is intended for collection of volatile organic compounds, including benzene, after the column with the amino-phase sorbent. The study of maximal adsorption amounts of various compounds on both adsorbents while testing different sampling volumes led to the conclusion that benzene is a limiting compound. The research proved that the use of two sorbents (500 mg + 100 mg) connected in series allows for assessment of tar in synthesis gas with a tar concentration up to 30-40 g m(-3), which corresponds to the requirements of most gasifiers.

  7. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material.

    Wang, Tingting; Zhu, Yiming; Ma, Junfeng; Xuan, Rongrong; Gao, Haoqi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui


    In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1-9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid-phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.

  8. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Xiaoyan Lu


    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  9. Molecularly imprinted polymers based on SBA-15 for selective solid-phase extraction of baicalein from plasma samples.

    He, Hongliang; Gu, Xiaoli; Shi, Liying; Hong, Junli; Zhang, Hongjuan; Gao, Yankun; Du, Shuhu; Chen, Lina


    Highly selective molecularly imprinted mesoporous silica polymer (SBA-15@MIP) for baicalein (BAI) extraction was synthesized using a surface molecular imprinting technique on the SBA-15 supporter. Computational simulation was used to predict the optimal functional monomer for the rational design of SBA-15@MIP. Meanwhile, high adsorption capacity was obtained when a suitable yield of molecularly imprinted polymers (MIPs) layer was grafted onto the surface of SBA-15. Characterization and performance tests of the obtained polymer revealed that SBA-15@MIP possessed a highly ordered mesoporous structure, reached saturated adsorption within 60 min, and exhibited higher sorption capacity to the target molecule BAI compared with non-imprinted mesoporous silica polymer (SBA-15@NIP) and SBA-15. Finally, SBA-15@MIP was successfully applied to solid-phase extraction (SPE) coupled with high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of trace BAI in plasma samples. Mean recoveries of BAI through the molecularly imprinted solid-phase extraction (MISPE) sorbent, non-imprinted solid-phase extraction (NISPE) sorbent, and SBA-15 solid-phase extraction (SBA-15-SPE) sorbent were 94.4, 22.7, and 10.7 %, respectively, and the relative standard deviations were 2.9, 2.6, and 3.6 %, respectively. These results reveal that SBA-15@MIP as a SPE sorbent has good applicability to selectively separate and enrich trace BAI from complex samples.

  10. Fluid adsorption up to the critical point. Experimental study of a wetting fluid/solid interface

    Findenegg, G. H.; Löring, R.


    We have measured multilayer adsorption isotherms of propane on graphitized carbon black over a wide temperature range, corresponding to reduced temperatures T/Tc of the fluid from 0.7 to 1.004 and reduced densities ρ/ρc up to 1.4. Experimental isotherms of the surface excess concentration Γgs are analyzed in terms of the Frenkel-Halsey-Hill (FHH) model. The exponent n is somewhat less than 3 (2.55±0.30) and the amplitude parameter Δɛ/kT becomes nearly independent of temperature, up to T/Tc=0.98, when the simple one-step density profile of the original FHH model is replaced by a two-step profile, to account for the compression of the layer next to the solid substrate. Evidence for a compression of the liquid boundary layer comes from measurements of the surface excess concentration Γls at the liquid/substrate interface. Along the liquid-vapor coexistence curve, Γls0 diverges as T approaches Tc, in qualitative agreement with scaling law theory. The analogy of the present one-component fluid/solid-substrate interface near the critical point of the fluid, with a two-component liquid/vapor interface near the critical solution point of the liquid mixture is discussed.

  11. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field.

    Ohtsuka, Hideyuki


    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed.

  12. Gas adsorption/absorption heat switch, phase 1

    Chan, C. K.


    The service life and/or reliability of far-infrared sensors on surveillance satellites is presently limited by the cryocooler. The life and/or reliability, however, can be extended by using redundant cryocoolers. To reduce parasitic heat leak, each stage of the inactive redundant cryocooler must be thermally isolated from the optical system, while each stage of the active cryocooler must be thermally connected to the system. The thermal break or the thermal contact can be controlled by heat switches. Among different physical mechanisms for heat switching, mechanically activated heat switches tend to have low reliability and, furthermore, require a large contact force. Magnetoresistive heat switches are, except at very low temperatures, of very low efficiency. Heat switches operated by the heat pipe principle usually require a long response time. A sealed gas gap heat switch operated by an adsorption pump has no mechanical motion and should provide the reliability and long lifetime required in long-term space missions. Another potential application of a heat switch is the thermal isolation of the optical plane during decontamination.

  13. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Herrero Latorre, C., E-mail: [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)


    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  14. Solid-phase techniques in blood transfusion serology.

    Beck, M L; Plapp, F V; Sinor, L T; Rachel, J M


    For nearly a century, erythrocyte agglutination has persisted as the most widely used method for the demonstration of antigen-antibody reaction in immunohematology. So far, no other system has been developed which can match its simplicity, versatility, and general reliability. The major disadvantage of agglutination reactions is the lack of an objective endpoint, which has severely hindered attempts to automate routine pretransfusion tests. To overcome this problem, we have designed a series of solid-phase assays for ABO and Rh grouping, antibody screening, compatibility, and hepatitis tests. Each of these solid-phase assays shares a common endpoint of red cell adherence, which is easily interpreted visually or spectrophotometrically. Computer interface permits the automatic interpretation and recording of results. We believe this solid-phase system should finally bring the blood bank laboratory into the age of automation.


    Yu-ying Li; Jia-song He


    Solid phase transition of the a form crystals to the β form crystals in syndiotactic polystyrene (sPS) samples has occurred in supercritical CO2. This transformation is different from those detected under other conditions. The effects of some factors (e.g. time, temperature, and pressure) on the solid phase transformation of sPS in supercritical CO2 were analyzed in detail. Experimental results show that longer time, higher temperature or higher pressure favors the transformation of the α form crystals to the β form crystals.

  16. Adsorption process analysis at the solid-gas interface by the polarization phenomenon study; Analyse des processus d`adsorption a l`interface solide - gaz par l`etude du phenomene de polarisation

    Mouton-Chazel, V.


    In order to improve the safety of anti-gas filters users, the Cogema (Nuclear Materials General Company) has developed a gaseous pollutants saturation detection technology for respiratory protection masks. As a matter of fact, the problem consists in studying the surface properties of a solid. In this study the adsorption has been considered as a phenomenon which can be followed by a relatively simple electrical measure technology. A microscopic description of the adsorption phenomenon has been given at first and explained by the thermodynamics laws. Then a theoretical model has been elaborated. The developments which have been brought to this model in this work have allowed to give a satisfactory interpretation of the phenomena observed during the adsorption of a polar gas on a zeolite. (O.M.). 169 refs.

  17. Equilibrium, kinetics and thermodynamics studies of chitosan-based solid phase nanoparticles as sorbent for lead (II) cations from aqueous solution

    Shaker, Medhat A., E-mail: [Current address: Chemistry Department, Faculty of Science, University of Jeddah, Jeddah (Saudi Arabia); Permanent address: Chemistry Department, Faculty of Science, Damanhour University, Damanhour (Egypt)


    Ternary nanoparticles of chitosan, non-viable biomass (Pseudomonas sp.) and gelatin, CPG were synthesized by chemical crosslinking method and applied as a novel and cost-effective solid phase to adsorb Pb(II) cations from aqueous solution. Characterization of the fabricated CPG nanoparticles and their complexation behavior were extensively interrogated by dynamic light scattering (DLS), FTIR, TGA, XRD and SEM techniques. The extent of adsorption was found to be a function of medium pH, contact time, initial Pb(II) concentration and temperature. The Langmuir, Freundlich, Dubinin–Radushkevich and Redlich–Peterson models were used to illustrate the isotherms of the adsorption system. The adsorption of Pb(II) cations onto CPG best-fits the Langmuir isotherm model which predicts two stoichiometric temperature-independent adsorption sites, A and B with variable capacities, 35.4 and 91.1 mg g{sup −1}, respectively and removal capacity above 90%. Thermodynamic studies revealed that the adsorption process was physical, spontaneous, and endothermic. The adsorption rate is influenced by temperature and the adsorption kinetic is well confirmed with pseudo-second-order equation compared with three other investigated kinetic models. Present study indicated potential applications of CPG nanoparticles as excellent natural and promising solid phase for Pb(II) extraction in wastewater treatment. - Graphical abstract: Display Omitted - Highlights: • Kinetics and thermodynamics of Pb{sup 2+} biosorption onto CPG nanoparticles are studied. • Adsorption kinetic data are best modeled using second-order rate equations. • The Pb{sup 2}adsorption onto CPG was physical diffusion controlled reaction. • The experimental equilibrium results well fit the Langmuir model. • The thermodynamics show endothermic, favorable and spontaneous adsorption processes.

  18. Laser-induced solid-solid phase transition in As under pressure: a theoretical prediction

    Zijlstra, Eeuwe S; Huntemann, Nils; Garcia, Martin E [Theoretische Physik, Universitaet Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel (Germany)], E-mail:


    In arsenic, a pressure-induced solid-solid phase transition from the A7 into the simple cubic structure has been experimentally demonstrated (Beister et al 1990 Phys. Rev. B 41 5535). In this paper, we present calculations, which predict that this phase transition can also be induced by an ultrashort laser pulse in As under pressure. In addition, calculations for the pressure-induced phase transition are presented. Using density functional theory in the generalized gradient approximation, we found that the pressure-induced phase transition takes place at 26.3 GPa and is accompanied by a volume change {delta}V=0.5 a{sub 0}{sup 3} atom{sup -1}. The laser-induced phase transition is predicted for an applied pressure of 23.8 GPa and an absorbed laser energy of 2.8 mRy atom{sup -1}.

  19. Determination of 11 anabolic hormones in fish tissue by multifunction impurity adsorption solid-phase extraction-ultrafast liquid chromatography-tandem mass spectrometry%多重机制杂质吸附萃取净化-快速液相色谱-串联质谱法测定鱼组织中11种同化激素

    姚珊珊; 赵永纲; 李小平; 陈晓红; 金米聪


    建立了准确、灵敏的鱼组织中11种同化激素(勃地酮、雄烯二酮、诺龙、美雄酮、甲睾酮、睾酮、醋酸睾酮、群勃龙、丙酸睾酮、康力龙、氟甲睾酮)的多重机制杂质吸附萃取净化-快速液相色谱-串联质谱的分析方法.鱼组织均质样品经甲醇提取后,在上清液中加入一定量的C18固体吸附剂、中性氧化铝吸附剂和氨基功能化纳米吸附剂实现快速净化.采用Shim-Pack XR-ODSⅡ色谱柱(100 mm×2.0 mm,2.2μm)分离,以乙腈(含0.1%甲酸)和水(含0.1%甲酸)为流动相进行梯度洗脱,电喷雾正离子多反应监测( MRM)模式下检测,外标法定量.结果表明,11种目标化合物在线性范围内具有良好的线性关系,相关系数大于0.999,其在鱼组织中的检出限(S/N>3)为0.03 ~0.4 μg/kg,定量限(S/N> 10)为0.1~1.5μg/kg,平均回收率为80.9%~98.1%,相对标准偏差(RSD)为5.2%~11.5%.该方法简便、快速、准确,可用于鱼组织中同化激素的定性、定量监测.%A method was developed for the determination of 11 anabolic hormones (bolde-none, androstenedione, nandrolbne, methandrostenolone, methyltestosterone, testosterone, testosterone acetate, trenbolone, testosterone propionate, stanozolol, fluoxymesterone) in fish by multi-function impurity adsorption solid-phase extraction-ultrafast liquid chromatography-tandem mass spectrometry. After the sample was extracted by methanol, the extract was cleaned-up quickly by C18 adsorbent, neutral alumina adsorbent and amino-functionalized nano-adsorbent. The separation was performed on a Shim-Pack XR-ODS II column (100 mm x 2.0 mm, 2. 2 |xm) using the mobile phases of 0. 1% (v/v) formic acid in acetonitrile and 0. 1% (v/v) formic acid solution in a gradient elution mode. The identification and quantification were achieved by using electrospray ionization in positive ion mode (ESI *) in multiple reaction monitoring (MRM) mode. The matrix-matched external standard

  20. Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for {sup 99}Mo/{sup 99m}Tc generators columns

    Guedes-Silva, Cecilia C.; Ferreira, Thiago dos Santos; Paula, Carolina M. de; Otubo, Larissa, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio M.S. [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Instituto de Geociencias


    Technetium-{sup 99m} is the clinically most used radionuclide worldwide. Although many techniques can be applied to separate {sup 99}Mo and {sup 99m}Tc, the most commonly used method is the column chromatography with alumina as stationary phase. However, the alumina nowadays used has limited adsorption capacity of molybdate ions which implies the need to develop or improve materials to produce high specific activity generators. In this paper, alumina was obtained by a solid state method and heat treatments at different conditions. The powders had a microstructure with porous particles of γ, δ, θ and α-Al{sub 2}O{sub 3} phases as well as specific surface area between 36 and 312 m{sup 2} g{sup -1}. Most interesting results were reached by powders calcined at 900 deg C for 5 hours which had high chemical stability and a molybdenum adsorption capacity of 92.45 mg Mo per g alumina. (author)

  1. Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: influence of operational parameters.

    Foo, K Y; Hameed, B H


    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.

  2. All solid-state SBS phase conjugate mirror

    Dane, C.B.; Hackel, L.A.


    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  3. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases

    Tolborg, Jakob Fjord; Petersen, Lars; Jensen, Knud Jørgen;


    Enzymatic approaches for the preparation of oligosaccharides are interesting alternatives to traditional chemical synthesis, the main advantage being the regio- and stereoselectivity offered without the need for protecting groups. The use of solid-phase techniques offers easy workup procedures an...

  4. Solid and solution phase combinatorial synthesis of ureas

    Nieuwenhuijzen, JW; Conti, PGM; Ottenheijm, HCJ; Linders, JTM


    An efficient parallel synthesis of ureas based on amino acids is described, both in solution and on solid phase. 1,1'-Carbonylbisbenzotriazole 2 is used as the coupling reagent. The ureas 5 and 10 were obtained in high yield (80-100%) and purity (71-97%). (C) 1998 Elsevier Science Ltd. All rights re

  5. Solid Phase Synthesis of Ethyl β-Substituted Indolepropionates

    刘占祥; 阮秀秀; 黄宪


    A facile solid phase synthesis of ethyl β-substituted indolepropionates is reported. Condensation between indole, polymer-supported cyclic malonic acid ester and aldehyde yielded the trimolecular adducts, which was cleaved by pyridine/EtOH to release the final products in good yield with high purity.

  6. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  7. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  8. Solid-phase synthesis of 3-amino-2-pyrazolines

    Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  9. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  10. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  11. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  12. Solid-phase microextraction for the analysis of biological samples

    Theodoridis, G; Koster, EHM; de Jong, GJ


    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a num

  13. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    Ely, T. M. [Washington River Protection Solutions LLC, Richland, WA (United States); LaMothe, M. E. [Washington River Protection Solutions LLC, Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC, Richland, WA (United States)


    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  14. Sensitive and fast mutation detection by solid phase chemical cleavage

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A


    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...

  15. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith


    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate.

  16. Conditions for liposome adsorption and bilayer formation on BSA passivated solid supports.

    Silva-López, Elsa I; Edens, Lance E; Barden, Adam O; Keller, David J; Brozik, James A


    Planar solid supported lipid membranes that include an intervening bovine serum albumen (BSA) cushion can greatly reduce undesirable interactions between reconstituted membrane proteins and the underlying substrate. These hetero-self-assemblies reduce frictional coupling by shielding reconstituted membrane proteins from the strong surface charge of the underlying substrate, thereby preventing them from strongly sticking to the substrate themselves. The motivation for this work is to describe the conditions necessary for liposome adsorption and bilayer formation on these hetero-self-assemblies. Described here are experiments that show that the state of BSA is critically important to whether a lipid bilayer is formed or intact liposomes are adsorbed to the BSA passivated surface. It is shown that a smooth layer of native BSA will readily promote lipid bilayer formation while BSA that has been denatured either chemically or by heat will not. Atomic force microscopy (AFM) and fluorescence microscopy was used to characterize the surfaces of native, heat denatured, and chemically reduced BSA. The mobility of several zwitterionic and negatively charged lipid combinations has been measured using fluorescence recovery after photobleaching (FRAP). From these measurements diffusion constants and percent recoveries have been determined and tabulated. The effect of high concentrations of beta-mercaptoethanol (β-ME) on liposome formation as well as bilayer formation was also explored.

  17. Low concentration DNA extraction and recovery using a silica solid phase.

    Katevatis, Constantinos; Fan, Andy; Klapperich, Catherine M


    DNA extraction from clinical samples is commonly achieved with a silica solid phase extraction column in the presence of a chaotrope. Versions of these protocols have been adapted for point of care (POC) diagnostic devices in miniaturized platforms, but commercial kits require a high amount of input DNA. Thus, when the input clinical sample contains less than 1 μg of total DNA, the target-specific DNA recovery from most of these protocols is low without supplementing the sample with exogenous carrier DNA. In fact, many clinical samples used in the development of POC diagnostics often exhibit target DNA concentrations as low as 3 ng/mL. With the broader goal of improving the yield and efficiency of nucleic acid-based POC devices for dilute samples, we investigated both DNA adsorption and recovery from silica particles by using 1 pg- 1 μg of DNA with a set of adsorption and elution buffers ranging in pH and chaotropic presence. In terms of adsorption, we found that low pH and the presence of chaotropic guanidinium thiocyanate (GuSCN) enhanced DNA-silica adsorption. When eluting with a standard low-salt, high-pH buffer, > 70% of DNA was unrecoverable, except when DNA was initially adsorbed with 5 M GuSCN at pH 5.2. Unrecovered DNA was either not initially adsorbed or irreversibly bound on the silica surface. Recovery was improved when eluting with 95°C formamide and 1 M NaOH, which suggested that DNA-silica-chaotrope interactions are dominated by hydrophobic interactions and hydrogen bonding. While heated formamide and NaOH are non-ideal elution buffers for practical POC devices, the salient results are important for engineering a set of optimized reagents that could maximize nucleic acid recovery from a microfluidic DNA-silica-chaotrope system.

  18. Analyzing the adsorption of blood plasma components by means of fullerene-containing silica gels and NMR spectroscopy in solids

    Melenevskaya, E. Yu.; Mokeev, M. V.; Nasonova, K. V.; Podosenova, N. G.; Sharonova, L. V.; Gribanov, A. V.


    The results from studying the adsorption of blood plasma components (e.g., protein, triglycerides, cholesterol, and lipoproteins of low and high density) using silica gels modified with fullerene molecules (in the form of C60 or the hydroxylated form of C60(OH) x ) and subjected to hydration (or, alternatively, dehydration) are presented. The conditions for preparing adsorbents that allow us to control the adsorption capacity of silica gel and the selectivity of adsorption toward the components of blood plasma, are revealed. The nature and strength of the interactions of the introduced components (fullerene molecules and water) with functional groups on the silica surface are studied by means of solid state NMR spectroscopy (NMR-SS). Conclusions regarding the nature of the centers that control adsorption are drawn on the basis of NMR-SS spectra in combination with direct measurements of adsorption. The interaction of the oxygen of the hydroxyl group of silica gel with fullerene, leading to the formation of electron-donor complexes of C60-H, C60-OH, or C60-OSi type, is demonstrated by the observed changes in the NMR-SS spectra of silica gels in the presence of fullerene.

  19. Phase field modeling of flexoelectricity in solid dielectrics

    Chen, H. T.; Zhang, S. D.; Soh, A. K.; Yin, W. Y.


    A phase field model is developed to study the flexoelectricity in nanoscale solid dielectrics, which exhibit both structural and elastic inhomogeneity. The model is established for an elastic homogeneous system by taking into consideration all the important non-local interactions, such as electrostatic, elastic, polarization gradient, as well as flexoelectric terms. The model is then extended to simulate a two-phase system with strong elastic inhomogeneity. Both the microscopic domain structures and the macroscopic effective piezoelectricity are thoroughly studied using the proposed model. The results obtained show that the largest flexoelectric induced polarization exists at the interface between the matrix and the inclusion. The effective piezoelectricity is greatly influenced by the inclusion size, volume fraction, elastic stiffness, and the applied stress. The established model in the present study can provide a fundamental framework for computational study of flexoelectricity in nanoscale solid dielectrics, since various boundary conditions can be easily incorporated into the phase field model.

  20. Adsorption of the Enantiomers of Tryptophan on Stationary Phase Bonded with Bovine Serum Albumin

    ZHANG Fengbao; CHENG Ming; LI Shuang; LIU Liang; ZHANG Guoliang


    Frontal analysis is frequently applied to measuring single or multi-component adsorption isotherms. In this work, the competitive adsorption isotherm data of two enantiomers of tryptophan were obtained by competitive frontal analysis. The stationary phase in the column was silica-immobilized bovine serum albumin(BSA)by the derivative method, and the mobile phase was a phosphate buffer. These isotherm data were fitted by the competitive Bilangmuir model. This model can account for the behavior of both tryptophan enantiomers and these profiles were found to fit the experimental band profiles(square error is 0.999 6). The parameters obtained were used in numericai calculations to predict the band profiles of the racemic mixtures of tryptophan. The equilibriumdispersive model provides satisfactory prediction, with minor differences between the calculated and the experimental profiles.

  1. Magnetism-Enhanced Monolith-Based In-Tube Solid Phase Microextraction.

    Mei, Meng; Huang, Xiaojia; Luo, Qing; Yuan, Dongxin


    Monolith-based in-tube solid phase microextraction (MB/IT-SPME) has received wide attention because of miniaturization, automation, expected loading capacity, and environmental friendliness. However, the unsatisfactory extraction efficiency becomes the main disadvantage of MB/IT-SPME. To overcome this circumstance, magnetism-enhanced MB/IT-SPME (ME-MB/IT-SPME) was developed in the present work, taking advantage of magnetic microfluidic principles. First, modified Fe3O4 nanoparticles were mixed with polymerization solution and in situ polymerized in the capillary to obtain a magnetic monolith extraction phase. After that, the monolithic capillary column was placed inside a magnetic coil that allowed the exertion of a variable magnetic field. The effects of intensity of magnetic field, adsorption and desorption flow rate, volume of sample, and desorption solvent on the performance of ME-MB/IT-SPME were investigated in detail. The analysis of six steroid hormones in water samples by the combination of ME-MB/IT-SPME with high-performance liquid chromatography with diode array detection was selected as a paradigm for the practical evaluation of ME-MB/IT-SPME. The application of a controlled magnetic field resulted in an obvious increase of extraction efficiencies of the target analytes between 70% and 100%. The present work demonstrated that application of different magnetic forces in adsorption and desorption steps can effectively enhance extraction efficiency of MB/IT-SPME systems.

  2. Application of mathematical models for the prediction of adsorption isotherms in solid mixture for mango powder refreshment

    Edmar Clemente


    Full Text Available Solid mixtures for refreshment are already totally integrated to the Brazilian consumers' daily routine, because of their quick preparation method, yield and reasonable price - quite lower if compared to 'ready-to-drink' products or products for prompt consumption, what makes them economically more accessible to low-income populations. Within such a context, the aim of this work was to evaluate the physicochemical and mineral composition, as well as the hygroscopic behavior of four different brands of solid mixture for mango refreshment. The BET, GAB, Oswim and Henderson mathematical models were built through the adjustment of experimental data to the isotherms of adsorption. Results from the physiochemical evaluation showed that the solid mixtures for refreshments are considerable sources of ascorbic acid and reductor sugar; and regarding mineral compounds, they are significant sources of calcium, sodium and potassium. It was also verified that the solid mixtures for refreshments of the four studied brands are considered highly hygroscopic.

  3. Adsorption kinetics of surfactants at liquid-solid and liquid-vapor interfaces from atomic-scale simulations

    Iskrenova, Eugeniya K.; Patnaik, Soumya S.


    Nucleate pool boiling of pure liquid is a complex process involving different size- and time-scale phenomena. The appearance of the first nanobubble in the liquid at the bottom of a hot pan, the detachment of the bubble from the solid surface, its subsequent coalescence with other bubbles, all represent complex multiscale phenomena. Surfactants added to water increase the complexity of the process by contributing to the dynamic surface tension at the liquid-vapor and liquid-solid interfaces and thus affecting the heat and mass transfer at those interfaces. We apply molecular dynamics simulations to study the adsorption kinetics of anionic, cationic, and non-ionic surfactants at liquid/solid and liquid/vapor interfaces. The all-atom vs. united-atom approaches for the solid and surfactants are surveyed in view of their applicability at near boiling temperatures and a range of model water potentials is assessed for reproducing the thermal properties of water at boiling conditions.

  4. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.


    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  5. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey


    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  6. Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Zhang, Zhen [Taizhou University, Linhai (China); Long, Yuyang; Shen, Dongsheng [Zhejiang Gongshang University, Hangzhou (China)


    The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

  7. Adsorption of Eu(III on oMWCNTs: Effects of pH, Ionic Strength, Solid-Liquid Ratio and Water-Soluble Fullerene

    P. Liu


    Full Text Available The influences of pH, ionic strength, solid-liquid ratio, , and on Eu(III adsorption onto the oxidation multiwalled carbon nanotubes (oMWCNTs were studied by using batch technique. The dynamic process showed that the adsorption of Eu(III onto oMWCNTs could be in equilibrium for about 17 h and matched the quasi-second-order kinetics model. The sorption process was influenced strongly by pH changes and ionic strength. In the pH range of 1.0 to 4.0, the adsorption ratio increased with the increasing of pH values, then the adsorption of Eu(III was almost saturated in the pH range of 4.0 to 10.0, and the adsorption ratio reached about 90%. The adsorption ratio decreased with the increasing of ionic strength. could promote the adsorption process obviously, but competed with Eu(III for the adsorption sites, thus leading to the reducing of Eu(III adsorption onto oMWCNTs. In the presence of or , the adsorption of Eu(III onto oMWCNTs could be affected obviously by solid-liquid ratio and the initial concentration of Eu(III.

  8. Dependence of Elution Curve and Adsorption Isotherms of Insulin on composition of Mobile Phase of Frontal Analysis in Reversed Phase Liquid Chromatography

    耿信笃; 弗莱德依瑞格涅尔


    With frontal analysis(FA),the dependence of adsorption isotherms of insulin on the composition of mobile phase in reversed phase liquid chromatography (RPLC) has been investigated,This is also a good example to employ the stoichiometric displacement theory (SDT) for ivestigating solute adsorption in physical chemistry.Six kinds of mobile phase in RPLC were employed to study the effects on the elution curves and adsorption isotherms of insulin.the key points of this paper are:(1) the stability of insulin due to delay time after preparing,the organic solvent concentration,the kind and the concentration of ion-pairing agent in mobile phase were found to affect both elution curve and adsorption isotherm very seriously.(2)To obtain a valid and comparable result,the composition of the mobile phase employed in FA must be as same as possible to that in usual RPLC of either analytical scale or preparative purpose.(3)Langmuir Equation and the SDT were employed to imitate these obtained adsorption isotherms.The expression for solute adsorption from solution of the SDT was found to have a better elucidation to the insulin adsorption from mobile phase in RPLC.

