Sample records for solid particulate material

  1. Transport phenomena and drying of solids and particulate materials

    Lima, AG


    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  2. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...

  3. Steel silos for particulate solid materials : part 2 - membrane forces at filling and discharge.

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan


    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  4. Steel silos for particulate solid materials. Part 1, Actions at filling and discharge.

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan


    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  5. Fluidizing device for solid particulates

    Diebold, J.P.; Scahill, J.W.

    A flexible whip suspended in a hopper is caused to impact against fibrous and irregularly shaped particulates in the hopper to fluidize the particulates and facilitate the flow of the particulates through the hopper. The invention provides for the flow of particulates at a substantially constant mass flow rate and uses a minimum of energy.

  6. Transporting particulate material

    Aldred, Derek Leslie [North Hollywood, CA; Rader, Jeffrey A [North Hollywood, CA; Saunders, Timothy W [North Hollywood, CA


    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  7. Methods for Coating Particulate Material

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)


    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  8. Material Instabilities in Particulate Systems

    Goddard, J. D.


    Following is a brief summary of a theoretical investigation of material (or constitutive) instability associated with shear induced particle migration in dense particulate suspensions or granular media. It is shown that one can obtain a fairly general linear-stability analysis, including the effects of shear-induced anisotropy in the base flow as well as Reynolds dilatancy. A criterion is presented here for simple shearing instability in the absence of inertia and dilatancy.


    Wolfgang Peukert


    An important development in Particle Technology is directed towards tailored product properties, i.e. product engineering. Product properties are strongly related to the disperse properties of the particles, i.e. their size, shape, morphology and surface. We discuss some general applicable principles in product engineering and give various examples. Strongly related to this approach are methods to characterize and to tailor product and particle properties. For systems which are controlled by the interfaces (e.g. particles in the micron size range and below) we apply a multi-scale approach from the particulate interfaces over particle interactions to the macroscopic properties. Thus, we tailor macroscopic product properties through microscopic control of the interfaces. This approach must be complemented by methods to characterize particle and product properties. It is shown that by careful consideration of the underlying physical processes considerable progress can be achieved.

  10. The Evaluation of Illite/Kaolinite Clay Submicrometer Particulate Materials for the Development of Geopolymer Type Solids

    Mežinskis, G; Grase, L; Buiķe, I; Plūdons, A; Lindiņa, L; Vītiņa, I; Šutka, A


    Geopolimers or alkali-activated binders could be defined in accordance with the chemical composition of raw materials used for preparation: alkali-activated binder on the fly ashes basis (blast furnance slag, rice rusk), alkali-activated binder on the metakaolin basis. Alternative procedure of geopolymer synthesis which does not require activation by alkaline silicate solution is based on preparation active geopolymer precursor by direct calcinations of low quality kaolin with Na/K hydroxides...

  11. Methods and apparatus for coating particulate material

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)


    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  12. Particulate organic carbon and particulate humic material in the Arabian Sea

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  13. Removal of Particulate Contamination from Solid Surfaces Using Polymeric Micropillars.

    Izadi, Hadi; Dogra, Navneet; Perreault, François; Schwarz, Cynthia; Simon, Stefan; Vanderlick, T Kyle


    This Research Article describes a novel method for removal of particulate contamination, loosely referred to as dust, from solid surfaces using polymeric micropillars. In this Research Article, we illustrate for the first time that polymeric microfibrils of controlled interfacial and geometrical properties can effectively remove micrometric and submicrometric contaminant particles from a solid surface without damaging the underlying substrate. Once these microfibrils are brought into contact with a contaminated surface, because of their their soft and flexible structure, they develop intimate contact with both the surface contaminants and the substrate. While these intrinsically nonsticky micropillars have minimal interfacial interactions with the substrate, we show that they produce strong interfacial interactions with the contaminant particles, granting the detachment of the particles from the surface upon retraction of the cleaning material. The origin and strength of the interfacial interactions at the interfaces between a contaminant particle and both the substrate and the cleaning materials are thoroughly discussed. Unlike flat substrates of the same material, using microfibrillar structures of controlled interfacial and geometrical properties also allows the elimination of the adsorbed particles from the contact interface. Here we demonstrate that by moving the adsorbed particles from the tip to the side of the fibrils and consequently removing them from the contact interface, polymeric microfibrils can clean all contaminant particles from the surface. The effects of the geometrical and interfacial properties of polymeric micropillars on removing the adsorbed particles from the tips of the pillars are fully discussed. This research is not only important in terms of introducing a novel method which can offer a new paradigm for thorough yet nondestructive cleaning of dust particles from solid surfaces, but also it is of fundamental significance for researchers

  14. Methods and apparatus for handling or treating particulate material

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)


    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  15. Production, handling and characterization of particulate materials

    Meesters, Gabriel


    This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale.  The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses  issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum...

  16. The nature of particulate organic matter settled on solid substrata

    Sharma, M.O.; Wagh, A.B.

    of the particulate material recovered from these two surfaces. Highly significant correlations were observed between the bacterial numbers and the measured parameters. This probably suggests that bacteria were the major source of the particulate matter settled... immerges dans un estuaire a ete analysce: bacteries, chlorophylle a, poids sec, matiere organique, carbone organique, azote, proteines, glueides et lipides. Aucune difference n'a etc dccelee dans lacomposition de la matiere organique et dans les...

  17. Pressure Interaction of Mixing Particulate Material Along the Blade Length

    Peciar Peter; Peciar Marián; Fekete Roman; Úradníček Juraj


    To assess the energy intensity of particulate materials mixing, it is necessary to know the state of stress in the particulate material in front of mixing elements. The theoretical background of this process results from the theory of the equilibrium limit of the particulate material, and this state may by described by Mohr’s circle theory and the Novosad model. Based on the above assumptions, it is possible to derive the pressure distribution along the blade height, but only for an infinitel...

  18. Assessment of Internal Fabric of Particulate Materials

    Alshibi, Khalid A.


    Particle arrangement and distribution within a soil matrix has long been recognized as having significant influence on the mechanical behavior of cohesionless soils. It is well known that two soil specimens having the same grain type (e.g., quartz, feldspar, etc.), same grain size distribution and relative density (or void ratio) can display completely different mechanical behavior. Because of the different fabric configurations in the otherwise similar specimens, they are likely to have different mechanical properties such as stress-strain response, anisotropy, dilatancy, etc. Soil Fabric is defined as the arrangement of particles, particle groups and associated pore space. In the literature, fabric analysis techniques are mainly classified as destructive (e.g., specimen stabilization, thin-sectioning, and microscopy), and nondestructive techniques (e.g., magnetic resonance imaging, ultrasonic testing, x-ray radiography, and computed tomography). Quantifying the void ratio and its distribution is the main parameter used to describe the fabric of particulate materials. This paper presents a comprehensive literature review of fabric analysis techniques applied to particulate materials. In addition, the results of a comprehensive investigation to quantify void ratio of sand specimens will be presented and discussed. The sand used in the experiments in a natural, uniform rounded to sub-rounded silica sand known as F-75 banding sand with mean particle size of 0.22 mm. Uniform specimens and specimens subjected to different axial-strain levels tested under triaxial and biaxial conditions are examined to evaluate void ratio evolution and its distribution using destructive thin-sectioning and nondestructive Computed Tomography (CT) techniques. Details of a new innovative polygon generation technique called Voronoi tessellation used to quantify void ratio of microscopic images of sand grains will be presented and compared to classical Oda's method. Finally, frequency

  19. Hyperspectral imaging applied to complex particulate solids systems

    Bonifazi, Giuseppe; Serranti, Silvia


    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  20. Experiments to investigate particulate materials in reduced gravity fields

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.


    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  1. Internal relaxation time in immersed particulate materials

    Rognon, P; Gay, C


    We study the dynamics of the solid to liquid transition for a model material made of elastic particles immersed in a viscous fluid. The interaction between particle surfaces includes their viscous lubrication, a sharp repulsion when they get closer than a tuned steric length and their elastic deflection induced by those two forces. We use Soft Dynamics to simulate the dynamics of this material when it experiences a step increase in the shear stress and a constant normal stress. We observe a long creep phase before a substantial flow eventually establishes. We find that the typical creep time relies on an internal relaxation process, namely the separation of two particles driven by the applied stress and resisted by the viscous friction. This mechanism should be relevant for granular pastes, living cells, emulsions and wet foams.

  2. Sheared solid materials

    Akira Onuki; Akira Furukawa; Akihiko Minami


    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  3. Thermal conductivity measurements of particulate materials under Martian conditions

    Presley, M. A.; Christensen, P. R.


    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to

  4. Effect of the particle interactions on the structuration and mechanical strength of particulate materials

    Sibrant, A. L. R.; Pauchard, L.


    We investigate the effect of the particles interaction on the mechanical strength of particulate materials. Starting from a dispersion of charged particles, the interparticle force can be modulated by the addition of ionic species. The structuration of the medium is then governed by the competition between drying and gelation processes. Rheological measurements show that addition of ionic species boosts the aggregation dynamics into a solid state and changes the structural properties of the final material. This last point is highlighted by precise measurements of i) the mechanical properties of particulate materials through crack pattern quantification, supported by indentation testing, and ii) the permeation properties during the drying process in a controlled geometry. In particular, these results show a decrease of the drained elastic modulus and an increase in the pore size when the ionic species content in the particulate material is increased. Hence, we show that the solid structure behaves mechanically as a network whose pore size increases when the electrostatic repulsion between particles is decreased. These results are consistent with the fact that the way particulate materials are structured determines their mechanical properties.

  5. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.


    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  6. Distilling solid carbonaceous materials

    Ainscow, J.W.H.


    Carbonaceous materials such as coal or oil shale are distilled by being passed in a continuous stream through a retort heated externally and at temperatures increasing from the inlet to the outlet end, the distillates being taken off through openings in the retort wall.

  7. Self-healing of damaged particulate materials through sintering

    Luding, S.; Suiker, A.S.J.


    Particulate materials loaded under uniaxial compression and tension are studied using the discrete element method. Self-healing of the damaged samples is activated through sintering, a process that effectively increases the contact adhesion (i.e. the tensile strength) between particles. The initial

  8. The distribution of particulate material on Mars

    Christensen, Philip R.


    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.

  9. Nanoprobes, nanostructured materials and solid state materials

    Yin, Houping


    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  10. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials

    Hoffman, A. R.; Maag, C. R.


    Results are presented for the first phase of a photovoltaic-module soiling study that was carried out with NASA participation to investigate the problem of the electrical performance degradation of flat-plate photovoltaic modules exposed at outdoor sites that is due to the accumulation of airborne particulates on sensitive optical surfaces. The results were obtained in both field and laboratory soiling experiments, as well as in materials field experiments using candidate encapsulants and top covers. It is concluded that: (1) the electrical performance degradation shows a significant time and site dependence, ranging from 2% to 60% power loss; (2) the rate of particulate accumulation appears to be largely material independent when natural removal processes do not dominate; (3) the effectiveness of natural removal processes, especially rain, is strongly material dependent; (4) top-cover materials of glass and plexiglass retain fewer particles than silicone rubber; and (5) high module voltages relative to ground do not appear to affect the rate of dirt accumulation on modules.

  11. Metal removal via particulate material in a lowland river system.

    Webster-Brown, J G; Dee, T J; Hegan, A F


    Twelve month surveys of acid-soluble and dissolved trace metal concentrations in the lower Waikato River (in 1998/9 and 2005/6) showed abnormally low particulate Fe, Mn, Cu, Pb and Zn concentrations and mass flux in autumn, when the suspended particulate material (SPM) had a relatively high diatom and organic carbon content, and low Fe and Al content. Dissolved Mn, Cu and Zn concentrations also decreased in autumn, while dissolved Fe and Pb concentrations were unaffected. While SPM settlement under the low river flow conditions present in autumn can explain the removal of particulate metals, it does not explain dissolved metal removal. SPM-metal interaction was therefore investigated using seasonal monitoring data, experimental adsorption studies, sequential extraction and geochemical modelling. Pb binding to SPM occurred predominantly via Fe-oxide surfaces, and could be reliably predicted using surface complexation adsorption modelling. Dissolved Mn concentrations were controlled by the solubility of Mn oxide, but enhanced removal during autumn could be attributed to uptake by diatoms. Zn and Cu were also adsorbed on Fe-oxide in the SPM, but removal from the water column in autumn appeared augmented by Zn adsorption onto Mn-oxide, and Cu adsorption onto the organic extracellular surfaces of the diatoms.

  12. Dynamic behavior of particulate/porous energetic materials

    Nesterenko, Vitali F.; Chiu, Po-Hsun; Braithwaite, C. H.; Collins, Adam; Williamson, David Martin; Olney, Karl L.; Benson, David; McKenzie, Francesca


    Dynamic behavior of particulate/porous energetic materials in a broad range of dynamic conditions (low velocity impact and explosively driven expansion of rings) is discussed. Samples of these materials were fabricated using Cold Isostatic Pressing and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength and output of energy under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to undergo bulk distributed fracture resulting in small size reactive fragments. The mechanical properties of these materials and the fragment sizes produced by fracturing are highly sensitive to mesostructure. For example, the dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composites with coarse W particles at the same porosity. The morphology of W inclusions had a strong effect on the dynamic strength and fracture pattern. Experimental results are compared with numerical data.

  13. A photometric function for diffuse reflection by particulate materials

    Meador, W. E.; Weaver, W. R.


    A photometric function is proposed to describe the diffuse reflection of radiation by particulate materials. Both multiple scattering and the dominant effects of particle shadowing are included and the function is verified by comparisons with the photometries of laboratory surfaces. Brightness measurements of planetary and other diffusely scattering surfaces can be used to calculate the brightness for geometries other than those used in the measurements and for which the Minnaert function does not apply. The measurements also can be directly related to such surface characteristics as particle size, single-particle albedo, and compactness.

  14. Solid electrolytes general principles, characterization, materials, applications

    Hagenmuller, Paul


    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  15. High-Fidelity Micromechanics Model Enhanced for Multiphase Particulate Materials

    Pindera, Marek-Jerzy; Arnold, Steven M.


    This 3-year effort involves the development of a comprehensive micromechanics model and a related computer code, capable of accurately estimating both the average response and the local stress and strain fields in the individual phases, assuming both elastic and inelastic behavior. During the first year (fiscal year 2001) of the investigation, a version of the model called the High-Fidelity Generalized Method of Cells (HFGMC) was successfully completed for the thermo-inelastic response of continuously reinforced multiphased materials with arbitrary periodic microstructures (refs. 1 and 2). The model s excellent predictive capability for both the macroscopic response and the microlevel stress and strain fields was demonstrated through comparison with exact analytical and finite element solutions. This year, HFGMC was further extended in two technologically significant ways. The first enhancement entailed the incorporation of fiber/matrix debonding capability into the two-dimensional version of HFGMC for modeling the response of unidirectionally reinforced composites such as titanium matrix composites, which exhibit poor fiber/matrix bond. Comparison with experimental data validated the model s predictive capability. The second enhancement entailed further generalization of HFGMC to three dimensions to enable modeling the response of particulate-reinforced (discontinuous) composites in the elastic material behavior domain. Next year, the three-dimensional version will be generalized to encompass inelastic effects due to plasticity, viscoplasticity, and damage, as well as coupled electromagnetothermomechanical (including piezoelectric) effects.

  16. The measurement of the charging properties of fine particulate materials in pneumatic suspension

    Armour-Chelu, D.I


    This document describes a programme of work that was designed to develop an improved understanding of the electrostatic charging properties of particulate materials with a view to applying this knowledge to the measurement of particulate concentrations in air-solid suspensions. An extensive literature review has been carried out. Some eighty published works were found and these concentrated on indirect charge measurement, the measurement of the two-phase pipe flow parameters, and on finding suitable models to explain tile work function given to insulators during metal to insulator contact. These areas are covered well in the field of electrostatics but data currently available in the area of programme of work being described here is very, limited, and so it is proposed that this research project will aim to improve such understanding. A test facility was developed to provide information from the flow of a particulate material under known conditions (particle velocity, suspension density). This test facility utilised three sensing probes, each with discrete charge amplifier units, at specific locations: one at the beginning and two further down the pipeline being utilised. Hence, the charging tendencies of any material were observed using this facility. The results obtained from this facility show the charging tendency of three particulate materials under various flow conditions. Signal processing techniques were developed to infer the suspension density for each flow condition and to estimate average particle velocity. Further analysis of the data resulted in tile derivation of a power spectral estimate for some of the flow conditions. This estimate was considered with the particle size distribution, as well as the estimate of tile average particle velocity, and there is a linkage. The main material selected for this programme was aluminium hydroxide. This was tested at environmental temperatures of 19 and 30 deg. C with relative humidity (RH) levels of 35, 45, and

  17. Solid Particle Erosion response of fiber and particulate filled polymer based hybrid composites: A review

    Yogesh M


    Full Text Available The solid particle erosion behaviour of fiber and particulate filled polymer composites has been reviewed. An overview of the problem of solid particle erosion was given with respect to the processes and modes during erosion with focus on polymer matrix composites. The new aspects in the experimental studies of erosion of fiber and particulate filled polymer composites were emphasized in this paper. Various predictions and models proposed to describe the erosion rate were listed and their suitability was mentioned. Implementation of design of experiments and statistical techniques in analyzing the erosion behaviour of composites was discussed. Recent findings on erosion response of multi-component hybrid composites were also presented. Recommendations were given on how to solve some open questions related to the structureerosion resistance relationships for polymers and polymer based hybrid composites.

  18. Understanding bulk behavior of particulate materials from particle scale simulations

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  19. Thermal conductivity of particulate materials: A summary of measurements taken at the Marshall Space Flight Center

    Fountain, J. A.


    Thermal conductivity measurements of particulate materials in vacuum are presented in summary. Particulate basalt and soda lime glass beads of various size ranges were used as samples. The differentiated line heat source method was used for the measurements. A comprehensive table is shown giving all pertinent experimental conditions. Least-squares curve fits to the data are presented.

  20. Determination of particulate-bound formaldehyde from burning incense by solid phase microextraction.

    Liou, S W; Chen, C Y; Yang, T T; Lin, J M


    This work studied the feasibility of using a solid phase microextraction (SPME) fiber for sampling and analysis of gaseous formaldehyde as well as particulate-bound formaldehyde from burning Chinese incense. The SPME fiber with PDMS/DVB coating were partially coated with o-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA), and used for sampling formaldehyde. The sampling rate for formaldehyde and its dependence on temperature, relative humidity and sampling time were observed. The same PFBHA treated fibers were, in parallel, exposed to incense burning smoke with pre-filtration and without pre- filtration for 0.5-1 min. The NIOSH method 2541 using an XAD-2 tube at a flow rate of 0.1 Lpm was also applied for sampling simultaneously. The results demonstrate that commercially available PDMS/DVB fibers partially coated with PFBHA are capable of sampling the gas phase of formaldehyde as well as particulate-bound formaldehyde. The determined level of formaldehyde was close to the result obtained by the NIOSH method 2541. However, a reduction of the fiber's formaldehyde loading capacity in the aerosol sampling in comparison with gas sampling was noticed. This indicates that the particulate characteristics, and their bound chemicals other than formaldehyde may influence the maximum loading capacity of formaldehyde, and some characteristic particulates in high concentrations may even deteriorate the fiber coating.

  1. Solid Phase Characterization of Tank 241-AY-102 Annulus Space Particulate

    Cooke, G. A.


    The Special Analytical Studies Group at the 222-S Laboratory (222-S) examined the particulate recovered from a series of samples from the annular space of tank 241-AY-102 (AY-102) using solid phase characterization (SPC) methods. These include scanning electron microscopy (SEM) using the ASPEX®1 scanning electron microscope, X-ray diffraction (XRD) using the Rigaku®2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon®3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information.