  9. Excess adsorption of binary aqueous organic mixtures on various reversed-phase packing materials.

    Buntz, S; Figus, M; Liu, Z; Kazakevich, Y V


    Excess adsorption isotherms of acetonitrile and methanol from water were measured on eight commercial columns. Columns used in this study represent latest examples in column development and include three different poroshell columns (Kinetex-C18, Acsentis-C18 and Halo-C18) as well as conventional columns with significantly different adsorbent geometry (Allure-C18, YMC-C18) and various hybrid-silica columns (Gemini-C18, Xterra-C18 and XBridge-C18). Comparison of the excess adsorption isotherms measured on all these columns and expressed in surface specific form demonstrated significant similarity of the adsorption properties of all columns, which allows us to introduce the "standard adsorption isotherm" for reversed-phase C18-type columns. The methodology of the evaluation of the total amount of adsorbent in the column and effective surface area of the C18 modified adsorbent is also discussed. These terms are critical for successful evaluation of surface specific parameters.

  10. High Pressure Multicomponent Adsorption in Porous Media

    Shapiro, Alexander; Stenby, Erling Halfdan


    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  11. Selective solid-phase extraction of artificial chemicals from milk samples using multiple-template surface molecularly imprinted polymers.

    Zhang, Jing; Ni, Yan-li; Wang, Ling-ling; Ma, Jin-qin; Zhang, Zhi-qi


    A novel multiple-template surface molecularly imprinted polymer (MTMIP) was synthesized using ofloxacin and 17β-estradiol as templates and modified monodispersed poly(glycidylmethacrylate-co-ethylene dimethacrylate) (PGMA/EDMA ) beads as the support material. Static adsorption, solid-phase extraction and high-performance liquid chromatography were performed to investigate the adsorption properties and selective recognition characteristics of the polymer templates and their structural analogs. The maximum binding capacities of ofloxacin and 17β-estradiol on the MTMIP were 9.0 and 6.6 mg/g, respectively. Compared with the corresponding nonimprinted polymer, the MTMIP exhibited a much higher adsorption performance and selectivity toward three quinolones and three estrogens, which are common drug residues in food. The MTMIP served as a simple and effective pretreatment method and could be successfully applied to the simultaneous analysis of multiple target components in complex samples. Furthermore, the MTMIP may find useful applications as a solid-phase absorbent in the simultaneous determination of trace quinolones and estrogens in milk samples, as the recoveries were in the range 77.6-98.0%.

  12. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.

    Knapinska, Anna M; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C; Fields, Gregg B


    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND-biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND-peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to.

  13. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin


    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  14. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    Mitchell, A R


    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  15. Entransy dissipation minimization for liquid-solid phase change processes


    The liquid-solid phase change process of a simple one-dimensional slab is studied in this paper.By taking entransy dissipation minimization as optimization objective,the optimal external reservoir temperature profiles are derived by using optimal control theory under the condition of a fixed freezing or melting time.The entransy dissipation corresponding to the optimal heat exchange strategies of minimum entransy dissipation is 8/9 of that corresponding to constant reservoir temperature operations,which is independent of all system parameters.The obtained results for entransy dissipation minimization are also compared with those obtained for the optimal heat exchange strategies of minimum entropy generation and constant reservoir temperature operations by numerical examples.The obtained results can provide some theoretical guidelines for the choice of optimal cooling or heating strategy in practical liquid-solid phase change processes.

  16. Semi-automated microwave assisted solid-phase peptide synthesis

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  17. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S


    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed(-1) for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping o...

  19. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  20. Simulating confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  1. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  2. Sorption mechanisms of arsenate on Mg-Fe layered double hydroxides: A combination of adsorption modeling and solid state analysis.

    Hudcová, Barbora; Veselská, Veronika; Filip, Jan; Číhalová, Sylva; Komárek, Michael


    Layered double hydroxides have been proposed as effective sorbents for As(V), but studies investigating adsorption mechanisms usually lack a comprehensive mechanistic/modeling approach. In this work, we propose coupling surface complexation modeling with various spectroscopic techniques. To this end, a series of batch experiments at different pH values were performed. Kinetic data were well fitted by a pseudo-second order kinetic model, and the equilibrium data were fitted by the Freundlich model. Moreover, the pH-dependent As(V) sorption data were satisfactorily fitted by a diffuse layer model, which described the formation of >SOAsO3H(-) monodentate and >(SO)2AsO2(-) bidentate inner-sphere complexes (">S" represents a crystallographically-bound group on the surface). Additionally, XPS analyses confirmed the adsorption mechanisms. The sorption mechanisms were affected by anion exchange, which was responsible for the formation of outer sphere complexes, as identified by XRD and FTIR analyses. Furthermore, a homogenous distribution of As(V) was determined by HR-TEM with elemental mapping. Using low-temperature Mössbauer spectroscopy on isotope (57)Fe, a slight shift of the hyperfine parameters towards higher values following As(V) sorption was measured, indicating a higher degree of structural disorder. In general, mechanistic adsorption modeling coupled with solid state analyses presents a powerful approach for investigating the adsorption mechanism of As(V) on Mg-Fe LDH or other sorbents.

  3. Grasping hydrogen adsorption and dynamics in metal-organic frameworks using (2)H solid-state NMR.

    Lucier, Bryan E G; Zhang, Yue; Lee, Kelly J; Lu, Yuanjun; Huang, Yining


    Record greenhouse gas emissions have spurred the search for clean energy sources such as hydrogen (H2) fuel cells. Metal-organic frameworks (MOFs) are promising H2 adsorption and storage media, but knowledge of H2 dynamics and adsorption strengths in these materials is lacking. Variable-temperature (VT) (2)H solid-state NMR (SSNMR) experiments targeting (2)H2 gas (i.e., D2) shed light on D2 adsorption and dynamics within six representative MOFs: UiO-66, M-MOF-74 (M = Zn, Mg, Ni), and α-M3(COOH)6 (M = Mg, Zn). D2 binding is relatively strong in Mg-MOF-74, Ni-MOF-74, α-Mg3(COOH)6, and α-Zn3(COOH)6, giving rise to broad (2)H SSNMR powder patterns. In contrast, D2 adsorption is weaker in UiO-66 and Zn-MOF-74, as evidenced by the narrow (2)H resonances that correspond to rapid reorientation of the D2 molecules. Employing (2)H SSNMR experiments in this fashion holds great promise for the correlation of MOF structural features and functional groups/metal centers to H2 dynamics and host-guest interactions.

  4. Vapor-phase elemental mercury adsorption by residual carbon separated from fly ash

    WANG Li-gang; CHEN Chang-he; Kruse H.Kolker


    The adsorption capacity for vapor-phase elemental mercury(Hg0 ) of residual carbon separated from fly ash was studied in an attempt for the control of elemental mercury emissions from combustion processes. At Iow mercury concentrations ( < 200 μg/m3),unburned carbon had higher adsorption capacity than commercial activated carbon. The adsorbality of unburned carbon was also found to be source dependent. Isotherms of FS carbon(separated from fly ash of a power plant of Shishi in Fujian Province) were similar to those classified as type Ⅱ. Isotherms of XJ carbon (separated from fly ash of a power plant of Jingcheng in Shanxi Province) were more like those classified as type Ⅲ. Due to the relatively Iow production costs, these residual carbons would likely be considerably more costeffective for the full-scale removal of mercury from combustion flue gases than other technology.

  5. Selective adsorption and phase equilibria of confined fluids: Density-functional theory and Monte Carlo simulation

    Sowers, Susanne Lynn


    Microporous sorbents such as carbons, silicas and aluminas are used commercially in a variety of separation, purification and selective reaction applications. A detailed study of the effects of the porous material characteristics on the adsorption equilibrium properties such as selectivity and phase equilibria of fluid mixtures can enhance our understanding of adsorption on a molecular level. Such knowledge will improve our utilization of such adsorbents and provide a tool for directing the future of tailoring sorbents for particular separation processes. The effect of pore size, shape and pressure on the selective adsorption of trace pollutants from an inert gas was studied using prototype mixtures of Lennard-Tones (LJ) N2/CCl4, CF4, and SO2. Both nonlocal density functional theory (DFT) and grand canonical Monte Carlo (GCMC) molecular simulations were used in order to investigate the validity of the theory, which is much quicker and easier to use. Our results indicate that there is an optimal pore size and shape for which the pollutant selectivity is greatly enhanced. In many industrial adsorption processes relative humidity can greatly affect the life of an adsorbent bed, as seen in breakthrough curves. Therefore, the influence of water vapor on the selective adsorption of CCl4 from a mixture of N2/CCl4/H20 in activated carbon was studied using GCMC simulations. The equilibrium adsorption properties are found to be dependent upon both the density of active sites on the pore walls and the relative humidity. Liquid-liquid transitions in porous materials are of interest in connection with oil recovery, lubrication, coating technology and pollution control. The results of a study on the effect of confinement on the liquid-liquid equilibrium of binary LJ mixtures using DFT are compared with those of molecular simulation and experiments. Our findings show that the phase coexistence for the confined mixture is in general decreased and shifted toward the component which

  6. Solid Phase Extraction Disk Procedure to Determine 239Pu in Soils

    ZHANG Ji-qiao;ZHAO Ya-ping;DING You-qian;ZHANG Sheng-dong;YANG Jin-ling


    Full Text Available 239Pu in many soil samples should be analyzed to survey radioactive pollution level in nuclear facilities and its affinity environment efficiently. In order to input the opt conditions for column experiment, the experiments of the static adsorption coefficient of 239Pu to solid phase extraction disk with different contact time, concentration of HNO3 and different temperature were carried out. The chemical procedure for the rapid separation and determination of 239Pu in soils had been formulated, which using solid phase extraction disk (EmporeTM Anion Exchange-SR as extraction material and liquid scintillation spectrometry counting as measurement. In the procedure, soil sample usage was 10 g, and were leached by 8 mol/L HNO3, the chemical recovery of the procedure was about 78.9%, and the minimum detectable concentration was 3.7 Bq/kg. It took less than 3 hours once and the presence of 137Cs, 90Sr-90Y and natural uranium, 241Am, 99Tc did not interfere with the procedure, owning high DF of them. The procedure can be used extensively in determination of 239Pu in soils.

  7. Novel polymeric resin for solid phase extraction and determination of lead in waters

    Karaaslan, Nagihan M.; Cengiz, Emine; Yaman, Mehmet [Science Faculty, Department of Chemistry, Firat University, Elazig (Turkey); Senkal, B. Filiz [Science and Arts Faculty, Department of Chemistry, Istanbul Technical University, Istanbul (Turkey)


    Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry and the high costs of other sensitive methods in compared to flame atomic absorption spectrometry (FAAS). Among preconcentration techniques, solid-phase extraction is the most popular because of a number of advantages. In this work, thiol-containing sulfonamide resin was synthesized, characterized, and applied as a new sorption material for solid phase extraction and determination of lead in natural water samples. The optimization of experimental conditions was performed using the parameters including pH, contact time, and volumes of initial and elution solutions. After preconcentration procedure, FAAS was used for determinations. The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent as well as high sorption capacity. Consequently, 280-fold improvement in the sensitivity of analytical scheme was achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the developed preconcentration method. The limit of detection was found to be 0.15 ng mL{sup -1}. The Pb{sup 2+} concentrations in the studied water samples were found to be in the range of 0.9-6.7 ng mL{sup -1}. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Two phase continuous digestion of solid manure on-farm

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)


    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  9. Mechanisms of fibrinogen adsorption at solid substrates at lower pH.

    Cieśla, Michał; Adamczyk, Zbigniew; Barbasz, Jakub; Wasilewska, Monika


    Adsorption of fibrinogen was theoretically studied using the three-dimensional random sequential adsorption (RSA) model. Fibrinogen molecule shape was approximated by the bead model considering the presence of flexible side arms. Various cases were considered inter alia, the side-on adsorption mechanisms and the simultaneous side-on/end-on adsorption mechanism. The latter mechanisms is pertinent to fibrinogen adsorption at lower pH (below isoelectric point of 5.8) where the entire molecule is positively charged. Extensive calculations enabled one to determine the jamming surface concentration (coverage) of molecules adsorbed under the side-on and end-on orientations as well as the total coverage. For the simultaneous side-on/end-on model the maximum surface concentration was 7.29 × 10(3) μm(-2) corresponding to the protein coverage of 4.12 mg m(-2) (without considering hydration). Additionally, the surface blocking functions for different adsorption regimes were determined and analytically approximated for the entire range of coverage by the interpolating polynomials. Using these blocking functions, fibrinogen adsorption kinetics for diffusion controlled transport conditions was evaluated. Comparison of these theoretical results with experimental data was made. It was demonstrated that the simultaneous side-on/end-on model properly reflects the maximum coverage of fibrinogen adsorbed on latex particles determined via the electrokinetic (electrophoretic mobility) and AFM measurements. Also, streaming potential measurements of fibrinogen adsorption kinetics on mica were successfully interpreted in terms of this model. The theoretical results derived in this work have implications for basic science providing information on mechanisms of anisotropic protein adsorption.

  10. Phase field modeling and simulation of three-phase flow on solid surfaces

    Zhang, Qian; Wang, Xiao-Ping


    Phase field models are widely used to describe the two-phase system. The evolution of the phase field variables is usually driven by the gradient flow of a total free energy functional. The generalization of the approach to an N phase (N ≥ 3) system requires some extra consistency conditions on the free energy functional in order for the model to give physically relevant results. A projection approach is proposed for the derivation of a consistent free energy functional for the three-phase Cahn-Hilliard equations. The system is then coupled with the Navier-Stokes equations to describe the three-phase flow on solid surfaces with moving contact line. An energy stable scheme is developed for the three-phase flow system. The discrete energy law of the numerical scheme is proved which ensures the stability of the scheme. We also show some numerical results for the dynamics of triple junctions and four phase contact lines.

  11. Investigating the Co-Adsorption Behavior of Nucleic-Acid Base (Thymine and Cytosine) and Melamine at Liquid/Solid Interface

    Zhao, Huiling; Li, Yinli; Chen, Dong; Liu, Bo


    The co-adsorption behavior of nucleic-acid base (thymine; cytosine) and melamine was investigated by scanning tunneling microscopy (STM) technique at liquid/solid (1-octanol/graphite) interface. STM characterization results indicate that phase separation happened after dropping the mixed solution of thymine-melamine onto highly oriented pyrolytic graphite (HOPG) surface, while the hetero-component cluster-like structure was observed when cytosine-melamine binary assembly system is used. From the viewpoints of non-covalent interactions calculated by using density functional theory (DFT) method, the formation mechanisms of these assembled structures were explored in detail. This work will supply a methodology to design the supramolecular assembled structures and the hetero-component materials composed by biological and chemical compound.

  12. Studies on solid-solid phase transitions of polyols by infrared spectroscopy

    Feng, H.; Liu, X.; He, S.; Wu, K.; Zhang, J. [Department of Chemistry, Hebei Normal University, Shijiazhuang (China)


    This paper chiefly deals with the properties of polyols - a kind of energy storage material, by IR spectra. A series of infrared spectra at various temperatures were obtained for pentaerythritol (PE), pentaglycerine (PG), neopentylglycol (NPG) and their mixture NPG/PG. The experimental results (the shifts of -OH absorption band in IR spectra) support the solid-solid phase transition mechanism, which involves the reversible breaking of nearest-neighbor hydrogen bonds in the molecular crystals at transformation temperature. The correlation between the wave number shifts and the temperatures of phase transition is proposed in this paper. Finally, by means of infrared spectroscopy experiments, it is shown that aging has a great influence on the thermal properties of polyol mixtures.

  13. Solid-Phase Preparation and Characterization of Chitosan

    GaoLe-ping; DuYu-min; ZhangDao-bin; ShiXiao-wen; ZhanHuai-yu; SongWen-hua


    Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carborr13 magnetic resonance sperctroscopy (13C NMR). Chitosan with a deacetylation degree (DD) of 76. 1% was obtained at a mass ratio 0.2 : 1 : 1 for H20/chitin/NaOH at 160℃ for 12 mirL Compared to conventional solution method(usually 1 : 10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M. 1.54 X 10s ) was lower than that obtained by suspension method(Y2,Mw3. 34×105). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitirL It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13C NMR showed that structures of chitosans prepared by solid-phase method were not changed.

  14. Thermodynamic phase behavior of API/polymer solid dispersions.

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele


    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  15. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: Comparison of CeY obtained by liquid-, and solid-state ion exchange

    Qin, Yucai [College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong (China); Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning (China); Mo, Zhousheng; Yu, Wenguang; Dong, Shiwei; Duan, Linhai [College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong (China); Gao, Xionghou, E-mail: [Petrochemical Research Institute, PetroChina Company Limited, 9 Dongzhimen North Street, Dongcheng District, Beijing 100007 (China); Song, Lijuan, E-mail: [College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong (China); Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning (China)


    Cerium containing Y zeolites were prepared by liquid- (L-CeY) and solid- (S-CeY) state ion exchange from NaY and HY, respectively. The structural and textural properties were characterized by XRD and N{sub 2} adsorption, and acidity properties were characterized by NH{sub 3} temperature-programmed desorption (NH{sub 3}-TPD) and in situ FTIR spectrum of chemisorbed pyridine (in situ Py-FTIR). Furthermore, the single component adsorption and multi-component competitive adsorption behavior of thiophene, benzene and cyclohexene on those zeolites have also been studied by using vapor adsorption isotherms, solution adsorption breakthrough curves, thermogravimetry and derivative thermogravimetry (TG/DTG), frequency response (FR) and in situ FTIR techniques. The results indicate that the primary adsorption mode of benzene is simply micropore filling process, but the nature of effect of aromatics on selective adsorption of thiophene is competitive adsorption. The strong chemical adsorptions and protonization reactions of thiophene and cyclohexene occur upon the Brönsted acid sites of the HY and L-CeY zeolites, and the preferable acid catalytic protonization reactions of olefins hinder the further adsorption of sulfur compounds.

  16. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: Comparison of CeY obtained by liquid-, and solid-state ion exchange

    Qin, Yucai; Mo, Zhousheng; Yu, Wenguang; Dong, Shiwei; Duan, Linhai; Gao, Xionghou; Song, Lijuan


    Cerium containing Y zeolites were prepared by liquid- (L-CeY) and solid- (S-CeY) state ion exchange from NaY and HY, respectively. The structural and textural properties were characterized by XRD and N2 adsorption, and acidity properties were characterized by NH3 temperature-programmed desorption (NH3-TPD) and in situ FTIR spectrum of chemisorbed pyridine (in situ Py-FTIR). Furthermore, the single component adsorption and multi-component competitive adsorption behavior of thiophene, benzene and cyclohexene on those zeolites have also been studied by using vapor adsorption isotherms, solution adsorption breakthrough curves, thermogravimetry and derivative thermogravimetry (TG/DTG), frequency response (FR) and in situ FTIR techniques. The results indicate that the primary adsorption mode of benzene is simply micropore filling process, but the nature of effect of aromatics on selective adsorption of thiophene is competitive adsorption. The strong chemical adsorptions and protonization reactions of thiophene and cyclohexene occur upon the Brönsted acid sites of the HY and L-CeY zeolites, and the preferable acid catalytic protonization reactions of olefins hinder the further adsorption of sulfur compounds.

  17. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Jin Weijun, E-mail: [College of Chemistry, Beijing Normal University, Beijing 100875 (China)


    Highlights: Black-Right-Pointing-Pointer Halogen bonding (XB) is firstly utilised in solid phase extraction. Black-Right-Pointing-Pointer The perfluorinated iodine alkanes can be extracted by C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen bonding. Black-Right-Pointing-Pointer The C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen bond is well characterised by spectroscopy methods. Black-Right-Pointing-Pointer The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, {sup 19}F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I Midline-Horizontal-Ellipsis Cl{sup -} halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL{sup -1} analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl{sup -}. The analytical performance of the halogen bond-based SPE-GC-MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g{sup -1} spike level were in the range of 73.2-93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g{sup -1} in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid

  18. Simultaneous monitoring of protein adsorption at the solid-liquid interface from sessile solution droplets by ellipsometry and axisymmetric drop shape analysis by profile

    Wormeester, H; Busscher, HK


    In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid-liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid-liquid interfacial tension is determined, while ellipsometry is e

  19. Porous and Magnetic Molecularly Imprinted Polymers via Pickering High Internal Phase Emulsions Polymerization for Selective Adsorption of λ-Cyhalothrin

    Wu, Yunlong; Ma, Yue; Pan, Jianming; Gu, Runxing; Luo, Jialu


    A novel macroporous magnetic molecularly imprinted polymer (MMIPs) of was prepared by W/O Pickering (high internal phase emulsions) HIPEs polymerization, and then it was adopted as adsorbent for selective adsorption of λ-cyhalothrin (LC). In static conditions, adsorption capacity of LC increased rapidly in the first 60 min and reached to equilibrium in ~2.0 h. Excellent conformity of the second-order model confirmed the chemical nature of the interaction between the LC and imprinted sites. The fitting adsorption isotherm was a Langmuir type, and the maximum monolayer adsorption capacity at 298 K was 404.4 μmol g−1. Thermodynamic parameters suggested the specific adsorption at 298 K was an exothermic, spontaneous, and entropy decreased process. Competitive recognition studies of the MMIPs were performed with diethyl phthalate (DEP) and the structurally similar compound fenvalerate (FL), and the MMIPs, which displayed high selectivity for LC.

  20. One-pot solvothermal synthesis of dual-phase titanate/titania Nanoparticles and their adsorption and photocatalytic Performances

    Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin; Ho, Jeffery Weng Chye; Tay, Yee Yan; Lau, Wei Siew; Wijaya, Olivia; Lim, Jiexiang; Chen, Zhong, E-mail:


    Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visible light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.

  1. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Wojda Marta


    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  2. A fundamental study of the impact of pressure on the adsorption mechanism in reversed-phase liquid chromatography.

    Åsberg, Dennis; Samuelsson, Jörgen; Fornstedt, Torgny


    A fundamental investigation of the pressure effect on individual adsorption sites was undertaken based on adsorption energy distribution and adsorption isotherm measurements. For this purpose, we measured adsorption equilibrium data at pressures ranging from 100 to 1000bar at constant flow and over a wide concentration range for three low-molecular-weight solutes, antipyrine, sodium 2-naphthalenesulfonate, and benzyltriethylammonium chloride, on an Eternity C18 stationary phase. The adsorption energy distribution was bimodal for all solutes, remaining clearly so at all pressures. The bi-Langmuir model best described the adsorption in these systems and two types of adsorption sites were identified, one with a low and another with a high energy of interaction. Evidence exists that the low-energy interactions occur at the interface between the mobile and stationary phases and that the high-energy interactions occur nearer the silica surface, deeper in the C18 layer. The contribution of each type of adsorption site to the retention factor was calculated and the change in solute molar volume from the mobile to stationary phase during the adsorption process was estimated for each type of site. The change in solute molar volume was 2-4 times larger at the high-energy site, likely because of the greater loss of solute solvation layer when penetrating deeper into the C18 layer. The association equilibrium constant increased with increasing pressure while the saturation capacity of the low-energy site remained almost unchanged. The observed increase in saturation capacity for the high-energy site did not affect the column loading capacity, which was almost identical at 50- and 950-bar pressure drops over the column.

  3. Solid Phase Peptide Synthesis of Fusukang for AIDS

    甘一如; 戴琦; 张雪竹; 高晨昊


    A 36-residue peptide is designed to cure acquired immunodeficiency syndrome(AIDS), and is synthesized by the manual solid phase peptide synthesis technique. Different reaction conditions of the synthesis process were discussed. Stirring efficiency of mechanics and nitrogen was compared. The mechanical method displays a predominant performance. Although the coupling efficiencies of diisopropylcarbodiimide(DIC) and dicyclohexylcarbodiimide(DCC) are virtually identical, DIC offers several advantages over DCC in practice due to different physical characters. Wash conditions after deprotection and coupling were investigated to monitor washing efficiency. 0.369 2 g crude peptide was obtained.

  4. Solid-phase colorimetric method for the quantification of fucoidan.

    Lee, Jung Min; Shin, Z-U; Mavlonov, Gafurjon T; Abdurakhmonov, Ibrokhim Y; Yi, Tae-Hoo


    We described the simple, selective, and rapid method for determination of fucoidans using methylene blue staining of sulfated polysaccharides, immobilized into filter paper and consequent optic density (at A (663) nm) measurement of the eluted dye from filter paper. This solid-phase method allows selective determination of 1-20 μg fucoidan in presence of potentially interfering compounds (alginic acid, DNA, salts, proteins, and detergents). Further, we demonstrated the alternative way of using image processing software for fucoidan quantification without extraction of methylene blue dye from stained spots of fucoidan-dye complex.


    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He


    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.


    Ning Yang; Wei Wang; Wei Ge; Jinghai Li


    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  7. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  8. Nucleation of the diamond phase in aluminium-solid solutions

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.


    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  9. Powder metallurgy: Solid and liquid phase sintering of copper

    Sheldon, Rex; Weiser, Martin W.


    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  10. Removal of PCDDs/Fs from municipal solid waste incineration by entrained-flow adsorption technology

    YAN Jian-hua; PENG Zheng; LU Sheng-yong; LI Xiao-dong; CEN Ke-fa


    Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solidwaste incineration (MSWI) process. The effects of operating parameters including flue gas temperature, feeding rate of activated carbon, polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs) concentration at the inlet of the air pollution control device (APCD), filter materials, pressure drop on PCDDs/Fs removal efficiency are reviewed and commented upon in this paper. Evaluation on the various mechanistic models for entrained flow adsorption is carried out based on the computational simulation in terms of the actual operating condition and theoretical analysis. Finally, an advancement of entrained flow adsorption in combination of dual bag filter is introduced.

  11. Uphill diffusion and overshooting in the adsorption of binary mixtures in nanoporous solids

    Lauerer, Alexander; Binder, Tomas; Chmelik, Christian; Miersemann, Erich; Haase, Jürgen; Ruthven, Douglas M.; Kärger, Jörg


    Under certain conditions, during binary mixture adsorption in nanoporous hosts, the concentration of one component may temporarily exceed its equilibrium value. This implies that, in contrast to Fick's Law, molecules must diffuse in the direction of increasing rather than decreasing concentration. Although this phenomenon of `overshooting' has been observed previously, it is only recently, using microimaging techniques, that diffusive fluxes in the interior of nanoporous materials have become accessible to direct observation. Here we report the application of interference microscopy to monitor `uphill' fluxes, covering the entire period of overshooting from initiation until final equilibration. It is shown that the evolution of the profiles can be adequately predicted from the single-component diffusivities together with the binary adsorption equilibrium data. The guest molecules studied (carbon dioxide, ethane and propene) and the host material (ZSM-58 or DDR) are of practical interest in relation to the development of kinetically selective adsorption separation processes.

  12. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.


    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  13. Surface-induced solid-liquid phase transitions in ultra-thin water films at T > 0 ^oC

    Chakraborty, Animesh; Gellman, Andrew; Baker, Layton; Broitman, Estebahn


    We report here the measurements of both the adsorption isotherms and the dissipation in ultra-thin films of water adsorbed on the surfaces of SiO2 . The measurements were made in a small high vacuum chamber in which we have mounted a QCM. The chamber was evacuated to ˜10-8 Torr and then filled with water vapor at pressures ranging from 10-3 -- 40 Torr (the vapor pressure of water at room temperature is ˜22 Torr). In addition the temperature of the apparatus can be varied in the range 10 -- 60^oC. This is sufficient to measure the adsorption isotherm and to probe the phase of adsorbed water films over the range of conditions. Recently published work studying the adsorption of water on the SiO2 layer formed on Si single crystals has suggested that the phase of the water at temperatures well above 0^oC is actually that of a solid, ice-like structure rather than liquid water [1]. That work is based on the comparison of the vibrational spectrum of thin water films with those of liquid water and ice. In our study we are using the QCM to investigate the possibility of formation of Ice-like structures on SiO2. [1] Asay, D. B. and Kim, S.H., Evolution of the Adsorbed Water Layer Structure on Silicon Oxide at Room Temperature. J. Phys. Chem. B. 2005, 109, 16760-16763

  14. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.


    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

  15. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  16. Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L


    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  17. Dissolution improvement of solid self-emulsifying drug delivery systems of fenofi brate using an inorganic high surface adsorption material

    Shazly Gamal


    Full Text Available Solidification of lipid formulations using adsorbents is a recent technique attracting great interest due to its favourable properties including flexibility in dose division, reduction of intra-subject and inter-subject variability, improvement in efficacy/safety profile and enhancement of physical/ chemical stability. The current study aims to convert liquid self-emulsifying/nanoemulsifying drug delivery systems (SEDDS/SNEDDS into solid SEDDS/SNEDDS and to assess how adsorption of the drug onto an inorganic high surface area material, NeusilinR grade US2 (NUS2, affects its in vitro dissolution performance. Lipid formulation classification systems (LFCS Type III formulations were designed for the model anti-cholesterol drug fenofibrate. NUS2 was used to solidify the SEDDS/SNEDDS. Particle size and SEM analyses of solid SEDDS/SNEDDS powder were carried out to investigate the adsorption efficiency. In vitro dissolution studies were conducted to compare the developed formulations with the marketed product. The results of characterization studies showed that the use of 50 % (m/m adsorbent resulted in superior flowability and kept the drug stable is amorphous state. Dissolution studies allow the conclusion that the formulation containing a surfactant of higher water solubility (particularly, Type IIIB SNEDDS has comparably faster and higher release profiles than Type IIIA (SEDDS and marketed product

  18. Adsorption and desorption of DNA tuned by hydroxyl groups in graphite oxides-based solid extraction material.

    Akceoglu, Garbis Atam; Li, Oi Lun; Saito, Nagahiro


    The extraction of DNA is the most crucial method used in molecular biology. Up to date silica matrices has been widely applied as solid support for selective DNA adsorption and extraction. However, since adsorption force of SiOH functional groups is much greater than that of desorption force, the DNA extraction efficiency of silica surfaces is limited. In order to increase the DNA extraction yield, a new surface with different functional groups which possess of greater desorption property is required. In this study, we proposed cellulose/graphite oxide (GO) composite as an alternative material for DNA adsorption and extraction. GO/Cellulose composite provides the major adsorption and desorption of DNA by COH, which belongs to alkyl or phenol type of OH functional group. Compared to SiOH, COH is less polarized and reactive, therefore the composite might provide a higher desorption of DNA during the elution process. The GO/cellulose composite were prepared in spherical structure by mixing urea, cellulose, NaOH, Graphite oxide and water. The concentration of GO within the composites were controlled to be 0-4.15 wt.%. The extraction yield of DNA increased with increasing weight percentage of GO. The highest yield was achieved at 4.15 wt.% GO, where the extraction efficiency was reported as 660.4 ng/μl when applying 2M GuHCl as the binding buffer. The absorbance ratios between 260 nm and 280 nm (A260/A280) of the DNA elution was demonstrated as 1.86, indicating the extracted DNA consisted of high purity. The results proved that GO/cellulose composite provides a simple method for selective DNA extraction with high extraction efficiency of pure DNA.

  19. The role of solid-solid phase transitions in mantle convection

    Faccenda, Manuele; Dal Zilio, Luca


    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  20. Studies of phase transitions in the aripiprazole solid dosage form.

    Łaszcz, Marta; Witkowska, Anna


    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.

  1. The surface tension of a solid at the solid-vacuum interface, an evaluation from adsorption and wall potential calculations.

    Jakubov, Tim S; Mainwaring, David E


    A method for the evaluation of quantities that are experimentally inaccessible such as the surface tension at the solid-vacuum interface and the superficial tension of the fluid in contact with the solid is presented. The approach is based on consideration of an equilibrium of a fluid in solid capillary wherein a balance between surface and capillary forces has been replaced by conceptual alternative interfacial and centrifugal forces. This approach involves the simultaneous numerical solution one the special forms of the Gibbs equation for solid-fluid interface and a generalized Kelvin equation derived earlier. The latter equation takes into account interactions between the solid thick cylindrical wall and confined fluid, this body-body interaction potential has been primarily calculated using the Lennard-Jones (6-12) expression for the atom-atom pair potentials and expressed by hypergeometrical functions having good convergences. All numerical calculations shown here have been performed for the model graphite-argon system at 90 K. Finally, an analysis of the accuracy of the proposed method is considered.

  2. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina


    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction.

  3. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces.

    Yu, Yang-Xin


    A novel weighted density functional theory (WDFT) for an inhomogeneous 12-6 Lennard-Jones fluid is proposed based on the modified fundamental measure theory for repulsive contribution, the mean-field approximation for attractive contribution, and the first-order mean-spherical approximation with a weighted density for correlation contribution. Extensive comparisons of the theoretical results with molecular simulation and experimental data indicate that the new WDFT yields accurate density profiles, adsorption isotherms, fluid-solid interfacial tensions, as well as disjoining potentials and pressures of simple gases such as argon, nitrogen, methane, ethane, and neon confined in slitlike pores or near graphitic solid surfaces. The present WDFT performs better than the nonlocal density functional theory, which is frequently used in the study of adsorption on porous materials. Since the proposed theory possesses a good dimensional crossover and is able to correctly reduce to two-dimensional case, it performs very well even in very narrow pores. In addition, the present WDFT reproduces very well the supercritical fluid-solid interfacial tensions, whereas the theory of Sweatman underestimates them at high bulk densities. The present WDFT predicts that the increase in the fluid-wall attraction may change the sign of the interfacial tension and hence may make the wall from "phobic" to "philic" with respect to the fluid. The new WDFT is computationally as simple and efficient as the mean-field theory and avoids the second-order direct correlation function as an input. It provides a universal way to construct the excess Helmholtz free-energy functional for inhomogeneous fluids such as Yukawa, square-well, and Sutherland fluids.

  4. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces

    Kapp, Sebastian J; Larsson, Iben; van de Weert, Marco


    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation, such ...

  5. Polymer vs. surfactant : competitive adsorption at the solid-liquid interface

    Postmus, B.R.


    The research described in this thesis focuses on the competitive adsorption of nonionic polymer and nonionic surfactant on a silica surface. These type of systems are interesting from both an academical and a technological viewpoint. Our academic interest stems simply from the observation that we ha

  6. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    Barsky, Eugene


    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  7. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong


    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%.

  8. Determination of Anions in Landifll Leachate Water by Activated Carbon Adsorption-Solid Phase Extraction-Ion Chromatography%活性炭吸附-固相萃取-离子色谱法快速测定垃圾渗滤液中的阴离子

    黄朝颜; 孟洁; 吴艳芬


    建立了活性炭吸附–固相萃取–离子色谱法快速测定垃圾渗滤液中F–,Cl-,NO3–,PO43–,SO42–5种阴离子的方法。100 mL样品先经10 g预先洗涤烘干的活性炭吸附,然后通过吸附特性不同的ENVI–18(C18小柱)、PSA固相萃取小柱。利用C18小柱对水中有机污染物的萃取及键合相有双齿配体的PSA小柱对金属离子的螯合,除去渗滤液中大量的有机物和重金属,再经离子色谱检测。5种离子的质量浓度在1~10 mg/L范围内与其色谱峰面积呈良好的线性关系,线性相关系数大于0.999,F–,Cl-,NO3–,PO43–,SO42–的检出限分别为0.02,0.02,0.08,0.15,0.09 mg/L。5种离子的平均加标回收率为96%~105%,测定结果的相对标准偏差小于6%(n=6)。该方法简便快捷,测定结果准确可靠,可用于垃圾渗滤液中F–,Cl-,NO3–,PO43–,SO42–5种阴离子的测定。%A method based on activated carbon adsorption–solid phase extraction–ion chromatography for the determination of anions (F–,Cl–,NO3–,PO43–,SO42–) in landfill leachate water was developed. 100 mL landfill leachate water was enriched by 10 g activated carbon, two different kinds of solid phase extraction column: ENVI–18 and PSA. After the pretreatment,much of the organic matter and high heavy metal content have been removed. Then the sample was analyzed by ion chromatography. The concentration offive aions had good linear relationship with the chromatography peak area in the range of 1–10 mg/L. The recoveries were 96%–105%,with coefficients of variation below 5%(n=6). The method is simple,reliable and suitable for determining anions in landfill leachate water.


    LI Xiang; GUO Haifu


    The adsorption of isomaltotriose from aqueous solution on Ca2+ resin was investigated.The adsorption isotherm and the rate curve were determined. The pseudo-first-order model,pseudo-second-order model and the intraparticle diffusion model were used to predict the rate constants of adsorption. The activation energy of adsorption has been also evaluated using the pseudo-second-order rate constants. The results showed that the adsorption of isomaltotriose onto Ca2+ resin is an exothermically activated process. The adsorption isotherm can be described by Langmuir equation. The pseudo-second-order model can fit well to the adsorption rate curve of isomaltotriose onto Ca2+ resin. It suggests that the adsorption of isomoltotriose onto Ca2+ resin involve chemical adsorption.

  10. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin


    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  11. Multi-phase CFD modeling of solid sorbent carbon capture system

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W. [U.S. DOE; Xu, W.; Huckaby, E. David [U.S. DOE


    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  12. Determination of trace selenium in high purity tellurium by hydride generation atomic fluorescence spectrometry after solid phase extraction of a diaminobenzidine-selenium chelate

    Tong, Wang; Ying, Zeng; Jinyong, Xu


    Macroporous adsorption resin was used as the sorbent for solid phase extraction and determination of the trace Se content in high purity tellurium prior to hydride generation atomic fluorescence spectrometry analysis. Selenium was converted into an organic Se chelate using 3,3‧-diaminobenzidine and was separated from the tellurium matrix by solid phase extraction. The resin was packed as a column for solid phase extraction. Under optimum conditions, trace Se can be quantitatively extracted and the tellurium matrix can be removed. The Se in the eluate was determined by hydride generation atomic fluorescence spectrometry. The limit of detection (3σ) of this method was 0.22 ng g- 1 and the relative standard deviation (RSD, n = 5) ranged from 2.0 to 2.5% for the three investigated tellurium samples. The proposed method was successfully applied for the determination of the trace Se content in high purity tellurium samples.

  13. Solid Phase Extraction Technique Based on Electrospun Nanofibrous%基于电纺纳米纤维的固相萃取技术

    李晓晴; 刘静静; 祁菲菲; 杨碧漪; 田甜; 许茜


    Nanofibers have been considered as a potential kind of sorbent for solid phase extraction, accordingly nanofiber-based solid phase extraction ( Nanofibers based solid phase extraction, NFs-SPE ) becomes a popular research point of sample pretreatment technique. This article reviewed in and abroad research status of practical application in food, environmental and biological sample preparation based on nanofibers mat, and proposed that there was a dual “structure”-“activity” relationship between target adsorption efficiency and the two structures ( nanometer morphological structure and molecular structure ) of nanofibers, which would be the key breakthrough to explore adsorption mechanism.%纳米纤维极具优越固相萃取介质的潜质,基于纳米纤维的固相萃取法( Nanofibers based solid phase extraction, NFs-SPE)已成为新兴的样品预处理技术。本文在评述NFs-SPE在食品、环境样品、生物样品等实际样品检测应用的相关研究基础上,提出纳米纤维的分子结构和形态结构与目标物吸附效能之间存在着“结构”-“效应”关系,这将是明确纳米纤维高效吸附目标物的机理的关键突破口。

  14. Density functional theory study of phase IV of solid hydrogen

    Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.


    We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.

  15. Vapour phase synthesis of salol over solid acids via transesterification

    S Z Mohamed Shamshuddin; N Nagaraju


    The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flowrate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200°C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO$^{2-}_{4}$ or Mo(VI) ions. The effect of poisoning of acid sites of SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

  16. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong


    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  17. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique

    Mohapatra, M., E-mail: [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Rout, K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Singh, P. [Murdoch University, Perth, Western Australia (Australia); Anand, S. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India); Layek, S.; Verma, H.C. [Indian Institute of Technology, Kanpur (India); Mishra, B.K. [Institute of Minerals and Materials Technology, Acharyavihar, Bhubaneswar 751 013, Orissa (India)


    Mixed nano iron oxides powder containing goethite ({alpha}-FeOOH), hematite ({alpha}-Fe{sub 2}O{sub 3}) and ferrihydrite (Fe{sub 5}HO{sub 8}.4H{sub 2}O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Moessbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55 deg. C), concentrations of adsorbent (0.5-3.0 g/L), adsorbate (10-100 mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO{sub 4}{sup 2-} or Cl{sup -} adversely affected the adsorption of fluoride in the order of SO{sub 4}{sup 2-} > Cl{sup -}. The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Moessbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%.

  18. Fluoride adsorption studies on mixed-phase nano iron oxides prepared by surfactant mediation-precipitation technique.

    Mohapatra, M; Rout, K; Singh, P; Anand, S; Layek, S; Verma, H C; Mishra, B K


    Mixed nano iron oxides powder containing goethite (α-FeOOH), hematite (α-Fe(2)O(3)) and ferrihydrite (Fe(5)HO(8)·4H(2)O) was synthesized through surfactant mediation-precipitation route using cetyltrimethyl ammonium bromide (CTAB). The X-ray diffraction, FTIR, TEM, Mössbauer spectroscopy were employed to characterize the sample. These studies confirmed the nano powder contained 77% goethite, 9% hematite and 14% ferrihydrite. Fluoride adsorption onto the synthesized sample was investigated using batch adsorption method. The experimental parameters chosen for adsorption studies were: pH (3.0-10.0), temperature (35-55°C), concentrations of adsorbent (0.5-3.0 g/L), adsorbate (10-100 mg/L) and some anions. Adsorption of fluoride onto mixed iron oxide was initially very fast followed by a slow adsorption phase. By varying the initial pH in the range of 3.0-10.0, maximum adsorption was observed at a pH of 5.75. Presence of either SO(4)(2-) or Cl(-) adversely affected the adsorption of fluoride in the order of SO(4)(2-)>Cl(-). The FTIR studies of fluoride loaded adsorbent showed that partly the adsorption on the surface took place at surface hydroxyl sites. Mössbauer studies indicated that the overall absorption had gone down after fluoride adsorption that implies it has reduced the crystalline bond strength. The relative absorption area of ferrihydrite was marginally increased from 14 to 17%. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Solid phase epitaxial regrowth of (001) anatase titanium dioxide

    Barlaz, David Eitan; Seebauer, Edmund G., E-mail: [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S Mathews Ave., Urbana, Illinois 61801 (United States)


    The growing interest in metal oxide based semiconductor technologies has driven the need to produce high quality epitaxial films of one metal oxide upon another. Largely unrecognized in synthetic efforts is that some metal oxides offer strongly polar surfaces and interfaces that require electrostatic stabilization to avoid a physically implausible divergence in the potential. The present work examines these issues for epitaxial growth of anatase TiO{sub 2} on strontium titanate (001). Solid phase epitaxial regrowth yields only the (001) facet, while direct crystalline growth by atomic layer deposition yields both the (112) and (001). The presence of amorphous TiO{sub 2} during regrowth may provide preferential stabilization for formation of the (001) facet.

  20. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    Ahn, Jaehyun, E-mail:; Koh, Donghyi; Roy, Anupam; Banerjee, Sanjay K., E-mail: [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Chou, Harry [Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Taegon [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Semiconductor R& D Center, Samsung Electronics Corporation, 1 Samsungjeonja-ro, Hwasung, Kyounggi 445-330 (Korea, Republic of); Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul 130-650 (Korea, Republic of)


    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  1. A rapid easy—to—perform solid phase digoxin radioimmunoassay

    LiBin; ZhouMei-Ying; 等


    A solid-phase-radioimmunoassay(SPRIA) for the monitoring of blood digoxin level has been developed,in which a secondary antibody-coated polystyrene tubes are used.This noval method seems to be simple to use and only takes about an half hour.The standard curve is linear from 0.25to 4μg/L.The sensitivity of the detection is 0.1μg/L.Reproducibility studies with 3 control sera of 0.5-2.5μg/L give intraassay CV<5% and interassay CV<10%.The specimens are measured and compared with those of the conventional radioimmunoassay and the values are well correlated(r=0.96,Y=1.022X+0.04μg/L)。

  2. Solid-phase synthesis of siRNA oligonucleotides.

    Beaucage, Serge L


    Since the discovery of RNA interference (RNAi) as a means to silence the expression of specific genes, small interfering RNA (siRNA) oligonucleotides have been recognized as powerful tools for targeting therapeutically important mRNAs and eliciting their destruction. This discovery has created a high demand for synthetic oligoribonucleotides as potential therapeutics and has spurred a renaissance in the development of rapid, efficient methods for solid-phase RNA synthesis. The design and implementation of 2'-hydroxyl protecting groups that provide ribonucleoside phosphoramidites with coupling kinetics and coupling efficiencies comparable to those of deoxyribonucleoside phosphoramidites are key to the production of RNA oligonucleotides in sufficient quantity and purity for pharmaceutical applications. In this context, various siRNAs were chemically modified to identify the biophysical and biochemical parameters necessary for effective and stable RNAi-mediated gene-silencing activities.

  3. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root.

    Yang, Xiao; Zhang, Zhaohui; Li, Jiaxing; Chen, Xing; Zhang, Minlei; Luo, Lijuan; Yao, Shouzhuo


    In this paper, we present a novel surface imprinting technique for the preparation of molecularly imprinted polymers/multi-walled carbon nanotubes (MIPs/MWNTs) for extraction of emodin from kiwi fruit root. The MIPs/MWNTs were characterised by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The properties involving adsorption dynamics, static adsorption, and selective recognition capacity were evaluated. The MIPs/MWNTs exhibited good site accessibility in which it only took 60 min to achieve adsorption equilibrium and highly selective recognition for the template emodin. Furthermore, the performance of the MIPs/MWNTs as solid phase extraction (SPE) material was investigated in detail. The proposed MIPs/MWNTs-SPE procedure for emodin exhibited satisfactory recoveries ranging from 89.2% to 93.8% for real samples. It was used for the purification and enrichment of emodin from kiwi fruit root successfully.

  4. [Determination of alkyl-phenols in textiles by in-tube capillary solid-phase extraction-gas chromatography].

    Zhang, Luohong; Du, Ting; Zhong, Jiayu


    An in-tube capillary solid-phase extraction (SPE) -gas chromatography (GC) method was developed for confirmation and quantitative determination of octylphenol (OP) and nonylphenol (NP) in textiles. To make the in-tube capillary SPE column, the best SPE cartridge was chosen from four kinds of SPE cartridges. The adsorbent in the cartridge was used as the filling material to make the in-tube capillary SPE column. The nature, volume used, flow rate and adsorption capacity of the eluent were compared. Finally, the in-tube capillary solid-phase extraction was combined with gas chromatography to detect the alkyl phenols (APs). Abselut NEXUS extraction cartridge was chosen as the best solid phase extractant. The optimal in-tube capillary SPE extraction conditions were as follows: 1.2 μL methanol and 1.2 μL ultra-pure water for activating the extraction column, 1.2 μL methanol for eluting, 0.4 μL/min for solution loading. The method showed a good linear relationship in the low concentration range, and the enrichment ratios for the APs were about 100 times. The detection limits of octylphenol and nonylphenol were 3.7 μg/L and 4.5 μg/L, respectively. The recoveries of octylphenol were 85.6%-98.2%, and those of nonylphenol were 83.8%-95.7%. The experimental results demonstrated that the method is simple, rapid, and useful for detecting APs in textiles.

  5. [Development of Determination Method of Fluoroquinolone Antibiotics in Sludge Based on Solid Phase Extraction and HPLC-Fluorescence Detection Analysis].

    Dai, Xiao-hu; Xue, Yong-gang; Liu, Hua-jie; Dai, Ling-ling; Yan, Han; Li, Ning


    Fluoroquinolone antibiotics (FQs), as the common pharmaceuticals and personal care products (PPCPs), are widespread in the environment. FQs contained in wastewater would be ultimately enriched in sludge, posing a potential threat to the consequent sludge utilization. To optimize the analytical method applicable to the determination of FQs in sludge, the authors selected ofloxacin (OFL), norfioxacin (NOR), ciprofloxacin (CIP) and lomefloxacin (LOM) as the target FQs, and established a method which was based on cell lysis, FQs extraction with triethylamine/methanol/water solution, Solid Phase Extraction (SPE) and HPLC-Fluorescence Detection (FLD) determination. After the investigation, phosphoric acid-triethylamine was decided to be the buffer salt, and methanol was chosen as the organic mobile phase. The gradient fluorescence scanning strategy was proved to be necessary for the optimal detection as well. Furthermore, by the designed orthogonal experiments, the effects of the extraction materials, pH, and the eluents on the efficiency of SPE extraction were evaluated, by which the optimal extraction conditions were determined. As a result, FQs in liquid samples could be analyzed by utilizing HLB extraction cartridge, and the recovery rates of the four FQs were in the range of 82%-103%. As for solid samples, the recovery rates of the four FQs contained reached up to 71%-101%. Finally, the adsorptivity of the sludge from the different tanks ( anaerobic, anoxic and oxic tanks) was investigated, showing gradual decrease in the adsorption capacity, but all adsorbed over 90% of the EQs. This conclusion also confirmed that 50% removal of FQs in the domestic wastewater treatment plant was realized by sludge adsorption.

  6. Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry.

    Payne, T E; Itakura, T; Comarmond, M J; Harrison, J J


    The adsorption of cobalt on samples from a potential waste repository site in an arid region was investigated in batch experiments, as a function of various solution phase parameters including the pH and ionic strength. The samples were characterized using a range of techniques, including BET surface area measurements, total clay content and quantitative X-ray diffraction. The statistical relationships between the measured cobalt distribution coefficients (K(d) values) and the solid and liquid phase characteristics were assessed. The sorption of cobalt increased with the pH of the aqueous phase. In experiments with a fixed pH value, the measured K(d) values were strongly correlated to the BET surface area, but not to the amount of individual clay minerals (illite, kaolinite or smectite). A further set of sorption experiments was undertaken with two samples of distinctive mineralogy and surface area, and consequently different sorption properties. A simple surface complexation model (SCM) that conceptualized the surface sites as having equivalent sorption properties to amorphous Fe-oxide was moderately successful in explaining the pH dependence of the sorption data on these samples. Two different methods of quantifying the input parameters for the SCM were assessed. While a full SCM for cobalt sorption on these complex environmental substrates is not yet possible, the basic applicability and predictive capability of this type of modeling is demonstrated. A principal requirement to further develop the modeling approach is adequate models for cobalt sorption on component mineral phases of complex environmental sorbents.

  7. Understanding the solid phase chemical fractionation of uranium in soil and effect of ageing

    Rout, Sabyasachi, E-mail: [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Kumar, Ajay [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Ravi, P.M.; Tripathi, R.M. [Homi Bhabha National Institute Anushaktinagar, Mumbai (India)


    Highlights: • Apart of U(VI) converted to U(IV) during adsorption to soil. • Ageing leads to rearrangement of chemical fractionation of U in soil. • Organic matter and carbonate minerals responsible for Surface enrichment of U. • There occurs Occlusion of U-Fe-Oxides (Hydroxide) in to silica. - Abstract: The aim of the present work is to understand the solid phase chemical fractionation of Uranium (U) in soil and the mechanism involved. This study integrated batch experiments of U(VI) adsorption to soil, study of U in different soil fractions, ageing impact on fractionation of U and spectroscopic investigation of adsorbed U(VI) using X-ray Photoelectron Spectroscopy (XPS). For the study three soils, pedogenically different (S1: Igneous, S2: Sedimentary and S3: Metamorphic) were amended with U(VI) and chemical fractionation of U was studied by sequential extraction after an interval of one month and 12 months. It was found that there occurs a significant rearrangement of U in different fractions with ageing and no correlation was observed between the U content in different fractions and the adsorbents of respective fractions such as soil organic matter (SOM), Fe/Mn oxides (hydroxides) carbonates, soil cation exchange capacity (CEC). XPS study revealed that surface enrichment of U mainly governed by the carbonate minerals and SOM, whereas bulk concentration was controlled by the oxides (hydroxides) of Si and Al. Occlusion of U-Fe-oxides (hydroxides) on silica was identified as an important mechanism for bulk enrichment (Increase in residual fraction) and depletion of U concentration in reducible fraction.

  8. New methods and materials for solid phase extraction and high performance liquid chromatography

    Dumont, Philip John [Iowa State Univ., Ames, IA (United States)


    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  9. Comparative solution and solid-phase glycosylations toward a disaccharide library

    Agoston, K.; Kröger, Lars; Agoston, Agnes


    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  10. Steady-state diffusion regime in solid-phase micro extraction kinetics

    Benhabib, K.; Laak, ter T.L.; Leeuwen, van H.P.


    The temporal evolution of diffusion-controlled analyte accumulation in solid-phase microextraction (SPME) is critically discussed in terms of the various aspects of steady-state diffusion in the two phases under conditions of fast exchange of the analyte at the solid phase film/water interface. For

  11. Solid-Phase Organic Chemistry: Synthesis of 2β-(HeterocyclylthiomethylPenam Derivatives on Solid Support

    Ernesto G. Mata


    Full Text Available The synthesis of 2β-(heterocyclylthiomethylpenam derivatives on solid support has been developed. Compounds are obtained in good to high yields (based on loading of the original resin. The key step is the solid-phase double rearrangement of the corresponding penicillin sulfoxide.

  12. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Zhengwen Xu


    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  13. Development of novel solid-phase protein formulations

    Montalvo Ortiz, Brenda Liz

    Proteins are the next-generation drugs for the treatment of several diseases. However, the number of protein drugs is still limited due to the physical or chemical instability of proteins during processing, formulation, storage, and delivery. The formulation of proteins at the solid state has advantages over liquid state, such as improved stability during long-term storage and delivery and decreases transportation costs. In this dissertation, we developed new solid-phase protein formulations in which the integrity of the protein was not compromised. The long term goal of this research was to use these protein formulations to improve protein stability in drug delivery devices, such as poly(lactic-co-glycolic) acid (PLGA). The first solid-phase protein formulation developed in this investigation was named "glassification". We proposed glassification as an alternative protein dehydration technique to the common used one, lyophilization, because this last method involves a series of steps which are detrimental to protein structure and stability. The glassification method consisted on protein dehydration by the use of organic solvents. As a result of the glassification process a small (micrometer size range) protein solid bead was obtained. The proteins used to study the glassification process were lysozyme (LYS), alpha-chymotrypsin (CHYMO) and horseradish peroxidase (HRP). These studies revealed that the glassification process itself did not alter protein structure and the activity was preserved. Ethyl acetate was the most effective organic solvent for protein glassification because it led to the highest protein residual activity, no insoluble aggregate formation and is a relatively non-toxic solvent, which allow the incorporation of these protein microparticles in PLGA microspheres. The incorporation of spherical HRP microparticles into PLGA microspheres resulted in superior properties when compared with encapsulated lyophilized HRP powder, such as improved release

  14. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N


    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  15. Application of magnetic graphitic carbon nitride nanocomposites for the solid-phase extraction of phthalate esters in water samples.