  2. Particulate matter chemical component concentrations and sources in settings of household solid fuel use.

    Secrest, Matthew H; Schauer, James J; Carter, Ellison; Baumgartner, Jill


    Particulate matter (PM) air pollution derives from combustion and non-combustion sources and consists of various chemical species that may differentially impact human health and climate. Previous reviews of PM chemical component concentrations and sources focus on high-income urban settings, which likely differ from the low- and middle-income settings where solid fuel (i.e., coal, biomass) is commonly burned for cooking and heating. We aimed to summarize the concentrations of PM chemical components and their contributing sources in settings where solid fuel is burned. We searched the literature for studies that reported PM component concentrations from homes, personal exposures, and direct stove emissions under uncontrolled, real-world conditions. We calculated weighted mean daily concentrations for select PM components and compared sources of PM determined by source apportionment. Our search criteria yielded 48 studies conducted in 12 countries. Weighted mean daily cooking area concentrations of elemental carbon, organic carbon, and benzo(a)pyrene were 18.8 μg m(-3) , 74.0 μg m(-3) , and 155 ng m(-3) , respectively. Solid fuel combustion explained 29% to 48% of principal component / factor analysis variance and 41% to 87% of PM mass determined by positive matrix factorization. Several indoor and outdoor sources impact PM concentrations and composition in these settings, including solid fuel burning, mobile emissions, dust, and solid waste burning. This article is protected by copyright. All rights reserved.

  3. Emission factors of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from residential solid fuel combustions

    Shen, Guofeng [Jiangsu Academy of Environmental Science, Nanjing (China). Inst. of Atmospheric Sciences


    Emission inventory is basic for the understanding of environmental behaviors and potential effects of compounds, however, current inventories are often associated with relatively high uncertainties. One important reason is the lack of emission factors, especially for the residential solid fuel combustion in developing countries. In the present study, emission factors of a group of pollutants including particulate matter, organic carbon, elemental carbon (sometimes known as black carbon) and polycyclic aromatic hydrocarbons were measured for a variety of residential solid fuels including coal, crop straw, wood, and biomass pellets in rural China. The study provided a large number of emission factors that can be further used in emission estimation. Composition profiles and isomer ratios were investigated and compared so as to be used in source apportionment. In addition, the present study identified and quantified the influence of factors like fuel moisture, volatile matter on emission performance.


    Dmitrenko D. V.


    Full Text Available The article is dedicated to the determination of conditions for solid bodies’ fragmentation, providing minimal size of particles by means of their mechanical dispersion through the example of powders of titanium carbide (TiC, cubic boron nitride – borazon (CBN and boron carbide (B4C. The theoretical and practical aspects of the process of mechanical fragmentation of particles of solid powder materials in ball mill for their further utilization in furnace charge for high-speed gas-flame sputtering of wear-resistant composite materials are examined in the article. Methods of preliminary calculation of minimum allowable size of solid particles of powder materials during mechanical fragmentation, based upon Griffiths’ mechanical theory of rapture using experimental data for hardness of material and its yield are proposed and theoretically substantiated. There we have the results of experiments on mechanical fragmentation of titanium carbide in attritor, boron carbide and cubic boron nitride in centrifugal planetary mill, confirming correctness of theoretical propositions and calculations are set out. Recommendations on mechanical fragmentation of solid powder materials in ball mills are formulated as well

  5. A Study of Solid Particles Feeding Tehnic by Fluidization Une technique d'alimentation en particules solides par fluidisation

    Dolignier J.-C.


    Full Text Available The study of heterogeneous reactions in a drop tube furnace, at a laboratory scale, needs a continuous feeding and dispersing technic to yield mass flow rates as low as 1 g/h. In the present work, a solution based on fluidization, is proposed. A mixture of lime and sand is fluidized at a superficial velocity higher than the free fall velocity of the lime particles which are therefore carried over by the fluidizing gas stream out of the bed. The effects of various parameters such as the particles diameter, the lime content in the solid mixture, the height of the fluidized bed and the gas fluidizing velocity, on the flow have been investigated. The operating conditions leading to the obtention of a constant solid rate have been optimized. A simple method of evaluating the mass of the evacuated and dispersed lime particles have been developed, and satisfactory results were obtained. L'étude des réactions hétérogènes dans un four à chute à l'échelle du laboratoire nécessite l'utilisation d'une technique d'alimentation et de dispersion afin de débiter des masses de solides autour de 1 g/h. Dans ce présent travail, une technique basée sur la fluidisation est proposée. Un mélange de chaux et de sable est fluidisé à une vitesse superficielle plus élevée que la vitesse terminale de chute des particules de chaux, qui par conséquent sont transportées hors du lit. L'influence des divers paramètres tels que le diamètre des particules, le pourcentage de chaux dans le mélange, la hauteur du lit et la vitesse de fluidisation du gaz sur l'écoulement ont été étudiés. Les conditions opératoires permettant d'obtenir des débits de solides constants ont été optimisées. Une méthode relativement simple permettant d'évaluer la quantité de solide évacuée a été développée et des résultats satisfaisants ont été obtenus.

  6. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)


    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  7. Assessment of inhalation dose sensitivity by physicochemical properties of airborne particulates containing naturally occurring radioactive materials

    Kim, Si Young; Choi, Cheol Kyu; Kim, Yong Geon; Choi, Won Chul; Kim, Kwang Pyo [Kyung Hee University, Seoul (Korea, Republic of)


    Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of 0.01μm sized particulates were higher than doses due to 100μm sized particulates by factors of about 100 and 50 for {sup 238}U and {sup 230}Th, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of 11 g·cm{sup -3} and 0.7 g·cm{sup -3} resulted in dose difference by about 60 %. For {sup 238}U, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of {sup 238}U was about 9 times higher than dose for absorption F. For {sup 230}Th, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of {sup 230}Th was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and

  8. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X


    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  9. Cellular Automata Model for Elastic Solid Material

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao


    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  10. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter


    and electronic conductor (MIEC) the electrode is. Selected examples of literature studies of specific electrodes in solid oxide cells (SOC) are discussed. The reported effects of impurities - both impurities in the electrode materials and in the gases – point to high reactivity and mobility of materials...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  11. ITER solid breeder blanket materials database

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique


    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  12. Solid materials for removing arsenic and method thereof

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.


    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  13. Pharmaceuticals in settleable particulate material in urban and non-urban waters.

    Lahti, Marja; Oikari, Aimo


    Wastewater treatment plants (WWTP) are important sources of settleable particulate material (SPM), heading to sediments with natural suspended solids. To date, there is little information about the fate of pharmaceuticals in sediment systems. In this study, the objective was to determine if pharmaceuticals are detected in SPM at locations near WWTPs or even in rural areas, thus being susceptible for sedimentation. SPM samples were collected from 10 sites in Finland, grouped as reference, rural and wastewater effluent sites. SPM collectors were placed about 35 cm above bottom for about 2 months during summer. After extraction, a set of 17 pharmaceuticals was analyzed. Several pharmaceuticals were detected in SPM accumulated at sites next to WWTPs. The concentration of citalopram was notably high (300-1350 ng g⁻¹ dw). Also bisoprolol and ciprofloxacin were detected at high concentrations (6-325 and 9-390 ng g⁻¹ dw, respectively). In contrast, none of the pharmaceuticals were detected from reference sites and only two were found from a single rural site. There is no previous information about the presence of pharmaceuticals in SPM. The results showed that pharmaceuticals are sorbed to particles in WWTP and nearby, eventually ending up in sediments. These results also indicate that pharmaceuticals are not markedly contaminating sediments of rural areas in Finland.

  14. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter


    and electronic conductor (MIEC) the electrode is. Selected examples of literature studies of specific electrodes in solid oxide cells (SOC) are discussed. The reported effects of impurities - both impurities in the electrode materials and in the gases – point to high reactivity and mobility of materials...... place. The length of the TPB is a key factor even though the width and depth of the zone, in which the rate limiting reactions take place, may vary depending of the degree of the electrode materials ability to conduct both electrons and ions, i.e. the TPB zone volume depends on how good a mixed ionic...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  15. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    De Soete G. G.


    Full Text Available On présente dans cet article, en utilisant la méthode du ruban chauffé, une étude de la compétition entre (1 la dévolatilisation et l'oxydation consécutive des produits de pyrolyse et (2 l'ignition de la matrice solide et sa combustion rapide. La comparaison entre le moment de l'ignition et le début de la pyrolyse permet de déterminer en fonction de la température, de la taille des particules et de la concentration en oxygène, le domaine dans lequel l'ignition d'un combustible solide pyrolysable est du type whole coal ignition (c'est-à-dire lorsque l'ignition intervient avant que la pyrolyse devienne mesurable. Les résultats suggèrent que ce type d'ignition doit s'effectuer en règle générale dans les conditions de mise en oeuvre des combustibles solides pulvérisés dans les flammes industrielles. Dans le cas de l'ignition whole coal , la vitesse de combustion de la matrice solide est inhibée dans la période qui suit l'ignition. Cette inhibition est due d'une part à la difficulté pour l'oxygène de diffuser dans les pores pendant la sortie des produits de pyrolyse, et d'autre part à la consommation préférentielle de l'oxygène dans l'oxydation des produits de pyrolyse, principalement dans le cas où cette oxydation se développe sous forme de flamme. Ce n'est que lorsque la pyrolyse s'achève que la vitesse de combustion hétérogène peut atteindre sa valeur stationnaire normale, qui est alors pratiquement identique à celle du coke. Aux températures situées entre la température d'ignition du combustible solide et la température d'extinction du coke résiduel, la combustion est incomplète, une extinction intervenant à un degré de dévolatilisation d'autant plus grande que la température est élevée. Ce phénomène s'explique qualitativement par la théorie classique d'ignition thermique lorsqu'on l'applique au cas particulier des combustibles solides pyrolysables. Les températures d'ignition ainsi que les d

  16. Mechanical, Spectroscopic and Micro-structural Characterization of Banana Particulate Reinforced PVC Composite as Piping Material

    B. Dan-asabe


    Full Text Available A banana particulate reinforced polyvinyl chloride (PVC composite was developed with considerabley low cost materials having an overall light-weight and good mechanical properties for potential application as piping material. The specimen composite material was produced with the banana (stem particulate as reinforcement using compression molding. Results showed that density and elastic Modulus of the composite decreases and increases respectively with increasing weight fraction of the particulate reinforcement. The tensile strength increased to a maximum of 42 MPa and then decreased steadily. The composition with optimum mechanical property (42 MPa was determined at 8, 62 and 30 % formulation of banana stem particulates (reinforcement, PVC (matrix and Kankara clay (filler respectively with corresponding percentage water absorption of 0.79 %, Young’s Modulus of 1.3 GPa, flexural strength of 92 MPa and density of 1.24 g/cm3. Fourier Transform Infrared (FTIR analysis of the constituents showed identical bands within the range 4000–1000 cm-1 with renown research work. Scanning Electron Microscopy (SEM result showed fairly uniform distribution of constituents’ phases. X-Ray Fluorescence (XRF confirms the X-ray diffraction (XRD result of the presence of minerals of kaolinite, quartz, rutile and illite in the kaolin clay. Comparison with conventional piping materials showed the composite offered a price savings per meter length of 84 % and 25 % when compared with carbon steel and PVC material.

  17. Comparison of solid highlighter materials for thermography

    Genest, M.; Forsyth, D.S. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail:; Maldague, X. [Univ. Laval, Electrical and Computing Engienering Dept., Quebec, Quebec (Canada)


    Bare metal surfaces are difficult to inspect with flash thermography due to the high reflectivity and low emissivity of metal surfaces. Often black paint is used to prepare these surfaces for inspection. The additional time required to apply, dry, and then remove paint after inspection can be a significant barrier to using thermographic inspection techniques in these applications. This paper examines the use of solid 'highlighter' materials instead of paint to provide desirable surface characteristics and ease of use. Both positive pressure and vacuum methods were used to apply a variety of materials to metal test specimens, which were then inspected with a commercial pulsed flash thermography system. A vacuum-applied black latex material provided surface performance close to that of black paint without the extra burden of paint application and removal. (author)

  18. Determination of vanadium(V) in the particulate matter of emissions and working areas by sequential dissolution and solid-phase extraction.

    Sturini, M; Maraschi, F; Cucca, L; Spini, G; Talamini, G; Profumo, A


    A method based on selective sequential dissolutions is proposed to determine total vanadium(V) in particulate matter of emissions and working areas at concentrations 1,000 times lower than the threshold limit of 0.05 mg m(-3). Separation and preconcentration of vanadium(V) has been achieved by solid-phase extraction on Chelex 100 resin. Possible influence of the matrix has been investigated for two standard reference materials (SRMs), NIST SRM 1648 and BCR-038, before and after spiking, with vanadium(V) recovery in the range 97-103%.

  19. Direct determination of lead in urban particulate material and lubricating oil with thin silver films electrically vaporized from membrane filters

    Swan, J.M.; Sacks, R.D.


    A rapid, direct method for the determination of lead in suspended solid particles is described. Particles are collected on a polycarbonate membrane filter coated with a thin film of high-purity Ag. The metal film does not affect filtration properties of the membrane. The thin film and sample are atomized and excited in the high-temperature plasma produced by the electrical vaporization of the Ag film. The Pb concentration is determined by emission spectroscopy. Sample introduction and standardization techniques are presented. Sample particle size and loading effects are considered. A high-inductance, longer-duration discharge is more useful for larger samples and for larger particles than a low-inductance, shorter-duration discharge. Analytical results are presented for Pb in NBS standard reference material SRM 1648 (urban particulate material) and lubricating oil spiked with Pb powder. 14 references, 4 figures, 3 tables.

  20. Apparatus for handling micron size range particulate material

    Friichtenicht, J. F.; Roy, N. L. (Inventor)


    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  1. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan


    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe quotas are in-line with those measured in

  2. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Uday B. Pal; Srikanth Gopalan


    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  3. Numerical Investigation for the Microstructural Effects on the Crack Growth Behavior of Particulate Composite Materials


    When the damage constitutive law is adopted in an analysis, we perform an incremental analysis, just like the case of elastoplasticity (see Okada...isotropic elastoplasticity . 2.4 Some other issues associated with the damage constitutive law-initiation of nonlinear deformation Material...ABSTRACT In present investigation, analyses for the damage evolution behavior of particulate composite materials by using the finite element method

  4. Size-selective poorly soluble particulate reference materials for evaluation of quantitative analytical methods.

    Stefaniak, Aleksandr B; Turk, Gregory C; Dickerson, Robert M; Hoover, Mark D


    Owing to the absence of readily available certified particulate reference materials (RMs), most analytical methods used to determine particulate contaminant levels in workplace or other environments are validated using solution RMs, which do not assess the robustness of the digestion step for all forms and sizes of particles in a sample. A library of particulate RMs having a range of chemical forms and particle sizes is needed to support a shift in method evaluation strategies to include both solution and particulate RMs. In support of creating this library, we characterized bulk and physically size separated fractions of beryllium oxide (BeO) particles recovered from the machining fluid sludge of an industrial ceramic products grinding operation. Particles were large agglomerates of compact, crystalline BeO primary particles having diameters on the order of several micrometers. As expected, the particle surface area was independent of sieve size, with a range from 3.61 m(2)/g (53-63-microm fraction) to 4.82 m(2)/g (355-600-microm fraction). The density was near the theoretical value (3.01 g/cm(3)). The data support more detailed characterization of the sludge materials for use as size-selective RMs. This work illustrates an approach that can be used to develop RMs that are difficult to digest.

  5. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Danielle C. Ashworth


    Full Text Available Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of <0.01 μg/m3. Proximity and modelled PM10 concentrations for both MSWIs at postcode level were highly correlated when using continuous measures (Spearman correlation coefficients ~ 0.7 but showed poor agreement for categorical measures (deciles or quintiles, Cohen’s kappa coefficients ≤ 0.5. Conclusion. To provide the most appropriate estimate of ambient exposure from MSWIs, it is essential that incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks.

  6. Mechanical properties of Al-mica particulate composite material

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.


    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  7. Solid freeform fabrication of biological materials

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  8. Sealing materials for solid oxide fuel cells

    Larsen, P.H.


    A major obstacle in the achievement of high electrical efficiency for planar solid oxide fuel cell stacks (SOFC) is the need for long term stable seals at the operational temperature between 850 and 1000 deg. C. In the present work the formation and properties of sealing materials for SOFC stacks that fulfil the necessary requirements were investigated. The work comprises analysis of sealing material properties independently, in simple systems as well as tests in real SOFC stacks. The analysed sealing materials were based on pure glasses or glass-ceramic composites having B{sub 2}O{sub 3}, P{sub 2}O{sub 5} or siO{sub 2} as glass formers, and the following four glass systems were investigated: MgO/caO/Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SiO{sub 2} and BaO/Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}. (au) 32 tabs., 106 ills., 107 refs.

  9. Applied solid state science advances in materials and device research

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  10. Advanced Materials and Solids Analysis Research Core (AMSARC)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  11. Advanced Materials and Solids Analysis Research Core (AMSARC)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  12. Matrix changes and side effects induced by electrokinetic treatment of porous and particulate materials

    Skibsted, Gry

    of porous stone materials to hinder decay. However, in addition to the removal of target ions in these systems, matrix changes may occur during the electrochemical treatment. For a broader implementation of the electrokinetic methods it is important to understand changes in the matrix composition...... for different types of materials. The overall aim of this PhD-project is to evaluate matrix changes and side effects induced by electrokinetic treatment of porous and particulate materials.During electro-remediation protons are produced at the anode and hydroxyl ions are produced at the cathode. The consequent...




    Full Text Available Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented schemeallows the analysis of the phosphorus forms for the entirely system “water –particulate materials – bottom sediments”, extending possibilities for interpretationof phosphorus dynamics in natural waters.

  14. Metallic materials in solid oxide fuel cells

    Willem Joseph Quadakkers


    Full Text Available Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC. Recently, a new type of FeCrMn(Ti/La based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated.

  15. Characterization of undigested particulate material following microwave digestion of recycled document papers.

    McGaw, Elizabeth A; Szymanski, David W; Smith, Ruth Waddell


    Recycled document paper was microwave digested in a solution of HNO(3) and H(2)O(2) prior to analysis by inductively coupled plasma mass spectrometry (ICP-MS) to determine the trace elemental concentrations within the paper. Undigested particulate material was observed and subsequently characterized as a mixture of kaolin (clay) and TiO(2) by Fourier transform infrared spectroscopy and X-ray diffraction spectroscopy. The effect of the particulate material on the elemental concentrations was then investigated. Paper samples were completely digested in hydrofluoric acid (HF) and element concentrations determined in the HF and HNO(3)/H(2)O digests were statistically compared using Student's t-test (95% confidence limit). Statistical differences in element concentrations between the two digests were observed for only four elements and there was no evidence of element adsorption by the particulate material. Hence, the HNO(3)/H(2)O(2) digestion proved sufficient to digest paper for ICP-MS analysis, eliminating the need to use the hazardous and corrosive HF matrix.

  16. Obtaining cementitious material from municipal solid waste

    Macías, A.


    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  17. Sedimentation of particulate material in stratified and nonstratified water columns in the Bombay high area of the Arabian sea

    Bhosle, N.B.; Sawant, S.S.; Sankaran, P.D.; Wagh, A.B.

    Sedimentation of particulate material at 22, 42 and 62 m was recorded at a station in the Bombay High area of the Arabian Sea from September 1985 to March 1986. Diatom numbers and physical structure, especially thermal stratification, played...

  18. Fabrication of Porous Scaffolds Using NaHCO3 Particulates as the Porogen Material

    SHEN Xiongjun; RUAN Jianming; ZHOU Zhongcheng; ZHANG Haipo; ZHOU Zhihua


    A new method of fabricating porous polymer scaffolds was developed, using sodium hydrogen carbonate particulates as the porogen to foam. The pore structure of polymer scaffolds can easily be manipulated by controlling the size and weight fraction of sodium hydrogen carbonate particulates. The scaffolds are highly porous with a porosity greater than 90% and with a larger pore size ranging from 100-400 μm, and are well distributed with the interconnected and open pore wall structure which is necessary for tissue engineering. We investigated the effect of the porosity of scaffolds, the pore size of scaffolds and material of polymer on the mechanical properties of scaffolds. The scaffolds fabricated by the method have more big pores than those by the convenient method of salt leaching.

  19. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)] [and others


    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  20. Nanophase materials in solid freeform fabrication

    Manthiram, A.; Bourell, D. L.; Marcus, H. L.