    Wang, Man; Yang, Xiaodi; Bi, Wentao


    Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid-phase extraction method for the preconcentration of phthalate esters such as di-n-butyl phthalate, butyl phthalate, dihexyl phthalate, and di-(2-ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05-0.1 μg/L and precision in the range of 1.1-2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4-99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon-based ring or hydrophobic pollutants. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  17. Solid Phase Formylation of N-Terminus Peptides

    Anna Lucia Tornesello


    Full Text Available Formylation of amino groups is a critical reaction involved in several biological processes including post-translational modification of histones. The addition of a formyl group (CHO to the N-terminal end of a peptide chain generates biologically active molecules. N-formyl-peptides can be produced by different methods. We performed the N-formylation of two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6, carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with N,N-dicyclohexylcarbodiimmide (DCC in liquid phase. The overnight incubation at 4 °C resulted in a significant increase in production yields of formylated peptides compared to the reaction performed at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide chains or amino groups of lysine side-chains in solid phase.

  18. Immunochemical cross-reactivity between albumin and solid-phase adsorbed histamine

    Poulsen, L K; Nolte, H; Søndergaard, I


    For production of an antibody against histamine, this was coupled to human serum albumin (HSA) and used for immunization of rabbits. To test the antiserum, an immunoradiometric assay was developed comprising solid-phase bound histamine, antisera and radiolabelled protein A. Titration and inhibition...... experiments revealed that histamine adsorbed onto a solid-phase could bind the antiserum. However, neither free histamine nor histamine coupled to unrelated carriers could inhibit the binding of antiserum to the solid-phase histamine. Cross-reactivity was demonstrated between HSA and solid-phase bound...

  19. Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide

    Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul


    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

  20. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei


    .4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  1. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei


    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects...

  2. Simulating multi-component liquid phase adsorption systems: ethanol and residual sugar

    Jones, R.; Tezel, F.H.; Thibault, J. [Department of Chemical and Biological Engineering, University of Ottawa (Canada)], email:


    A series of multi-component adsorption studies was performed to determine the relative advantages of producing ethanol which is to be blended with gasoline. These studies developed a model to describe the competition for adsorption sites between ethanol and sugar molecules on the surface of the adsorbent. Three competitive adsorption models established by batch systems were examined to evaluate the suitability of the experiment data across different ethanol and sugar concentrations and determine their isotherm parameters. Multi-component packed bed adsorption experiments were then performed. The results show that ethanol capacity was decreased only slightly from that obtained in single component adsorption studies. There is significant evidence to indicate that sugar displacement from adsorption sites occurs because adsorption of ethanol is preferred. So the capacity of sugars will be greatly reduced if there are appreciable ethanol concentrations.

  3. Heat Transfer Analysis of a Flat-plate Solar Collector Running a Solid Adsorption Refrigerator

    S. Thiao


    Full Text Available Adsorption solar cooling appears to have prospect in the tropical countries. The present study is a theoretical investigation of the performance of a solar adsorption refrigerator using a flat-plate solar collector. The values of glass cover and absorber plate temperatures obtained from numerical solutions of heat balance equations are used to predict the solar coefficient of performance of the solar refrigerator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. The effects of optical parameters of the glass cover such as absorption and transmission coefficients on glass cover and absorber plate temperatures and consequently on the coefficient of performance are analyzed. As a result, it is found that the absorber plate temperature is less to the absorption coefficient than the cover glass temperature. Also the thermal radiation exchange has more effect on the cover glass temperature. The higher values of COP are obtained between 11 and 13 h during the morning when the temperatures of the absorber plate and the ambient temperatures increase. Moreover the COP increases with the coefficient of transmission of the glass cover but the main parameter acting on the variations of the COP remains the temperature of the evaporator.

  4. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples.

    Yiantzi, Evangelia; Kalogerakis, Nicolas; Psillakis, Elefteria


    For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low K(H) present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1-400 ng g(-1) and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g(-1) and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target

  5. Insight into the extraction mechanism of polymeric ionic liquid sorbent coatings in solid-phase microextraction.

    Ho, Tien D; Cole, William T S; Augusto, Fabio; Anderson, Jared L


    An investigation into the mechanism of extraction for polymeric ionic liquid (PIL)-based solid phase microextraction sorbent coatings is described. Four PIL-based coatings, namely, a poly(1-4-vinylbenzyl)-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl] imide (poly([VBHDIM][NTf2])) PIL produced through 2,2'-azo-bis(isobutyronitrile) (AIBN) initiated free-radical polymerization, a UV-initiated poly(1-vinyl-3-hexylimidazolium) chloride (poly([VHIM][Cl])) PIL, and two crosslinked PILs containing the same IL monomers copolymerized with dicationic IL crosslinkers, were investigated. Calibration curves of 1-octanol were plotted in the presence of naphthalene, a model interfering compound, to observe changes in the linear range, sensitivity, and amount of analytes extracted. Results were compared with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating and a polyacrylate (PA) coating which are known to extract analytes primarily through adsorption and partitioning mechanisms, respectively. All PIL-based coatings extracted analytes via a non-competitive partitioning mechanism regardless of the extent of crosslinking.

  6. Sol-gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides.

    Wang, Yu-Long; Gao, Yuan-Li; Wang, Pei-Pei; Shang, Huan; Pan, Si-Yi; Li, Xiu-Juan


    A sol-gel technique was applied for the preparation of water-compatible molecularly imprinted polymer (MIP) for solid phase microextraction (SPME) using diazinon as template and polyethylene glycol as functional monomer. The MIP-coated fiber demonstrated much better selectivity to diazinon and its structural analogs in aqueous cucumber sample than in distilled water, indicating its potential in real samples. Thanks to its specific adsorption as well as rough and porous surface, the coating revealed rather larger extraction capability than the non-imprinted polymer and commercial fibers. In addition, the fiber exhibited excellent thermal (about 350°C) and chemical stability (organic and inorganic). After optimization of several parameters affecting extraction efficiency, a method based on MIP-SPME combined with gas chromatography was developed for the determination of organophosphorus pesticides (OPPs) in vegetable samples. The limits of detection for the tested OPPs were in the range of 0.017-0.77 μg kg(-1). The proposed method was applied to evaluate OPPs in spiked cucumber, green pepper, Chinese cabbage, eggplant and lettuce samples, and recoveries of 81.2-113.5% were obtained by the standard addition method with three spiking levels in each kind of vegetable.

  7. Polysiloxane/PVA-glutaraldehyde hybrid composite as solid phase for immunodetections by ELISA

    A.E. Lima Barros


    Full Text Available We developed an efficient method to prepare a hybrid inorganic-organic composite based on polyvinyl alcohol (PVA and polysiloxane using the sol-gel disc technique. Antigen obtained from Yersinia pestis was covalently immobilized onto these discs with glutaraldehyde and used as solid phase in ELISA for antibody detection in serum of rabbits experimentally immunized with plague. Using 1.25 µg antigen per disc, a peroxidase conjugate dilution of 1:4,000 and a serum dilution of 1:200 were adequate for the establishment of the procedure. These values are similar to those used for PVA-glutaraldehyde discs, plasticized filter paper discs and the polyaniline-Dacron composite discs. This procedure is comparable to that which utilizes the adsorption of the antigen to conventional PVC plates, with the amount of antigen being one fourth that employed in conventional PVC plates (5 µg/well. In addition to the performance of the polysiloxane/PVA-glutaraldehyde disc as a matrix for immunodetection, its easy synthesis and low cost are additional advantages for commercial application.

  8. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.

    Zhao, Yongsheng; Liu, Chunxia; Feng, Miao; Chen, Zhen; Li, Shuqiong; Tian, Gan; Wang, Li; Huang, Jingbo; Li, Shoujian


    A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min(-1) from the first order rate equation. Thermodynamic parameters (DeltaH(0)=-46.2 kJ/mol; DeltaS(0)=-98.0 J/mol K; DeltaG(0)=-17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na(+), Co(2+), Sr(2+), Cs(+) and La(3+).

  9. Electrodeposited apatite coating for solid-phase microextraction and sensitive indirect voltammetric determination of fluoride ions.

    Mao, Yuehong; Chen, Yufei; Chu, Lin; Zhang, Xiaoli


    Electrodeposition was used to prepare a new solid phase microextraction (SPME) coatings. Two apatite SPME coatings, dicalcium phosphate dihydrate (DCPD or brushite) and hydroxyapatite (HAP) were validly and homogeneously one-step electrodeposited on glassy carbon electrode (GCE) under different conditions. The coatings were characterized by XRD, FTIR, SEM, CV and EIS. The apatite SPME coatings showed excellent and selective adsorbability to fluoride ions. A novel indirect voltammetric strategy for sensitive detection of fluoride was proposed using K3Fe(CN)6 as indicating probe. The detection principle of fluoride ions was based on the increment of steric hindrance after fluoride adsorption, which resulting in the decrease of the amperometric signal to Fe(CN)6(3-). The liner ranges were 0.5-20.0 μmol/L for n-DCPD/GCE with the limit of detection of 0.14 μmol/L and 0.1-50.0 μmol/L for n-HAP/GCE with the limit of detection of 0.069 μmol/L, respectively. The developed method was applied to the analysis of water samples (lake, spring and tap water) and the recovery values were found to be in the range of 90-106%.

  10. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction.

    Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa


    A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. [Preparation and application of solid phase extraction packing of zirconia microsphere coated with sulfonated crosslinked polystyrene].

    Shen, Shuchang; Liu, Yuhui; Xiao, Xiaoxing


    Zirconia microsphere was prepared by polymerization-induced colloid aggregation (PICA) method and carbon-carbon double bond was grafted onto its surface by titanic acid ester coupling reagent. Poly(styrene-divinylbenzene) was synthesized by free radical polymerization by using styrene, divinylbenzene and carbon-carbon double bond on the microsphere surface in solution system, so the polymer was coated on the microsphere surface. After the benzene ring of the polymer was sulfonated, the cation exchange packing for solid phase extraction (SPE) was obtained. The material was characterized by Fourier transform infrared spectroscopy, scanning electron microscope and X-ray energy dispersive spectroscopy. Three herbicides of mesotrione, atrazine and acetochlor in water were determined by the SPE cartridge coupled with high performance liquid chromatography (HPLC). In the range of 0.5 - 3.0 mg/L, the relationships between the peak areas and mass concentrations of mesotrione, atrazine and acetochlor were linear with the correlation coefficients of 0.9936, 0.9925, 0.9919, respectively. The limits of detection were 5.41, 6.72 and 13.4 microg/L for mesotrione, atrazine and acetochlor, respectively. The results showed that the zirconium dioxide microspheres coated with polymer have diameters in the range of about 6 to 8 microm, the SPE cartridges of which have high adsorption rate for the targets.

  12. Facile fabrication of reduced graphene oxide-encapsulated silica: a sorbent for solid-phase extraction.

    Luo, Yan-Bo; Zhu, Gang-Tian; Li, Xiao-Shui; Yuan, Bi-Feng; Feng, Yu-Qi


    In this study, a facile hydrothermal reduction strategy was developed for the preparation of reduced graphene oxide-encapsulated silica (SiO2@rGO). Compared with other conventional methods for the synthesis of SiO2@rGO, the proposed strategy endowed the obtained SiO2@rGO with larger amount of immobilized rGO. The prepared functionalized silica shows remarkable adsorption capacity toward chlorophenols (CPs) and peptides. When it was used as solid-phase extraction (SPE) sorbent, a superior recovery could be obtained compared to commercial sorbents, such as C18 silica, graphitized carbon black and carbon nanotubes. Based on these, the prepared material was used as SPE sorbent for the enrichment of CPs, and a method for the analysis of CPs in water samples was established by coupling SPE with high performance liquid chromatography-ultra violet detection (SPE-HPLC/UV). In addition, the obtained SiO2@rGO was further successfully extended to the enrichment of peptides in bovine serum albumin (BSA) digests.

  13. Enhanced Retention of Chelating Reagents in Octadecylsilyl Silica Phase by Interaction with Residual Silanol Groups in Solid Phase Extraction of Divalent Metal Ions.

    Ohmuro, Satoshi; Fujii, Kan; Yasui, Takashi; Takada, Kazutake; Yuchi, Akio; Kokusen, Hisao


    Solid-phase extraction (SPE) of divalent metal ions with a lipophilic and potentially divalent hexadentate chelating reagent (H2L), with which octadecylsilyl silica (ODS), was impregnated with was studied to gain more insight into and develop the potential of this methodology. This is the first time to demonstrate that this reagent as well as other common nitrogen-containing reagents were retained both by adsorption due to hydrogen bonding between nitrogen atoms of the reagent and residual silanol groups in the ODS phase and by simple distribution into the hydrophobic space. An appreciably large amount of this reagent could be retained by the adsorption mechanism even with a relatively thin loading solution. The divalent metal ions of Mn(2+), Co(2+) and Zn(2+) were extracted as 1:1 neutral complexes ([ML]), while Ni(2+) and Cu(2+) as ion-pairs of 1:1 cationic complex ([MHL](+)) with anion in SPE with H2L. The extractability and selectivity were substantially the same as that in liquid-liquid extraction.

  14. Structural transformations in Pb/Si(111) phases induced by C₆₀ adsorption.

    Matetskiy, A V; Bondarenko, L V; Gruznev, D V; Zotov, A V; Saranin, A A; Tringides, M C


    Structural transformations at the Pb/Si(111) surface occurring upon C₆₀ adsorption onto Pb/Si(111)1 × 1 phase at room temperature and Pb/Si(111)[Formula: see text] at low temperatures between 30 and 210 K, have been studied using scanning tunneling microscopy and low-energy electron diffraction observations. Typically, C₆₀ fullerenes agglomerate into random molecular islands nucleated at the surface defects. C₆₀ island formation is accompanied by expelling Pb atoms to the surrounding surface area where more dense Pb/Si(111) phases form. Productivity of C₆₀-induced expelling of Pb atoms is controlled by surface defects and is suppressed dramatically when regular ('crystalline') C₆₀ islands self-assemble at the defect-free Pb/Si(111) surface. When Pb atoms are ejected by the random C₆₀ islands, extended structural transformations involving reordering of numerous Pb atoms are fully completed at the surface within the shortest possible time (a few dozen seconds) to reapproach and image the surface after C₆₀ deposition. Estimations show that the observed transformations cannot be controlled by random walk diffusion of Pb adatoms, which implies a highly correlated motion of the Pb atom displacements within the layer.

  15. Modeling the solid-liquid phase transition in saturated triglycerides

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick


    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  16. Preparation of Pt/C Catalyst with Solid Phase Reaction Method


    The Pt/C catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time. Its performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of Pt/C catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.

  17. An Integrated Theory of Adsorption and Partition Mechanism and Eash Contribution to Solute Retention in Reversed Phase Liquid Chromatography

    耿信笃; 弗莱德依瑞格涅尔


    With the combination of the the stoichiometric displacement model for retention (SDM-R) in reversed phase liquid chromatography (RPLC) and the stoichiometric displacement model for adsorption (SDM-A) in physical chemistry,the total number of moles of the re-solvated methanol of stationary phase,and that of solute side in the mobile phase,q,corresponding the one mole of the desorbing solute,were separately determined and referred as the characterization parameters of the contributions of the adsorption mechanism and partition mechanism to the solute retention,respectively.A chromatographic system of insulin,using mobile phase consisting of the pseudo-homologue of alcohols(methanol,ethanol and 2-propanol)-water and trifluoroacetic acid was employed.The maximum number of the methanol layers on the stationary phase surface was found to be 10.6,only 3 of which being valid in usual RPLC,traditionally referred as a volume process in partition mechanism.However,it still follows the SDM-R.Both of q and nr of insulin were found not to be zero,indicating that the retention mechanism of insulin is a mixed mode of partition mechanism and adsorption mechanism.When methanol is used as the organic modifier,the ratio of q/nr was 1.13,indicating the contribution to insulin retention due to partition mechanism being a bit greater than that due to adsorption mechanism.A linear relationship between q,or nr and the carbon number of the pseudo-homologue in the mobile phase was also found.As a methodology for investigating the retention mechanism retention and behavior of biopolymers.a homologue of organic solvents as the organic modifier in mobile phase has also been explored.

  18. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    Manzoor, S; Buffon, R; Rossi, A V


    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively.

  19. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    Bente Mathiessen


    Full Text Available The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic sulfonates (69% and bromides (42%; the total radiosynthesis time was 35–45 min. The multivariate analysis showed that the radiochemical yields and purities were controlled by the resin load, reaction temperature, and column packing effects. The resins could be reused several times with the same or different substrates. The fully automated on-column radiofluorination methodology was applied to the radiosynthesis of the important PET radiotracers [18F]FLT and [18F]FDG. The latter was produced with 40% yield on a 120 GBq scale and passed GMP-regulated quality control required for commercial production of [18F]FDG. The combination of compact form factor, simplicity of [18F]F− recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.

  20. Binding of properdin to solid-phase immune complexes

    Junker, A; Baatrup, G; Svehag, S E


    The capacity of serum to support deposition of C3, properdin and factor B was studied by enzyme-linked immunosorbent assay using solid-phase immune complexes (IC) for activation of complement. Deposition of C3 and properdin occurred in fairly dilute normal human serum (NHS), but factor B uptake...... was hardly detectable. Alternative pathway-mediated deposition of C3 with slow kinetics was demonstrated in C2-deficient serum and in NHS depleted of C1q, factor D and properdin (C1qDP-depleted serum) after reconstitution with factor D and properdin. Efficient uptake of properdin required a functional...... classical pathway, in the presence of which C3 and properdin were rapidly deposited onto the IC. Judging from findings in C3-deficient serum, factor I-deficient serum, and C1qDPB-depleted serum, the uptake of properdin was strictly C3-dependent, and did not require the presence of factors B and D. Thus, C3b...

  1. Microwave heating in solid-phase peptide synthesis.

    Pedersen, Søren L; Tofteng, A Pernille; Malik, Leila; Jensen, Knud J


    The highly refined organic chemistry in solid-phase synthesis has made it the method of choice not only to assemble peptides but also small proteins - mainly on a laboratory scale but increasingly also on an industrial scale. While conductive heating occasionally has been applied to peptide synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(α)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially relevant for sequences which might form β-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating as such is not a panacea for all difficulties in peptide syntheses and the conditions may need to be adjusted for the incorporation of Cys, His and Asp in peptides, and for the synthesis of, for example, phosphopeptides, glycopeptides, and N-methylated peptides. Here we provide a comprehensive overview of the advances in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of β-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references).

  2. Ionic liquids in solid-phase microextraction: a review.

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L


    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  3. Solid-phase microextraction and the human fecal VOC metabolome.

    Emma Dixon

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  4. Phase I studies of porfiromycin (NSC--56410) in solid tumors.

    Grage, T B; Weiss, A J; Wilson, W; Reynolds, V


    Porfiromycin was given to a group of patients with a variety of solid tumors. Of 114 patients admitted to the study, 103 yielded evaluable data. The following dosage schedules were used to determine the toxicity of porfiromycin when given in multiple doses by intravenous injection: 0.2 mg/kg x 5 days, 0.3 mg/kg x 5 days, 0.35 mg/kg x 5 days, 0.4 mg/kg x 5 days, 0.24 mg/kg x 10 days and 0.6 mg/kg weekly. Toxic effects noted were mainly leukopenia, thrombocytopenia, and, when injected paravenously, local tissue necrosis. Biological effects were noted at all dosage levels and were more severe at the higher dosages. The data suggest that profiromycin administered intravenously at a dose of 0.35 mg/kg daily for 5 days results in moderate hermatological toxicity and clinical evaluation in a Phase II study at this dosage level is indicated.

  5. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Veronika Mäde


    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  6. Headspace solid-phase microextraction for wine volatile analysis.

    Azzi-Achkouty, Samar; Estephan, Nathalie; Ouaini, Naïm; Rutledge, Douglas N


    The most commonly used technique to prepare samples for the analysis of wine volatile is the headspace solid-phase microextraction (HS-SPME). This method has gained popularity in last few years, as it is a unique solventless preparation technique. In this paper, a summary of recently published studies using HS-SPME for the analysis of wine aromas, with special emphasis on the method developed, has been compiled. Several papers are discussed in detail, mainly with respect to the SPME conditions used. A brief summary of the reviews related to HS-SPME analysis is given and discussed. Several parameters affecting the HS-SPME, such as the salt concentration and the agitation conditions, are used in the same way as used in several papers. The HS-SPME extraction proved to be sufficiently sensitive to satisfy legislative requirements related to low detection and quantification limits as well as method accuracy and precision requirements. However, in order to achieve the best performance and precision, the protocol needs to be optimized for each case. The effect of different parameters must be well characterized to ensure correct extraction and desorption to ensure the transfer of extracted compounds into the analytical system. The operating parameters, such as time, temperature, and agitation, must then be kept constant for all the samples.

  7. Highly efficient solid-phase derivatization of sugar phosphates with titanium-immobilized hydrophilic polydopamine-coated silica.

    Qin, Qian; Wang, Bohong; Chang, Mengmeng; Zhou, Zhihui; Shi, Xianzhe; Xu, Guowang


    Sugar phosphates are a type of key metabolic intermediates of glycolysis, gluconeogenesis and pentose phosphate pathway, which can regulate tumor energetic metabolism. Due to their low endogenous concentrations, poor chromatographic retention properties as well as ionization suppression from complex matrix interference, the determination of sugar phosphates in biological samples is very difficult. In this study, titanium-immobilized hydrophilic polydopamine-coated silica microspheres (SiO2@PD-Ti(4+)) were synthesized for highly efficient solid-phase derivatization of sugar phosphates. Sugar phosphates were selectively captured onto the surface of the SiO2@PD-Ti(4+) microspheres by chelating with phosphate groups, and then reacted with 3-amino-9-ethylcarbazole via reductive amination based on solid-phase derivatization, which could not only increase the retention and resolution of sugar phosphates on reversed-phase liquid chromatography (RPLC), but also improve the mass spectrometry (MS) sensitivity of sugar phosphates. The adsorption capacity of SiO2@PD-Ti(4+) microspheres towards glucose-6-phosphate is 0.76mg/g, which is much larger than that of commercial TiO2. Compared with the traditional liquid-phase derivatization, the solid-phase derivatization based on the SiO2@PD-Ti(4+) microspheres displayed several superiorities including shorter derivatization time (within 10min), higher product purity and much lower limit of detection (up to 38pmol/L). In addition, good linearity (R(2)≥0.99), excellent recovery (80.6-118%) and high precision (RSDs with 2.8-7.8%) were obtained when the developed method was used for quantitative analysis of sugar phosphates. Finally, the SiO2@PD-Ti(4+) microspheres combined with RPLC-MS were successfully applied to the determination of sugar phosphates from hepatocarcinoma cell lines and could even detect the trace sugar phosphates in thousands of cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste.

    Senthilkumaar, S; Kalaamani, P; Porkodi, K; Varadarajan, P R; Subburaam, C V


    The adsorption of Reactive red dye (RR) onto Coconut tree flower carbon (CFC) and Jute fibre carbon (JFC) from aqueous solution was investigated. Adsorption studies were carried out at different initial dye concentrations, initial solution pH and adsorbent doses. The kinetic studies were also conducted; the adsorption of Reactive red onto CFC and JFC followed pseudosecond-order rate equation. The effective diffusion coefficient was evaluated to establish the film diffusion mechanism. Quantitative removal of Reactive red dye was achieved at strongly acidic conditions for both the carbons studied. The adsorption isotherm data were fitted well to Langmuir isotherm and the adsorption capacity were found to be 181.9 and 200 mg/g for CFC and JFC, respectively. The overall rate of dye adsorption appeared to be controlled by chemisorption, in this case in accordance with poor desorption studies.

  9. Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT by Liquid-Phase Molecular Adsorption of Hexaiodobenzene

    Hirofumi Kanoh


    Full Text Available Electron density of single wall carbon nanotubes (SWCNT is effectively modified by hexaiodobenzene (HIB molecules using liquid-phase adsorption. UV-Vis-NIR absorption spectra of the HIB-adsorbed SWCNT, especially in the NIR region, showed a disappearance of S11 transitions between the V1 valance band and the C1 conduction band of van Hove singularities which can be attributed to the effective charge transfer between HIB and the SWCNT. The adsorption of HIB also caused significant peak-shifts (lower frequency shift around 170 cm−1 and higher shift around 186 cm‑1 and an intensity change (around 100–150 cm−1 and 270–290 cm−1 in the radial breathing mode of Raman spectra. The charge transfer from SWCNT to HIB was further confirmed by the change in the C1s peak of X-ray photoelectron spectrum, revealing the oxidation of carbon in SWCNT upon HIB adsorption.

  10. Novel molecularly imprinted polymers based on multiwalled carbon nanotubes with bifunctional monomers for solid-phase extraction of rhein from the root of kiwi fruit.

    Chen, Xing; Zhang, Zhaohui; Yang, Xiao; Liu, Yunan; Li, Jiaxing; Peng, Mijun; Yao, Shouzhuo


    A novel molecularly imprinted polymers based on multiwalled carbon nanotubes synthesized by precipitate polymerization was applied as a selective sorbent for separation and determination of rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) from the root of kiwi fruit samples coupled with high performance liquid chromatography (HPLC). The molecularly imprinted polymers were prepared with methacrylic acid and 4-vinylpyridine as bifunctional monomers. The chemical structure of the molecularly imprinted polymers was characterized by Fourier transform infrared spectrometer. The equilibrium rebinding experiment and competitive adsorption experiment showed that these imprinted polymers exhibited good adsorption ability toward rhein. The Langmuir adsorption equilibrium constant, K(m) , and theoretical maximum adsorption capacity, Q(m) , were estimated to be 0.43 and 6.77 mg g(-1) , respectively. Compared with molecularly imprinted polymers prepared with methacrylic acid or 4-vinylpyridine solely, the molecularly imprinted polymers synthesized with bifunctional monomers showed enhanced molecular imprinting effect and higher adsorption capacity for the template rhein. The performances of the molecularly imprinted polymers utilized as solid phase extraction sorbent were investigated in detail. The molecularly imprinted polymers prepared by the method proposed in this work could successfully apply to extraction and determination of rhein from the root of kiwi fruit samples coupled with HPLC.

  11. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Zhengwen Xu; Yunlong Zhao; Jing Shi; Jiangang Lu; Ling Cheng; Mindong Chen


    As new emerging pollutants, phthalic acid monoesters (PAMs) pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP) onto two macroporous base anion-exchange resins (D-201 and D-301) was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the ad...

  12. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.


    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  13. An acid-stable tert-butyldiarylsilyl (TBDAS) linker for solid-phase organic synthesis.

    Diblasi, Christine M; Macks, Daniel E; Tan, Derek S


    [reaction: see text] A new, robust tert-butyldiarylsilyl (TBDAS) linker has been developed for solid-phase organic synthesis. This linker is stable to both protic and Lewis acidic reaction conditions, overcoming a significant limitation of previously reported silyl linkers. Solid-phase acetal deprotection, olefination, asymmetric allylation, and silyl protecting group deblocking reactions have been demonstrated with TBDAS-linked substrates.

  14. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...


    A. R. Koohpaei ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani


    Full Text Available Solid phase extraction is one of the major applications of molecularly imprinted polymers fields for clean-up of environmental and biological samples namely molecularly imprinted solid-phase extraction. In this study, solid phase extraction using the imprinted polymer has been optimized with the experimental design approach for a triazine herbicide, named atrazine with regard to the critical factors which influence the molecular imprinted solid phase extraction efficiency such as sample pH, concentration, flow-rate, volume, elution solvent, washing solvent and sorbent mass. Optimization methods that involve changing one factor at a time can be laborious. A novel approach for the optimization of imprinted solid-phase extraction using chemometrics is described. The factors were evaluated statistically and also validated with spiked water samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Also, in order to the evaluate efficiency of the optimized molecularly imprinted solid-phase extraction protocols, enrichment capacity, reusability and cross-reactivity of cartridges have been also evaluated. Finally, selective molecularly imprinted solid-phase extraction of atrazine was successfully demonstrated with a recovery above 90% for spiked drinking water samples. It was concluded that the chemometrics is frequently employed for analytical method optimization and based on the obtained results, it is believed that the central composite design could prove beneficial for aiding the molecularly imprinted polymer and molecularly imprinted solid-phase extraction development.

  16. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.;


    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formation...

  17. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    Long, Gary J.; Leighly, H. P., Jr.


    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  18. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    Baatrup, G; Jonsson, H; Sjöholm, A


    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were ...

  19. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    Schroeder, K. G.; Petroff, I. K.


    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  20. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.

    Gritti, Fabrice; Guiochon, Georges


    The overloaded band profiles of five acido-basic compounds were measured, using weakly buffered mobile phases. Low buffer concentrations were selected to provide a better understanding of the band profiles recorded in LC/MS analyses, which are often carried out at low buffer concentrations. In this work, 10 microL samples of a 50 mM probe solution were injected into C(18)-bonded columns using a series of five buffered mobile phases at (SW)pH between 2 and 12. The retention times and the shapes of the bands were analyzed based on thermodynamic arguments. A new adsorption model that takes into account the simultaneous adsorption of the acidic and the basic species onto the endcapped adsorbent, predicts accurately the complex experimental profiles recorded. The adsorption mechanism of acido-basic compounds onto RPLC phases seems to be consistent with the following microscopic model. No matter whether the acid or the base is the neutral or the basic species, the neutral species adsorbs onto a large number of weak adsorption sites (their saturation capacity is several tens g/L and their equilibrium constant of the order of 0.1 L/g). In contrast, the ionic species adsorbs strongly onto fewer active sites (their saturation capacity is about 1g/L and their equilibrium constant of the order of a few L/g). From a microscopic point of view and in agreement with the adsorption isotherm of the compound measured by frontal analysis (FA) and with the results of Monte-Carlo calculations performed by Schure et al., the first type of adsorption sites are most likely located in between C(18)-bonded chains and the second type of adsorption sites are located deeper in contact with the silica surface. The injected concentration (50 mM) was too low to probe the weakest adsorption sites (saturation capacity of a few hundreds g/L with an equilibrium constant of one hundredth of L/g) that are located at the very interface between the C(18)-bonded layer and the bulk phase.

  1. Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste.

    Wang, Zhihong; Wang, Chengzhang; Yuan, Jiaojiao; Zhang, Changwei


    In this study, the adsorption properties of nine resins including polyamide resin (30-60), polyamide resin (60-100) AB-8, S-8, D-101, NKA-9, NKA-II, XDA-1 and XDA-4 for enrichment phenolics of the olive waste were investigated. XDA-1 and NKA-II were chosen for further study due to their outstanding adsorption and desorption capacity. XDA-1 and NKA-II had similar adsorption and desorption behaviors for phenolics of olive waste. The adsorption mechanism could be better explained by pseudo second-order kinetics model and Freundlich isotherm model, and the adsorption processes were spontaneously and exothermic. The experiment of gradient elution were carried out through treated XDA-1 resins column, the result indicated the total phenolics were mainly obtained from the 40% and 60% ethanol fraction. The order of antioxidant capacity by DPPH  , ABTS(+) radical and FRAP assay was similar with the content of phenolics from fraction elution. The compositions of phenolics from different elution fractions were determined by reversed phase-HPLC-DAD method. Gallic acid, hydroxytyrosol, tyrosol and ferulic acid were the major constituent in the fraction elute, and the content of hydroxytyrosol reached to the 41.69mg/g. The above results revealed the synergistic effects of the different phenolics contribute to the antioxidant capacity.

  2. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation

    Davis, J.A.; Fuller, C.C.; Cook, A.D.


    The rate of Cd2+ sorption by calcite was determined as a function of pH and Mg2+ in aqueous solutions saturated with respect to calcite but undersaturated with respect to CdCO3. The sorption is characterized by two reaction steps, with the first reaching completion within 24 hours. The second step proceeded at a slow and nearly constant rate for at least 7 days. The rate of calcite recrystallization was also studied, using a Ca2+ isotopic exchange technique. Both the recrystallization rate of calcite and the rate of slow Cd2+ sorption decrease with increasing pH or with increasing Mg2+. The recrystallization rate could be predicted from the number of moles of Ca present in the hydrated surface layer. A model is presented which is consistent with the rates of Cd2+ sorption and Ca2+ isotopic exchange. In the model, the first step in Cd2+ sorption involves a fast adsorption reaction that is followed by diffusion of Cd2+ into a surface layer of hydrated CaCO3 that overlies crystalline calcite. Desorption of Cd2+ from the hydrated layer is slow. The second step is solid solution formation in new crystalline material, which grows from the disordered mixture of Cd and Ca carbonate in the hydrated surface layer. Calculated distribution coefficients for solid solutions formed at the surface are slightly greater than the ratio of equilibrium constants for dissolution of calcite and CdCO3, which is the value that would be expected for an ideal solid solution in equilibrium with the aqueous solution. ?? 1987.

  3. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu; Susmita Paul


    Solid-phase organic synthesis (SPOS) and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i) al...

  4. Fluid adsorption in ordered mesoporous solids determined by in situ small-angle X-ray scattering.

    Findenegg, Gerhard H; Jähnert, Susanne; Müter, Dirk; Prass, Johannes; Paris, Oskar


    The adsorption of two organic fluids (n-pentane and perfluoropentane) in a periodic mesoporous silica material (SBA-15) is investigated by in situ small-angle X-ray scattering (SAXS) using synchrotron radiation. Structural changes are monitored as the ordered and disordered pores in the silica matrix are gradually filled with the fluids. The experiments yield integrated peak intensities from up to ten Bragg reflections from the 2D hexagonal pore lattice, and additionally diffuse scattering contributions arising from disordered (mostly intrawall) porosity. The analysis of the scattering data is based on a separation of these two contributions. Bragg scattering is described by adopting a form factor model for ordered pores of cylindrical symmetry which accounts for the filling of the microporous corona, the formation of a fluid film at the pore walls, and condensation of the fluid in the core. The filling fraction of the disordered intrawall pores is extracted from the diffuse scattering intensity and its dependence on the fluid pressure is analyzed on the basis of a three-phase model. The data analysis introduced here provides an important generalisation of a formalism presented recently (J. Phys. Chem. C, 2009, 13, 15201), which was applicable to contrast-matching fluids only. In this way, the adsorption behaviour of fluids into ordered and disordered pores in periodic mesoporous materials can be analyzed quantitatively irrespective of the fluid density.

  5. Local Gas Phase Flow Characteristics of a Gas—Liquid—Solid Three—Phase Reversed Flow Jet Loop Reactor

    WENJianping; ChenYunlin; 等


    The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.

  6. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi


    Hydrophobic drug substances can be formulated as a solid dispersion or solution using macromolecular matrices with high glass transition temperatures to attain satisfactory dissolution. However, very few marketed products have previously relied on solid dispersion technology due to physical and chemical instability problems, and processing difficulties. In the present study, a modified release product of a therapeutic drug for hypertension, Barnidipine hydrochloride, was developed. The drug product consisted of solid dispersion based on a matrix of carboxymethylethylcellulose (CMEC), which was produced using the spray-coating method. An enteric coat layer was sprayed on the surface of the solid dispersion to control drug release. Interestingly, the release rate accelerated as the drug product aged, while there were no indications of deceleration of the release rate which was due to crystallization of the drug substance. To prevent changes in the dissolution kinetics during storage periods, a variety of processing conditions were tried. It was found that not only use of non-aqueous solvents but also a reduction in coating temperatures consistently resulted in stable solid dispersions. The molecular bases of dissolution of the drug substance from those matrices were investigated. The molecular weight of CMEC was found to be a dominant factor that determined dissolution kinetics, which followed zero-order release, suggesting an involvement of an osmotic pumping mechanism. While dissolution was faster using a higher molecular weight CMEC, the molecular weight of CMEC in the drug product slowly increased with aging (solid phase reaction) depending on the processing conditions, causing the time-induced elevation of dissolution. While no crystalline components were found in the solid dispersion, the amorphous structure maintained a degree of non-equilibrium by nature. Plasticization by water in the coating solution relaxed the amorphous system and facilitated phase

  7. Novel materials and methods for solid-phase extraction and liquid chromatography

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)


    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  8. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    WANG Hai-Yan; CHEN Yan; LIU Yu-Wen; LI Fei; LIU Jian-Hua; PENG Gui-Rong; WANG Wen-Kui


    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze.

  9. Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes

    Li, Kecheng; Bo, Zheng; Yan, Jianhua; Cen, Kefa


    Graphene film has been demonstrated as promising active materials for electric double layer capacitors (EDLCs), mainly due to its excellent mechanical flexibility and freestanding morphology. In this work, the distribution and variation pattern of electrolyte ions in graphene-film based EDLC electrodes are investigated with a 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. For neutral graphene films soaked with different amounts of electrolytes (1 M TEABF4/ACN), weakly and strongly adsorbed anions are identified based on the resonances at different 11B chemical shifts. Unlike other porous carbonaceous materials, the strongly adsorbed anions are found as the major electrolyte anions components in graphene films. Further measurements on the ion population upon charging are carried out with applying different charging voltages on the graphene films. Results indicate that the charging process of graphene-film based EDLCs can be divided into two distinct charge storage stages (i.e., ejection of co-ions and adsorption of counter-ions) for different voltages. The as-obtained results will be useful for the design and fabrication of high performance graphene-film based EDLCs.

  10. The importance of screening solid-state phases of a racemic modification of a chiral drug: thermodynamic and structural characterization of solid-state phases of etiracetam.

    Herman, Christelle; Vermylen, Valérie; Norberg, Bernadette; Wouters, Johan; Leyssens, Tom


    In this contribution different solid-state forms of the racemic compound (RS)-2-(2-oxo-pyrrolidin-1yl)-butyramide are studied from a structural and thermal point of view. Three different solid-state phases were identified, including two polymorphs and one hydrate phase. Comparison is made with the structure of the (S)-enantiomer, for which only one solid-state phase is known. The basic structural motif found in both polymorphs of the racemic compound is similar, but the basic motif observed for the hydrate differs. These synthons could in principle be used in future polymorph prediction studies to screen for possible alternative forms of the enantiopure compound. Based on the structure of the hydrate, further efforts should therefore be made in order to identify a hydrate structure of the enantiopure compound. Studying the different phases of a racemic compound can therefore help to guide polymorphic screening of an enantiopure compound.

  11. Solid and liquid phase equilibria and solid-hydrate formation in binary mixtures of water with amines

    车冠全; 彭文烈; 黄良恩; 古喜兰; 车飙


    Solid and liquid phase diagrams have been constructed for {water+triethylamine,or+N,N-dimethylformamide(DMF) or+N,N-dimethlacetamide (DMA)} Solid-hydrates form with the empirical formulae N(C2H5)3 3H2O,DMF 3H2O,DMF 2H2O,DMA 3H2O and (DMA)2 3H2O.All are congruently melting except the first which melts incongruently.The solid-hydrate formation is attributed to hydrogen bond.The results are compared with the references

  12. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite.

    Karaca, S; Gürses, A; Ejder, M; Açikyildiz, M


    The adsorption of phosphate from aqueous solution on dolomite was investigated at 20 and 40 degrees C in terms of pseudo-second-order mechanism for chemical adsorption as well as an intraparticle diffusion mechanism process. Adsorption was changed with increased contact time, initial phosphate concentration, temperature, solution pH. A pseudo-second-order model and intraparticle diffusion model have been developed to predict the rate constants of adsorption and equilibrium capacities. The activation energy of adsorption can be evaluated using the pseudo-second-order rate constants. The adsorption of phosphate onto dolomite are an exothermically activated process. A relatively low activation energy and a model highly fitting to intraparticle diffusion suggest that the adsorption of phosphate by dolomite may involve not only physical but also chemisorption. This was likely due to its combined control of chemisorption and intraparticle diffusion. However, for phosphate/dolomite system chemical reaction is important and significant in the rate-controlling step, and for the adsorption of phosphate onto dolomite the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.

  13. Solid phase epitaxial regrowth of (100)GaAs

    Almonte, Marlene Isabel [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering


    This thesis showed that low temperature (250°C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250°C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700°C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250°C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.

  14. Application of solid phase microextraction on dental composite resin analysis.

    Wang, Ven-Shing; Chang, Ta-Yuan; Lai, Chien-Chen; Chen, San-Yue; Huang, Long-Chen; Chao, Keh-Ping


    A direct immersion solid phase microextraction (DI-SPME) method was developed for the analysis of dentin monomers in saliva. Dentine monomers, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) and 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]-propane (Bis-GMA), have a high molecular weight and a low vapor pressure. The polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber with a medium polarity was employed for DI-SPME, and 215 nm of detection wavelength was found to be optimum in the chromatogram of HPLC measurement. The calibration range for DI-SPME was 0.30-300 μg/mL with correlation coefficients (r) greater than 0.998 for each analyte. The DI-SPME method achieved good accuracy (recovery 96.1-101.2%) and precision (2.30-8.15% CV) for both intra- and inter-day assays of quality control samples for three target compounds. Method validation was performed on standards dissolved in blank saliva, and there was no significant difference (p>0.2) between the DI-SPME method and the liquid injection method. However, the detection limit of DI-SPME was as low as 0.03, 0.27 and 0.06 μg/mL for TEGDMA, UDMA and Bis-GMA, respectively. Real sample analyses were performed on commercial dentin products after curing for the leaching measurement. In summary, DI-SPME is a more sensitive method that requires less sample pretreatment procedures to measure the resin materials leached in saliva.

  15. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)


    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  16. Preparation and evaluation of a molecularly imprinted sol-gel material as the solid-phase extraction adsorbents for the specific recognition of cloxacilloic acid in cloxacillin.

    Du, Kangli; Luo, Zhimin; Guo, Pengqi; Tang, Weili; Wu, Ningli; Zheng, Penglei; Du, Wei; Zeng, Aiguo; Jing, Wanghui; Chang, Chun; Fu, Qiang


    Highly selective molecularly imprinted polymers on the surface of silica gels were prepared by a sol-gel process and used as solid-phase extraction adsorbents for the specific recognition, enrichment and detection of cloxacilloic acid in cloxacillin. The obtained polymers were characterized by scanning electron microscopy, FTIR spectroscopy, nitrogen adsorption and desorption, elemental analysis and thermogravimetric analysis. The imprinted polymers not only possessed high adsorption capacity (6.5 μg/mg), but also exhibited fast adsorption kinetics (they adsorb 80% of the maximum amount within 20 min) and excellent selectivity (the imprinted factor was 3.6). A method using the imprinted polymers as solid-phase extraction adsorbents coupled with high-performance liquid chromatography was established with good specificity, linearity (r = 0.9962), precision (ranging from 0.5 to 6.7%), accuracy (ranging from 93.9 to 97.7%) and extraction recoveries (ranging from 78.8 to 89.8%). The limits of detection and quantification were 0.07 and 0.25 mg/g, respectively. This work could provide a promising method in the enrichment, extraction and detection of allergenic impurities in the manufacture, storage and application of cloxacillin.

  17. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R


    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  18. Solid rocket motor fire tests: Phases 1 and 2

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.


    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General

  19. Analysis of pharmaceutical creams: a useful approach based on solid-phase extraction (SPE) and UV spectrophotometry.

    Bonazzi, D; Andrisano, V; Gatti, R; Cavrini, V


    Solid-phase extraction (SPE) using C-18, diol and ion-exchange sorbents followed by UV spectrophotometric (conventional and derivative mode) assay was applied to the analysis of basic, acidic and neutral drugs commercially available in creams. A representative set of drugs (promethazine, chlorhexidine, benzydamine, ketoprofen, ibuprofen, fentiazac, piroxicam, fluorouracil, crotamiton and hydrocortisone acetate) was selected, and for each drug the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedures were capable of removing interfering cream components (excipients including preservatives) allowing accurate spectrophotometric analyses to be performed. In some applications, derivative spectrophotometry was advantageous over the conventional absorption mode with respect to higher selectivity and versatility.

  20. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers.

    Hu, Shu-Guo; Li, Li; He, Xi-Wen


    A molecularly imprinted polymer solid-phase extraction method is used to extract esculetin from the ash bark of Chinese traditional medicine. Ratio of ethanol and water as washing solution were investigated. Data of accumulative adsorption on molecularly imprinted polymers from the continuous loading experiment suggests that there are two different kinds of recognition sites in molecularly imprinted polymers. By selecting the washing and eluting solution a scheme was designed to separate esculetin and its analogues including esculin, coumarin, 7-methoxylcoumarin and daphnetin. Finally, by applying the revised scheme esculetin was extracted from the ash bark of Chinese traditional medicine that was purchased from two big drugstores, respectively, with both molecularly imprinted polymers and non-molecularly imprinted polymers.

  1. In vitro CPC retention and VSC adsorption by IPM oil droplets: possible mechanisms of action of a two phase mouthwash.

    Sterer, N; Slutzky, H; Kohavi, D; Matalon, S


    Two phase oil-water mouthwash has been previously shown to efficiently bind oral microorganisms, relying on their cell surface hydrophobicity. The aim of the present in vitro study was to test the cetylpyridinium chloride (CPC) retention and volatile sulfide compounds (VSCs) adsorption abilities of the oil droplets created by mixing of a two phase oil-water solution. VSC adsorption was assayed using a salivary incubation assay and garlic powder solutions, and demonstrated using microscopic sulfide assay. CPC retention was assayed by kinetic and endpoint measurement of Streptococcus salivarius outgrowth using microplate (ELISA) reader. Results showed that the isopropyl myristate (IPM) oil droplets in the two phase solutions were able to adsorb 68-80% of VSCs. CPC at a concentration of 0.05% was most affectively retained by the oil droplets showing a significantly increase in residual antibacterial activity against Streptococcus salivarius. These results taken together, suggests that VSC adsorption and CPC retention by IPM oil droplets may be two additional mechanisms in the activity of the two phase mouthwash formulation.

  2. Observation of Solid-Solid Phase Transitions in Ramp-Compressed Aluminum

    Polsin, D. N.; Boehly, T. R.; Delettrez, J. A.; Gregor, M. C.; McCoy, C. A.; Henderson, B.; Fratanduono, D. E.; Smith, R.; Kraus, R.; Eggert, J. H.; Collins, R.; Coppari, F.; Celliers, P. M.


    We present results of experiments using x-ray diffraction to study the crystalline structure of solid aluminum compressed up to 500 GPa. Aluminum is of interest because it is frequently used as a standard material in high-pressure compression experiments. At ambient pressure and temperature, Al is a face-centered cubic close-packed crystal and has been observed to transform to hexagonal close-packed (hcp) when compressed to 200GPa in a diamond anvil cell. It is predicted to transform from hcp to body-centered cubic when compressed to 315GPa. Laser-driven ramp waves will be used to compress Al to various constant-pressure states. The goal is to investigate the Al phase diagram along its isentrope, i.e., at temperatures 1000K and pressures ranging from 200 to 500 GPa. X-ray diffraction will be used to measure the crystalline structure of the compressed Al and observe the transformations that occur at various pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Adsorption of bovine alpha-lactalbumin on suspended solid nanospheres and its subsequent displacement studied by NMR spectroscopy

    Engel, M.F.M.; Visser, A.J.W.G.; Mierlo, van C.P.M.


    Detailed knowledge of the adsorption-induced conformational changes of proteins is essential to understand the process of protein adsorption. However, not much information about these conformational changes is available. Here, the adsorption of calcium-depleted (APO)- and calcium-containing (HOLO)-b

  4. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G


    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  5. Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples.

    Han, Qiang; Liang, Qionglin; Zhang, Xiaoqiong; Yang, Liu; Ding, Mingyu


    Graphene aerogel (GA), a typical kind of three-dimensional (3D) macroscopic assembly, not only provides inherently excellent properties of graphene sheets (GS), but also exhibits interesting characteristics of the 3D macroporous architecture including large and tunable pore volumes, high specific surface areas and fast mass transport kinetics. Thus, it is rational to expect GA to be an efficient adsorbent for solid-phase extraction (SPE). In this paper, a novel GA monolith based solid-phase extraction method was investigated in the application of environment analysis. The GA monolith based SPE cartridge was fabricated directly in the empty cartridge through template-free "sol-cryo" method. Due to the efficient mass transfer, more adsorption sites as well as effective retention for the analytes, the adsorption property of GA for bisphenol A revealed better performance than that of GS. What's more, GA also outperformed in loading and eluting for target analysis. On the basis of the above advantages, the obtained cartridge was applied for the separation of environmental pollutants from water samples. Taking endocrine disrupting chemicals and polychlorinated biphenyls as the polar and weak polar model analytes, optimizing several parameters influencing the recoveries, limits of detection in the range of 0.01-0.11ngmL(-1) and 0.19-1.53ngL(-1) for the two series of compounds were provided by the established methods. The satisfied sensitivity was accessed and recoveries ranging from 76.3 to 112.5% were obtained for all the analytes when the proposed methods were applied in real water samples analysis. The results revealed the potential of GA as an effective sorbent in sample preparation processes.

  6. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement.

    Yeo, Seul-Ki; Park, Jun-Boum; Ahn, Joo-Sung; Han, Young-Soo


    In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

  7. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W


    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  8. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change

    Huang, Rongzong; Wu, Huiying


    In this paper, phase interface effects, including the differences in thermophysical properties between solid and liquid phases and the numerical diffusion across phase interface, are investigated for the recently developed total enthalpy-based lattice Boltzmann model for solid-liquid phase change, which has high computational efficiency by avoiding iteration procedure and linear equation system solving. For the differences in thermophysical properties (thermal conductivity and specific heat) between solid and liquid phases, a novel reference specific heat is introduced to improve the total enthalpy-based lattice Boltzmann model, which makes the thermal conductivity and specific heat decoupled. Therefore, the differences in thermal conductivity and specific heat can be handled by the dimensionless relaxation time and equilibrium distribution function, respectively. As for the numerical diffusion across phase interface, it is revealed for the first time and found to be induced by solid-liquid phase change. To reduce such numerical diffusion, multiple-relaxation-time collision scheme is exploited, and a special value (one fourth) for the so-called "magic" parameter, a combination of two relaxation parameters, is found. Numerical tests show that the differences in thermophysical properties can be correctly handled and the numerical diffusion across phase interface can be dramatically reduced. Finally, theoretical analyses are carried out to offer insights into the roles of the reference specific heat and "magic" parameter in the treatments of phase interface effects.

  9. Solid phase extraction and determination of carbamate pesticides in water samples by reverse-phase HPLC

    Moreno-Tovar, J.; Santos-Delgado, M.J. [Departamento de Quimica Analitica, Facultad de ciencias Quimicas, Universidad Complutense de Madrid (Spain)


    Solid phase extraction. SPE. using C{sub 1}8 bonded silica cartridges for trace amounts determination of carbaryl, propoxur, thiram, propham and methiocarb in water samples was studied and the breakthrough volume of the cartridges was established. The high enrichment factor and large injection volume admissible in the isocratic reverse-phase HPLC system allows pesticides determination with UV detection at 22o nm even at a concentration lower than 0.05 mug/L. Purified tap natural and underground water samples were spiked with carbamate pesticides in the concentration range 0.16-16.0 mug/L. Large volumes of samples (up to 2L) were passed through available C{sub 1}8, cartridges and eluted with acetonitrile. The preconcentrated samples were analyzed by HPLC using a Spherisorb ODS column with a 42.58 acetonitrile-water mobile phase. From replicate samples, recovery for the pesticides ranged from 79.0 to 103.7% except for thiran which is not retained. Tehe relative standard deviation (n=4 at 0.16 to 1.61 mug/L concetration level) range from 1.1 to 6.8%. (Author) 14 refs.

  10. [Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry].

    Fan, Guang-yu; Jiang, Xiao-ming; Zheng, Cheng-bin; Hou, Xian-deng; Xu, Kai-lai


    A simple method has been developed for the determination of silver in environmental water samples using solid phase extraction with tungsten-coil electrothermal atomic absorption spectrometry. Silica gel was used as an adsorbent and packed into a syringe barrel for solid phase extraction of silver prior to its determination by using a portable tungsten-coil electrothermal atomic absorption spectrometer. Optimum conditions for adsorption and desorption of silver ion, as well as interferences from co-existing ions, were investigated. A sample pH value of 6.0, a sample loading flow rate of 4.0 mL x min(-1), and the mixture of 4% (m/v) thiourea and 2% (phi) nitrate acid with the eluent flow rate of 0.5 mL x min(-1) for desorption were selected for further studies. Under optimal conditions, a linear range of 0.20-4.00 ng x mL(-1), a limit of detection (3sigma) of 0.03 ng x mL(-1) and a preconcentration factor of 94 were achieved. The proposed method was validated by testing three environmental water samples with satisfactory results.

  11. [Determination of nonylphenol in wastewater by solid phase extraction gas chromatography mass spectrometry and multi-selective ions].

    Hao, Rui-Xia; Liang, Peng; Zhao, Man; Wang, Jun-An; Zhou, Yu-Wen


    Nonylphenol (NP) having endocrine disrupter activity is an ultra trace component in sewage and reuse wastewater. There are many NP isomers in the wastewater because nonyl structure is different. The background impurity of the samples is very complex with many other components. So it is difficulty for quantitative analysis of NP in the samples. About seventy sewages and recycled wastewater samples were measured for the content of NP isomer mixtures by solid-phase extraction-gas chromatography-mass spectrometry and multi-selected ions monitoring (shortened as SPE-GC-MS-SIM). The results show that hydrophilic-lipophilic-equilibrium solid-phase extraction pole has selective adsorption for NP, so that the samples can be concentrated from 50 to 200 times. The five kinds of mass spectrum ions, i. e. 107, 121, 135, 149, 163, have higher abundance and distinct character. The sum of five selected ion monitoring (sigmaSIM) is from 54.4 to 73 percent of the total ion current for NP, which can accurately represent different NP isomers. Quantitative analysis base on the spectral integralof the sigmaSIM chromatograph can eliminate interference with background signal and ensure selectivity, accuracy and precision ofthe method.

  12. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    Zimmermann, Claudia; Schaaf, Wolfgang


    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  13. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    Wu, Jiaqi, E-mail: [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States); Lee, Chin C. [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States)


    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  14. Solid phase precipitates in (Zr,Th)-OH-(oxalate, malonate) ternary aqueous system

    Kobayashi, T.; Sasaki, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering


    The solubility-limiting solid phases in the ternary aqueous systems of Zr(IV)/OH/oxalate, Zr(IV)/OH/malonate, Th(IV)/OH/oxalate and Th(IV)/OH/malonate were characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis and differential thermal analysis. The ternary solid phase of M(IV)/OH/carboxylate was observed to form, even under acidic conditions, depending on the pH and the concentration of carboxylate ligand. In the presence of a large excess of carboxylic acid, however; the binary M(IV)-carboxylate solid phase formed. (orig.)