    Solid freeform fabrication (SFF) is a manufacturing technology that produces parts directly from computer-aided design databases. Examples of the SFF approach are selective laser sintering (SLS) and selective laser reactive sintering (SLRS), both of which have the potential to directly produce structurally sound metallic or ceramic parts. The development of suitable materials systems that can optimize the SLS or SLRS processes are critical to this technology. For instance, nanocomposites, in which the constituents are mixed on a nanometer scale, have the potential to provide important advantages in the SLS and SLRS processes. One strategy is to design and develop nanocomposites in which one nanosize component has a lower melting point than the other nanosize component, either of which can serve as the matrix phase. The nanoscale dispersion of the low-melting component can aid the sintering process during SLS or SLRS. In this article, the philosophical basis for SLS and SLRS of nanocomposites is discussed. Conceptual design of nanocomposite systems and the SLS/SLRS results of a few exploratory systems are presented.

  1. Geochemical Characterization of Rain Water Particulate Material on a Coastal Sub-Tropical Region in SE: Brazil

    Silva Filho, E. V.; Paiva, R. P.; WASSERMAN, J.C.; Lacerda,L. D.


    Airborne contamination has been of concern for a number of scientist in temperate regions. In the tropics, a very small amount of data is available. In this work, rain water particulate material was monitored in two sites in Rio de Janeiro State (Brazil): the first (Sepetiba), subjected to high inputs of metals from industrial activities and the second (Iguaba), subjected to very mild contamination. Particulate material was obtained by filtration of rain water samples. The filters were analys...




    Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented...

  3. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy.

    Broaders, Kyle E; Cohen, Joel A; Beaudette, Tristan T; Bachelder, Eric M; Fréchet, Jean M J


    Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.

  4. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    Mehrer, Helmut


    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  5. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide


    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  6. Seasonal variation of polychlorinated biphenyl congeners in surficial sediment, trapped settling material, and suspended particulate material in Lake Michigan, USA.

    Robinson, Sander D; Landrum, Peter F; Van Hoof, Patricia L; Eadie, Brian J


    A unique time series of surface sediment, trapped settling material, and suspended particulate material polychlorinated biphenyl (PCB) samples were collected at a 45-m deep site off Grand Haven (MI, USA) over a 14-month period. Both concentrations and congener distributions remained constant for the sediments, although there were seasonal and interannual variability in the other matrices. Trapped settling material and suspended particulate material PCB concentrations were substantially lower (~50%) in 1997 than in the samples from December 1997 through July 1998. The cause could not be determined from the data collected, but there were some very large storms during the winter-spring period of 1998, resulting in major sediment resuspension throughout the southern basin. Observed seasonal variation in PCB concentration and congener distribution on particles likely was due to the changes in particle composition. These include particle size and the source of particles (such as the amount of resuspended sediment in trapped settling material), and the role of diagenesis of the organic matter on particles.

  7. Materials for diode pumped solid state lasers

    Chase, L. L.; Davis, L. E.; Krupke, W. F.; Payne, S. A.


    The advantages of semiconductor diode lasers and laser arrays as pump sources for solid state lasers are reviewed. The properties that are desirable in solid state laser media for various diode pumping applications are discussed, and the characteristics of several promising media are summarized.

  8. Youth Solid Waste Educational Materials List, November 1991.

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…


    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  10. Determination of fine particulate semi-volatile organic material at three eastern U.S. sampling sites.

    Warner, K S; Eatough, D J; Stockburger, L


    Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm.

  11. In Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    Sen, S.; Juretzko, F.; Stafanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.


    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/l) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub cr) for agglomerates depends not only on their effective size but also their orientation with respect to the s,1 interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  12. In-Situ Observations of Interaction Between Particulate Agglomerates and an Advancing Planar Solid/Liquid Interface: Microgravity Experiments

    Sen, S.; Juretzko, F.; Stefanescu, D. M.; Dhindaw, B. K.; Curreri, P. A.


    Results are reported of directional solidification experiments on particulate agglomerate pushing and engulfment by a planar solid/liquid (s/1) interface. These experiments were conducted on the Space Shuttle Columbia during the United States Microgravity Payload 4 (USMP-4) Mission. It was found that the pushing to engulfment transition velocity, V(sub ct),, for agglomerates depends not only on their effective size but also their orientation with respect to the s/l interface. The analytical model for predicting V(sub cr) of a single particle was subsequently enhanced to predict V(sub cr) of the agglomerates by considering their shape factor and orientation.

  13. Micrometer-level naked-eye detection of caesium particulates in the solid state

    Taizo Mori, Masaaki Akamatsu, Ken Okamoto, Masato Sumita, Yoshitaka Tateyama, Hideki Sakai, Jonathan P Hill, Masahiko Abe and Katsuhiko Ariga


    Full Text Available Large amounts of radioactive material were released from the Fukushima Daiichi nuclear plant in Japan, contaminating the local environment. During the early stages of such nuclear accidents, iodine I-131 (half-life 8.02 d is usually detectable in the surrounding atmosphere and bodies of water. On the other hand, in the long-term, soil and water contamination by Cs-137, which has a half-life of 30.17 years, is a serious problem. In Japan, the government is planning and carrying out radioactive decontamination operations not only with public agencies but also non-governmental organizations, making radiation measurements within Japan. If caesium (also radiocaesium could be detected by the naked eye then its environmental remediation would be facilitated. Supramolecular material approaches, such as host–guest chemistry, are useful in the design of high-resolution molecular sensors and can be used to convert molecular-recognition processes into optical signals. In this work, we have developed molecular materials (here, phenols as an optical probe for caesium cation-containing particles with implementation based on simple spray-on reagents and a commonly available fluorescent lamp for naked-eye detection in the solid state. This chemical optical probe provides a higher spatial resolution than existing radioscopes and gamma-ray cameras.

  14. Severe particulate pollution from deposition practices of primary materials of cement plants

    Kourtidis, Konstantinos; Rapsomanikis, Spyridon; Zerefos, Christos; Georgoulias, Aristeidis; Pavlidou, Eleni


    Analysis of ambient particulates sampled at a residential area near a cement manufacturing plant in Greece, showed total aerosol mass in the sampled air 1.3-30.4 mg/m3 and PM10 concentrations 0.04-3 mg/m3. These concentrations are very high and seriously exceed air quality standards. Morphological examination and elemental analysis of air samples and primary materials with Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDS) showed that ambient particulates shared appearance features and had similar elemental synthesis to clinker and fly ash, showing heavy impacts on the ambient aerosol load from the cement plant practice of open deposition of primary materials. Satellite-derived AOD over the area during the period 2000-2010 shows extended spatial impact, while satellite overpass data indicate a 33% decrease in AOD over this period, possibly due to changing production and primary material deposition practices. Although the sampling was performed more than one decade ago in Greece, environmental legislation and its reinforcement practices at that time in Greece are similar to current ones in many parts of the world. The global increase in cement production, especially in south-east Asia, make these measurements particularly relevant.

  15. A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization

    Mazza, G. [Facultad de Ingenieria, Departamento de Quimica, Universidad Nacional del Comahue, UE Neuquen (CONICET - UNCo), Buenos Aires 1400, 8300 Neuquen (Argentina); Falcoz, Q.; Gauthier, D.; Flamant, G. [Laboratoire Procedes Materiaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France)


    This study aims to develop a particulate model combining solid waste particle combustion and heavy metal vaporization from burning particles during MSW incineration in a fluidized bed. The original approach for this model combines an asymptotic combustion model for the carbonaceous solid combustion and a shrinking core model to describe the heavy metal vaporization. A parametric study is presented. The global metal vaporization process is strongly influenced by temperature. Internal mass transfer controls the metal vaporization rate at low temperatures. At high temperatures, the chemical reactions associated with particle combustion control the metal vaporization rate. A comparison between the simulation results and experimental data obtained with a laboratory-scale fluid bed incinerator and Cd-spiked particles shows that the heavy metal vaporization is correctly predicted by the model. The predictions are better at higher temperatures because of the temperature gradient inside the particle. Future development of the model will take this into account. (author)

  16. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae.

    Thomas, K C; Hynes, S H; Ingledew, W M


    The effects of osmoprotectants (such as glycine betaine and proline) and particulate materials on the fermentation of very high concentrations of glucose by the brewing strain Saccharomyces cerevisiae (uvarum) NCYC 1324 were studied. The yeast growing at 20 degrees C consumed only 15 g of the sugar per 100 ml from a minimal medium which initially contained 35% (wt/vol) glucose. Supplementing the medium with a mixture of glycine betaine, glycine, and proline increased the amount of sugar fermented to 30.5 g/100 ml. With such supplementation, the viability of the yeast cells was maintained above 80% throughout the fermentation, while it dropped to less than 12% in the unsupplemented controls. Among single additives, glycine was more effective than proline or glycine betaine. On incubating the cultures for 10 days, the viability decreased to only 55% with glycine, while it dropped to 36 and 27%, respectively, with glycine betaine and proline. It is suggested that glycine and proline, known to be poor nitrogen sources for growth, may serve directly or indirectly as osmoprotectants. Nutrients such as tryptone, yeast extract, and a mixture of purine and pyrimidine bases increased the sugar uptake and ethanol production but did not allow the population to maintain the high level of cell viability. While only 43% of the sugar was fermented in unsupplemented medium, the presence of particulate materials such as wheat bran, wheat mash insolubles, alumina, and soy flour increased sugar utilization to 68, 75, 81, and 82%, respectively.

  17. Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics

    Aare ARUNIIT


    Full Text Available Glass fibre reinforced plastic (GFRP scrap consisted of acrylic plastic with glass fibre reinforcement in polyester resin matrix was used in our experiments. The multi-functional DS-series disintegrator mills were used for mechanical processing of GFRP scrap. Preceding from the results characterization of the milled powder particles size, shape and other properties the numerical algorithm for modelling of the density of the new filler material was developed. The main goal of the current study is to develop new particulate filled composite plastic material from recycled GFRP scrap. With recovered plastic powder material the higher filler content in polyester resin matrix can be achieved. The new composite is modelled on basis of the properties of new material. Such an approach requires tests of the new material. The considered target characteristics of the new material are the tensile strength, elongation at break and the cost. The multicriteria optimization problem has been formulated and solved by use of physical programming techniques and Pareto optimality concept. The designed new composites were manufactured in different mixing ratios of powder and binder agent. The strength and stiffness properties of new composite material were tested.

  18. Spectral reflectance and emittance of particulate materials. I - Theory. II - Application and results

    Emslie, A. G.; Aronson, J. R.


    The sizes, shapes, and complex refractive indices of particles are calculated in a study of the IR spectral reflectance of a semiinfinite medium composed of irregular particles of different materials. Geometric optics techniques with corrections for additional absorption due to particle edges and asperities is used in scattering and absorption calculations for particles larger than the wavelength. A Lorentz-Lorenz model is used to derive the averaged complex index of the medium, assuming that its individual particles are ellipsoids. Experimental results obtained on a Michelson interferometer for the spectral emittance of particulate mineral materials are compared with theoretical results. Good agreement between the experimental and theoretical results suggests the applicability, in remote IR spectroscopy, of the theoretical concepts applied in this study.

  19. Ultrafast laser spectroscopy in complex solid state materials

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)


    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  20. Severe particulate pollution from the deposition practices of the primary materials of a cement plant.

    Kourtidis, K; Rapsomanikis, S; Zerefos, C; Georgoulias, A K; Pavlidou, E


    Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3-30.4 mg/m(3) total suspended particulates in the air and concentrations of particles with a diameter of 10 μm or less at 0.04-3 mg/m(3). These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33% decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.

  1. Sieveless particle size distribution analysis of particulate materials through computer vision

    Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Columbus, Eugene P [ORNL; Batchelor, William D [ORNL; Sokhansanj, Shahabaddine [ORNL


    This paper explores the inconsistency of length-based separation by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based separation of particles using standard sieves with manual measurements, which showed deviations of 17 22 times. In addition, we have demonstrated the falling through effect of particles cannot be avoided irrespective of the wall thickness of the sieve. We proposed and utilized a computer vision with image processing as an alternative approach; wherein a user-coded Java ImageJ plugin was developed to evaluate PSD based on length of particles. A regular flatbed scanner acquired digital images of particulate material. The plugin determines particles lengths from Feret's diameter and width from pixel-march method, or minor axis, or the minimum dimension of bounding rectangle utilizing the digital images after assessing the particles area and shape (convex or nonconvex). The plugin also included the determination of several significant dimensions and PSD parameters. Test samples utilized were ground biomass obtained from the first thinning and mature stand of southern pine forest residues, oak hard wood, switchgrass, elephant grass, giant miscanthus, wheat straw, as well as Basmati rice. A sieveless PSD analysis method utilized the true separation of all particles into groups based on their distinct length (419 639 particles based on samples studied), with each group truly represented by their exact length. This approach ensured length-based separation without the inconsistencies observed with mechanical sieving. Image based sieve simulation (developed separately) indicated a significant effect (P < 0.05) on number of sieves used in PSD analysis, especially with non-uniform material such as ground biomass, and more than 50 equally spaced sieves were required to match the sieveless all distinct particles PSD analysis

  2. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Pederson, L.R.; Stevenson, J.W.; Raney, P.E. [Pacific Northwest Lab., Richland, WA (United States)


    The phase stability and sintering behavior of materials used in SOFCs has been evaluated. The sintering behavior of Ca and Sr doped lanthanum. manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. Ca and Sr doped lanthanum chromite (the preferred interconnect material) have been shown to rapidly expand in reducing atmospheres at temperatures as low as 700{degrees}C. This expansion is due to the reduction of Cr{sup 4+} to Cr{sup 3+} in reducing environments.

  3. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method.

    Yang, Hsi-Hsien; Luo, Shao-Wei; Lee, Kuei-Ting; Wu, Jhin-Yan; Chang, Chun Wei; Chu, Pei Feng


    In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste(-1), respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl(-), NH4(+), elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl(-) emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01-1% of PM2.5 mass included SO4(2-), K(+), Na, K, NO3(-), Al, Ca(2+), Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl(-), SO4(2-), NO3(-)) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5. PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2

  4. Electrical conduction in solid materials physicochemical bases and possible applications

    Suchet, J P


    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  5. Effects of Al2O3-Particulate-Contained Composite Filler Materials on the Shear Strength of Alumina Joints


    All2O3/Al2O3 joints were brazed with a new kind of filler materials, which were formed by adding Al2O3 particulates into Ag-Cu-Ti active filler metal. The results showed that the material parameters (the Ti content, Al2O3 particulate volume fraction) of the composite filler materials affected the shear strength of brazed joints. When the Ti content was 2 wt pct in the filler metal, the shear strength of brazing joints decreased with the increasing the volume ratio of Al2O3 particulate. When the Ti content was 3 wt pct in the filler metal, the shear strength of joints increased from 93.75 MPa(Al2O3p 0 vol. pct) to 135.32 MPa(Al2O3p 15 vol. pct).

  6. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Brinkman, Kyle S


    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  7. Solid State Ionics Advanced Materials for Emerging Technologies

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.


    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  8. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter


    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  9. Measurement of particulate concentrations produced during bulk material handling at the Tarragona harbor

    Artinano, B.; Gomez-Moreno, F.J.; Pujadas, M.; Moreno, N.; Alastuey, A.; Querol, X.; Martin, F.; Guerra, A.; Luaces, J.A.; Basora, J. [CIEMAT, Madrid (Spain)


    Bulk material handling can be a significant source of particles in harbor areas. The atmospheric impact of a number of loading/unloading activities of diverse raw materials has been assessed from continuous measurements of ambient particle concentrations recorded close to the emission sources. Two experimental campaigns have been carried out in the Tarragona port to document the impact of specific handling operations and bulk materials. Dusty bulk materials such as silica-manganese powder, tapioca, coal, clinker and lucerne were dealt with during the experiments. The highest impacts on ambient particle concentrations were recorded during handling of clinker. For this material and silica-manganese powder, high concentrations were recorded in the fine grain size ({lt}2.5 {mu}m). The lowest impacts on particulate matter concentrations were recorded during handling of tapioca and lucerne, mainly in the coarse grain size (2-5-10 {mu} m). The effectiveness of several emission abatement measures, such as ground watering to diminish coal particle resuspension, was demonstrated to reduce ambient concentrations by up to two orders of magnitude. The importance of other good practices in specific handling operations, such as controlling the height of the shovel discharge, was also evidenced by these experiments. The results obtained can be further utilized as a useful experimental database for emission factor estimations.

  10. Solid electrolyte material manufacturable by polymer processing methods

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez


    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  11. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Sutter, S. L.


    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.


    Uday B. Pal; Srikanth Gopalan


    AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

  13. Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.

    Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong


    High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Understanding solids: the science of materials

    Tilley, Richard J. D.


    This edition contains new sections on the use of computing methods to solve materials problems and has been thoroughly updated to include the many developments and advances made in the past 10 years, e.g.  batteries, solar cells, lighting technology, laser...

  15. Soft solids a primer to the theoretical mechanics of materials

    Freed, Alan D


    This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics, or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics, and other fields where the mechanical response of soft solids is relevant.   Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunit...

  16. Understanding solids the science of materials

    Tilley, Richard J D


    A modern introduction to the subject taking a unique integrated approach designed to appeal to both science and engineering students. Covering a broad spectrum of topics, this book includes numerous up-to-date examples of real materials with relevant applications and a modern treatment of key concepts. The science bias allows this book to be equally accessible to engineers, chemists and physicists. * Carefully structured into self-contained bite-sized chapters to enhance student understanding * Questions have been designed to reinforce the concepts presented * Includes coverage of radioactivit

  17. Applied solid state science advances in materials and device research

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  18. Homogeneity studies in reference materials with Zeeman solid sampling GFAAS

    Mohl, C.; Stoeppler, M.; Grobecker, K.H.


    The homogeneity of lead and cadmium in reference materials was investigated by solid sampling GFAAS. The following materials were comparatively analyzed: Standard reference materials from NBS, Washington 1567 wheat flour, 1568 rice flour and 1577a bovine liver, certified reference materials from BCR, Brussels, No 63 milk powder, No 184 bovine muscle, No 185 bovine liver, No 186 pig kidney, No 189 wholemeal flour, No 191 brown bread and a whole fish (dab) homogenate from the environmental specimen bank in the FRG. The results are remarkably different for the investigated materials.

  19. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E


    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  20. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Araujo, Rennan G.O., E-mail: [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)


    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  1. Systematic Evaluation of Dissolved Lead Sorption Losses to Particulate Syringe Filter Materials

    Distinguishing between soluble and particulate lead in drinking water is useful in understanding the mechanism of lead release and identifying remedial action. Typically, particulate lead is defined as the amount of lead removed by a 0.45 µm filter. Unfortunately, there is little...

  2. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    Moore, Carleton J.


    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  3. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents.

    Schantz, Michele M; Cleveland, Danielle; Heckert, N Alan; Kucklick, John R; Leigh, Stefan D; Long, Stephen E; Lynch, Jennifer M; Murphy, Karen E; Olfaz, Rabia; Pintar, Adam L; Porter, Barbara J; Rabb, Savelas A; Vander Pol, Stacy S; Wise, Stephen A; Zeisler, Rolf


    Two new Standard Reference Materials (SRMs), SRM 2786 Fine Particulate Matter (Particulate Matter (particulate matter (PM). These materials have been characterized for the mass fractions of selected polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs, brominated diphenyl ether (BDE) congeners, hexabromocyclododecane (HBCD) isomers, sugars, polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners, and inorganic constituents, as well as particle-size characteristics. These materials are the first Certified Reference Materials available to support measurements of both organic and inorganic constituents in fine PM. In addition, values for PAHs are available for RM 8785 Air Particulate Matter on Filter Media. As such, these SRMs will be useful as quality control samples for ensuring compatibility of results among PM monitoring studies and will fill a void to assess the accuracy of analytical methods used in these studies. Graphical Abstract Removal of PM from filter for the preparation of SRM 2786 Fine Particulate Matter.

  4. Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific

    Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy

    Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.

  5. Method of investigation of deformations of solids of incompressible materials

    Abdrakhmanova, A. I.; Garifullin, I. R.; Sultanov, L. U.


    The aim of this work is development mathematical models, algorithm for the investigation stress-strain state of elastic solids, taking into account the incompressibility materials. The constitutive equations are received using a potential energy of deformations. The system of the linear algebraic equations is received by linearization of a resolving equation. The penalty method is applied for a modelling of the incompressibility of the material. The finite element method is used for numerical solution of the problems.

  6. PVD materials for electrochromic all-solid-state devices

    Ottermann, Clemens R.; Segner, Johannes G.; Bange, Klaus


    The electrochromic properties of all solid state devices (ASSDs) are strongly defined by thin film materials used as well as the method of deposition. Various thin film materials deposited by evaporation and sputtering are described serving as electrode, reflector, electrolyte, storage medium, or electrochromic film in ASSD. The impact of process parameters upon the device functionality is shown. In addition, the long-term stability of ASSDs for the different thin film systems is reported.

  7. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material.

    Deering-Rice, Cassandra E; Johansen, Mark E; Roberts, Jessica K; Thomas, Karen C; Romero, Erin G; Lee, Jeewoo; Yost, Garold S; Veranth, John M; Reilly, Christopher A


    Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.

  8. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)


    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  9. Organic Materials Degradation in Solid State Lighting Applications

    Yazdan Mehr, M.


    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology i

  10. Introduction of Materials Science Through Solid State Chemistry.

    Mueller, William M.

    Presented is a report of a program of the American Society for Metals, designed to introduce materials science principles via solid state chemistry into high school chemistry courses. At the time of the inception of this program in the mid-sixties, it was felt that high school students were not being adequately exposed to career opportunities in…

  11. Organic Materials Degradation in Solid State Lighting Applications

    Yazdan Mehr, M.


    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology

  12. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park

    McKnight, Diane M.; Harnish, R.; Wershaw, R. L.; Baron, J.S.; Schiff, S.


    The chemical relationships among particulate and colloidal organic material and dissolved fulvic acid were examined in an alpine and subalpine lake and two streams in Loch Vale Watershed, Rocky Mountain National Park. The alpine lake, Sky Pond, had the lowest dissolved organic carbon (DOC) (0.37 mgC/L), the highest particulate carbon (POC) (0.13 mgC/L), and high algal biomass. The watershed of Sky Pond is primarily talus slope, and DOC and POC may be autochthonous. Both Andrews Creek and Icy Brook gain DOC as they flow through wet sedge meadows. The subalpine lake, The Loch, receives additional organic material from the surrounding forest and had a higher DOC (0.66 mgC/L). Elemental analysis, stable carbon isotopic compositon, and 13C-NMR characterization showed that: 1) particulate material had relatively high inorganic contents and was heterogeneous in compositon, 2) colloidal material was primarily carbohydrate material with a low inorganic content at all sites; and 3) dissolved fulvic acid varied in compositon among sites. The low concentration and carbohydrate-rich character of the colloidal material suggests that this fraction is labile to microbial degradation and may be turning over more rapidly than particulate fractions or dissolved fulvic acid. Fulvic acid from Andrews Creek had the lowest N content and aromaticity, whereas Sky Pond fulvic acid had a higher N content and lower aromaticity than fulvic acid from The Loch. The UV-visible spectra of the fulvic acids demonstrate that variation in characteristics with sources of organic carbon can explain to some extent the observed nonlinear relationship between UV-B extinction coefficients and DOC concentrations in lakes.

  13. Oil-suspended particulate material aggregates as a tool in preventing potential ecotoxicological impacts in the São Paulo river, Todos os Santos Bay, Bahia, Brazil: Influence of salinity and suspended particulate material.

    Miranda, Lorena S; Moreira, Ícaro T A; Oliveira, Olívia M C; Santos, Carlito P; Pinheiro, Samires M M; Oliveira, Lua M L; Martins, Adriele B O; Filho, Milton S C


    Recent studies have revealed the occurrence of a natural process of interaction between oil droplets and suspended particulate material, resulting in the formation of aggregates which are dispersed in the water column, known as oil-suspended particulate material aggregates (OSAs). The experiments aimed to investigate the contribution of OSAS in indicating where most likely is the oil sedimentation in the São Paulo river, Todos os Santos Bay, Brazil, in order to predict possible ecotoxicological risks caused by oil spills. The results showed that salinity and MPS concentration interfere on the formation of aggregates. In addition, the point 3 was nominated as the most vulnerable area to the potential ecotoxicological impacts of oil spills and should be treated as a priority area for the application of preventive and mitigating techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Development of Ceramic Solid-State Laser Host Material

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra


    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  15. A study of influence of gravity on bulk behavior of particulate solid


    This paper examines the influence of gravity on the bulk responses of a granular solid. The loading scenarios in this study include confined compression, rod penetration into a granular medium and discharging through an orifice. Similar loading and flow conditions are likely to be encountered in the stress and deformation regimes that regoliths are subjected to in extraterrestrial exploration activities including in situ resource utilisation processes. Both spherical and non-spherical particles were studied using the discrete element method (DEM). Whilst DEM is increasingly used to model granular solids, careful validations of the simulation outcomes are rather rare. Thus in addition to exploring the effect of gravity, this paper also compares DEM simulations with experiments under terrestrial condition to verify whether DEM can produce satisfactory predictions.The terrestrial experiments were conducted with great care and simulated closely using DEM. The key mechanical and geometrical properties for the particles were measured in laboratory tests for use in the DEM simulations. A series of DEM computations were then performed under reduced gravity to simulate these experiments under extraterrestrial environment. It was found that gravity has no noticeable effect on the force transmission in the confined compression case; the loading gradient in the rod penetration is linearly proportional to the gravity; the mass flow rate in silo discharge is proportional to square root of the gravity and the angle of repose increases with reducing gravity. These findings are in agreement with expectation and existing scientific evidence.

  16. Triggerless vacuum shunting plasma by metallic and solid materials

    Yukimura, Ken; Tani, Yuuji; Masamune, Sadao


    Shunting discharge is an alternating capacitor discharge through a rod of solid-state or metallic materials. Optimization of the discharge condition has realized self-ignition of the arc discharge with low input power to the rod, leading to a much longer rod life time than in conventional shunting arc or peripheral arc. The shunting-arc-produced plasma contains mainly the ions of the solid-state material, and ion extraction from the plasma has also been demonstrated. Thus, the shunting arc works as a pulsed ion source for solid-state materials for plasma-based ion implantation (PBII) and ion processing. This article describes the characteristics of pulsed shunting arc, using the materials of carbon, niobium and silicon. The capacitor of 10 nF of which charging voltage is 10 to 25 kV using a thyratron as a closing switch. Glow discharge is firstly produced after the heat of the materials and then the plasma changes the style to the arc discharge. A negative high voltage pulse of -5 to -10 kV was applied to a target which was located at 30 cm away from the electrodes. We will discuss the ion species of the shunting plasma and ion extraction from the plasma using the time evolution of target current.

  17. Influence of nanomechanical crystal properties on the comminution process of particulate solids in spiral jet mills.

    Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried


    Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the

  18. Activation of Transient Receptor Potential Ankyrin-1 by Insoluble Particulate Material and Association with Asthma.

    Deering-Rice, Cassandra E; Shapiro, Darien; Romero, Erin G; Stockmann, Chris; Bevans, Tatjana S; Phan, Quang M; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A


    Inhaled irritants activate transient receptor potential ankyrin-1 (TRPA1), resulting in cough, bronchoconstriction, and inflammation/edema. TRPA1 is also implicated in the pathogenesis of asthma. Our hypothesis was that particulate materials activate TRPA1 via a mechanism distinct from chemical agonists and that, in a cohort of children with asthma living in a location prone to high levels of air pollution, expression of uniquely sensitive forms of TRPA1 may correlate with reduced asthma control. Variant forms of TRPA1 were constructed by mutating residues in known functional elements and corresponding to single-nucleotide polymorphisms in functional domains. TRPA1 activity was studied in transfected HEK-293 cells using allyl-isothiocynate, a model soluble electrophilic agonist; 3,5-ditert butylphenol, a soluble nonelectrophilic agonist and a component of diesel exhaust particles; and insoluble coal fly ash (CFA) particles. The N-terminal variants R3C and R58T exhibited greater, but not additive, activity with all three agonists. The ankyrin repeat domain-4 single nucleotide polymorphisms E179K and K186N exhibited decreased response to CFA. The predicted N-linked glycosylation site residues N747A and N753A exhibited decreased responses to CFA, which were not attributable to differences in cellular localization. The pore-loop residue R919Q was comparable to wild-type, whereas N954T was inactive to soluble agonists but not CFA. These data identify roles for ankyrin domain-4, cell surface N-linked glycans, and selected pore-loop domain residues in the activation of TRPA1 by insoluble particles. Furthermore, the R3C and R58T polymorphisms correlated with reduced asthma control for some children, which suggest that TRPA1 activity may modulate asthma, particularly among individuals living in locations prone to high levels of air pollution.

  19. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)


    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  20. Synthesis and Characteristics of LiNi0.85Co0.15O2 Cathode Materials by Particulate Sol-Gel Method for Lithium Ion Batteries

    ZHU Xian-Jun; CHEN Hong-Hao; ZHAN Hui; LIU Han-Xing; YANG Dai-Ling; ZHOU Yun-Hong


    A particulate sol-gel (PSG) method has been successfully used to prepare LiNi0.85Co0.15O2 cathode materials,utilizing the reaction of LiOH·H2O with Ni(CH3COO)2·4H2O and Co(CH3COO)2·4H2O in water-ethanol system.The thermal history of the as-prepared xerogel was established by differential thermal analysis and thermogravimetric analysis. Powder X-ray diffraction confirmed the formation of layered α-NaFeO2 structure at temperature of 700℃ under flowing oxygen. Scanning electron microscope exhibited that the crystalline powder prepared by PSG method had relatively smaller particle size with narrow distribution than the one prepared by solid state reaction.The first discharge capacity of the material by PSG method was 196.4 mAh/g, and the 10th discharge capacity was 189.1 mAh/g at the current density of 18 mA/g between 3.0 and 4.3 V. Its cycling reversibility was observed to be much better than that by solid state reaction, which had 187.3 mAh/g of the first discharge capacity and 167.1mAh/g of the 10th discharge capacity.

  1. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne


    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  2. Exploring Magnetic Elastocaloric Materials for Solid-State Cooling

    Liu, Jian; Zhao, Dewei; Li, Yang


    In the past decade, there has been an increased surge in the research on elastocaloric materials for solid-state refrigerators. The strong coupling between structure and magnetism inspires the discovery of new multi-field driven elastocaloric alloys. This work is devoted to magnetic shape memory alloys suitable for mechanical cooling applications. Some novel characteristics in magnetostructural transition materials other than conventional shape memory alloys are overviewed. From the physical and engineering points of view, we have put forward general strategies to maximize elastocaloric temperature change to increase performance reversibility and to improve mechanical properties. The barocaloric effect as a sister-cooling alternative is also discussed.

  3. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.


    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  4. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Wojda Marta


    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  5. Calorimetry study of microwave absorption of some solid materials.

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi


    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber.

  6. Analysis of Particulate and Chemical Residue Resulting from Exposure to Burning and Abrading Composite Materials


    glass-graphite, and boron -graphite hybrid composites due to combinations of burning and impact. The results were inconclusive regarding threats to...particulates produced in the fire. Physiologic tests were not performed as part of this study, so it cannot be confirmed that the rod-shaped

  7. Erosion of particulate organic material from an Andean river and its delivery to the Amazon Basin

    Clark, Kathryn; Hilton, Robert; West, A. Joshua; Robles Caceres, Arturo; Grocke, Darren; Marthews, Toby; Asner, Greg; New, Mark; Mahli, Yadvinder


    Organic carbon and nutrients discharged by mountainous rivers can play an important role in biogeochemical cycles from regional to global scales. The eastern Andes host productive forests on steep, rapidly eroding slopes, a combination that is primed to deliver sediment, carbon and nutrients to the lowland Amazon River. We quantify clastic sediment and particulate organic carbon (POC) discharge for the Kosñipata River, Peru, an Andean tributary of the Madre de Dios River, using suspended sediment samples and discharge measurements over one year at two gauging stations. Calculations of sediment yield on the basis of this data suggest that the Madre de Dios basin may have erosion rates ˜10 times greater than the Amazon Basin average. The total POC yield over the sampling period was up to five times higher than the yield in the lowland Amazon Basin, with most POC (70-80%) exported between December and March in the wet season. We use radiocarbon, stable C isotopes and C/N ratios to distinguish between the erosion and discharge of POC from sedimentary rocks (petrogenic POC) and POC eroded from the modern terrestrial biosphere, from vegetation and soil (biospheric POC). We find that biospheric POC discharge was significantly enhanced during flood events, over that of clastic sediment and petrogenic POC. The ultimate fate of the eroded POC may play a central role in the net carbon budget of Andean forest. In these forests, net productivity minus heterotrophic respiration is close to zero at the scale of forest plots, and the erosion of biospheric POC by this Andean river is sufficiently rapid that its fate downstream (sedimentary burial/preservation versus oxidation/degradation) may determine whether the mountain forest is a carbon sink or source to the atmosphere. In addition, the measured discharge of petrogenic POC suggests that fluxes from the Andes may be considerably higher than measured downstream in the Madeira River. If this petrogenic POC is oxidised rather

  8. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    MacKenzie, Kenneth J D


    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  9. Experimental study on particulate materials collected by a concave of sea floor; Kaitei kubochi ni hoshusareru ryujobutsu ni kansuru jikkenteki kosatsu

    Hoshika, A.; Tanimoto, T. [Government Industrial Research Chugoku, Hiroshima (Japan)


    As one of the method of sea cleaning method, an idea where concave is dredged on the sea floor and suspended substances and polluted sediment particles are collected, is popular. In this research, simple experiment was carried out for collecting the materials by using a polyvinylchloride cylindrical vessel (50cm in diameter, 70cm in depth) set on the sea floor of Osaka Bay area and fundamental study about the quality of collected materials, collection effectiveness and so forth was carried out. Further, along with the collection experiment, measurement of degree of pollution and investigation of bottom laminar flow which is thought to be the direct outer force for particulate material movement were carried out in order to study the flow mechanism of particulate materials. As a result, with the setting of collection vessel, particulate materials about 9 times more than that of estimated natural sedimentation amount were collected. This corresponds to the 5% of the horizontal flux of suspended substances in the bottom layer water. Among the collected particulate materials, about 30% are suspended substances, about 70% are surface sediment substances. This kind of method, when combined suitably with the method for removing collected particulate materials, can be one of the effective method for the purification of polluted sediment materials. 8 refs., 9 figs., 3 tabs.

  10. Characteristics of tritium release behavior from solid breeder materials

    Kinjyo, T.; Nishikawa, M.; Yamashita, N.; Koyama, T.; Suematsu, K.; Fukada, S. [Graduate School of Engineering Science, Kyushu Univ., Fukuoka 812-8581 (Japan); Enoeda, M. [Naka Establishment, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan)


    A tritium release model has been developed by the present authors. The tritium release curves estimated by this tritium model give good agreement with experimental curves for Li {sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3}, Li{sub 2}ZrO{sub 3} or LiAlO{sub 2} under various purge gas conditions in our out-of-pile bred tritium release. The characteristics of tritium release behavior from various solid breeder materials carried out by us and in EXOTIC experiments at Petten are discussed in this study. (authors)

  11. Production behavior of irradiation defects in solid breeder materials

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)


    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  12. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)


    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  13. Oxide anode materials for solid oxide fuel cells

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)


    A major advantage of solid oxide fuel cells (SOFCs) over polymer electrolyte membrane (PEM) fuel cells is their tolerance for the type and purity of fuel. This fuel flexibility is due in large part to the high operating temperature of SOFCs, but also relies on the selection and development of appropriate materials - particularly for the anode where the fuel reaction occurs. This paper reviews the oxide materials being investigated as alternatives to the most commonly used nickel-YSZ cermet anodes for SOFCs. The majority of these oxides form the perovskite structure, which provides good flexibility in doping for control of the transport properties. However, oxides that form other crystal structures, such as the cubic fluorite structure, have also shown promise for use as SOFC anodes. In this paper, oxides are compared primarily in terms of their transport properties, but other properties relative to SOFC anode performance are also discussed. (author)

  14. Crystal-Field Engineering of Solid-State Laser Materials

    Henderson, Brian; Bartram, Ralph H.


    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  15. Resilient Sealing Materials for Solid Oxide Fuel Cells

    Signo T. Reis; Richard K. Brow


    This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.

  16. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Uday B. Pal; Srikanth Gopalan


    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  17. The solid lubricating material experiment device for Shenzhou-7 Spaceship


    A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital module and can be fetched conveniently by an astronaut during space walk.The solid lubricating material experiment device needs to be locked reliably in a vibrating and impacting environment during the launch phase,and should meet the requirement that it can be unlocked and fetched reliably by the astronaut wearing an extravehicular spacesuit via simple operations in orbit in an environment of high and low temperature.As for the device we developed,the environmental characteristic of the mission was analyzed,the mechanical analysis and thermal analysis were carried out,and then a mechanism with functions of mechanical locking,structural self-locking and manual unlocking was designed.The device was verified by a sequence of experiments and was fetched by the astronaut during the flight of the Shenzhou-7 Spaceship.

  18. Materials Development for All-Solid-State Battery Electrolytes

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  19. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Soydemir E.


    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  20. Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials

    Clayton, J. Louie


    Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  1. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.


    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  2. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis.

    Wessing, Bastian; Lettner, Stefan; Zechner, Werner


    The aim of this meta-analysis was to evaluate different methods for guided bone regeneration using collagen membranes and particulate grafting materials in implant dentistry. An electronic database search and hand search were performed for all relevant articles dealing with guided bone regeneration in implant dentistry published between 1980 and 2014. Only randomized clinical trials and prospective controlled studies were included. The primary outcomes of interest were survival rates, membrane exposure rates, bone gain/defect reduction, and vertical bone loss at follow-up. A meta-analysis was performed to determine the effects of presence of membrane cross-linking, timing of implant placement, membrane fixation, and decortication. Twenty studies met the inclusion criteria. Implant survival rates were similar between simultaneous and subsequent implant placement. The membrane exposure rate of cross-linked membranes was approximately 30% higher than that of non-cross-linked membranes. The use of anorganic bovine bone mineral led to sufficient newly regenerated bone and high implant survival rates. Membrane fixation was weakly associated with increased vertical bone gain, and decortication led to higher horizontal bone gain (defect depth). Guided bone regeneration with particulate graft materials and resorbable collagen membranes is an effective technique for lateral alveolar ridge augmentation. Because implant survival rates for simultaneous and subsequent implant placement were similar, simultaneous implant placement is recommended when possible. Additional techniques like membrane fixation and decortication may represent beneficial implications for the practice.

  3. Novel Materials and Devices for Solid-State Neutron Detection

    Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in

  4. Effects of Al2O3 Particulates on the Thickness of Reaction Layer of Al2O3 Joints Brazed with Al2O3-Particulate-Contained Composite Filler Materials

    Jianguo YANG; Jingwei WU; Hongyuan FANG


    In order to understand the rate-controlling process for the interfacial layer growth of brazing joints brazed with activecomposite filler materials, the thickness of brazing joints brazed with conventional active filler metal and activecomposite filler materials with different volume fraction of Al2O3 particulate was studied. The experimental resultsindicate although there are Al2O3 particulates added into active filler metals, the time dependence of interfacial layergrowth is t2 as described by Fickian law for the joints brazed with conventional active filler metal. It also shows thatthe key factor affecting the interfacial layer growth is the volume fraction of alumina in the composite filler materialcompared with the titanium weight fraction in the filler material.


    S. T. Antipov


    Full Text Available The technical task of the process is to improve the drying quality of the final product, increasing the precision and reliability of control, the reduction of specific energy consumption. One of the ways to improve the process is complex and i ts local automation. This paper deals with the problems of development and creation of a new control algorithm drying process of the particulate material. Identified a number of shortcomings of the existing methods of automatic control of the process. As a result, the authors proposed a method for drying particulate materials in the device with swirling flow and the microwave energy supply and its automatic control algorithm. The description of the operating principle of the drying apparatus consists in that the particulate material is wet by using a tangential flow of coolant supplied to the cylinder-drying apparatus which also serves the axial coolant flow, whereby the heat transfer fluid with the particulate material begins to undergo a complex circular movement along the circumference apparatus, thereby increasing its speed and its operation control algorithm. The work of this scheme is carried out at three levels of regulation on the basis of determining the coefficient of efficiency of the dryer, which makes it possible to determine the optimal value of the power equipment and to forecast the cost of electricity. All of the above allows you to get ready for a high quality product while minimizing thermal energy and material costs by optimizing the operating parameters of the drying of the particulate material in the dryer with a combined microwave energy supply and ensure the rational use of heat energy by varying their quantity depending on the characteristics to be dried particulate material and the course of the process.