  15. Design and Synthesis of a Dual Linker for Solid Phase Synthesis of Oleanolic Acid Derivatives

    Shaorong Wang


    Full Text Available A hydrophilic amino-terminated poly(ethylene glycol-type dual linker for solid phase synthesis of oleanolic acid derivatives using trityl chloride resin was designed and synthesized for the first time. Model reactions in both liquid and solid phase were performed to show the feasibility of its selective cleavage at two different sites. The biological assay results indicated that the long and flexible alkyl ether functionality in the linker is less likely to be critical for the binding event. Following the successful solid-phase synthesis of model compounds, the potential of this dual linker in reaction monitoring and target identification is deemed worthy of further study.

  16. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    Cao, M; Monson, P A


    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  17. Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples.

    Jia, Shiliang; Wang, Zhenhua; Ding, Ning; Elaine Wong, Y-L; Chen, Xiangfeng; Qiu, Guangyu; Dominic Chan, T-W


    The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π-π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography-tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24-0.50 ng L(-1); signal-to-noise ratio = 3:1), low limits of quantification (0.79-1.56 ng L(-1); signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2-1000 ng L(-1), and good precision (relative standard deviation results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants.

  18. Effect of supercritical water treatment on porous structure, liquid-phase adsorption and regeneration characteristics of activated anthracite

    Tanthapanichakoon, W.; Sittipraneed, S.; Japthong, P.; Charinpanitkul, T.; Boon-Amnuayvitaya, V.; Nakagawa, K.; Tamon, H. [National Nanotechnological Centre, Pathumthani (Thailand)


    Microporous activated anthracite was produced from waste anthracite powders by the conventional steam activation. The activated anthracite was also treated by supercritical water reaction (SWR) by using distilled water and hydrogen peroxide solution as a liquid medium for SWR treatment. It was found that SWR treatment can improve the mesoporosity of the activated anthracite though the micropore volume was reduced by the treatment. In liquid-phase adsorption and supercritical water regeneration studies, phenol and organic dye RED 31 were selected as the representative adsorbates. The adsorption and regeneration characteristics of activated anthracite were compared with those of a commercial activated carbon. The results indicate that the activated anthracite prepared showed comparable phenol adsorption capacity but significantly lower dye adsorption capacity than the commercial one. However, supercritical water regeneration efficiency was remarkably high. The first/second regeneration efficiencies of commercial activated carbon and activated anthracite exhausted with phenol were 55/55 and 65/65%, respectively, and in the case of RED 31, 78/79 and 338/317%, respectively, with losses of activated carbon less than 4% per regeneration. Because of little loss of activated carbon during successive regenerations, this SWR regeneration method was suitable for regenerating spent activated carbon or anthracite.

  19. Low cost CaCl₂ pretreatment of sugarcane bagasse for enhancement of textile dyes adsorption and subsequent biodegradation of adsorbed dyes under solid state fermentation.

    Kadam, Avinash A; Lade, Harshad S; Patil, Swapnil M; Govindwar, Sanjay P


    Pretreatments to sugarcane bagasse (SCB) such as CaCl2, alkali, ammonia, steam and milling showed 91%, 46%, 47%, 42% and 56% adsorption of Solvent Red 5B (SR5B); 92%, 57%, 58%, 56% and 68% adsorption of simulated dyes mixture (SDM), and 86%, 45%, 49%, 44% and 56% adsorption of a real textile effluent (RTE), respectively. However, the untreated SCB showed 32%, 38% and 30% adsorption of SR5B, SDM and RTE, respectively. Adsorption of SR5B on CaCl2 pretreated SCB follows pseudo-second order kinetics. SEM and FTIR analysis reveals the delignification of CaCl2 pretreated SCB. SR5B, SDM and RTE adsorbed on CaCl2, alkali, ammonia, steam and milling pretreated SCB were decolorized under solid state fermentation using isolated Providencia staurti strain EbtSPG. Tray bioreactor study showed 86% American Dye Manufacturers Institute (ADMI) removal of RTE in 72h. Biodegradation of adsorbed SR5B was confirmed using FTIR, HPLC and HPTLC.

  20. Nondestructive laser system for the in-situ study of the kinetics of the adsorption processes at solid/liquid interface

    Todoran, Radu; Sharkany, Josif P.


    This paper presents a laser-optical fiber system which allows us to estimate continuously and 'in situ' the evolution of the adsorption layer at the interface solid-liquid. Locally, the kinetics of the evolution of the adsorption layer at the interface between a mineral and a xanthate organic solution, is investigated. In this case, the knowledge for the kinetics of the adsorption process is extremely important for explaining the intimate mechanisms of the flotation industrial processes. The monitoring system for the kinetics of the adsorption of xanthate organic molecules on the mineral support is based, during its run, on the variation in the relative reflectance of the interface due to the adsorption layer evolution. The method, designed to study the evolution kinetics of the adsorption layer at the interface between a xanthate solution and a sulphuric mineral, is based on the proportionally link between the evolution of the adsorption layer and the relative variation of its refraction index. The experimental appliance used a coherent and monochromatic unpolarized laser radiation, with its wavelength (lambda) equals 0.89 micrometer, which corresponds to the near IR range. This wavelength has been chosen both for physical performed using an Al mirror as standard for maximum (100%) reflectance, and by immersing it into different xanthate solutions having successively the following concentrations: 25 mg/l; 50 mg/l; 100 mg/l and 3 g/l, respectively. This procedure allowed to observe that the reflection given by the mirror, in these cases, has a relatively narrow spectral range in UV, for which it has values greater for 4 - 6%. The following ones have been used: isobutyl xanthate, amyl xanthate and ethyl xanthate. The reflection spectrum on the mirror (if neglecting the attenuation in liquid and the transmission spectrum) was measured by means of a spectrophotometer SPECORD M40 (made in Germany), and the determinations were performed in the range from 200 to 950 nm.

  1. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption

    Chaparro, A.M.; Martin, A.J.; Folgado, M.A.; Gallardo, B. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)


    Because of the different experimental conditions found in literature for the measurement of the electroactive area of Pt/C electrodes of proton exchange membrane fuel cells (PEMFC) by means of underpotential hydrogen adsorption (H{sub UPD}) voltammetry, specially concerning sweep rate and temperature, it was found necessary to perform an analysis of these parameters. With this aim, the electroactive area of PEMFC electrodes has been measured by means of H{sub UPD} voltammetry at different sweep rates and temperatures, in liquid electrolyte and solid polymer contact. Both configurations show that H{sub UPD} adsorption and desorption charges are strongly dependent on sweep rate voltage and temperature. The most common behaviour observed is a maximum in H{sub UPD} desorption charge, typically in the 100-10 mV s{sup -1} sweep rate range, whereas H{sub UPD} adsorption charge shows continuous increase with decreasing sweep rate. The decrease of desorption charge at low sweep rates is attributed to adsorbing species related with carbon support reactivity. These processes are also responsible for the increase in desorption H{sub UPD} charge at low sweep rate. At high sweep rate, both adsorption and desorption H{sub UPD} charges decrease due to limiting diffusion of protons through the microporous electrode. As a consequence, it is found that the closest approximation to the real electroactive area (i.e. the area accessible to protons) corresponds to the maximum in the H{sub UPD} desorption charge in the range of 10-100 mV s{sup -1} sweep rate. The influence of measuring temperature is also tested in the range 25 C-80 C. A dependence of the adsorption and desorption hydrogen charges is found, due to thermodynamic and kinetics factors. We observe that the processes competing with hydrogen adsorption, i.e. generation and adsorption of carbon species are enhanced with temperature, so a low measuring temperature is found as most appropriate. (author)

  2. Rapid analysis of phthalates in beverage and alcoholic samples by multi-walled carbon nanotubes/silica reinforced hollow fibre-solid phase microextraction.

    Li, Jia; Su, Qiong; Li, Ke-Yao; Sun, Chu-Feng; Zhang, Wen-Bo


    A novel procedure based on multi-walled carbon nanotubes (MWCNTs)/silica reinforced hollow fibre solid-phase microextraction combined with gas chromatography-mass spectrometry has been developed to analyse trace phthalate acid esters in beverage and alcoholic samples. Because of their excellent adsorption capability towards hydrophobic compounds, functionalized MWCNTs, acting as solid-phase sorbent, were co-deposited with silica particles in the pores of polypropylene hollow fibre through a layer-by-layer self-assembly technique. The parameters influencing the extraction efficiency, such as pH values and ionic strength of sample solution, extraction time, temperature and desorption solvent were optimised. Recoveries for phthalates at spiking levels in different matrices were satisfactory (between 68% and 115%). Moreover, the results were further confirmed by comparing them with those obtained using a solvent extraction method according to the national standard of China.

  3. [Preparation of weak light driven TiO2 multi composite photocatalysts via adsorption phase synthesis].

    Wang, Ting; Zhu, Yi-Chen; Sun, Zhi-Xuan; Wu, Li-Guang


    Photodegradation of pollutions by TiO2 under irradiation of weak UV and visible lights was one of the key points to expand the application of heterogeneous photocatalysis. Based on the adsorption phase synthesis, N doping and co-doping with N and Fe2O3 were employed to prepare TiO2 multi composite photocatalysts. The activity of these photocatalyts was evaluated by photodegradation of methyl-orange illuminated under weak UV and visible lights. Via UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra, the effects on the light absorption and visible response expansion of catalysts caused by different conditions were explored, such as sintering temperature, doping content of N and co-doping. Followed that, the changes in the photocatalytic activities were studied under the irradiation of weak light. The results showed that, N doping could enhance the light absorption of the catalysts, thus significantly enhanced their photocatalytic activity illuminated under UV weak light. All N-doped photocatalysts had a higher activity than the commercial available P25 photocatalyst. The visible response of catalysts was expanded little caused by N doping, thereby most catalysts doped by single N element had no activity illuminated by weak visible light. Only the catalyst doped with 5% of N element showed a weak activity after calcined at 900 degrees C . Due to the synergy effects between N doping and Fe2O3 coupling, co-doping did not only enhance the light absorption of the catalysts, but also significantly expanded the visible response of catalysts. So, co-doped catalysts showed a good catalytic activity when excited by weak visible light.

  4. Liquid phase sintering, II: Computer study of skeletal settling and solid phase extrication in a microgravity environment

    Nikolić Z.S.


    Full Text Available A two-dimensional numerical method based on the Brownian motion model and on the Densification model for simulation of liquid phase sintering in microgravity environment will be developed. Both models will be based on domain topology (two-dimensional particle representation and control volume methodology and on three submodels for domain translation, solid skeleton formation and domain extrication. This method will be tested in order to conduct a study of diffusion phenomena and microgravitational effects on microstructural evolution influenced by skeletal settling combined with solid-phase extrication during liquid phase sintering of porous W-Ni system.

  5. Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction.

    Zhang, Suling; Du, Zhuo; Li, Gongke


    A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.

  6. Solid-phase microextraction: a promising technique for sample preparation in environmental analysis.

    Alpendurada, M F


    Solid-phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which eliminates the need for solvents or complicated apparatus, for concentrating volatile or nonvolatile compounds in liquid samples or headspace. SPME is compatible with analyte separation and detection by gas chromatography and high-performance liquid chromatography, and provides linear results for wide concentrations of analytes. By controlling the polarity and thickness of the coating on the fibre, maintaining consistent sampling time, and adjusting other extraction parameters, an analyst can ensure highly consistent, quantifiable results for low concentration analytes. To date, about 400 articles on SPME have been published in different fields, including environment (water, soil, air), food, natural products, pharmaceuticals, biology, toxicology, forensics and theory. As the scope of SPME grew, new improvements were made with the appearance of new coatings that allowed an increase in the specificity of this extraction technique. The key part of the SPME fibre is of course the fibre coating. At the moment, 27 variations of fibre coating and size are available. Among the newest are a fibre assembly with a dual coating of divinylbenzene and Carboxen suspended in poly(dimethylsiloxane), and a series of 23 gauge fibres intended for specific septumless injection system. The growth of SPME is also reflected in the expanding number of the accessories that make the technology even easier to use Also available is a portable field sampler which is a self-contained unit that stores the SPME fibre after sampling and during the shipment to the laboratory. Several scientific publications show the results obtained in inter-laboratory validation studies in which SPME was applied to determine the presence of different organic compounds at ppt levels, which demonstrates the reliability of this extraction technique for quantitative analysis.

  7. Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree.

    Senthilkumaar, S; Kalaamani, P; Subburaam, C V


    Adsorption of Crystal violet, a basic dye onto phosphoric and sulphuric acid activated carbons (PAAC and SAAC), prepared from male flowers coconut tree has been investigated. Equilibrium data were successfully applied to study the kinetics and mechanism of adsorption of dye onto both the carbons. The kinetics of adsorption was found to be pseudo second order with regard to intraparticle diffusion. The pseudo second order is further supported by the Elovich model, which in turn intensifies the fact of chemisorption of dye onto both the carbons. Quantitative removal of dye at higher initial pH of dye solution reveals the basic nature of the Crystal violet and acidic nature of the activated carbons. Influence of temperature on the removal of dye from aqueous solution shows the feasibility of adsorption and its endothermic nature. Mass transfer studies were also carried out. The adsorption capacities of both the carbons were found to be 60.42 and 85.84 mg/g for PAAC and SAAC, respectively. Langmuir's isotherm data were used to design single-stage batch adsorption model.

  8. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.


    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%).

  9. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    Pelit, Füsun Okçu, E-mail:; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.


    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL{sup −1}. Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues.

  10. Application of Deep Eutectic Solvents in Hybrid Molecularly Imprinted Polymers and Mesoporous Siliceous Material for Solid-Phase Extraction of Levofloxacin from Green Bean Extract.

    Li, Xiaoxia; Row, Kyung Ho


    Deep eutectic solvents (DES) are potential ecofriendly surfactants for the preparation of materials. In this study, both molecularly imprinted polymers (MIPs) and mesoporous siliceous materials (MSMs) were modified by betaine-based DES. Six materials were employed as solid phase extraction (SPE) adsorbents for the rapid purification of levofloxacin. The DES-based materials showed better selective adsorption than the conventional materials. The adsorption curves of DES-MIP showed superior molecular recognition ability and binding capability for levofloxacin compared to the other materials. The limit of detection and limit of quantitation of the method were 0.01 and 0.03 μg/mL for levofloxacin, respectively. The method recoveries at three spiked levels were 97.2 - 100.2% for DES-MIP, with an RSD <1.8%. DES-MIP showed the highest selective recovery (95.2%) for levofloxacin from the green bean extract, and could remove the interferent effectively.

  11. Chelating agent free solid phase extraction (CAF-SPE) method for separation and/or preconcentration of iron(III) ions

    for, Chelating agent free solid phase extract


    This paper presents a chelating agent free solid phase extraction (CAF-SPE) method for the separation and/or preconcentration of trace iron(III) ions. This method is based on the sorption of Fe(III) ions without using any chelating agent onto Amberlyst 36 resin. A good relative standard deviation (3%), high recovery (>95%), high enrichment factor (100), and low detection limit (0.32 m g L-1) were obtained. The adsorption capacity of resin was 117 mg g-1 for iron(III). The me...

  12. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    Samanidou, Victoria, E-mail: [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kehagia, Maria [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kabir, Abuzar, E-mail: [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); Furton, Kenneth G. [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States)


    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  13. Phase nucleation and evolution mechanisms in heterogeneous solids

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  14. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;


    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  15. Design and Solid-Phase Synthesis of Multiple Muramyl Dipeptide (MMD)


    As a non-specific modulator of macrophage, multiplied muramyl dipeptide (MMD) is solid-phase synthesized by application of standard Fmoc chemistry strategy. Tam's multiple antigen system (MAS) is used as our four branched-linker on Lysine.

  16. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  17. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid phas

  18. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    de Jong, GJ; Koster, EHM


    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused s

  19. Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry


    A new method for analysis of trace mercury in water samples was developed, based on the combination of preconcentration/separation using dithizone-modified nanometer titanium dioxide (TiO2) as a solid phase extractant and determination by cold vapor atomic adsorption spectrometry (CVAAS). Dithizone was dissolved with alcohol and loaded on the surface of nano-sized TiO2 powders by stirring. The static adsorption behavior of Hg2+ on the dithizone-modified nanoparticles was investigated in detail. It was found that excellent adsorption ratio for Hg2+ could be obtained in the pH range of 7-8 with an oscillation time of 15 min, and a 5 mL of 3.5 mol·L-1 HCl solution could quantitatively elute Hg2+ from nanometer TiO2 powder. Common coexisting ions caused no obvious influence on the determination of mercury. The mechanisms for the adsorption and desorption were discussed. The detection limit (3σ) for Hg2+ was calculated to be 5 ng·L-1. The proposed method was applied to the determination of Hg2+ in a mineral water sample and a Zhujiang River water sample. By the standard addition method, the average recoveries were found to be 94.4%-108.3% with RSD (n = 5) of 2.9%-3.5%.

  20. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    Namasivayam, C; Sangeetha, D


    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  1. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio


    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  2. Solid-liquid adsorption of calcium phosphate on TiO{sub 2}

    Chusuei, C.C.; Goodman, D.W.; Stipdonk, M.J. van; Justes, D.R.; Loh, K.H.; Schweikert, E.A.


    Calcium phosphate (CP) in aqueous solution was exposed to thin-film TiO{sub 2} surfaces at predetermined times ranging from 10 min to 20 h using a liquid reaction apparatus (LRA). Surface analysis was then performed using X-ray photoelectron (XPS) and Auger electron (AES) spectroscopies and time-of-flight secondary ion mass spectromemtry (ToF-SIMS) with polyatomic primary ions. XPS revealed that CP nucleated and grew on the TiO{sub 2} surface, with phosphate groups growing on top of an initial 2-dimensional (2D) Ca-rich layer. AES depth profiling of a 4-h solution exposure complemented this finding and gave additional evidence for 3-dimensional (3D) phosphate islands forming on top of the calcium. ToF-SIMS analysis of CP adsorbed on the surface indicated that the predominant phase on the surface was brushite, CaHPO{sub 4}{sm{underscore}bullet}2H{sub 2}O. A model for Ca{sup 2+} cation bridging at the oxide interface is proposed.

  3. Solid Phase Equilibria in the Pi-Ga-As and Pt-Ga-Sb Systems


    OFFICE OF NAVAL RESEARCH Research Contract N00014-87-K-0014 R&T Code 413E026---01 AD-A 198 654 TECHNICAL REPORT No. 9 SOLID PHASE EQUILIBRIA IN THE...Classtcation) UNCLASSLFIED: Tech.Rept.#9 SOLID PHASE EQUILIBRIA IN T11: Pt-Ga-As AND Pt-Ga-Sb SYST’IS 12 PERSONAL AuTiOR(S) C.T. Tsai and R.S. Williats 13a TYPE

  4. Molecularly imprinted polymers: New molecular recognition materials for selective solid-phase extraction of organic compounds

    Martín Esteban, A.


    During the last few years molecularly imprinted polymers have appeared as new selective sorbents for solid-phase extraction of organic compounds in different samples. Molecular imprinting technology involves the preparation of a polymer with specific recognition sites for certain molecules. Once the polymer has been obtained, it can be used in solid-phase extraction protocols, where a careful selection of the most appropriate solvents to be used in the different steps (sample loading, washing...

  5. Expedient protocol for solid-phase synthesis of secondary and tertiary amines

    Olsen, Christian A; Witt, Matthias; Jaroszewski, Jerzy W


    [reaction: see text] An expedient solid-phase synthetic approach to secondary and tertiary amines was developed. The protocol employs conversion of resin-bound amino alcohols to the corresponding iodides, followed by iodide displacement with primary or secondary amines or with unprotected amino...... alcohols. This two-step procedure, affording products in good to excellent yields, is suitable for solid-phase synthesis of polyamines....

  6. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    Hemley, R. J.; Mao, H. K.


    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  7. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian


    regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four...... four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach....

  8. Density functional theory study of ATA, BTAH, and BTAOH as copper corrosion inhibitors: adsorption onto Cu(111) from gas phase.

    Kokalj, Anton; Peljhan, Sebastijan


    A low-coverage gas-phase adsorption of three corrosion inhibitors-3-amino-1,2,4-triazole (ATA), benzotriazole (BTAH), and 1-hydroxybenzotriazole (BTAOH)-on perfect Cu(111) surface has been studied and characterized using density functional theory calculations. We find that the molecules in neutral form chemisorb weakly to the perfect surface in an upright geometry. The strength of the chemisorption increases in the order BTAH BTA· with the adsorption energies of -1.65, -2.22, and -2.78 eV, respectively. This order is compatible with the trend of experimentally observed corrosion inhibition effectiveness on copper in near-neutral chloride solutions. Although the calculations are performed at the metal/vacuum interface, they provide enough insight to rationalize why in some experiments the BTAH was observed to be adsorbed with an upright geometry and in the others with parallel geometry.

  9. Solid-Phase Synthesis of PEGylated Lipopeptides Using Click Chemistry

    Jølck, Rasmus Irming; Berg, Rolf Henrik; Andresen, Thomas Lars


    A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC “Click” conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides...

  10. Isolation and quantitation of amygdalin in Apricot-kernel and Prunus Tomentosa Thunb. by HPLC with solid-phase extraction.

    Lv, Wei-Feng; Ding, Ming-Yu; Zheng, Rui


    Apricot-kernel and Prunus Tomentosa Thunb. are traditional Chinese herb medicines that contain amygdalin as their major effective ingredient. In this report, three methods for the extraction of amygdalin from the medicinal materials are compared: ultrasonic extraction by methanol, Soxhlet extraction by methanol, and reflux extraction by water. The results show that reflux extraction water containing 0.1% citric acid is the best option. The optimal reflux is 2.5 h and water bath temperature is 60 degrees C. The solid-phase extraction method using C18 and multiwalled carbon nanotube as adsorbents is established the pretreatment of reflux extract, and the result shows that the two adsorbents have greater adsorptive capacity for amygdalin and good separation effect. In order to quantitate amygdalin in Apricot-kernel and Prunus Tomentosa Thunb., a reversed-phase high-performance liquid chromatography method using methanol-water (15:85, for 30 min and pure methanol after 30 min) as mobile phase is developed and a good result is obtained.

  11. Polymerizable gemini surfactants at solid/solution interfaces: adsorption and polymerization on melamine formaldehyde particles and capsule fabrication.

    Sakai, Kenichi; Izumi, Keiko; Sakai, Hideki; Abe, Masahiko


    Organic capsules have been fabricated via three steps, by using the polymerizable gemini surfactant (1,2-bis(dimethyl(11-methacryloyloxy)undecylammonio) hexane dibromide, PC11-6-11) as a single wall component. In the first fabrication step, the surfactant spontaneously adsorbs on acid-dissolvable melamine formaldehyde (MF) particles in aqueous media. The adsorption isotherm data reveal that the adsorbed amount of PC11-6-11 (per chain) is greater than that of the corresponding monomeric surfactant ((11-methacryloyloxy)undecyltrimethylammonium bromide, PC11), resulting from the greater intermolecular association of PC11-6-11 at the solid/solution interface. The closely packed adsorbed layer of PC11-6-11 provides an opportunity to give a polymer thin film, as a result of in situ photo-polymerization on MF particles (in the second fabrication step) and subsequent acid dissolution of the core MF particles (in the third fabrication step). The dynamic light scattering (DLS) measurements have shown that the apparent hydrodynamic diameter of PC11-6-11 capsules is reversibly changed in response to a change in ionic strength: the increased background electrolyte concentration results in deswelling of the capsules, and vice versa. It seems likely that this swelling/deswelling behavior is primarily driven by the electrostatic interaction between quaternary ammonium groups within the polymerized film. We have also studied the capture and release capabilities of glucose into/from the capsule core and found that (i) glucose is encapsulated into the capsule core at high electrolyte concentrations and (ii) the glucose molecules encapsulated into the core are gradually released when the outer electrolyte solution is replaced by pure water. We believe, therefore, that the PC11-6-11 capsules fabricated here are useful as stimulus-responsive smart vehicles.

  12. Ionic strength dependent vesicle adsorption and phase behavior of anionic phospholipids on a gold substrate.

    Pramanik, Sumit Kumar; Seneca, Senne; Ethirajan, Anitha; Neupane, Shova; Renner, Frank Uwe; Losada-Pérez, Patricia


    The authors report on the effect of ionic strength on the formation of supported vesicle layers of anionic phospholipids 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) and dimyristoylphosphatidylserine (DMPS) onto gold. Using quartz crystal microbalance with dissipation monitoring the authors show that vesicle adsorption is mainly governed by NaCl concentration, reflecting the importance of electrostatic interactions in anionic lipids, as compared to zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine. At low ionic strength, low or no adsorption is observed as a result of vesicle-vesicle electrostatic repulsion. At medium ionic strength, the negative charges of DMPG and DMPS are screened resulting in larger adsorption and a highly dissipative intact vesicle layer. In addition, DMPS exhibits a peculiar behavior at high ionic strength that depends on the temperature of the process.

  13. Separation and effect of residual moisture in liquid phase adsorption of xylene on y zeolites

    P. Lahot


    Full Text Available The separation of p-xylene and m-xylene from C8 aromatic hydrocarbon feed using Y zeolites is investigated. Effect of residual moisture on p-xylene adsorption on BaY was measured in order to optimize the activation temperature of the adsorbent. The results show that with an increase in temperature the moisture on the adsorbent decreases. An optimum loading of moisture is required for adsorption of xylene on the adsorbents. The Everett equation is used to determine the adsorption capacity and selectivity. It has been found that the adsorbents best suited for the separation of p-xylene, m-xylene, o-xylene and ethyl benzene from the mixture of C8 aromatics are NaY, NaY, BaY and KY, respectively. The XRD results show that the crystallinity of the adsorbent decreases upon exchanging the zeolites to K+ and Ba2+ ions.

  14. Direct MD simulation of liquid-solid phase equilibria for two-component plasmas

    Schneider, A S; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 55296 ion simulations and compare to earlier 27648 ion results. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. We find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite size and non-equilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known.

  15. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow


    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  16. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon


    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  17. Flow injection solid phase extraction electrothermal atomic absorption spectrometry for the determination of Cr(VI) by selective separation and preconcentration on a lab-made hybrid mesoporous solid microcolumn

    Kim, Manuela; Stripeikis, Jorge [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, INQUIMAE, Universidad de Buenos Aires, Pabellon 2, Ciudad Universitaria, (1428) Buenos Aires (Argentina); Tudino, Mabel [Laboratorio de Analisis de Trazas, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, INQUIMAE, Universidad de Buenos Aires, Pabellon 2, Ciudad Universitaria, (1428) Buenos Aires (Argentina)], E-mail:


    A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI-SPE-ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol-gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g{sup -} {sup 1}) was observed for pH values between 2-3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g{sup -} {sup 1}). Then, a microcolumn (bed volume: 7.9 {mu}L) was filled with the solid and inserted in the FI-ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L{sup -} {sup 1} hydroxylammonium chloride in 1 mol L{sup -} {sup 1} hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min{sup -} {sup 1} (60 s), elution flow rate 0.5 ml min{sup -} {sup 1} (eluent volume: 75 {mu}L). Under optimized conditions the limit of detection for Cr(VI) was 1.2 ng L{sup -} {sup 1}, the precision, expressed as RSD was 2.5%, the sample throughput 21/h, and the microcolumn lifetime was over 300 adsorption/desorption cycles. Cr(III) determination was also performed by simply measuring its concentration at the end of the column and after Cr(VI) retention by the mesoporous solid. Applications of the methodology to

  18. Evaporation induced orientational order in soft solid phases of clays

    Lindbo Hansen, Elisabeth; Hemmen, Henrik; Dommersnes, Paul; Fossum, Jon Otto


    We demonstrate experimentally the possibility for promoting uniaxial orientational order in initially isotropic, soft solid dispersions of the synthetic clays Na-fluorohectorite and Laponite RD. We observe that strong orientational order can emerge from initially isotropic states when the samples are subjected to a slow concentration increase through evaporation of the dispersion water. During evaporation, there is a gradient in the order which, if evaporation is halted, slowly relaxes towards a uniform order throughout the samples. It is evident that the development of orientational order is not counterindicated by the viscoelastic nature of the samples, and that although the translational and likely also rotational diffusion of the particles is restricted in the soft solid state, the orientational degree of freedom can undergo a transition from a collectively random to an ordered state.