  6. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A


    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  7. Al2O3/Al2O3 Joint Brazed with Al2O3-particulate-contained Composite Ag-Cu-Ti Filler Material

    Jianguo YANG; Hongyuan FANG; Xin WAN


    Microstructure and interfacial reactions of Al2O3 joints brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material were researched by scanning electron microscopy (SEM), electron probe microscopy analysis (EPMA),energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The interfacial reaction layer thickness of joints brazed with conventional active filler metal and active composite filler materials with different volume fraction of Al2O3 particulate was also studied. The experimental results indicated although there were Al2O3 particulates added into active filler metals, the time dependence of interfacial layer growth of joints brazed with active composite filler material is t1/2 as described by Fickian law as the joints brazed with conventional active filler metal.

  8. Gain and loss enhancement in active and passive particulate composite materials

    Mackay, Tom G


    Two active dielectric materials may be blended together to realize a homogenized composite material (HCM) which exhibits more gain than either component material. Likewise, two dissipative dielectric materials may be blended together to realize an HCM which exhibits more loss than either component material. Sufficient conditions for such gain/loss enhancement were established using the Bruggeman homogenization formalism. Gain/loss enhancement arises when (i) the imaginary parts of the relative permittivities of both component materials are similar in magnitude and (ii) the real parts of the relative permittivities of both component materials are dissimilar in magnitude.

  9. Determination of selected oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) in diesel and air particulate matter standard reference materials (SRMs).

    Nocun, Margarete S; Schantz, Michele M


    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) have recently received much attention in discussions regarding the negative impacts of particulate matter (PM) on human health and the environment. The National Institute of Standards and Technology provides several environmental matrix standard reference materials (SRMs) with certified and reference values for polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs. In this study, the concentrations of oxygenated PAHs are determined in three air PM SRMs (1649b, 1648a, and 2786) and three diesel PM SRMs (1650b, 2975, and 1975) using two independent gas chromatography-mass spectrometry methods. Concentrations of oxy-PAHs were at the milligrams per kilogram level with higher overall concentrations in diesel PM (up to 50 mg/kg for 9,10-anthraquinone). One of the highest oxy-PAH concentrations (up to 5 mg/kg) measured in the air particulate SRMs was for 7,12-benz[a]anthracenquinone. These results suggest that oxygenated PAHs should not be neglected in the analysis of PM as their concentrations can be as high as those of some PAHs and are one to two orders of magnitude higher than those for nitro-PAHs.

  10. Organic particulate material levels in the atmosphere: conditions favoring sensitivity to varying relative humidity and temperature.

    Pankow, James F


    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) as those levels may potentially be affected by changes in relative humidity and temperature. In a given system, for each partitioning compound, f(g) and f(p) represent the gaseous and particulate fractions (f(g) + f(p) = 1). Sensitivity in the M(o) levels becomes dampened as the compounds contributing significantly to M(o) are increasingly found in the particle phase (f(p) --> 1). Thus, although local maxima in sensitivity can be encountered as M(o) levels increase, because as M(o) increases each f(p) --> 1, then increasing M(o) levels generally tend to reduce sensitivity in M(o) levels to changes in relative humidity and temperature. Experiments designed to elucidate the potential magnitudes of the effects of relative humidity and temperature on M(o) levels must be carried out at M(o) levels that are relevant for the ambient atmosphere: The f(p) values for the important partitioning compounds must not be elevated above ambient-relevant values. Systems in which M(o) levels are low (e.g., 1-2 microg m(-3)) and/or composed of unaged secondary organic aerosol are the ones most likely to show sensitivity to changing relative humidity and temperature. Results from two published chamber studies are examined in the above regard: [Warren B, et al. (2009) Atmos Environ 43:1789-1795] and [Prisle NL, et al. (2010) Geophys Res Lett 37:L01802].

  11. Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material.

    Marvin, Christopher H; Hewitt, L Mark


    The combination of short-term bioassays and analytical chemical techniques has been successfully used in the identification of a variety of mutagenic compounds in complex mixtures. Much of the early work in the field of bioassay-directed fractionation resulted from the development of a short-term bacterial assay employing Salmonella typhimurium; this assay is commonly known as the Ames assay. Ideally, analytical methods for assessment of mutagenicity of any environmental matrix should exhibit characteristics including high capacity, good selectivity, good analytical resolution, non-destructiveness, and reproducibility. A variety of extraction solvents have been employed in investigations of mutagenicity of air particulate; sequential combination of dichloromethane followed by methanol is most popular. Soxhlet extraction has been the most common extraction method, followed by sonication. Attempts at initial fractionation using different extraction solvents have met with limited success and highlight the need for fractionation schemes applicable to moderately polar and polar mutagenic compounds. Fractionation methods reported in the literature are reviewed according to three general schemas: (i) acid/base/neutral partitioning followed by fractionation using open-column chromatography and/or HPLC; (ii) fractionation based on normal-phase (NP) HPLC using a cyanopropyl or chemically similar stationary phase; and (iii) fractionation by open-column chromatography followed by NP-HPLC. The HPLC methods may be preparative, semi-preparative, or analytical scale. Variations based on acid/base/neutral partitioning followed by a chromatographic separation have also been employed. Other lesser-used approaches involve fractionation based on ion-exchange and thin-layer chromatographies. Although some of the methodologies used in contemporary studies of mutagenicity of air particulate do not represent significant advances in technology over the past 30 years, their simplicity, low

  12. Laser (cooling) refrigeration in erbium based solid state materials

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  13. Solid State NMR Studies of Energy Conversion and Storage Materials

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  14. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas


    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  15. Individual particle analysis of coarse air suspended particulate material by synchrotron radiation X-ray micro fluorescence

    Moreira, Silvana; Melo Junior, Ariston [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail:; Perez, Carlos Alberto [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)]. E-mail:; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail:; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail:


    The purpose of this work is evaluate the size of individual particles present in the air suspended particulate material collected in Campinas, Sao Paulo State, and analyze quantitatively the particles using the synchrotron radiation X-ray micro fluorescence ({mu}-SRXRF) associated with the fundamental parameter method to correct attenuation/absorption effects by the matrix. The particles analyzed have size between 50-10 {mu}m and to perform the spatial distribution a white beam of synchrotron radiation condensed by a conical capillary (13 {mu}m diameter) was used. For the quantitative analysis punctual measures in thin films standards in Mylar subtract were performed. The elements detected were Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. (author)

  16. Application of solid waste containing lead for gamma ray shielding material



    Abstract. The basic strategies to decrease solid waste disposal problems have focused on the reduction of waste production and recovery of usable materials using waste and making raw materials. Generally, various materials have been used for radiation shielding in different areas and situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead has been analyzed in order to make a shielding material against gamma radiation. The photon total mass...

  17. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Allan J. Jacobson


    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  18. Bruggeman formalism vs. `Bruggeman formalism': Particulate composite materials comprising oriented ellipsoidal particles

    Mackay, Tom G


    Two different formalisms for the homogenization of composite materials containing oriented ellipsoidal particles of isotropic dielectric materials are being named after Bruggeman. Numerical studies reveal clear differences between the two formalisms which may be exacerbated: (i) if the component particles become more aspherical, (ii) at mid-range values of the volume fractions, and (iii) if the homogenized component material is dissipative. The correct Bruggeman formalism uses the correct polarizability density dyadics of the component particles, but the other formalism does not.

  19. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity


    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  20. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA


    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  1. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.

    Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman


    Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme.

  2. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing


    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study.

  3. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...


    ... and steel scrap, other metals, paper fiber) sustainability; C&D materials; and zero waste. Topic 3... AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about...

  4. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo


    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  5. Handling of bulk solids theory and practice

    Shamlou, P A


    Handling of Bulk Solids provides a comprehensive discussion of the field of solids flow and handling in the process industries. Presentation of the subject follows classical lines of separate discussions for each topic, so each chapter is self-contained and can be read on its own. Topics discussed include bulk solids flow and handling properties; pressure profiles in bulk solids storage vessels; the design of storage silos for reliable discharge of bulk materials; gravity flow of particulate materials from storage vessels; pneumatic transportation of bulk solids; and the hazards of solid-mater

  6. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Ruiz Morales, J. C.


    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  7. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...


    ... nonsubstantive changes, however, to correct grammar, internal paragraph references, and a temperature conversion... means the English version of the ``International Maritime Solid Bulk Cargoes Code'' published by...

  8. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine


    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  9. Thermal desorption GC-MS as a tool to provide PAH certified standard reference material on particulate matter quartz filters.

    Grandesso, Emanuela; Pérez Ballesta, Pascual; Kowalewski, Konrad


    Reference materials for particulate matter (PM) on filter media are not available for the quantification of polycyclic aromatic hydrocarbons (PAHs) in ambient air. This is due to the difficulty of obtaining reference material that has a homogeneous distribution on a filter surface that is large enough for characterization and distribution. High volume sample filters from different locations and seasons were considered to validate the feasibility of the use of quartz filters as reference material for PAH concentrations. A rapid thermal desorption (TD) technique coupled with gas chromatography/mass spectroscopy was applied to characterise the material for the content of fifteen different PAHs. TD technique allowed for rapid and accurate analysis of small sections of filter (5mm diameter), leaving enough material for the production of twenty sub-filter cuts (42 mm diameter) that could be used for distribution and control. Stability and homogeneity tests required for material certification were performed as indicated by the ISO guide 34:2009 and ISO 35:2006. The contribution of the heterogeneous distribution of PAHs on the filter surface resulted generally lower than 10% and higher for more volatile PAHs. One year of storage at -18°C indicated no significant variation in PAH concentrations. Nevertheless, a methodology for shipping and storing of the filter material at ambient temperature in especially designed plastic envelopes, was also shown to allow for stabile concentrations within twenty days. The method accuracy was confirmed by the analysis of NIST SRM 1649a (urban dust) and PAH concentrations were validated against the reference values obtained from an inter-laboratory exercise. In the case of benzo[a]pyrene for masses quantified between 100 pg and 10 ng the TD method provided expanded uncertainties of circa 10%, while the inter-laboratory reference value uncertainties ranged between 15 and 20%. The evaluation of these results supports the use of the presented

  10. The Petrocarb pneumatic feeding system: A proven method for feeding particulate solids at controlled rates. [for coal gasification systems

    Reintjes, H.


    An outline of the principal features of the Petrocarb Pneumatic Feeding System is given. Early development and various commercial applications are included. It is concluded that the Petrocarb Injection System is capable of feeding dry solids into most of the processes being developed for utilizing coal.

  11. Free-space reflection method for measuring moisture content and bulk density of particulate materials at microwave frequency

    Li, Chenxiao; Han, Bing; Zhang, Tao


    A measurement system based on free-space reflection method is designed for simultaneous and independent determination of moisture content and bulk density of particulate materials. The proposed system consists of microwave cavity oscillator, horn antenna, slide rail, sample holder, mixer, and digital meter. Sand and rice with different moisture contents and bulk densities are chosen as samples. Calibration models for moisture content and bulk density are proposed according to the measurement of the position of the minimum of the traveling-standing wave and the ratio of the maximum-to-minimum field strength of the traveling-standing wave at different temperatures. The moisture constant, ranging from 0% to 24.6%, is obtained with a coefficient of determination (R2) greater than 0.982 and a standard error of prediction (SEP) value of less than 0.695%. The bulk density, ranging from 0.501 g/cm3 to 1.822 g/cm3, is determined with a R2 ≥ 0.961 and a SEP value ranging from 0.0144 g/cm3 to 0.0382 g/cm3 for different samples.

  12. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner


    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  13. Gas/solid particulate phthalic esters (PAEs) in Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils

    Wang, Wen-xin, E-mail: [Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Fan, Chinbay Q. [Gas Technology Institute, 1700 S. Mt. Prospect Rd., Des Plaines, IL 60018 (United States)


    Graphical abstract: - Highlights: • The pine needle/rhizosphere soil distribution of PAEs was related to P{sub L} and K{sub P}. • The P{sub L} and K{sub P} determined the PAE deposition to surface soils and to needles. • High regression parameters of log Rs/n − log P{sub L} and log K{sub P} − log P{sub L} were achieved. • Log Rs/n carried the information of K{sub P} and lineally correlated with log P{sub L}. - Abstract: Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted between January 2011 and December 2012 in Nanjing (China). Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils were sampled from urban to suburban/remote sites, to investigate the pine needle/soil distribution of PAEs. The results showed that the average total PAE concentration (gas + particle) was 97.0 ng m{sup −3}. The six PAE congeners considered predominantly existed in the gas phase and the average contribution of gas phase to total PAEs ranged from 75.0% to 89.1%. The PAE concentrations in rhizosphere soils and pine needles were positively correlated with their particulate- and gas-phase concentrations, respectively, which suggested that surface soils accumulated PAEs mainly through gravity deposition of particles and pine needle stomata absorbed PAEs mainly from the gas phase. The gas/particle partitioning (K{sub P}) and soil-pine needle ratio (Rs/n) were determined. Experimentally determined K{sub P} values correlated well with the subcooled liquid vapor pressures (P{sub L}). A set of interesting relationships of log Rs/n − log K{sub P} − log P{sub L} was employed to explain the experimental findings of PAEs deposition to surface soils and to needles. This data set offered a unique perspective into the influence that Rs/n played in K{sub P} and correlated with P{sub L}.

  14. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific

    M. Tedetti


    Full Text Available In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S–166°26.905 E from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM (ag(λ, particulate matter (ap(λ and CDOM + particulate matter (ag+p(λ were measured using a point-source integrating-cavity absorption meter (PSICAM, while fluorescent DOM (FDOM components were determined from excitation-emission matrices (EEMs combined with parallel factor analysis (PARAFAC. The evolutions of ag(λ, ap(λ and ag+p(λ in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9–10, and an increase from days 9–10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores did not follow the evolution of CDOM and particulate matter, proving that these were driven by different

  15. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (South West Pacific)

    Tedetti, M.; Marie, L.; Röttgers, R.; Rodier, M.; Van Wambeke, F.; Helias, S.; Caffin, M.; Cornet-Barthaux, V.; Dupouy, C.


    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23 day mesocosm experiment conducted in the South West Pacific at the exit of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphorus at 1, 6 and 12 m depth and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) (ag(λ)), particulate matter (ap(λ)) and CDOM + particulate matter (ag+p(λ)) were measured using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ), ap(λ) and ag+p(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphorus fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton activities during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and UVC humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, proving that these were driven by different production

  16. Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA

    Baron, J.; McKnight, D.; Denning, A.S.


    The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May-July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer. ?? 1991 Kluwer Academic Publishers.

  17. AFM-porosimetry: density and pore volume measurements of particulate materials.

    Sörensen, Malin H; Valle-Delgado, Juan J; Corkery, Robert W; Rutland, Mark W; Alberius, Peter C


    We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.

  18. X-ray fluorescent emission analysis of slurried samples of particulate solids: application to thorium and uranium oxides

    Hudgens, C.R.


    Problems of sample preparation can be avoided by analyzing the solids as slurries. A sealed sample cell with a belt-driven stirrer was constructed for use with the GE XRD-3 spectrometer. A problem arose owing to radiolytic gas; an open, bottom-window cell would solve the problem. A ThO/sub 2/ analysis was carried out; the ThO/sub 2/ assay was observed to increase with prolonged x-ray exposure. (DLC)

  19. Characterizaticr of Solid State Laser and Nonlinear Optical Materials.


    materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated

  20. Jet engine with electromagnetic field excitation of expendable solid-state material

    Tsybin, O. Yu.; Makarov, S. B.; Ostapenko, O. N.


    Electromagnetic field action on a solid-state natural raw material is considered here in the context of producing a mechanical reactive momentum. We suggest the development of a jet engine that possesses fast control and low thrust based on desorption or sputtering of particles flow from a solid surface.

  1. Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry.

    Bowie, Andrew R; Townsend, Ashley T; Lannuzel, Delphine; Remenyi, Tomas A; van der Merwe, Pier


    Trace elements often limit phytoplankton growth in the ocean, and the quantification of particulate forms is essential to fully understand their biogeochemical cycling. There is presently a lack of reliable measurements on the trace elemental content of marine particles, in part due to the inadequacies of the sampling and analytical methods employed. Here we report on the development of a series of state-of-the-art trace metal clean methods to collect and process oceanic particulate material in open-ocean and sea ice environments, including sampling, size-fractionated filtration, particle digestions and analysis by magnetic sector inductively coupled plasma-mass spectrometry (ICP-MS). Particular attention was paid to the analysis of certified reference materials (CRMs) and field blanks, which are typically the limiting factor for the accurate analysis of low concentrations of trace metals in marine particulate samples. Theoretical detection limits (3 s of the blank) were low for all 17 elements considered, and varied according to filter material and porosity (sub-microg L(-1) for polycarbonate filters and 1-2 microg L(-1) for quartz and polyester filters). Analytical accuracy was verified using fresh water CRMs, with excellent recoveries noted (93-103%). Digestion efficiencies for various acid combinations were assessed using sediment and plankton CRMs. Using nitric acid only, good recoveries (79-90%) were achieved for Mo, Cd, Ba, Pb, Mn, Fe, Co, Ni, Cu, Zn and Ga. The addition of HF was necessary for the quantitative recovery of the more refractory trace elements such as U, Al, V and Cr. Bioactive elements such as P can also be analysed and used as a biomass normaliser. Our developed sampling and analytical methods proved reliable when applied during two major field programs in both the open Southern Ocean and Antarctic sea ice environments during the International Polar Year in 2007. Trace elemental data are presented for particulate samples collected in both

  2. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... management, recycling, measurement, data, data collection, construction and demolition (C&D)...


    V. A. Okovity


    Full Text Available The paper presents an oxide ceramic material with addition of solid lubricant which has good technological characteristics and which is able to form high wear-resistant plasma coatings with low friction coefficient.

  4. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry.

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xiao, Chong; Xie, Yi


    CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures

  5. Assessment of the Halogen Content of Brazilian Inhalable Particulate Matter (PM10) Using High Resolution Molecular Absorption Spectrometry and Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry, with Direct Solid Sample Analysis.

    de Gois, Jefferson S; Almeida, Tarcisio S; Alves, Jeferson C; Araujo, Rennan G O; Borges, Daniel L G


    Halogens in the atmosphere play an important role in climate change and also represent a potential health hazard. However, quantification of halogens is not a trivial task, and methods that require minimum sample preparation are interesting alternatives. Hence, the aim of this work was to evaluate the feasibility of direct solid sample analysis using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for F determination and electrothermal vaporization-inductively coupled plasma mass spectrometry (ETV-ICP-MS) for simultaneous Cl, Br, and I determination in airborne inhalable particulate matter (PM10) collected in the metropolitan area of Aracaju, Sergipe, Brazil. Analysis using HR-CS MAS was accomplished by monitoring the CaF molecule, which was generated at high temperatures in the graphite furnace after the addition of Ca. Analysis using ETV-ICP-MS was carried out using Ca as chemical modifier/aerosol carrier in order to avoid losses of Cl, Br, and I during the pyrolysis step, with concomitant use of Pd as a permanent modifier. The direct analysis approach resulted in LODs that were proven adequate for halogen determination in PM10, using either standard addition calibration or calibration against a certified reference material. The method allowed the quantification of the halogens in 14 PM10 samples collected in a northeastern coastal city in Brazil. The results demonstrated variations of halogen content according to meteorological conditions, particularly related to rainfall, humidity, and sunlight irradiation.

  6. Evolution of dissolved and particulate chromophoric materials during the VAHINE mesocosm experiment in the New Caledonian coral lagoon (south-west Pacific)

    Tedetti, Marc; Marie, Lauriane; Röttgers, Rüdiger; Rodier, Martine; Van Wambeke, France; Helias, Sandra; Caffin, Mathieu; Cornet-Barthaux, Véronique; Dupouy, Cécile


    In the framework of the VAHINE project, we investigated the spectral characteristics and the variability of dissolved and particulate chromophoric materials throughout a 23-day mesocosm experiment conducted in the south-west Pacific at the mouth of the New Caledonian coral lagoon (22°29.073 S-166°26.905 E) from 13 January to 4 February 2013. Samples were collected in a mesocosm fertilized with phosphate at depths of 1, 6 and 12 m and in the surrounding waters. Light absorption coefficients of chromophoric dissolved organic matter (CDOM) [ag(λ)] and particulate matter [ap(λ)] were determined using a point-source integrating-cavity absorption meter (PSICAM), while fluorescent DOM (FDOM) components were determined from excitation-emission matrices (EEMs) combined with parallel factor analysis (PARAFAC). The evolutions of ag(λ) and ap(λ) in the mesocosm were similar to those of total chlorophyll a concentration, Synechococcus spp. and picoeukaryote abundances, bacterial production, particulate organic nitrogen and total organic carbon concentrations, with roughly a decrease from the beginning of the experiment to days 9-10, and an increase from days 9-10 to the end of the experiment. In the surrounding waters, the same trend was observed but the increase was much less pronounced, emphasizing the effect of the phosphate fertilization on the mesocosm's plankton community. Correlations suggested that both Synechococcus cyanobacteria and heterotrophic bacteria were strongly involved in the production of CDOM and absorption of particulate matter. The increase in phytoplankton biomass during the second part of the experiment led to a higher contribution of particulate material in the absorption budget at 442 nm. The three FDOM components identified (tryptophan-, tyrosine- and ultraviolet C (UVC) humic-like fluorophores) did not follow the evolution of CDOM and particulate matter, suggesting they were driven by different production/degradation processes. Finally, the

  7. Reactivity, interactions and transport of trace elements, organic carbon and particulate material in a mountain range river system (Adour River, France).

    Point, David; Bareille, Gilles; Amouroux, David; Etcheber, Henri; Donard, Olivier F X


    The background levels, variability, partitioning and transport of eleven trace elements-Ag, Al, As, Cd, Co, Cr, Cu, Mn, Pb, Zn and U-were investigated in a mountain range river system (Adour River, France). This particular river system displayed a turbulent hydrodynamic regime, characterized by flash-transient discharge conditions leading to fast shifts in suspended particulate matter (SPM) concentrations as high as two orders of magnitude (12 to 600 mg l(-1)). The distribution of SPM was accurately predicted with a "hysteresis" transport model, indicating that about 75% of the annual solids load was exported within 20 to 40 days. Dissolved and particulate concentrations of most trace elements were low compared to their concentrations in other reference river systems expect for Pb and Cr, associated with historical anthropogenic activities. Although dissolved and particulate metal concentrations were steady for most elements during low and average discharge conditions, significant changes were observed with increasing river discharge. The changes in trace element concentrations in the two compartments was found to induce a partitioning anomaly referred to as the particulate concentration effect. This anomaly was significant for Cr, Mn, Pb, Zn, Cu and organic carbon (p < 0.03). The processes driving this anomaly were possibly linked to the modification and/or increase of colloidal organic and inorganic vectors, suggested by the significant increase of DOC (p < 0.001) and dissolved Al concentrations (p < 0.05) during flood conditions. A complementary process linked to the influence of coarse particles of low complexation capacity and transported mainly during high discharge may also effect trace element concentrations. Annual metal fluxes transported by this river system were estimated using the hysteresis SPM model with consideration of these fate processes. Metals in the Adour River system are primarily exported into the Bay of Biscay (Atlantic Ocean).

  8. Applied solid state science advances in materials and device research 3

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 3 covers reviews that are directly related to the two devices which are the epitome of applied solid state science - the transistor and the laser. The book discusses the physics of multilayer-gate IGFET memories; the application of the transient charge technique in drift velocity; and trapping in semiconductors and in materials used in xerography, nuclear particle detectors, and space-charge-limited devices; as well as thin film transistors. The text describes the manipulation of laser beams in solids and discusses

  9. Confirmatory sediment analyses and solid and suspended particulate phase bioassays on sediment from Oakland Inner Harbor, San Francisco, California

    Word, J.Q.; Ward, J.A.; Apts, C.W.; Woodruff, D.L.; Barrows, M.E.; Cullinan, V.I.; Hyland, J.L.; Campbell, J.F.


    The US Army Corps of Engineers (USACE), San Francisco District, was authorized by the US Congress to deepen the navigation channels of Inner and Outer Oakland Harbor, California. During review of the environmental impact statement required for this dredging and disposal project, a panel of national experts approved the open-water disposal of dredged sediment from selected areas within the Inner Harbor, subject to results of confirmatory solid phase bioassays. The San Francisco District of the Corps requested the Battle/Marine Sciences Laboratory (MSL) to conduct these confirmatory studies. The studies provided technical data for an evaluation of the potential environmental impact of this project. Within extremely narrow time constraints, these studies provided chemical and biological information required by ocean dumping regulations to determine suitability of the Oakland Inner Harbor and turning basin sediment for ocean disposal. 23 refs., 18 figs., 45 tabs.

  10. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels.

    Patel, Sameer; Li, Jiayu; Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K; Biswas, Pratim


    Many households use solid fuels for cooking and heating purposes. There is currently a knowledge gap in our understanding of the variations in indoor air quality throughout the household as most of the studies focus on the areas in the close proximity of the cookstove. A low-cost wireless particulate matter (PM) sensor network was developed and deployed in households in Raipur, India to establish the spatio-temporal variation of PM concentrations. The data from multiple sensors were acquired in real-time with a wireless system. Data collected from the sensors agreed well (R(2) =0.713) with the reference data collected from a commercially available instrument. Low spatial variability was observed within the kitchen due to its small size and poor ventilation - a common feature of most rural Indian kitchens. Due to insufficient ventilation from open doors and windows, high PM concentrations similar to those found in the kitchen were also found in the adjoining rooms. The same household showed significantly different post-extinguished cookstove PM concentration decay rates (0.26mg/m(3)-min and 0.87mg/m(3)-min) on different days, owing to varying natural air exchange rates (7.68m(3)/min and 37.40m(3)/min).

  11. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications

    Yunqi Yang


    Full Text Available Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields.

  12. Femtosecond laser induced phenomena in transparent solid materials

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng


    The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been...... solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  13. Materials corrosion in ammonia/solid heat pump working media

    Wilson, D.F.; Howell, M.; DeVan, J.H.


    Salt/ammonia complexes will undergo thermal cycles during use as working media for heat pumps. The interaction between container materials and complexes under thermal cyclic conditions was assessed to screen possible containment materials. Aluminum alloys 3003, 1100, and 6063 and carbon steel A214 were tested against possible heat pump working media SrCl{sub 2}/NH{sub 3}, CaBr{sub 2}/NH{sub 3}, and CaCl{sub 2}/NH{sub 3}. None of the containment materials showed susceptibility to stress corrosion cracking. While all the materials demonstrated excellent general corrosion resistance to SrCl{sub 2}/NH{sub 3}, only A214 displayed good general corrosion resistance to CaCl{sub 2}/NH{sub 3}. The complex CaBr{sub 2}/NH{sub 3} was found to be subject to thermal cyclic instability and should not be used as a heat pump working medium.

  14. Fabrication, properties, and tritium recovery from solid breeder materials

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))


    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  15. Biochemical methane potential (BMP) of solid organic materials

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.


    and experimental conditions were reported. The study was performed using 4 samples: 3 reference substrates (starch, cellulose and gelatine), and 1 raw material (mung bean). The BMP of mung bean was carried out at two inoculum to substrate ratios (ISR), specifically 2 and 1. The methane yields of reference......L CH4/g VSadded and 86±8%, respectively. In addition, the anaerobic digestion of the raw material elected did not show influence on the ISR in the extent of the biotransformation....

  16. The Role of Solid Lubricants for Brake Friction Materials

    Werner Österle


    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  17. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie


    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  18. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Atsushi eSakuda


    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  19. Pressure effect on hysteresis in spin-crossover solid materials

    Gudyma, Iurii, E-mail: [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)


    A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.

  20. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...


    ... Bulk MSDS Material Safety Data Sheet NCB National Cargo Bureau NEPA National Environmental Policy Act... material safety data sheet (MSDS) address some portions of proposed Sec. 148.60. We agree with the comment... in the form of an MSDS. e. One comment observed that, as proposed in the 1994 NPRM, Sec. 148.60(d...

  1. A novel shielding material prepared from solid waste containing lead for gamma ray

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih


    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  2. Eulerian numerical simulation of gas-solid flows with several particles species; Modelisation numerique eulerienne des ecoulements gaz-solide avec plusieurs especes de particules

    Patino-Palacios, G


    The simulation of the multiphase flows is currently an important scientific, industrial and economic challenge. The objective of this work is to improve comprehension via simulations of poly-dispersed flows and contribute the modeling and characterizing of its hydrodynamics. The study of gas-solid systems involves the models that takes account the influence of the particles and the effects of the collisions in the context of the momentum transfer. This kind of study is covered on the framework of this thesis. Simulations achieved with the Saturne-polyphasique-Tlse code, developed by Electricite de France and co-worked with the Institut de Mecanique des Fluides de Toulouse, allowed to confirm the feasibility of approach CFD for the hydrodynamic study of the injectors and dense fluidized beds. The stages of validation concern, on the one hand, the placement of the tool for simulation in its current state to make studies of validation and sensitivity of the models and to compare the numerical results with the experimental data. In addition, the development of new physical models and their establishments in the code Saturne will allow the optimization of the industrial process. To carry out this validation in a satisfactory way, a key simulation is made, in particular a monodisperse injection and the radial force of injection in the case of a poly-disperse flow, as well as the fluidization of a column made up of solid particles. In this last case, one approached three configurations of dense fluidized beds, in order to study the influence of the grid on simulations; then, one simulates the operation of a dense fluidized bed with which one characterizes the segregation between two various species of particles. The study of the injection of the poly-disperse flows presents two configurations; a flow Co-current gas-particle in gas (Case Hishida), and in addition, a poly-phase flow in a configuration of the jet type confined with zones of recirculation and stagnation (case

  3. Proposal for a European standard dealing with measuring methods for fine particulate emissions of solid-fuel fired furnaces; Vorschlag einer europaeischen Staubmessnorm fuer Feststoff-Feuerstaetten - Ausarbeitung und Untersuchung eines Typenpruef-Messverfahrens fuer Staubemissionen

    Gaegauf, Ch. [Oekozentrum, Langenbruck (Switzerland); Griffin, T. [Fachhochschule Nordwestschweiz/ITFE, Muttenz (Switzerland)


    The European standards for type testing of solid fuel burning appliances require only the measurement of carbon monoxide emissions. Many European countries urge the standardisation committees to establish standards for the regulation of fine particulate emissions from flue gases since they face exceeding threshold values of particulate matter in the ambient air. The Technical Committee CEN/TC 295 for the standardisation of solid fuel burning appliances assigned the Centre for Appropriate Technology in Langenbruck, Switzerland with the development of a European Technical Specification (CEN TS) for the determination of particulate emission. The new draft of the TS is based on constant volume sampling (CVS) of the entire flue gas flow in a dilution tunnel. The scientific research has been done in the Swiss test laboratory for solid fuel burning appliances and boilers at the University of Applied Sciences, in Basle. The TS is designed in such a way that it can be integrated into the test cycles required by various European standards. The investigation covered work on parameters such as dilution factor, sampling temperature and isokinetics. Tests with a wood log burning appliance and a pellet stove showed that emissions in the dilution tunnel were between 7% and 26% for the pellet stove and from 40% up to 160% higher if they were sampled directly from the stack using heated gravimetric filters. It was demonstrated that the differences between the emissions seen in the dilution tunnel and those from the stack increased along with increasing levels of incomplete combustion. (author)

  4. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg


    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation wa...

  5. Development of high temperature materials for solid propellant rocket nozzle applications

    Manning, C. R., Jr.; Lineback, L. D.


    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  6. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    Setyan, Ari; Patrick, Michael; Wang, Jing


    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (<100 #/cm3), stressing the efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  7. Alternative anode materials for solid oxide fuel cells

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)


    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  8. Activation of transient receptor potential ankyrin-1 (TRPA1) in lung cells by wood smoke particulate material.

    Shapiro, Darien; Deering-Rice, Cassandra E; Romero, Erin G; Hughen, Ronald W; Light, Alan R; Veranth, John M; Reilly, Christopher A


    Cigarette smoke, diesel exhaust, and other combustion-derived particles activate the calcium channel transient receptor potential ankyrin-1 (TRPA1), causing irritation and inflammation in the respiratory tract. It was hypothesized that wood smoke particulate and select chemical constituents thereof would also activate TRPA1 in lung cells, potentially explaining the adverse effects of wood and other forms of biomass smoke on the respiratory system. TRPA1 activation was assessed using calcium imaging assays in TRPA1-overexpressing HEK-293 cells, mouse primary trigeminal neurons, and human adenocarcinoma (A549) lung cells. Particles from pine and mesquite smoke were less potent agonists of TRPA1 than an equivalent mass concentration of an ethanol extract of diesel exhaust particles; pine particles were comparable in potency to cigarette smoke condensate, and mesquite particles were the least potent. The fine particulate (PM particulate, 3,5-ditert-butylphenol, coniferaldehyde, formaldehyde, perinaphthenone, agathic acid, and isocupressic acid, were TRPA1 agonists. Pine particulate activated TRPA1 in mouse trigeminal neurons and A549 cells in a concentration-dependent manner, which was inhibited by the TRPA1 antagonist HC-030031. TRPA1 activation by wood smoke particles occurred through the electrophile/oxidant-sensing domain (i.e., C621/C641/C665/K710), based on the inhibition of cellular responses when the particles were pretreated with glutathione; a role for the menthol-binding site of TRPA1 (S873/T874) was demonstrated for 3,5-ditert-butylphenol. This study demonstrated that TRPA1 is a molecular sensor for wood smoke particulate and several chemical constituents thereof, in sensory neurons and A549 cells, suggesting that TRPA1 may mediate some of the adverse effects of wood smoke in humans.

  9. Shock Wave Structure in Particulate Composites

    Rauls, Michael; Ravichandran, Guruswami


    Shock wave experiments are conducted on a particulate composite consisting of a polymethyl methacrylate (PMMA) matrix reinforced by glass beads. Such a composite with an impedance mismatch of 4.3 closely mimics heterogeneous solids of interest such as concrete and energetic materials. The composite samples are prepared using a compression molding process. The structure and particle velocity rise times of the shocks are examined using forward ballistic experiments. Reverse ballistic experiments are used to track how the interface density influences velocity overshoot above the steady state particle velocity. The effects of particle size (0.1 to 1 mm) and volume fraction of glass beads (30-40%) on the structure of the leading shock wave are investigated. It is observed that the rise time increases with increasing particle size and scales linearly for the range of particle sizes considered here. Results from numerical simulations using CTH are compared with experimental results to gain insights into wave propagation in heterogeneous particulate composites.

  10. Relative humidity-dependent viscosity of secondary organic material from toluene photo-oxidation and possible implications for organic particulate matter over megacities

    Song, Mijung; Liu, Pengfei F.; Hanna, Sarah J.; Zaveri, Rahul A.; Potter, Katie; You, Yuan; Martin, Scot T.; Bertram, Allan K.


    To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required. Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic volatile organic compounds (VOCs) such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2 × 10-1 to ˜ 6 × 106 Pa s from 30 to 90 % RH, and greater than ˜ 2 × 108 Pa s (similar to or greater than the viscosity of tar pitch) for RH ≤ 17 %. These viscosities correspond to Stokes-Einstein-equivalent diffusion coefficients for large organic molecules of ˜ 2 × 10-15 cm2 s-1 for 30 % RH, and lower than ˜ 3 × 10-17 cm2 s-1 for RH ≤ 17 %. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1-5 h for 30 % RH, and higher than ˜ 100 h for RH ≤ 17 %. As a starting point for understanding the mixing times of large organic molecules in organic particulate matter over cities, we applied the mixing times determined for toluene-derived SOM particles to the world's top 15 most populous megacities. If the organic particulate matter in these megacities is similar to the toluene-derived SOM in this study, in Istanbul, Tokyo, Shanghai, and São Paulo, mixing times in organic particulate matter during certain periods of the year may be very short, and the particles may be well-mixed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Beijing, Mexico City, Cairo, and Karachi may be long and the particles may not be well-mixed in the afternoon (15:00-17:00 LT) during certain times of the

  11. A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion

    Kim, Kyung-Hoon; Choi, Duk-Hyun; Kim, Hyung-Joon [Kyung Hee University, Yongin (Korea, Republic of)


    Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

  12. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Sacchetti, Mark


    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance.

  13. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Jairo F. Pereira


    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  14. Rheorefining process. Semi-solid processing available for reuse of materials; Reorifuain ho. Zairyo saisei no tameno semi solid kako

    Ichikawa, K.; Kato, S.; Asuke, T.; Nakazawa, K. [Mechanical Engineering Laboratory, Tsukuba (Japan). Agency of Industrial Science and Technology


    Rheorefining process is one of methodologies of the rheocasting process produces high-purity material by using the temperature region of solid-liquid coexistence of alloy, but still remains in a stage of basic investigation. The authors have paid attention to the fact that deterioration of metallic products is caused by impurity invading and accumulating mainly in crystal grain boundary or solid crystal gaps from the surrounding environment during the use and have investigated the development of a technique to recover effectively reusable metallic materials from spent products through the rheorefining process. A test piece of Al-50 wt% Sn alloy is evacuated by a vacuum pump followed by heating, maintained isothermally in the temperature region of solid-liquid coexistence, pressurized with a plunger and filtered through a filter. By selecting a proper temperature and plunger speed, Sn can be remover efficiently to afford Al with 98% purity. Rheorefining experiments on Al-2, 1, 0.5 and 0.2 wt% Ni alloys show reduction of the Ni contents and reduction of the amount of eutectic crystals is observed. 10 refs., 6 figs., 1 tab.

  15. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  16. Preparation QTi3.5-3.5 Graphite Lubricant Material with Semi-solid Casting Technology

    Peng ZHANG; Yunhui DU; Daben ZENG; Jianzhong CUI; Limin BA


    For the first time, the distribution of graphite particles in QTi3.5-3.5 graphite ingot was studied by using semi-solid casting technology. The results show that: the relationship between solid fraction and stirring temperature of QTi3.5-3.5 graphite slurry is y=759.4-0.711x (where y is solid fraction, x is stirring temperature). With the increasing of solid fraction of QTi3.5-3.5 graphite slurry, the agglomeration of graphite particles in ingot reduces gradually. The condition to prepare QTi3.5-3.5 graphite lubricant material with even distribution of graphite particles is that the solid fraction of QTi3.5-3.5 graphite slurry is larger than 40%.

  17. Biochemical methane potential (BMP) of solid organic materials

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.


    and experimental conditions were reported. The study was performed using 4 samples: 3 reference substrates (starch, cellulose and gelatine), and 1 raw material (mung bean). The BMP of mung bean was carried out at two inoculum to substrate ratios (ISR), specifically 2 and 1. The methane yields of reference...... substrates for starch, cellulose and gelatine were 352±33, 353±29 and 382±42 mL/g VSadded, respectively. The percentages of biotransformation of these substrates into methane were 85±8, 85±7 and 88±10%, respectively. On the other hand, the values of methane yields and biodegradability for MB were 373±35 m...

  18. Numerical simulation of mechanical deformation of semi-solid material using a level-set based finite element method

    Sun, Zhidan; Bernacki, Marc; Logé, Roland; Gu, Guochao


    In this work, a level-set based finite element method was used to numerically evaluate the mechanical behavior in a small deformation range of semi-solid materials with different microstructure configurations. For this purpose, a finite element model of the semi-solid phase was built based on Voronoï diagram. Interfaces between the solid and the liquid phases were implicitly described by level-set functions coupled to an anisotropic meshing technique. The liquid phase was considered as a Newtonian fluid, whereas the behavior of the solid phase was described by a viscoplastic law. Simulations were performed to study the effect of different parameters such as solid phase fraction and solid bridging. Results show that the macroscopic mechanical behavior of semi-solid material strongly depends on the solid fraction and the local microstructure which play important roles in the formation of hot tearing. These results could provide valuable information for the processing of semi-solid materials.