  19. Solid-phase contact assay that uses a lux-marked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil.

    Brandt, Kristian K; Pedersen, Anders; Sørensen, Jan


    Information about in situ toxicity of the bioavailable pools of adsorptive soil pollutants is a prerequisite for proper ecological risk assessment in contaminated soils. Such toxicity data may be obtained by assays allowing for direct exposure of introduced test microorganisms to the toxicants, as they appear in solid solution equilibria in the natural soil. We describe a novel sensitive solid-phase contact assay for in situ toxicity testing of soil pollutants based on a recombinant bioluminescent reporter strain of Nitrosomonas europaea. A slurry of the reporter strain and soil sample was shaken for 1 h, after which bioluminescence was measured either directly (soil slurry protocol) or in the supernatant obtained after centrifugation (soil extract protocol). The assay was validated for both protocols by using linear alkylbenzene sulfonate (LAS) as a toxic and adsorptive model compound in the soil samples. Interestingly, LAS showed the same toxicity to the reporter strain with either soil incubation (both protocols) or pure culture, suggesting that adsorbed LAS pools contributed to the observed toxicity. The solid-phase contact assay that used the reporter strain of lux-marked N. europaea was slightly more sensitive for the detection of LAS toxicity in soil than activity-based assays targeting indigenous nitrifiers and much more sensitive than assays targeting indigenous heterotrophic microbes. We conclude that the new solid-phase contact assay, which is based on direct interaction of the test microorganisms with bioavailable pools of the toxicants in soil, provides a most sensitive and relevant method for evaluating the in situ toxicity and assessing the risks of soil contaminants.

  20. New insights in Microbial Fuel Cells: novel solid phase anolyte

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia


    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  1. Solid-liquid phase diagram of disubstituted benzene systems

    黑恩成; 刘国杰


    The cooling curves of different compositions of the systems of ortho-chlorotoluene/para-chlorotoluene and ortho-nitrochlorobenzene/para-nitrochlorobenzene are carefully determined by the thermal analysis method. The crystals obtained are also tested. The conclusion that both systems are of simple eutectic diagram but not the solid solution diagram with a minimum melting point is confirmed. The characteristics of the diagram are explained according to the physical and thermodynarmc properties of the components.

  2. Phase transition of solid bismuth under high pressure

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan


    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  3. Effect of shear stress in ferroelectric solid solutions with coexisting phases

    Lu, Xiaoyan; Zhang, Hangbo; Zheng, Limei; Cao, Wenwu


    One common feature of ferroelectric solid solutions with large piezoelectricity is the coexistence of two or more phases. Due to the strain mismatch among coexisting phases, adaptive structures near the interfaces or domain walls develop to maintain the atomic coherency. Shear stresses commonly exist, especially when the domain size is small. The effect of shear stresses on phase morphology in Pb(Zr1-xTix)O3 solid solutions with compositions within the morphotropic phase boundary region was studied within the framework of Landau phenomenological theory. Our results show that the coexisting rhombohedral (R) and tetragonal (T) phases can be modified to form stable or metastable R-like and/or T-like monoclinic phases under shear stresses. Large stresses may also induce first order or second order phase transitions.

  4. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    Eldrup, Morten Mostgaard


    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  5. Second Order Kinetic Modeling of Headspace Solid Phase Microextraction of Flavors Released from Selected Food Model Systems

    Jiyuan Zhang


    Full Text Available The application of headspace-solid phase microextraction (HS-SPME has been widely used in various fields as a simple and versatile method, yet challenging in quantification. In order to improve the reproducibility in quantification, a mathematical model with its root in psychological modeling and chemical reactor modeling was developed, describing the kinetic behavior of aroma active compounds extracted by SPME from two different food model systems, i.e., a semi-solid food and a liquid food. The model accounted for both adsorption and release of the analytes from SPME fiber, which occurred simultaneously but were counter-directed. The model had four parameters and their estimated values were found to be more reproducible than the direct measurement of the compounds themselves by instrumental analysis. With the relative standard deviations (RSD of each parameter less than 5% and root mean square error (RMSE less than 0.15, the model was proved to be a robust one in estimating the release of a wide range of low molecular weight acetates at three environmental temperatures i.e., 30, 40 and 60 °C. More insights of SPME behavior regarding the small molecule analytes were also obtained through the kinetic parameters and the model itself.

  6. Solid-liquid phase equilibria of the Gaussian core model fluid.

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J


    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  7. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh


    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  8. Study of solid solution strengthening of alloying element with phase structure factors


    Using the empirical electron theory of solids and molecules (EET), the phase structure factors, nA and nB, of the carbon-containing structural units with mass fraction of carbon (wC) below 0.8% and the mono-alloy structural units with wC at 0.2% in austenite and martensite are calculated. The solid solution strengthening brought by C-containing interstitial solid solution and alloy-substitutional solid solution in γ-Fe and α-Fe is discussed at electron structural level. The coefficient (s) of solid solution strengthening is advanced according to the bonding force between atoms. The study shows that when the criterion is applied to the carbonaceous or alloying element-containing solid solution the results of calculation will coincide with the experimental result very well.

  9. Solid phase DNA extraction on PDMS and direct amplification.

    Pasquardini, Laura; Potrich, Cristina; Quaglio, Marzia; Lamberti, Andrea; Guastella, Salvatore; Lunelli, Lorenzo; Cocuzza, Matteo; Vanzetti, Lia; Pirri, Candido Fabrizio; Pederzolli, Cecilia


    In this paper we report an innovative use of Poly(DiMethyl)Siloxane (PDMS) to design a microfluidic device that combines, for the first time, in one single reaction chamber, DNA purification from a complex biological sample (blood) without elution and PCR without surface passivation agents. This result is achieved by exploiting the spontaneous chemical structure and nanomorphology of the material after casting. The observed surface organization leads to spontaneous DNA adsorption. This property allows on-chip complete protocols of purification of complex biological samples to be performed directly, starting from cells lysis. Amplification by PCR is performed directly on the adsorbed DNA, avoiding the elution process that is normally required by DNA purification protocols. The use of one single microfluidic volume for both DNA purification and amplification dramatically simplifies the structure of microfluidic devices for DNA preparation. X-Ray Photoelectron Spectroscopy (XPS) was used to analyze the surface chemical composition. Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM) were employed to assess the morphological nanostructure of the PDMS-chips. A confocal fluorescence analysis was utilized to check DNA distribution inside the chip.

  10. Determination of Roxarsone in feeds using solid phase extraction and liquid chromatography with ultraviolet detection.

    Sapp, R E; Davidson, S


    A method is presented for detection and quantitation of Roxarsone in poultry feed by liquid chromatography. The drug is extracted by phosphate buffer and determined by solid phase extraction and reversed-phase liquid chromatography. Recoveries of the sample spikes and fortified field samples agree closely with those obtained by the standard spectrophotometric method.


    TANG Xuelin; QIAN Zhongdong; WU Yulin


    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  12. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: a critical review.

    Donaldson, D J; Valsaraj, Kalliat T


    The air-water interface in atmospheric water films of aerosols and hydrometeors (fog, mist, ice, rain, and snow) presents an important surface for the adsorption and reaction of many organic trace gases and gaseous reactive oxidants (hydroxyl radical (OH(.)), ozone (O(3)), singlet oxygen (O(2)((1)Delta(g))), nitrate radicals (NO(3)(.)), and peroxy radicals (RO(2)(.)). Knowledge of the air-water interface partition constant of hydrophobic organic species is necessary for elucidating the significance of the interface in atmospheric fate and transport. Various methods of assessing both experimental and theoretical values of the thermodynamic partition constant and adsorption isotherm are described in this review. Further, the reactivity of trace gases with gas-phase oxidants (ozone and singlet oxygen) at the interface is summarized. Oxidation products are likely to be more water-soluble and precursors for secondary organic aerosols in hydrometeors. Estimation of characteristic times shows that heterogeneous photooxidation in water films can compete effectively with homogeneous gas-phase reactions for molecules in the atmosphere. This provides further support to the existing thesis that reactions of organic compounds at the air-water interface should be considered in gas-phase tropospheric chemistry.

  13. Tuning the Adsorption-Induced Phase Change in the Flexible Metal-Organic Framework Co(bdp).

    Taylor, Mercedes K; Runčevski, Tomče; Oktawiec, Julia; Gonzalez, Miguel I; Siegelman, Rebecca L; Mason, Jarad A; Ye, Jinxing; Brown, Craig M; Long, Jeffrey R


    Metal-organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal-organic framework Co(bdp) (bdp(2-) = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp(2-) ligand, namely, Co(F-bdp), Co(p-F2-bdp), Co(o-F2-bdp), Co(D4-bdp), and Co(p-Me2-bdp). These frameworks are isoreticular to the parent framework and exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face π-π interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH4 adsorption isotherms show that the pressure of the CH4-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH4 pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. Importantly, this work puts forth a general design strategy relevant to many other families of flexible metal-organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications.

  14. Traveling waves for models of phase transitions of solids driven by configurational forces

    Kawashima, Shuichi


    This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transformations of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models are recently proposed by Alber and Zhu. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transformations in elastic solids.

  15. Density-functional theory of a lattice-gas model with vapour, liquid, and solid phases

    Prestipino, S.; Giaquinta, P. V.


    We use the classical version of the density-functional theory in the weighted-density approximation to build up the entire phase diagram and the interface structure of a two-dimensional lattice-gas model which is known, from previous studies, to possess three stable phases -- solid, liquid, and vapour. Following the common practice, the attractive part of the potential is treated in a mean-field-like fashion, although with different prescriptions for the solid and the fluid phases. It turns o...

  16. Adsorption of Reactive Blue 171 from Aqueous Solution using Low Cost Activated Carbon Prepared from Agricultural Solid Waste: Albizia amara

    K. Anitha


    Full Text Available The adsorption of Reactive Blue 171 (Reactive Dye from aqueous solution using activated carbon prepared from Albizia amara pod shell waste as an adsorbent have been carried out. The experimental adsorption data fitted reasonably well to Langmuir and Freundlich adsorption isotherms. Kinetic parameters as a function of Initial dye concentration have been calculated and the kinetic data were substituted in Pseudo First Order, Elovich and Pseudo Second order equations. A probable explanation is offered to account for the results of kinetic study. The thermodynamic parameter enthalpy change (∆H suggests the exothermic nature of absorption of Reactive Blue 171 onto activated Albizia amara pod shell waste carbon.

  17. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)


    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  18. Detecting Lesch-Nyhan syndrome by solid phase primer extension

    Shumaker, J.M.; Caskey, C.T. [Baylor College of Medicine, Houston, TX (United States); Metspalu, A.


    A mutation detection method based upon the wild type human HPRT sequence is presented for identification of Lesch Nyhan syndrome. The technique consists of performing a biotinlyated PCR amplification of the region of interest, followed by isolation and purification of single stranded template using magnetic separation. Allele-specific primers are annealed adjacent to the potential mutation site on the template. A terminal fluorescent deoxynucleotide addition is performed with a DNA template-dependent polymerase to distinguish between the mutant and wild-type sequence. The products are purified from unincorporated ddNTPs, eluted and finally analyzed on an ABI 373 to identify the mutation. The length of an extension primer is used as a position signature for mutations. The fidelity of nucleotide incorporation provides an excellent signal-to-noise ratio for the detection of nine HPRT mutations within eight cell lines. This method should detect all types of mutations except for repeated sequences that are longer than the primers. Moreover, the method is being extended to a solid support assay, whereby the extension primers are attached to a two-dimensional glass surface. Following extension, the solid support is analyzed for radioactive incorporation. We have shown the sequence determination of a five base region of a wild-type sequence and two different HPRT mutations. As more dense oligonucleotide arrays are produced, this method could be extended to sequence the complete coding region of HPRT.

  19. Pentaerythrityltetramine scaffolds for solid-phase combinatorial chemistry.

    Virta, Pasi; Leppänen, Marika; Lönnberg, Harri


    Straightforward synthesis for two pentaerythrityltetramine precursors, 2,2-bis(azidomethyl)propane-1,3-diamine (1) and 2-[N-(allyloxycarbonyl)aminomethyl]-2-azidomethylpropane-1,3-diamine (2), has been described. Both propane-1,3-diamines have been attached by reductive amination to a solid-supported backbone amide linker derived from 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid. The presence of the two methoxy substituents on the linker is essential to avoid cross-linking between two linkers. The remaining free primary amino group of the propane-1,3-diamine moiety may then be selectively acylated with an appropriately protected amino acid using conventional N,N-dicyclohexylcarbodiimide/1-hydroxybenzotriazole (DCC/HOBt) activation without any interference by the secondary amino function. The latter group may be subsequently acylated by an anhydride method. Sequential reduction of the azido group and removal of the allyloxycarbonyl protection from 2 allow further coupling of two different amino acids, and hence, this handle may be utilized in construction of branched structures containing four different amino acids or peptides. Solid-supported 1 may, in turn, be used for the synthesis of similar constructs containing two identical branches. It is worth noting that no acid-labile protecting groups are required in this approach, and hence, this dimension may be saved for the cleavage of the linker. The applicability of the scaffolds to library synthesis has been demonstrated by preparation of 11 pentaerythrityl-branched tetra- and octapeptides.

  20. A novel Zn(4)O-based triazolyl benzoate MOF: synthesis, crystal structure, adsorption properties and solid state 13C NMR investigations.

    Lincke, Jörg; Lässig, Daniel; Stein, Karolin; Moellmer, Jens; Kuttatheyil, Anusree Viswanath; Reichenbach, Christian; Moeller, Andreas; Staudt, Reiner; Kalies, Grit; Bertmer, Marko; Krautscheid, Harald


    The newly synthesized Zn(4)O-based MOF (3)(∞)[Zn(4)(μ(4)-O){(Metrz-pba)(2)mPh}(3)]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm(3) g(-1) correlates well with the pore volume of 0.43 cm(3) g(-1) estimated from the single crystal structure.

  1. Mesoporous BaTiO₃@SBA-15 derived via solid state reaction and its excellent adsorption efficiency for the removal of hexavalent chromium from water.

    Kumari, Vandana; Sasidharan, Manickam; Bhaumik, Asim


    We report the synthesis of a barium-titanate/mesoporous silica nanocomposite material BaTiO3@SBA-15 via aerosol assisted solid state reaction using SBA-15 as a hard template. Hexavalent chromium is one of the most harmful contaminants of industrial waste-water. We have used BaTiO3@SBA-15 nanocomposite as an adsorbent for the removal of chromium(vi)-contaminated water and it showed an adsorption capacity of 98.2 wt% within only 40 min contact time in a batch reactor. This mesoporous composite has retained this excellent adsorption efficiency of hexavalent chromium for several repetitive cycles, suggesting its future potential for the remediation of water contaminated with Cr(vi).

  2. 太阳能固体吸附式制冷技术的研究与进展%Research and Development of Solar Solid Adsorption Refrigeration Technology

    刘家林; 郑学林


    The solar adsorption refrigeration which is a very promising green, and energy-efficient refrigeration technology,and also has been widely concerned and becoming a research focus of refrigerationis. This paper introduces generally the principles, current situation, existing problems and solutions of solar solid adsorption refrigeration technology,and analyses its application prospects.%指出了太阳能吸附式制冷是极具发展前途的绿色环保、节能的制冷技术,为当前制冷技术研究中的热点和焦点。综合介绍了太阳能固体吸附式制冷技术的原理、现状、存在的问题及其解决的措施,并对其应用前景作了分析和展望。

  3. Stability of phases in (Ba, Gd)MnO3 solid solution system

    Migaku Kobayashi; Hidenori Tamura; Hiromi Nakano; Hirohisa Satoh; Naoki Kamegashira


    The existing phases in BaxGd1-xMnO3 solid solution system (0≦x≦1) were studied by analyzing the detailed crystal structure of each composition from the results of the Rietveld method using powder X-ray diffraction data. For a small substitution of Ba for Gd (0≦x<0.1), the orthorhombic phase with a perovskite type structure (Pnma space group) was stably formed and this fact was supported by the electron diffraction data. There existed an intermediate phase of Ba0.33Gd0.67MnO3, which was characterized as the tetragonal phase with perovskite structure. The composition range of this phase was narrow and almost line compound. Between the regions of these phases, there existed two-phase region. There was also a two-phase region between the intermediate tetragonal phase and BaMnO3. Measurement of electrical conductivities of these orthorhombic solid solutions and tetragonal phases showed semiconducting behaviors for both phases and the existence of the phase transition at high temperature for the orthorhombic phase. The transition temperature decreased as the Ba content increased.

  4. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;


    Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films...... identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K...

  5. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids


    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  6. Spectrophotometric determination of basic fuchsin from various water samples after vortex assisted solid phase extraction using reduced graphene oxide as an adsorbent.

    Tokalıoğlu, Şerife; Yavuz, Emre; Aslantaş, Ayşe; Şahan, Halil; Taşkın, Ferhat; Patat, Şaban


    In this study, a fast and simple vortex assisted solid phase extraction method was developed for the separation/preconcentration of basic fuchsin in various water samples. The determination of basic fuchsin was carried out at a wavelength of 554 nm by spectrophotometry. Reduced graphene oxide which was used as a solid phase extractor was synthesized and characterized by X-ray diffraction, scanning electron microscopy and the Brunauer, Emmett and Teller. The optimum conditions are as follows: pH 2, contact times for adsorption and elution of 30 s and 90 s, respectively, 10 mg adsorbent, and eluent (ethanol) volume of 1 mL. The effects of some interfering ions and dyes were investigated. The method was linear in the concentration range of 50-250 μg L(-1). The adsorption capacity was 34.1 mg g(-1). The preconcentration factor, limit of detection and precision (RSD, %) of the method were found to be 400, 0.07 μg L(-1) and 1.2%, respectively. The described method was validated by analyzing basic fuchsin spiked certified reference material (SPS-WW1 Batch 114-Wastewater) and spiked real water samples.

  7. Speciation analysis of Mn(II)/Mn(VII) using Fe3O4@ionic liquids-β-cyclodextrin polymer magnetic solid phase extraction coupled with ICP-OES.

    Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi


    Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe3O4 nanoparticles to prepare magnetic solid phase extraction agent (Fe3O4@ILs-β-CDCP). The properties and morphology of Fe3O4@ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe3O4@ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe3O4@ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pipette-tip solid-phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water.

    Liu, Lingling; Tang, Weiyang; Tang, Baokun; Han, Dandan; Row, Kyung Ho; Zhu, Tao


    A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette-tip solid-phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01-96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette-tip solid-phase extraction method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    Majhi, Bijoy Kumar; Jash, Tushar


    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  10. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    Ansari, Seraj A; Mohapatra, Prasanta K


    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Positronium in solid phases of n-alkane binary mixtures

    Zgardzińska, B.; Goworek, T.


    Highlights: • Rotator phase in even alkanes C{sub n}H{sub 2n+2} with n ⩽ 20 appears in mixed samples only. • Interlamellar gap width is the same for shorter chain alkane concentration x and 1 − x. • Excess electron trapping diminishes with broadening of alkane chain distribution Δn. - Abstract: Binary mixtures of even-numbered normal alkanes C{sub n}H{sub 2n+2} and C{sub n+2}H{sub 2n+6} with n ⩽ 18 were investigated by positron annihilation spectroscopy. Formation of the rotator phase was observed in mixed structures, while no such a phase in neat alkanes in this range of n was found. Phase diagrams for n = 18 and n = 16 are very similar to the diagrams for binary mixtures of odd-numbered alkanes. The effect of positronium formation with trapped excess electrons weakens with decreasing n, at low n values the time constant of Ps rise contains the component much shorter than 1 h.

  12. All rights reserved Development of Headspace Solid-Phase ...


    Pesticide Residues in Fruit and Vegetable Samples using OFAT Design. *. 1,2. LUKMAN BOLA ... phase microextraction parameters (fiber coating type, extraction temperature and time, pH, salt addition ... production of food (Bakırcı, et al. 2014 ...

  13. SANS study of phase separation in solid {sup 3}He-{sup 4}He

    Koster, J.P.; Nagler, S.E.; Adams, E.D. [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Wignall, G.D. [Oak Ridge National Lab., TN (United States). Solid State Div.


    Small angle neutron scattering has been used to study phase separation in a quantum alloy, solid {sup 3}He{sub x}-{sup 4}He{sub 1{minus}x}. The onset of phase separation is marked by a dramatic increase in the measured scattering. A simple interpretation of the results suggests that the late-stage phase separation kinetics are dominated by an increase in the concentration of {sup 3}He atoms in preexisting precipitate regions.

  14. 水环境中共存重金属对不同固相物质吸附镉和铜的影响%Influence of Co-existing Heavy Metals on the Adsorption of Cadmium and Copper onto Different Types of Solid Materials in Aquatic System

    董会军; 花修艺; 贺丽; 董德明; 徐志璐; 梁大鹏; 郭志勇


    利用采集的固相物质(生物膜、悬浮颗粒物和沉积物)模拟水环境中多种固相物质共存吸附体系,研究共存金属对固相物质吸附镉和铜的影响.结果表明,各固相物质对镉的吸附均受共存金属(铜和铅)的抑制作用.当悬浮颗粒物吸附镉时,铜和铅的浓度增大,对镉吸附的抑制程度增强;当生物膜和沉积物吸附镉时,铅浓度的增加使得铅抑制镉的吸附作用增强,不同浓度的铜对镉吸附作用的抑制程度差别较小.共存铅对铜吸附有抑制作用,当铅浓度增加时,3种固相物质吸附铜所受的抑制作用均增强,而共存镉对铜的吸附影响较小.即在重金属总浓度较低时,重金属间的相互影响较小;随着重金属总浓度的增加,重金属间的相互影响增强.共存金属浓度变化对悬浮颗粒物吸附铜和镉受到的抑制程度影响较大,共存金属浓度越大,共存金属对悬浮颗粒物吸附镉和铜的抑制作用越强.%The influence of co-existing heavy metals on the adsorption of cadmium and copper onto solid phases was investigated by simulating aquatic multi-phase system comprising three types of solid phases, including biofilms, suspended paniculate materials and sediments, in the absence and presence of co-existing heavy metals. The results indicate that co-existing metals ( copper and lead) reduced the adsorption of cadmium to all solid phases remarkably. Under the conditions of the adsorption of cadmium onto suspended particulate materials, the reduction effects increased as the initial concentration of copper and lead increased. Under the conditions of the adsorption of cadmium to hiofilm and sediments, increasing lead initial concentra- tion enhanced the reduction effects on cadmium adsorption, but increasing copper initial concentration had little influence on the reduction effects. The co-existing lead reduced the adsorption of copper to solid materials and these reduction effects increased with

  15. Thermoelastic properties of solid phases: C++ object oriented library “SolidEOS”

    Churakov, Sergey V.


    A new object-oriented C++ library (SolidEOS) for calculating the thermoelastic properties of solids is presented. The implementation is based on the Mie-Grüneisen-Debye equation of state (EOS) augmented by lowest order correction for anharmonicity. Several commonly used static EOS like Birch-Murnaghan and Vinet models are available. Although some widely used approximation for the Debye-Grüneisen parameter and static EOS are implemented, the final behaviour of the EOS can be easily modified by overloading predefined virtual functions. The article provides a basic physical background of the modern theory of high-pressure EOS. The detailed documentation of the class hierarchy is summarized in the appendix, which accompanies the source. Several examples of practical use are given in the appendix as well. The library is appropriate for applications in geophysics, petrology, material science or any other field where thermodynamic and elastic properties of solids are relevant. The source code is available from the Computers & Geoscience software archive.

  16. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing


    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM(+)Cl(-)) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples.

  17. Adsorption mechanism in reversed-phase liquid chromatography. Effect of the surface coverage of a monomeric C18-silica stationary phase

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL


    The effect of the bonding density of the octadecyl chains onto the same silica on the adsorption and retention properties of low molecular weight compounds (phenol, caffeine, and sodium 2-naphthalene sulfonate) was investigated. The same mobile phase (methanol:water, 20:80, v/v) and temperature (T = 298 K) were applied and two duplicate columns (A and B) from each batch of packing material (neat silica, simply endcapped or C{sub 1} phase, 0.42, 1.01, 2.03, and 3.15 {micro}mol/m{sup 2} of C{sub 18} alkyl chains) were tested. Adsorption data of the three compounds were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) were calculated using the expectation-maximization method. Results confirmed earlier findings in linear chromatography of a retention maximum at an intermediate bonding density. From a general point of view, the saturation capacity of the adsorbent tends to decrease with increasing bonding density, due to the vanishing space intercalated between the C{sub 18} bonded chains and to the decrease of the specific surface area of the stationary phase. The equilibrium constants are maximum for an intermediary bonding density ({approx}2 {micro}mol/m{sup 2}). An enthalpy-entropy compensation was found for the thermodynamic parameters of the isotherm data. Weak equilibrium constants (small {Delta}H) and high saturation capacities (large {Delta}S) were observed at low bonding densities, higher equilibrium constants and lower saturation capacities at high bonding densities, the combinations leading to similar apparent retention in RPLC. The use of a low surface coverage column is recommended for preparative purposes.

  18. Solid materials for removing arsenic and method thereof

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.


    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  19. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Lu, Xiaoyan, E-mail:, E-mail:; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)


    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  20. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets

    Ghazaghi, Mehri [Department of Chemistry, College of Science, Semnan University, P.O. Box: 35131-19111, Semnan (Iran, Islamic Republic of); Mousavi, Hassan Zavvar, E-mail: [Department of Chemistry, College of Science, Semnan University, P.O. Box: 35131-19111, Semnan (Iran, Islamic Republic of); Rashidi, Ali Morad [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran (Iran, Islamic Republic of); Shirkhanloo, Hamid [Occupational and Environmental Health Research Center (OEHRC), Iranian Petroleum Industry Health Research Institute (IPIHRI), Tehran (Iran, Islamic Republic of); Rahighi, Reza [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran (Iran, Islamic Republic of); Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran (Iran, Islamic Republic of)


    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL{sup −1}), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL{sup −1}). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L{sup −1} for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24–15.6, 0.015–0.95 and 0.039–2.33 µg L{sup −1} for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned

  1. Optimizing the solid-phase immunofiltration assay. A rapid alternative to immunoassays.

    IJsselmuiden, O E; Herbrink, P; Meddens, M J; Tank, B; Stolz, E; Van Eijk, R V


    The technical variables of the solid-phase immunofiltration assay (SPIA) for the detection of antibodies bound to antigens on a solid-phase filter have been investigated. The binding to solid-phase filters of 125I-labelled axial filament proteins derived from Treponema phagedenis and the optimal conditions for blocking non-specific protein binding were analysed. Axial filament was applied to nitrocellulose, Hybond Nylon and Zeta Probe. After extensive rinsing, the highest amount (68%) of axial filament was observed bound to Zeta Probe. However, blocking non-specific protein binding by pre-wetting the filter with rinsing buffer containing 0.5% Tween 20, prevented the binding of protein to the filter only when nitrocellulose was used as solid phase. Tween 20 (0.5%) in the rinsing and incubation solutions was found to be necessary for the reduction of non-specific binding of contaminants in turbid sera. However, the use of such solutions resulted in a substantial leakage of antigen (47%) during rinsing procedures. Binding of antigen-specific antibody was analysed using 125I-labelled protein A. The maximal possible binding of the antibody occurred within 5 min when the antibody solution was filtered. For optimal binding of 125I-labelled protein A an incubation time of 1 h was needed. It is suggested that solid-phase immunofiltration may provide a rapid alternative for radioimmunoassays or enzyme immunoassays for the detection of specific antibodies.