  19. Applied solid state science advances in materials and device research 2

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 2 covers topics about complex oxide materials such as the garnets, which dominate the field of magnetoelasticity and are among the most important laser hosts, and sodalite, which is one of the classic photochromic materials. The book discusses the physics of the interactions of electromagnetic, elastic, and spin waves in single crystal magnetic insulators. The text then describes the mechanism on which inorganic photochromic materials are based, as observed in a variety of materials in single crystal, powder, and gl

  20. Characterisation of Materials used in Flex Bearings of Large Solid Rocket Motors

    CH.V. Ram Mohan


    Full Text Available Solid rocket motors are propulsion devices for both satellite launchers and missiles, which require guidance and steering to fly along a programmed trajectory and to compensate for flight disturbances. A typical solid rocket motor consists of motor case, solid propellant grain, motor insulation, igniter and nozzle. In most solid rocket motors, thrust vector control (TVC is required. One of the most efficient methods of TVC is by flex nozzle system. The flex nozzle consists of a flexible bearing made of an elastomeric material alternating with reinforcement rings of metallic or composite material. The material characterisation of AFNOR 15CDV6 steel and the natural rubber-based elastomer developed for use in flex nozzle are discussed. This includes testing, modelling of the material, selection of a material model suitable for analysis, and the validation of material model.Defence Science Journal, 2011, 61(3, pp.264-269, DOI:

  1. New Lithium Solid Electrolytes, Thio-Lisicon Materials Design Concept and Application to Solid State Battery

    Kanno, Ryoji; Murayama, Masahiro; Sakamoto, Kazuyuki


    Materials design concept of the new crystalline 'thio-LlSICON' (LIthium Superlonic CONductor) family was discussed. The thio-LISICON was found in the ternary systems, Li2S-MS2-M'xSy (M=Si, Ge, M'=P, Sb, Al, Zn, etc), and showed the highest conductivity of 2.2 × 10-3 Scm-1 at 25°C of any sintered ceramic, together with negligible electronic conductivity, high electrochemical stability, no reaction with lithium metal, and no phase transition up to 300°C. The advantage and disadvantage of the crystalline materials were discussed based on the ionic conduction, chemical stability and electrochemical potential window.

  2. Material growth and characterization for solid state devices

    Collis, Ward J.; Abul-Fadl, A.; Iyer, S.


    During this period InGaAs and InGaAsP were grown on (100)InP by liquid phase electroepitaxy (LPEE). Results of the epitaxial growth of InGaAs on sputtered quartz masked substrates are presented. The resulting surface morphology can be related to the current density distribution near the edges of a masked pattern. The quaternary InGaAs was grown with compositions corresponding to 1.3 micron and 1.5 micron emission wavelengths. Growth rates were found to be linearly dependent upon current density, and a strong dependence upon composition was noted. These compositions lie in the miscibility gap region of the alloy phase diagram at the 645 C growth temperature. Growths were performed at 685 C to avoid the miscibility gap. Epilayers were characterized by photoluminescence, X-ray diffraction, secondary ion mass spectrometry, and Hall effect measurements. Aluminum oxide was deposited on silicon and InGaAs substrates for the characterization of this material as an insulator in a field effect transistor structure. It was determined that the results did not warrant further work with the deposition from an aluminum isopropoxide source. A metallographic vapor phase epitaxy system installation is nearing completion for use in hybrid III-V semiconductor epilayer growths.

  3. Scaling similarities of multiple fracturing of solid materials

    P. G. Kapiris


    Full Text Available It has recently reported that electromagnetic flashes of low-energy -rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002. The neutron starquakes may release strain energies up to erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998.

  4. Optimization of Structure and Material Properties for Solids Composed of Softening Material

    Bendsøe, Martin P.; Guedes, J.M.; J.M., Plaxton;


    Recent results on the design of material properties in the context of global structural optimization provide, in analytical form, a prediction of the optimal material tensor distributions for two or three dimensional continuum structures. The model developed for that purpose is extended here...... to cover the design of a structure and associated material properties for a system composed of a generic form of nonlinear softening material. As was established in the earlier study on design with linear materials, the formulation for combined 'material and structure' design with softening materials can...

  5. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies



    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  6. Distribution and geochemical composition of suspended particulate material in the shallow embayment of northern Thermaikos Gulf, Greece

    Tsompanoglou, K.; Anagnostou, Ch.; Krasakopoulou, E.; Pagou, K.; Karageorgis, A. P.; Pavlidou, A.; Albanakis, K.; Tsirambides, A.


    The distribution and the chemical composition of Suspended Particulate Matter (SPM), in the northern Thermaikos Gulf, were studied during an annual experiment, carried out from June 2004 to June 2005. Water samples were collected at three depths (1 m below surface, 10 m depth, and 2 m above bottom) and filtered to obtain SPM, particulate organic carbon (POC), total particulate nitrogen (PNtot) and particulate phosphorus (PP) concentrations. SPM and POC concentrations exhibited strong spatial and temporal variations, related to the different environmental characteristics in the study area such as river network, biological productivity, anthropogenic interferences, wind regime, and resuspension of the bottom sediments. The highest SPM concentrations were recorded at the surface (mean = 1.45 ± 0.75 mg/l, maximum value = 11.60 mg/l) and close to the bottom (mean = 1.49 ± 0.67 mg/l, maximum value = 11.72 mg/l), creating surface and bottom nepheloid layers (SNL and BNL), respectively. The maximum values were recorded close to the river mouths; the rivers are identified as the major sources of SPM. The Axios and Aliakmon rivers supplied the gulf with particulate matter, during the entire sampling period. Chemical analysis has revealed the significant correlation among the elements Al, Si, Fe, Ti, K, V, Mg and Ba suggesting the presence of terrigenous aluminosilicate minerals. Silica and Ca have terrigenous origin, but also come from autochthonous biogenic fraction. Chromium, Ni and Co, are of natural origin and derived from mafic and ultramafic rocks of the Axios and Aliakmon watersheds. Copper and Zn are correlated with each other and their distributions follow that of POC; these two metals are derived from partially treated domestic and industrial effluents. The vertical distribution of organic matter implies increased primary production within the upper layer of the water column. Phosphorus is present mainly in an organic form. During the sampling period, the water

  7. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials.

    May, Michael; Paul, Elizabeth; Katovic, Vladimir


    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  8. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials

    May, Michael; Paul, Elizabeth; Katovic, Vladimir


    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  9. Method of producing particulate-reinforced composites and composties produced thereby

    Han, Qingyou; Liu, Zhiwei


    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  10. Method of producing particulate-reinforced composites and composites produced thereby

    Han, Qingyou; Liu, Zhiwei


    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  11. Method of producing particulate-reinforced composites and composites produced thereby

    Han, Qingyou; Liu, Zhiwei


    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  12. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Youhua Jia; Biao Zhong; Jianping Yin


    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  13. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)


    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  14. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan


    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion.

  15. Material efficient production of complex (hybrid) components using semi solid forming processes

    Riedmüller, Kim Rouven; Liewald, Mathias


    By means of lightweight design and lightweight material structures, weight of single components and of resulting component assemblies should be reduced and, additionally, existing functionalities, reliabilities and material properties should be preserved. Therefore, on the one hand novel materials and hybrid material combinations are investigated and on the other hand weight reduction is realized by material efficient component designs. With regard to the manufacturing of such complex component geometries with high dimensional accuracy and relating to the realization of hybrid material concepts, semi solid forming technology offers promising prospects. This paper deals with two research projects recently conducted at the Institute for Metal Forming Technology (IFU, University of Stuttgart) in the field of this forming technology. First project is concerned with the manufacturing of hybrid components with integrated sensor and/or actuator functions and second project is in the field of material efficient manufacturing.

  16. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;


    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  17. Particulate pollution and stone deterioration

    Kendall, Michaela


    The soiling and damage of building surfaces may be enhanced by particulate air pollution, reducing the aesthetic value and lifetimes of historic buildings and monuments. This thesis focuses on the deposition of atmospheric particulate material to building surfaces and identifies potential sources of this material. It also identifies environmental factors influencing two deterioration effects: surface soiling and black crust growth. Two soiling models have been compared to assess their effecti...

  18. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  19. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Renju Zacharia


    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  20. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis


    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  1. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    D. Radhika


    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  2. Fluorescent material concentration dependency: Förster resonance energy transfer in quasi-solid state DSSCs

    Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong


    Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density (J SC ) of 4.32 mA/cm-2, and an open-circuit voltage (V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.

  3. High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives

    ZHANG Wei; YANG Xin-hong; SHANG Chun-min; HU Xiao-yong; HU Zhong-hui


    An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of Ra 2.4nm can be achieved.

  4. Applied solid state science advances in materials and device research 6

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 6 covers the application of composites in electronic systems. The book discusses different types of composite-composite materials consisting of finely dispersed mixtures of metals and insulators; composite devices in which two distinct semiconductor devices are combined in one package; and composite glass fibers with the core and cladding differing in their optical properties. The text describes articles dealing with properties that can be achieved in versatile materials; light-emitting diodes and photodetectors th

  5. Modelling of Physical, Chemical, and Material Properties of Solid Oxide Fuel Cells

    Jakub Kupecki


    Full Text Available This paper provides a review of modelling techniques applicable for system-level studies to account for physical, chemical, and material properties of solid oxide fuel cells. Functionality of 0D to 3D models is discussed and selected examples are given. Author provides information on typical length scales in evaluation of power systems with solid oxide fuel cells. In each section, proper examples of previous studies done in the field of 0D–3D modelling are recalled and discussed.

  6. Electrical, optical, and magnetic properties of organic solid-state materials IV. Materials Research Society, symposium proceedings Volume 488

    Reynolds, J.R.; Jen, A.K.Y.; Rubner, M.F.; Chiang, L.Y.; Dalton, L.R. [eds.


    The symposium, Electrical, Optical, and Magnetic Properties of Organic Solid-State Materials IV, was sponsored by the Materials Research Society and held December 1--5, 1997, in Boston, Massachusetts. Early studies of charge transport in conducting polymers have evolved from the elucidation of fundamental structure/function relationships to applications as batteries, simple electrical devices such as diodes, chemical sensors, antistatic coatings, microwave and millimeter wave-absorbing materials, and photochromic devices. A particularly exciting evolution has been the discovery and development of organic light-emitting diodes (OLEDs) which appear to be nearing commercialization in an amazingly short period of time. This application is of particular interest because both electrical and optical properties must be considered, and these have been important parallel themes of the conference. Moreover, nanostructure control is important for OLEDs, and nanoscale architectural engineering has been an increasingly important theme of the conference. Indeed, not only has the study of conjugated (quasidelocalized) electrons in organic solid-state materials resulted in interesting physical properties and device applications, but the desire to exploit these properties has promoted the development of new synthesis and processing methodologies to achieve special nanoscale and microscale structures. One hundred five papers have been processed separately for inclusion on the data base.

  7. Optimization of solid-state synthesis process of advanced ceramics materials: influence of mixing conditions.

    Sakri Adel


    Full Text Available In this paper, the effect of mixing process on solid state reaction of solid oxide material mixture was studied. Lead piezoelectric ceramic specimens 0.5 Pb(Zn1/3,Sb2/3O3-0.5 Pb0.98La0.02(Zr0.48,Ti0.52O3 prepared by different mixing procedures, were conducted under different conditions such as order, combination and mixing time. The phase formation, composition nature, structural properties of powder mixture was analyzed by X-ray diffraction. The obtained results for different mixing processes make the solid state reaction method more selective, taking into consideration the attraction forces between the reactants and the electronegativity of oxide reactants.

  8. Study of Solid-Liquid Ratio of Fly Ash Geopolymer as Water Absorbent Material

    Angga Prasetya Fandi


    Full Text Available Geopolymer has been synthesized from fly ash to be applicated as water absorbent material. This research conducted to determine the ability of geopolymer to abrsop water by variation of solid – liquid ratio at optimum molarity of NaOH; 3 M. In this research, the synthesis of geopolymer was conducted at the variation of solid-liquid ratio; 60:40, 65:35, 70:30, and 75:25. Result of the treatment were characterized by XRD and SEM to compare the geopolymer structure. Water absorption capacity was measured by immersing the geopolymer specimens in water for 24 hours. Based on the result, solid – liquid ratio with maximum water absorbed was 70:30 with 13,04 wt%.

  9. Second sphere coordination of hybrid metal-organic materials: solid state reactivity.

    Guo, Fang; Martí-Rujas, Javier


    When compared to other hybrid metal organic materials such as metal-organic frameworks, hydrogen bonded materials self-assembled by metals and organic molecules using second sphere interactions have been poorly investigated. Consequently, their solid-sate properties are also scarce. In this perspective, earlier research mainly on host-guest chemistry and its evolution towards more extended structures by applying crystal engineering principles using second sphere coordination is described. Crystal-to-crystal guest exchange reactions, permanently porous hybrid metal organic materials, mechanochemical reactivity, thermally induced phase transformations as well as some examples of functional technological applications using second sphere adducts such as gas adsorption, separation and non-linear optical phenomena are also reported. Although some tutorial reviews on second sphere adducts have been conducted mainly in the solution state focusing on metal based anion receptors, to the best of our knowledge, an overview on relevant works that focus on the solid-state properties has not been carried out. The aim of this article is to highlight from some of the early fundamental work to the latest reports on hybrid metal-organic materials self-assembled via second sphere interactions with a focus on solid-state chemistry.

  10. Vertical transportation system of solid material for backfilling coal mining technology

    Ju Feng; Zhang Jixiong; Zhang Qiang


    For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology,we developed a new vertical transportation system to transport this type of solid backfill material.Given the demands imposed on safely in feeding this material,we also investigated the structure and basic parameter of this system.For a mine in the Xingtai mining area the results show that:(1) a vertical transportation system should include three main parts,i.e.,a feeding borehole,a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes,the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process.To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel,we propose a series of security technologies for anti-blockage,storage silo cleaning.high pressure air release and aspiration.This vertical transporting system has been applied in one this particular mine,which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.

  11. The detection of iron protoporphyrin (heme b) in phytoplankton and marine particulate material by electrospray ionisation mass spectrometry – comparison with diode array detection

    Gledhill, Martha, E-mail:


    Highlights: • Mass spectrometry was applied to the analysis of heme b in biological material. • Optimal conditions involved selective reactant monitoring of the heme b product ion. • The isotopic signature for this iron tetrapyrrole further improved selectivity. • Mass spectrometry and spectrophotometry were compared for heme b analysis. • Combining techniques made a powerful tool for analysis of heme in marine microbes. - Abstract: A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP{sup +} ion (m/z = 616) or the pseudomolecular [Fe(II)PTP + H]{sup +} ion (m/z = 617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z = 557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616 ± 3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z = 557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2 ± 0.5 fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ = 400 nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z = 300 to 1500 resulted in identification of the

  12. Qualitative Analysis of Relationship between Refractive Index and Atomic Parameters of Solid Materials

    罗遵度; 黄艺东


    The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r-/F=r-/(r+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r+ and r- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.

  13. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas


    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay.

  14. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara


    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  15. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    Wei, Wei; Gu, Zhaolin


    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge

  16. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material

    Nelson, Linda; Jarzen, David


    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  17. Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design

    Lin, Cheng-Yu

    The ability to design the material microstructure brings the use of composite materials into the next generation. In this paper, we report pioneering research to implement the computational material microstructure design into the internal architecture design for a tissue engineering scaffold. A tissue engineering design postulate is that scaffolds should match specified healthy tissue stiffness, while concurrently providing sufficient porosity for cell migration and tissue regeneration. Employing the inverse homogenization method and the adaptive topology optimization method, a complex 3D microstructure can be designed to perform with the anisotropic elastic stiffness and porosities analogous to a native bone specimen. Besides the elastic stiffness from its solid part, fluid in the porous region also plays an important role in tissue engineering. The flow of fluid through the pores brings nutrients to cells in the tissue matrix and also removes their waste. Fluid permeability of cylinderical trabecular bone grafts was found to predict clinical success. Deriving from Darcy's Law, we developed software to calculate the homogenized fluid permeability of 3D cancellous voxel models, which were directly reconstructed from micro-CT images. Furthermore, an Evolutionary Structural Optimization (ESO) algorithm was utilized to maximize fluid permeability in the microstructure. The fluid optimization scheme was then collaborated with solid phase optimization through Multidisciplinary Design Optimization (MDO) to create an integrated solid-fluid mixture microstructure design. In addition, to ensure the fabrication feasibility, we also implemented a post-optimization process to enhance design results by improving the dynamic stiffness to eliminate weak connections and checkerboard pattern. The design scaffolds were then built by an indirect solid freeform fabrication (SFF) technique using various bio-compatible materials and ready for further investment. This computational

  18. The detection of iron protoporphyrin (heme b) in phytoplankton and marine particulate material by electrospray ionisation mass spectrometry - comparison with diode array detection.

    Gledhill, Martha


    A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP(+) ion (m/z=616) or the pseudomolecular [Fe(II)PTP + H](+) ion (m/z=617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z=557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616±3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z=557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2±0.5fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ=400nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z=300 to 1500 resulted in identification of the pseudomolecular ion for the interfering compound. The CID fragmentation pattern and UV-visible mass spectra indicated that the interfering compound was a previously unidentified chlorin type compound. Comparison of FePTP determined by SRM and DAD on samples where this compound could not be detected showed that results collected using the two methods correlated. The use of both MS and DAD results in a powerful tool for quantifying this important biogenic component of the

  19. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    Busca, Guido


    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  20. Solid-State Lasers for Bathymetry and Communications. Studies of Four Rare-Earth Materials.


    The envelope was cerium -doped quartz, to reduce UV emission. The lamp was operated in simmer mode. The pulse forming network contained a 50-PF...class of solid state lasing materials called rare-earth fluorides . In these materials, the host lattice is LiYF4 (often called YLF), and the active...1971-1973 in which terbium-doped rare-earth fluorides were grown, and spectroscopy and lasing measurements conducted. A sample of Tb:LiGdF4 was lased

  1. General approach of the photothermoelectric technique for thermal characterization of solid thermoelectric materials

    Touati, Karim; Depriester, Michael; Guilmeau, Emmanuel; Sotelo, Andrés; Madre, Maria A.; Gascoin, Franck; Sahraoui, Abdelhak Hadj


    This work focuses on the photothermoelectric (PTE) technique allowing the thermal characterization of solid-state thermoelectric (TE) materials. Previously, this technique was restricted to TE materials having low electrical conductivities. Here, the PTE technique is extended and generalized to all solid-state TE materials with low or high electrical conductivities. This is achieved by taking into account the Gaussian shape of the thermal excitation source. The formalism of this new methodology is developed and the procedure for extracting thermal parameters is proposed. For illustration, two different TE materials are studied: with relatively high electrical conductivity (Bi2Te2.4Se0.6) and relatively low electrical conductivity (Bi2Ca2Co1.7O x ). The thermal properties of these two materials (thermal diffusivity, effusivity and conductivity) are found and compared to those obtained by the photothermal radiometry which is a well established technique. The good concordance between the results obtained by these two techniques demonstrates the relevance of the generalized PTE technique. One of the main advantages of this technique is its non use of an external sensor.

  2. High reliability solid refractive index matching materials for field installable connections in FTTH network

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio


    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  3. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J. C.


    We show that a combined application of Mössbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In Sn S system. We show that Li insertion in In16Sn4S32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl Sb S system. We show that variations of the 121Sb Mössbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb LIII edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl Sn Te system. The formal oxidation numbers of the Te atoms are determined from 125Te Mössbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl Sn Te compounds.