  2. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L


    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. The synthesis and properties of the phases obtained by solid-solid reactions

    Blonska-Tabero A.


    Full Text Available The presented work encompasses the subject of the studies and the results obtained over the last years by the research workers of the Department of Inorganic Chemistry. They include mainly the studies on the reactivity of metal oxides, searching for new phases in binary and ternary systems of metal oxides as well as describing phase relations establishing in such systems. They also encompass works on the extensive characteristics of physico-chemical properties of the newly obtained compounds.

  4. Adsorption induced phase transition in Ti(Pc){sub 2} gas sensing films: A joint AFM-EDXR study

    Generosi, A., E-mail: [ISM-CNR, Area della Ricerca di Tor Vergata, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Rossi Albertini, V. [ISM-CNR, Area della Ricerca di Tor Vergata, Via Fosso del Cavaliere 100, 00133 Roma (Italy); Pennesi, G. [ISM-CNR, Area di Ricerca di Montelibretti, Via Salaria Km.29.5, 00116 Monterotondo Scalo, Roma (Italy); Paci, B. [ISM-CNR, Area della Ricerca di Tor Vergata, Via Fosso del Cavaliere 100, 00133 Roma (Italy)


    The morphological properties of thin metal phthalocyanine films, used as active material in gas sensing devices, are studied. Morphological changes, such as bulk or surface phase transitions, are key phenomena, having a determinant influence on the final properties and stability of the materials and devices. In this work, we successfully prove that joint in-situ atomic force microscopy and Energy Dispersive X-ray Reflectivity can be used, not only to monitor the sensing activity of bi[phthalocyaninato(2-)]titanium(IV) films, but also as a powerful tool to disclose the physical-chemical process beneath the sensing activity. Indeed it is shown that NO{sub x} adsorption activates a phase transition in the TiPc{sub 2} film, characterized by an oscillating behavior between two metastable states. Such phenomena endure as long as the gas molecules are present, finally evolving into the thermodynamically most stable phase. Fourier transform infrared spectroscopy analysis supports the above conclusions. - Highlights: • The NO{sub x} gas/TiPc{sub 2} sensing film interaction is investigated in real time. • Simultaneous EDXR/AFM techniques disclose a phase transition in the sensing material. • An oscillating α to β{sub 1} phase transition is induced by the presence of NO{sub x} molecules. • When the sensing process is concluded, the material turns to the most stable phase.

  5. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    Shi, Jianwei; Xiaoxu TENG; Wang, Linling; Long, Rong


    Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA) as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes...

  6. Solid solution, phase separation, and cathodoluminescence of GaP-ZnS nanostructures.

    Liu, Baodan; Bando, Yoshio; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri; Jiang, Xin


    Quaternary solid-solution nanowires made of GaP and ZnS have been synthesized through well-designed synthetic routines. The as-synthesized GaP-ZnS solid-solution nanowires exhibit decent crystallinity with the GaP phase as the host, while a large amount of twin structural defects are observed in ZnS-rich nanowires. Cathodoluminescence studies showed that GaP-rich solid-solution nanowires have a strong visible emission centered at 600 nm and the ZnS-rich solid-solution nanowires exhibited a weak emission peak in the UV range and a broad band in the range 400-600 nm. The formation mechanism, processes, and optical emissions of GaP-ZnS solid-solution nanowires were discussed in detail.

  7. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A


    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  8. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko


    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  9. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.


    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  10. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    唐学林; 徐宇; 吴玉林


    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  11. Rapid determination of 54 pharmaceutical and personal care products in fish samples using microwave-assisted extraction-Hollow fiber-Liquid/solid phase microextraction.

    Zhang, Yi; Guo, Wen; Yue, Zhenfeng; Lin, Li; Zhao, Fengjuan; Chen, Peijin; Wu, Weidong; Zhu, Hong; Yang, Bo; Kuang, Yanyun; Wang, Jiong


    In this paper, a simple, rapid, solvent-less and environmental friendliness microextraction method, microwave-assisted extraction-hollow fiber-liquid/solid phase microextraction (MAE-HF-L/SME), was developed for simultaneous extraction and enrichment of 54 trace hydrophilic/lipophilic pharmaceutical and personal care products (PPCPs) from fish samples. A solid-phase extraction material, solid-phase microextraction (SPME) fiber, was synthesized. The SPME fiber had a homogeneous, loose structure and good mechanical properties, and they exhibited a good adsorption capacity for most PPCPs selected. The material formed the basis for the method of MAE-HF-L/SME. A method of liquid chromatography-high resolution mass spectroscopy (LC-HRMS) for analysis of 54 PPCPs. Under optimal synthesis and extraction conditions, the limits of detection (LODs, n=3) and the limits of quantitation (LOQs, n=10) for the 54 PPCPs were between 0.01-0.50μg·kg(-1) and 0.052.00μg·kg(-1), respectively. Percent recoveries and the relative standard deviations (RSDs) in spiked fish samples (n=6) were between 56.3%-119.9% and 0.3%-17.1%, respectively. The microextraction process of 54 PPCPs in MAE-HF-L/SME took approximately 12min. The method has a low matrix interference and high enrichment factor and may be applicable for determination of 54 different PPCPs in fish samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J


    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  13. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.


    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  14. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy.

    Gul-E-Noor, Farhana; Jee, Bettina; Pöppl, Andreas; Hartmann, Martin; Himsl, Dieter; Bertmer, Marko


    The process of water adsorption on a dehydrated Cu(3)(BTC)(2) (copper (II) benzene 1,3,5-tricarboxylate) metal-organic framework (MOF) was studied with (1)H and (13)C solid-state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents with respect to copper) were adsorbed via the gas phase. (1)H and (13)C MAS NMR spectra of dehydrated and water-loaded Cu(3)(BTC)(2) samples gave evidence on the structural changes due to water adsorption within the MOF material as well as information on water dynamics. The analysis of (1)H spinning sideband intensities reveals differences in the (1)H-(63/65)Cu hyperfine coupling between dehydrated and water-loaded samples. The investigation was continued for 60 days to follow the stability of the Cu(3)(BTC)(2) network under humid conditions. NMR data reveal that Cu(3)(BTC)(2) decomposes quite fast with the decomposition being different for different water contents. This journal is © the Owner Societies 2011

  15. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples.

    Hu, Xiaolei; Wu, Xiao; Yang, Fanfan; Wang, Qiang; He, Chiyang; Liu, Shaorong


    A novel surface molecularly imprinted silica composite was prepared by a dummy-template imprinting strategy for the solid-phase extraction (SPE) of bisphenol A (BPA). 2,2-Bis(4-hydroxyphenyl) hexafluoropropane (BPAF) was chosen as the template molecule, and a hybrid technique was used for imprinting procedure. The imprinted silica was characterized by FT-IR spectroscopy, scanning electron microscope, thermo-gravimetric analysis, and nitrogen adsorption-desorption isotherms. The static binding test verified that the imprinted silica had much higher recognition ability for BPA than the non-imprinted silica, and the kinetic adsorption test presented the fast binding kinetics of the surface imprinted silica for BPA. When used as a SPE sorbent, the imprinted silica showed high extraction efficiencies and high enrichment factor for BPA. Based on the imprinted silica, a SPE-HPLC-UV method was developed and successfully applied to the detection of BPA in BPA-spiked lake water, tap water and drinking water samples with a high recovery of 97.3-106.0%, a RSD of 1.2-3.8% (n=3) and a limit of detection (S/N=3) of 0.3 ng/mL. The analysis results of a certified BPA sample also demonstrated the reliability of present method. The new surface dummy molecularly imprinted silica completely avoided the interference of the residual template molecules and greatly improved the binding kinetic of the target molecules. Therefore, it can be used as a good sorbent for SPE of BPA in environmental water samples.

  16. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  17. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  18. Extraction of Pb2+ using Silica from Rice Husks Ash (RHA – Chitosan as Solid Phase

    Hanandayu Widwiastuti


    Full Text Available The existence of lead (Pb compounds in waters can be caused of waste pollution from industrial activities such as dye and battery industries. Lead has toxic characteristic and is able to causing deseases. The levels of Cr(VI can be decreased by methods such as electroplating, oxidation, reduction, and membrane separation. But this methods require high cost and produce a lot of waste. Furthermore, those methods cannot determine the small concentration of Pb2+. Therefore, solid phase extraction is used because it’s a simple method and can be used to preconcentrate Pb2+ ion. The aim of this study is to create solid phase from nature material as an alternative method to determine Pb2+ in water samples. The solid phase is silica from rice husks ash (RHA that was modified using chitosan. To achieve that aim, the optimization of silica : chitosan composition was done. The influence of Pb2+ concentration and citric acid concentration was studied to obtain optimum recovery of Pb2+. Interaction between Pb2+ ion and solid phase silica – chitosan could be estimated based on the result. The result showed the optimum composition of silica : chitosan is 65% silica : 35% chitosan with Cation Exchange Capacity (CEC 0.00455 mek/g. Mass Adsorbed Pb2+for 1 g silica : chitosan 65% is 9.715 mg/g. Optimum recovery of Pb2+ on solid phase extraction is reached at concentration of Pb2+ 10 ppm and citric acid concentration 0.05 M (88.25 % and 81.18 %. This result showed that solid phase extraction using silica – chitosan can be used as an alternative method to determine Pb2+ in water.

  19. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles.

    Qvortrup, Katrine; Komnatnyy, Vitaly V; Nielsen, Thomas E


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino acids, including those with side-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis.

  20. Development of orthogonally protected hypusine for solid-phase peptide synthesis.

    Song, Aimin; Tom, Jeffrey; Yu, Zhiyong; Pham, Victoria; Tan, Dajin; Zhang, Dengxiong; Fang, Guoyong; Yu, Tao; Deshayes, Kurt


    An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.

  1. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating

    Fukui, Kunihiro; Kanayama, Keiji; Katoh, Manabu; Yamamoto, Tetsuya; Yoshida, Hideto


    Indium tin oxide (ITO) powder was synthesized from indium oxide and tin oxide powders by a solid-phase method using microwave heating and conventional heating methods. Microwave heating could reduce the treatment time necessary for the completion of the solid-phase reaction by 1/30. This decrease was attributed to an increase in the diffusion rate of Sn at the local heat spot in the indium oxide formed by microwave irradiation. However, microwave heating also decreased the amount of ITO produ...

  2. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    Zhou, Zhengwei; Jiang, Jia Qian


    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  3. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side-cha......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  4. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando


    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  5. Multi-walled carbon nanotube modified dummy-template magnetic molecularly imprinted microspheres as solid-phase extraction material for the determination of polychlorinated biphenyls in fish.

    Du, Xiaowen; Lin, Saichai; Gan, Ning; Chen, Xidong; Cao, Yuting; Li, Tianhua; Zhan, Pan


    Novel multi-walled carbon nanotube modified dummy-template molecularly imprinted microspheres (MWCNTs@DMMIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs). MWCNTs@DMMIPs were prepared by a surface molecular imprinting technique. Core-shell Fe3 O4 @SiO2 nanoparticles were employed as magnetic support. 3,4-Dichlorobenzene acetic acid was used as a dummy template instead of PCBs, methacrylic acid was used as functional monomer and ethylene glycol dimethacrylate was used as the cross-linker. The resulting absorbent was characterized by various methods. The adsorbent was employed for extracting PCBs and exhibited good selectivity and high adsorption efficiency. Furthermore, it was reusable and capable of magnetic separation. Adsorption kinetics fit well with a pseudo-second-order kinetic equation and also exhibited a three-stage intra-particle diffusion model. The Freundlich model was used to describe the adsorption isotherms. The materials were successfully applied to the magnetic dispersive solid-phase extraction of six kinds of PCBs followed by gas chromatography with mass spectrometry determination in fish samples, the limit of detection of six kinds of PCBs were 0.0028-0.0068 μg/L and spiked recoveries ranged between 73.41 and 114.21%. The prepared adsorbent was expected to be a new material for the removal and recovery of PCBs from contaminated foods.

  6. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples

    Zhu Rong; Zhao Wenhui; Zhai Meijuan; Wei Fangdi; Cai Zheng; Sheng Na [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China); Hu Qin, E-mail: [School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029 (China)


    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K{sub a}, and the apparent maximum number of binding sites, Q{sub max}, were estimated to be 1.25 x 10{sup 5} mL {mu}mol{sup -1} and 16.4 {mu}mol g{sup -1}, respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  7. Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis.

    Hao, Lin; Liu, Xingli; Wang, Juntao; Wang, Chun; Wu, Qiuhua; Wang, Zhi


    In this work, a chemically and thermally robust and highly porous zeolite-type metal-organic framework, zeolitic imidazolate framework-8 (ZIF-8), was used as both a precursor and a template and furfuryl alcohol as a second precursor to synthesize a nanoporous carbon. The prepared ZIF-8-derived nanoporous carbon was used as the solid-phase extraction adsorbent for the extraction of carbamate pesticides from cabbage and water samples. The adsorbed analytes were eluted with acetonitrile for the determination by high performance liquid chromatography-ultraviolet detection. The high surface area, high porosity, good stability and fast adsorption/desorption kinetics of the material enabled it to have a high adsorption capacity and good adsorption performance. Under optimum conditions, good linearity for the analytes in the range of 0.5-100 ng g(-1) and 0.05-20 ng mL(-1) existed for cabbage and water samples with the correlation coefficients of 0.9968-0.9980 and 0.9990-0.9995, respectively. The limits of detection (S/N=3) for the analytes were in the range of 0.25-0.1 ng g(-1) and 0.01-0.02 ng mL(-1) for the cabbage and water samples, respectively. The relative standard deviations (RSDs) for intra-day and the inter-day determinations of the analytes were below 7.0% and 12.5%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecularly imprinted layer-coated silica nanoparticles for selective solid-phase extraction of bisphenol A from chemical cleansing and cosmetics samples.

    Zhu, Rong; Zhao, Wenhui; Zhai, Meijuan; Wei, Fangdi; Cai, Zheng; Sheng, Na; Hu, Qin


    Highly selective molecularly imprinted layer-coated silica nanoparticles for bisphenol A (BPA) were synthesized by molecular imprinting technique with a sol-gel process on the supporter of silica nanoparticles. The BPA-imprinted silica nanoparticles were characterized by fourier transform infrared spectrometer, transmission electron microscope, dynamic adsorption and static adsorption tests. The equilibrium association constant, K(a), and the apparent maximum number of binding sites, Q(max), were estimated to be 1.25 x 10(5) mL micromol(-1) and 16.4 micromol g(-1), respectively. The BPA-imprinted silica nanoparticles solid-phase extraction (SPE) column had higher selectivity for BPA than the commercial C18-SPE column. The results of the study indicated that the prepared BPA-imprinted silica nanoparticles exhibited high adsorption capacity and selectivity, and offered a fast kinetics for the rebinding of BPA. The BPA-imprinted silica nanoparticles were successfully used in SPE to selectively enrich and determine BPA from shampoo, bath lotion and cosmetic cream samples.

  9. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  10. Adsorptive separation on metal-organic frameworks in the liquid phase.

    Van de Voorde, Ben; Bueken, Bart; Denayer, Joeri; De Vos, Dirk


    While much attention of the MOF community has been devoted to adsorption and purification of gases, there is now also a vast body of data on the capability of MOFs to separate and purify liquid mixtures. Initial studies focused on separation of petrochemicals in apolar backgrounds, but the attention has moved now to the separation of complex, e.g. chiral compounds, and to the isolation of biobased compounds from aqueous media. We here give an overview of most of the existing literature, with an accent on separation mechanisms and structure-selectivity relationships.

  11. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon.

    Sounthararajah, Danious P; Loganathan, Paripurnanda; Kandasamy, Jaya; Vigneswaran, Saravanamuthu


    Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC) and suspended solids (SS) are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA) (DOC representative), they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal) was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS) had no effect on Pb and Cu, but it did on the other metals.

  12. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Danious P. Sounthararajah


    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  13. Kinetics of lipase recovery from the aqueous phase of biodiesel production by macroporous resin adsorption and reuse of the adsorbed lipase for biodiesel preparation.

    Zhao, Xuebing; Fan, Ming; Zeng, Jing; Du, Wei; Liu, Canming; Liu, Dehua


    A commercial macroporous resin (D3520) was screened for lipase recovery by adsorption from the aqueous phase of biodiesel production. The influences of several factors on the adsorption kinetics were investigated. It was found that the kinetic behavior of lipase adsorption by macroporous resin could be well described by pseudo-first-order model. Temperature had no significant effects on lipase adsorption, while resin-to-protein ratio (R) significantly affected both rate constant (k1) and equilibrium adsorption capacity (Qe). No lipase was adsorbed when mixing (shaking) was not performed; however, protein recovery reached 98% after the adsorption was conducted at 200rpm for 5h in a shaker. The presence of methanol and glycerol showed significant negative influence on lipase adsorption kinetics. Particularly, increasing glycerol concentration could dramatically decrease k1 but not impact Qe. Biodiesel was found to dramatically decrease Qe even present at a concentration as low as 0.02%, while k1 was found to increase with biodiesel concentration. The adsorbed lipase showed a relatively stable catalytic activity in tert-butanol system, but poor stability in solvent-free system when used for biodiesel preparation. Oil and biodiesel were also found to adsorb onto resin during transesterification in solvent-free system. Therefore, the resin had to be washed by anhydrous methanol before re-used for lipase recovery.

  14. Adsorption-desorption induced structural changes of Cu-MOF evidenced by solid state NMR and EPR spectroscopy.

    Jiang, Yijiao; Huang, Jun; Kasumaj, Besnik; Jeschke, Gunnar; Hunger, Michael; Mallat, Tamas; Baiker, Alfons


    Adsorption-desorption induced structural changes of Cu(bpy)(H(2)O)(2)(BF(4)),(bpy) (bpy = 4,4'-bipyridine) [Cu-MOF] have been evidenced by combined NMR and EPR spectroscopy. Upon adsorption of probe molecules even at a few mbar, EPR spectra show that they are activated to form complexes at Cu(II) sites, which results in a change of the Cu-MOF's structure as indicated by a high-field shift of the (11)B MAS NMR. After desorption, both EPR and (11)B MAS NMR spectra evidenced that the structure of the Cu-MOF reversibly shifted to the original state. This observation indicates that MOFs can undergo structural changes during processes where adsorption-desorption steps are involved such as gas storage, separation, and catalysis.

  15. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin


    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat.

  16. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek


    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  17. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Aguilar, C., E-mail: [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)


    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  18. Optical manipulation of Berry phase in a solid-state spin qubit

    Yale, Christopher G; Zhou, Brian B; Auer, Adrian; Burkard, Guido; Awschalom, David D


    The phase relation between quantum states represents an essential resource for the storage and processing of quantum information. While quantum phases are commonly controlled dynamically by tuning energetic interactions, utilizing geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase control in solid-state systems rely on microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method based on stimulated Raman adiabatic passage to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy (NV) center in diamond. Using diffraction-limited laser light, we guide the NV center's spin along loops on the Bloch sphere to enclose arbitrary Berry phase and characterize these trajectories through time-resolved state tomography. We investigate the limits of this control due to loss of adiabiaticity and decoherence, as well as its robustness to noise intentionally introduced into t...

  19. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J


    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  20. Adsorption and nanowear properties of bovine submaxillary mucin films on solid surfaces: Influence of solution pH and substrate hydrophobicity

    Sotres, Javier; Madsen, Jan Busk; Arnebrant, Thomas;


    The adsorption and mechanical stability of bovine submaxillary mucins (BSM) films at solid-liquid interfaces were studied with respect to both substrate hydrophobicity and solution pH. Dynamic light scattering revealed a single peak distribution in neutral aqueous solution (pH 7.4) and a small...... fraction with enhanced aggregation was observed in acidic solution (pH 3.8). Both substrate hydrophobicity and solution pH were found to affect the spontaneous adsorption of BSM onto solid surfaces; BSM adsorbed more onto hydrophobic surfaces than hydrophilic ones, and adsorbed more at pH 3.8 than at pH 7.......4. Thus, the highest "dry" adsorbed mass was observed for hydrophobic surfaces in pH 3.8 solution. However, a highest "wet" adsorbed mass, i.e. which includes the solvent coupled to the film, was observed for hydrophobic surfaces at pH 7.4. The mechanical stability of the films was studied...

  1. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution--accurate computational models and experiment.

    Heinz, Hendrik


    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1-1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed.

  2. Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)


    Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.

  3. Numerical investigation of confined swirling gas-solid two phase jet


    This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.

  4. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa


    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  5. Numerical investigation of confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.


    S. Manna


    Full Text Available High performance liquid chromatographic determination of organophosphorous compound has been done by reverse phase chromatography in goats. The goats were dying showing the symptoms of organophosphorous poisoning. The viscera and stomach contents sample were received from Project Co-Ordinator, Animal Disease Research Institute, Phulnakhara, Cuttack, Orissa. The analysis of samples by HPLC with UV detector after cleaning up in Solid Phase Extraction (SPE revealed presence of malathion that was later quantified.

  7. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    ZHANG Zhi; CHEN Li-Rong


    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  8. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K


    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  9. Adsorption-Driven Catalytic and Photocatalytic Activity of Phase Tuned In2S3 Nanocrystals Synthesized via Ionic Liquids.

    Sharma, Rahul Kumar; Chouryal, Yogendra Nath; Chaudhari, Sushmita; Saravanakumar, Jeganathan; Dey, Suhash Ranjan; Ghosh, Pushpal


    Phase tuned quantum confined In2S3 nanocrystals are accessible solvothermally using task-specific ionic liquids (ILs) as structure directing agents. Selective tuning of size, shape, morphology and, most importantly, crystal phase of In2S3 is achieved by changing the alkyl side chain length, the H-bonding and aromatic -stacking ability of the 1-alkyl-3- methylimidazolium bromide ILs, [Cnmim]Br (n=2,4,6,8 and 10). It is observed that crystallite size is significantly less when ILs are used compared to the synthesis without ILs keeping the other reaction parameters same. At 150oC, when no IL is used, pure tetragonal form of -In2S3 appears however in presence of [Cnmim]Br [n=2,4], at the same reaction condition, a pure cubic phase crystallizes. However in case of methylimidazolium bromides with longer pendant alkyl chains such as hexyl (C6), octyl (C8) or decyl (C10), nanoparticles of the tetragonal polymorph form. Likewise, judicious choice of reaction temperature and precursors has a profound effect to obtain phase pure and morphology controlled nanocrystals. Furthermore, the adsorption driven catalytic and photocatalytic activity of as-prepared nanosized indium sulphide is confirmed by studying the degradation of crystal violet (CV) dye in presence of dark and visible light. Maximum 94.8 % catalytic efficiency is obtained for the In2S3 nanocrystals using tetramethylammonium bromide (TMAB) ionic liquid.

  10. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari


    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  11. Separation of monosaccharides by solid-phase extraction with ionic liquid-modified microporous polymers.

    Tian, Minglei; Bi, Wentao; Row, Kyung H


    Ionic liquid-modified porous polymers with large surface area and large amount of functional groups were developed and used in SPE to separate four monosaccharides. Adsorption isotherm showed that the sorbent with amino ionic liquid groups had the highest interaction with the target compounds. The mobile phase of acetonitrile/water 85:15 and 73:30 v/v can successfully separate the monosaccharides. The sorbent produced reproducible results and performed stably, demonstrating its potential applicability in the separation of extract from natural plant. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Angin, Dilek


    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater.

  13. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  14. First-leaflet phase effect on properties of phospholipid bilayer formed through vesicle adsorption on LB monolayer.

    Park, Jin-Won


    Phospholipid bilayers were formed on mica using the Langmuir-Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin-Landau-Verwey-Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.

  15. Evaluation of Removal and Adsorption Isotherms of Zinc and Copper from Municipal Solid Waste Leachate Using Clinoptilolite Adsorbent

    ali toolabi


    Full Text Available Introduction and Purpose: Heavy metals are among the most important pollutants in leachate waste, causing serious health risks for humans through entering the food chain and reaching the top of food pyramid. Therefore, this study aimed to evaluate the efficacy of modified clinoptilolite in the removal of copper and zinc ions from landfill leachate and modeling of adsorption isotherms and reactions.Methods: This cross-sectional in vitro study was conducted to test waste landfill leachate as a true sample for four seasons in 2014 in Bam, Iran. Natural zeolite (clinoptilolite, modified with 2 M HNO3 solution, was used to remove copper and zinc. Experiments were conducted as batch systems, in which the effects of pH, adsorbent dosage, and contact time on the adsorption of heavy metals in municipal waste landfill leachate by clinoptilolite (as soil amendment were investigated. Afterwards, the adsorption isotherms of each adsorbent were demonstrated.Results: In total, the removal efficency of zinc in the optimum pH=5, equallied time=120 min and Adsorbent dosage of 120g/l was reached 92%. Adsorption isotherms indicated that the capacity of this adsorbent was higher in zinc, compared to copper, and adsorbents were absorbed with higher energy. The adsorption process was based on Langmuir’s equations (isotherm type II (R2=0.99.Conclusion: According to the results, adsorption capacity of clinoptilolite was high for copper and zinc and based on isotherm equations, adsorption took place with higher energy. It was concluded that this method could be used for the removal of these metals due to its high removal efficiency. Therefore, it is recommended that further studies be conducted to evaluate the possibility of removal of other heavy metals with this method.

  16. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua


    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  17. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu


    Full Text Available Solid-phase organic synthesis (SPOS and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i alumina or silica, either having doped with metal salts or directly, and (ii polyionic resins to either promote various organic reactions or to immobilize reagents/metal catalysts for subsequent use in hydrogenation and cross-coupling reactions. The reaction parameters, scopes, and limitations, particularly in the context of green chemistry, have been highlighted with pertinent approaches by other groups.

  18. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    Sabatino, Giuseppina; Papini, Anna M


    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  19. The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions

    Cai, Xin; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Huang, Yi


    Nd-doped single-phase zirconolite solid solutions was synthesized by solid-state reaction and following two steps of acid treatment. The phase composition, microstructure, and chemical durability of the zirconolite solid solutions were investigated. About 15 at% Nd was successfully stabilized into the zirconolite. The element mapping images of Ca, Zr, Nd and Ti show that all the elements are almost distributed homogeneously in the zirconolite waste forms. Product Consistency Test (PCT) was conducted under different pH values (pH = 5, 7 and 9) to evaluate the chemical durability of the Nd-doped zirconolite waste forms. The normalized element release rate of Ca (LRCa) in pH = 5 medium is higher than that of pH = 7 and 9, while the LRNd value remains almost unchanged under different pH values. The LRNd value is as low as 10-5 g m-2 d-1 after 42 days.

  20. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong


    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.