  4. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials

    Lototskyy, M., E-mail: [South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Yartys, V.A., E-mail: [Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027 (Norway); Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)


    Highlights: • Performance evaluation of H stores with various solid H storage materials was done. • Volumetric and gravimetric H storage densities and energy consumption were evaluated. • Effects of H storage containment and heat exchanger were estimated. • Pressure–temperature conditions of H storage strongly affect the overall performance. • Material’s packing density influences safety of operation and efficiency of H stores. - Abstract: Evaluation of the performances of hydrogen storage systems accommodating solid H storage materials should include characteristics on their reversible hydrogen storage capacity, operating pressures and temperatures, packing densities, and heat effects of hydrogen uptake and release. We have conducted a performance evaluation of the systems accumulating 5 kg of hydrogen in a containment of cylindrical geometry filled with a solid H storage material including such hydrides and reactive hydride composites as AlH{sub 3}, MgH{sub 2}, “low-temperature” (inter)metallic hydrides, NaAlH{sub 4}, Na{sub 3}AlH{sub 6}, LiBH{sub 4} + MgH{sub 2}, and MOFs. The analysis yielded gravimetric and volumetric H storage capacities, and energy efficiencies of hydrogen stores. We conclude that the weight efficiency of hydrogen stores, apart from the gravimetric H storage capacity of the material, is greatly affected by its packing density, and by the pressure–temperature conditions which determine type and dimensions of the containment. The materials with low heat effects of H exchange, operating close to the ambient conditions, should be targeted in the course of the development of new hydrogen stores as offering the best energy efficiency of their operation.

  5. Estimation of environmental mobility of heavy metals using a sequential leaching of particulate material emitted from an opencast chrome mine complex.

    Pöykiö, R; Perämäki, P; Välimäki, I; Kuokkanen, T


    A four-stage sequential leaching procedure was applied to assess the bioavailability and environmental mobility of heavy metals (Cr, Fe, Cu, Ni and Cd) in total suspended particulate (TSP) material emitted from an opencast chrome mine complex (Kemi, Northern Finland). TSP material was collected on glass fibre filters by a high-volume sampler, and a sequential leaching procedure was used to determine the distribution of heavy metals between the water-soluble fraction (H2O), environmentally mobile fraction (CH3COONH4), the fraction bound to carbonate and oxides (HONH3Cl + CH3COOH), and the fraction bound to silicates and organic matter, that is the environmentally immobile fraction (HNO3 + HF + HCl). The sequential leaching procedure was also applied to the certified reference materials VKI (QC Loam Soil A) and PACS-2 (Marine Sediment) to evaluate the accuracy and reproducibility of the leaching procedure. The heavy metals were determined by graphite furnace atomic absorption spectrometry (GFAAS) and flame atomic absorption spectrometry (FAAS). The concentrations of metals in the water-soluble fraction (H2O) decreased in the order Fe >Cu >Cr >Ni >Cd, and in the environmentally mobile fraction (CH3COONH4) in the order Cu >Fe >Ni >Cr >Cd.

  6. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Todorov, Evgueni Iordanov


    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  7. Development of a new solid-state absorber material for dye-sensitized solar cell (DSSC)

    Swapna Lilly Cyriac; B Deepika; Bhaskaran Pillai; S V Nair; K R V Subramanian


    In contrast to the conventional DSSC systems, where the dye molecules are used as light harvesting material, here a solid-state absorber was used as a sensitizer in conjunction with the dye. The materials like ZnO and Al2O3 : C, which will show optically stimulated luminescence (OSL) upon irradiation were used as extremely thin absorber layers. This novel architecture allows broader spectral absorption, an increase in photocurrent, and hence, an improved efficiency because of the mobility of the trapped electrons in the absorber material after irradiation, to the TiO2 conduction band. Nanocrystalline mesoporous TiO2 photoanodes were fabricated using these solid-state absorber materials and after irradiation, a few number of samples were co-sensitized with N719 dye. On comparing both the dye loaded photoanodes (ZnO/TiO2 and Al2O3 : C/TiO2), it can be concluded from the present studies that, the Al2O3 : C is superior to ZnO under photon irradiation. Al2O3 : C is more sensitive to photon irradiation than ZnO and hence there can be more trap centres produced in Al2O3 : C.

  8. Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials

    Clayton, J. Louie


    Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  9. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y


    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  10. Studies in new materials for intermediate temperature solid oxide fuel cells

    Skinner, Alex W.

    Ceramic materials have historically been of interest for their thermal and mechanical properties. However, certain ceramic materials can have very interesting electrical, magnetic and optical properties, leading to a new subclass, the electroceramics. Perovskites, in particular, have become the subject of intense research in this field. Specifically, doped barium zirconates have shown high proton conductivity in the intermediate temperature range (600--800°C), making them advantageous for use in solid oxide fuel cells. Solid oxide fuel cells (SOFCs) are electrochemical devices that convert chemical energy into electricity using ion-conducting oxide ceramics as electrolytes. The anode component of the cell is also of interest. Cermets or ceramic metals can serve a dual role as substrates for thin film electrolytes and anodes in the cell. Thin films of gadolinium and ytterbium doped barium zirconate were deposited using pulsed laser deposition (KrF; 1--3 J/cm2) on several substrates, including cermets developed in our lab, in a 10--400 mTorr oxygen environment with various substrate temperatures. Crystalline structure and chemical composition was determined by X-ray diffraction (XRD) and energy dispersive x-ray analysis, respectively. Preliminary electrical measurements of the electrolyte/cermet structure were taken using electrochemical impedance spectroscopy. Keywords: solid oxide fuel cells (SOFCs), perovskites, proton conductors, electroceramics, gadolinium-doped barium zirconate (BZG).

  11. Study of transport of laser-driven relativistic electrons in solid materials

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  12. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    Lavallee, Richard J.


    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.


    Frederick S. Pettit; Gerald H. Meier


    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  14. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction.

    Bac, Bui Hoang; Song, Yungoo; Moon, Yonghee; Kim, Myung Hun; Kang, Il Mo


    In this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes. An increase in the reaction time improved the quantity of synthesized zeolitic materials. The reaction temperature determined the type of zeolite. An increase in the NaOH concentration can be an essential factor to improve zeolitic material synthesis, but it significantly reduced the yield of SiO(2) extraction. In conclusion, suitable conditions for obtaining both SiO(2) extraction and synthesized zeolites from the ashes of the incinerated solid waste materials should be: 200 degrees C reaction temperature; a 1 : 30 (g : mL) value for the sample : NaOH ratio; 2 mol L(-1) NaOH concentration; and a reaction time of more than 24 h.

  15. Study of the combustion of aluminium and magnesium particulates: influence of the composition of the gaseous mixture and of pressure; Etude de la combustion de particules d'aluminium et de magnesium: influence de la composition du melange gazeux et de la pression

    Legrand, B.


    The combustion of metal particulates has a major interest in the domain of space propulsion. Aluminium is today used as doping material in the solid propellant of Ariane 5 rocket engines. Magnesium represents a possible fuel for propellers allowing a come back from Mars. An electrostatic levitation device has been used to study the combustion in controlled environment of particulates having a size representative of those encountered in propellers. The particulates are ignited with a laser and observed by fast cinematography. The inhibitive property of hydrogen chloride, an important constituent of the propellant atmosphere, on the combustion of aluminium particulates has been evidenced. These results have been compared with those obtained with a kinetic model in gaseous phase. The combustion of magnesium particulates in carbon dioxide has been studied for 53-63 {mu}m and 1-2 mm particulates. It is shown that the ignition of small particulates is controlled by the chemical kinetics and that the limit ignition pressure is reversely proportional to the particulates size. A study on big samples, performed in normal gravity but also in reduced gravity to get rid of the natural convection phenomena, has permitted to show a pulsed combustion regime linked with the presence of heterogenous reactions. The measurement of the combustion durations for the different sizes of particulates has permitted to propose a correlation between these two parameters for the particulate diameters comprised between 50 {mu}m and 2 mm. (J.S.)

  16. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.

    Wang, Ping


    Ammonia borane (NH(3)BH(3), AB) is a unique molecular crystal containing an intriguingly high density of hydrogen. In the past several years, AB has received extensive attention as a promising hydrogen storage medium. Several strategies have been successfully developed for promoting H(2) release and for suppressing the evolution of volatile by-products from the solid-state thermolysis of AB. Several potentially cost-effective and energy-efficient routes for regenerating AB from the spent fuels have been experimentally demonstrated. These remarkable technological advances offer a promising prospect of using AB-based materials as viable H(2) carriers for on-board application. In this perspective, the recent progresses in promoting H(2) release from the solid-state thermolysis of AB and in developing regeneration technologies are briefly reviewed.

  17. Thermal stability of the solid DNA as a novel optical material

    Nizioł, Jacek; Makyła-Juzak, Katarzyna; Marzec, Mateusz M.; Ekiert, Robert; Marzec, Monika; Gondek, Ewa


    Deoxyribonucleic acid (DNA) has been extensively exploited for the past decade as the matrix material in organic electronics and nonlinear optics. In this work thermal stability of DNA in solid form was thoroughly studied, mainly by optical methods. Solid samples of low molecular mass DNA were subjected to heating according to different protocols and dissolved. The temperature effect was observed in the evolution of UV absorption and circular dichroism spectra. Thin films of DNA were deposited on polished silicon wafers. They were conditioned at consecutively raised temperature and simultaneously measured by spectroscopic ellipsometry. Changes in chemical composition of thermally treated films were studied by XPS. Below 100 °C all thermal effects were reversible. Melting occurred at c.a.140 °C. Irreversible chemical changes probably occurred at 170-180 °C.

  18. Solid-State Physics An Introduction to Principles of Materials Science

    Ibach, Harald


    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. From a review of the original edition �...

  19. [Origin of Lewis acidity in solid materials]. DOE Final Report for Grant DE-FG02-90ER14130

    Fripiat, J. J.


    The aim of the research undertaken within the framework of this DOE grant was to further understanding of the origin of the Lewis acidity in solid materials. The study centered around aluminas and alumino-silicates. The main tools for investigation of this phenomenon were high-resolution solid state {sub 27}Al NMR, complemented by EPR and the chemical determination of catalytic activity.

  20. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin


    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  1. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods.

    Calvo, Natalia L; Maggio, Rubén M; Kaufman, Teodoro S


    The understanding of materials and processes is a requirement when it comes to build quality into pharmaceutical products. This can be achieved through the development of rapid, efficient and versatile analytical methods able to perform qualification or quantification tasks along the manufacturing and control process. Process monitoring, capable of providing reliable real-time insights into the processes performance during the manufacturing of solid dosage forms, are the key to improve such understanding. In response to these demands, in recent times multivariate chemometrics algorithms have been increasingly associated to different analytical techniques, mainly vibrational spectroscopies [Raman, mid-infrared (MIR), near-infrared (NIR)], but also ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction and other methodologies. The resulting associations have been applied to the characterization and evaluation of different aspects of pharmaceutical materials at the solid state. This review examines the different scenarios where these methodological marriages have been successful. The list of analytical problems and regulatory demands solved by chemometrics analysis of solid-state multivariate data covers the whole manufacturing and control processes of both, active pharmaceutical ingredients in bulk and in their drug products. Hence, these combinations have found use in monitoring the crystallization processes of drugs and supramolecular drug associations (co-crystals, co-amorphous and salts), to access the correct crystal morphology, particle size, solubility and dissolution properties. In addition, they have been applied to identify and quantitate specific compounds, mainly active pharmaceutical ingredients in complex solid state mixtures. This included drug stability against different stimuli, solid-state transformations, or detection of adulterated or fraudulent medicines. The use of chemometrics-assisted analytical methods as part of the modern

  2. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut


    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  3. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.


    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  4. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.


    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  5. A rheometer for measuring the material moduli for granular solids. Quarterly progress report, December 1, 1992--February 28, 1993

    Rajajopal, K.R.


    The design of an orthogonal rheometer for measuring the properties of granular solids is described. A section is presented on the constitutive modeling of granular materials based on continuum theory.

  6. An investigation of lithium solid electrolyte materials with first principles calculations

    Lepley, Nicholas

    Inorganic solid electrolyte materials have recently become the focus of considerable interest due to the discovery of novel compounds with high ionic conductivities (> 1e-4 S/cm ). Sulfur based solid electrolytes are particularly notable in this regard, as well as for their compatibility for Li-S electrode systems. This work applies compu- tational methods based on density functional theory to the problem of identifying and characterizing novel electrolyte materials, with an emphasis on the Li2S-P2S5 system. In addition to a broad overview of likely materials, two compounds are studied in depth, Li7P3S11 and Li3PS4 . For Li7P3 S11 the results show excellent agreement with respect to migration energetics, and good agreement with the experimentally described structure and observed stability. For Li3PS4 , in addition to structure, stability, and migration energetics, the properties of the interface between the electrolyte and vacuum and the electrolyte and lithium metal are considered.

  7. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    Lee, Jonathan A.


    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  8. Laser-material interactions: A study of laser energy coupling with solids

    Shannon, M A [Lawrence Berkeley Lab., CA (United States)


    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  9. Grab vs. composite sampling of particulate materials with significant spatial heterogeneity--a simulation study of "correct sampling errors".

    Minkkinen, Pentti O; Esbensen, Kim H


    Sampling errors can be divided into two classes, incorrect sampling and correct sampling errors. Incorrect sampling errors arise from incorrectly designed sampling equipment or procedures. Correct sampling errors are due to the heterogeneity of the material in sampling targets. Excluding the incorrect sampling errors, which can all be eliminated in practice although informed and diligent work is often needed, five factors dominate sampling variance: two factors related to material heterogeneity (analyte concentration; distributional heterogeneity) and three factors related to the sampling process itself (sample type, sample size, sampling modus). Due to highly significant interactions, a comprehensive appreciation of their combined effects is far from trivial and has in fact never been illustrated in detail. Heterogeneous materials can be well characterized by the two first factors, while all essential sampling process characteristics can be summarized by combinations of the latter three. We here present simulations based on an experimental design that varies all five factors. Within the framework of the Theory of Sampling, the empirical Total Sampling Error is a function of the fundamental sampling error and the grouping and segregation error interacting with a specific sampling process. We here illustrate absolute and relative sampling variance levels resulting from a wide array of simulated repeated samplings and express the effects by pertinent lot mean estimates and associated Root Mean Squared Errors/sampling variances, covering specific combinations of materials' heterogeneity and typical sampling procedures as used in current science, technology and industry. Factors, levels and interactions are varied within limits selected to match realistic materials and sampling situations that mimic, e.g., sampling for genetically modified organisms; sampling of geological drill cores; sampling during off-loading 3-dimensional lots (shiploads, railroad cars, truckloads

  10. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa


    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  11. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10(3) tonnes in 2007 to 437×10(3) tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10(3) and 7×10(3) tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10(3) to 253×10(6) tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10(3) to 158×10(3) tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  12. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Heinonen, O.; Tiihonen, J. [Imatran Voima Oy, Vantaa (Finland). R and D Section


    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  13. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E


    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  14. A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary.

    Cardoso, Fernanda D; Dauner, Ana Lúcia L; Martins, César C


    The Paranaguá Estuarine Complex (PEC) is an important socioeconomic estuary of the Brazilian coast that is influenced by the input of pollutants like polycyclic aromatic hydrocarbons (PAHs). Because of the apparent lack of comparative studies involving PAHs in different estuarine compartments, the aim of this study was to determine and compare PAH concentrations in surface sediment and suspended particulate material (SPM) in the PEC to evaluate their behaviour, compositions, sources and spatial distributions. The total PAH concentrations in the sediment ranged from 0.6 to 63.8 ng g(-1) (dry weight), whereas in the SPM these concentrations ranged from 391 to 4164 ng g(-1). Diagnostic ratios suggest distinct sources of PAHs to sediments (i.e., pyrolytic sources) and SPM (i.e., petrogenic sources such as vessel traffic). Thus, the recent introduction of PAHs is more clearly indicated in the SPM since oil related-compounds (e.g., alkyl-PAHs) remain present in similar concentrations. Further, this matrix may better reflect the current state of the environment at the time of sampling because of the absence of significant degradation.

  15. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  16. Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing.

    Tsai, Candace S J; Dysart, Arthur D; Beltz, Jay H; Pol, Vilas G


    A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.

  17. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    Choi, YongMan; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, N.W., Atlanta, GA 30332 (United States); Lin, M.C. [Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (United States); Center for Interdisciplinary Molecular Science, National Chiao Tung University, Hsinchu 30010 (China)


    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La{sub 0.5}Sr{sub 0.5}BO{sub 2.75} (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs. (author)

  18. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria


    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  19. A rheometer for measuring the material moduli for granular solids. Final report, August 7, 1990--February 6, 1995

    Rajagopal, K.R.


    A great many industrial processes involve interaction between solids and fluids (i.e. gases or liquids). Combustion, gasification of solid fuels, shales or solid wastes, drying of particles, calcining, particle heating, regenerative heat exchangers, oxidation or reduction of ores, metal surface treatments and catalytic and thermal cracking are some of such processes. Solids and fluids serve different roles and several combinations of solids and fluids can arise in a practical situation. Thus, when considering processes or plants it is necessary to be clear as to the particular purpose served by the fluids and the solids. Heating and drying of solids, for example, involve heat and mass transfer only, whereas combustors, gasifiers etc. have the additional complication of chemical reactions which have to be carried out simultaneously with heat and mass transfer. Again, there are many processes where just the flow of granular particles take place, for example, the flow of food grain, coal or sand particles through bin, silo, hoppers, chutes, conveyor belts, inclined planes etc. In most of these cases, a theoretical modeling of the process requires a complete and thorough understanding of the phenomena involved and constitutive modeling of the constituents along with the usual balance laws. In a process, where both a fluid and a solid constituents are involved, it is essential to model both the constituents such that the models accurately describes the characteristics of the constituent concerned. While there are many different models available for fluids, the models for granular materials lack from an understanding of the material parameters.

  20. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae


    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  1. Electrically heated particulate filter embedded heater design

    Gonze, Eugene V.; Chapman, Mark R.


    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  2. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material

    Li, Wei-Dong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Ding, En-Yong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China)


    Phase change materials (PCMs) are a series of functional materials with storing and releasing energy properties. PCMs can impact small environment around them through storing and releasing energy during phase change process. Phase change latent heat of PCMs has two main characters: one is high enthalpy and capacity of per unit volume and the other is that the temperature over phase change process keeps constant or changes slightly. PCMs have been widely used in lots of fields such as solar energy storing, smart housing, thermo-regulated fibers and agricultural greenhouse. In this article, a novel solid-solid phase change heat storage material was synthesized via the two-step condensation reaction of high molecule weight polyethylene glycol (PEG10000) with pentaerythritol (PE) and 4,4'-diphenylmethane diisocyanate (MDI). To characterize the resulting product in comparison with pristine PEG10000, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), polarization optical microscopy (POM) and wide-angle X-ray diffraction (WAXD) measurements were employed to investigate their ingredients, thermal properties and crystalline behaviors. The results indicated that the cross-linking PCM showed typical solid-solid phase transition property, and its phase change enthalpy and crystallinity reached 152.97 kJ/kg and 81.76%, respectively. (author)

  3. Comparison of speciation sampler and PC-BOSS fine particulate matter organic material results obtained in Lindon, Utah, during winter 2001-2002.

    Carter, Cory; Eatough, Norman L; Eatough, Delbert J; Olson, Neal; Long, Russell W


    The Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) has been previously verified as being capable of measuring total fine particulate matter (PM2.5), including semi-volatile species. The present study was conducted to determine if the simple modification of a commercial speciation sampler with a charcoal denuder followed by a filter pack containing a quartz filter and a charcoal-impregnated glass (CIG) fiber filter would allow for the measurement of total PM2.5, including semi-volatile organic material. Data were collected using an R&P (Rupprecht and Pastasnik Co., Inc.) Partisol Model 2300 speciation sampler; an R&P Partisol speciation sampler modified with a BOSS denuder, followed by a filter pack with a quartz and a CIG filter; a Met One spiral aerosol speciation sampler (SASS); and the PC-BOSS from November 2001 to March 2002 at a U.S. Environmental Protection Agency (EPA) Science to Achieve Results (STAR) sampling site in Lindon, UT. Total PM2.5 mass, ammonium nitrate (both nonvolatile and semi-volatile), ammonium sulfate, organic carbon (both non-volatile and semi-volatile), and elemental carbon were determined on a 24-hr basis. Results obtained with the individual samplers were compared to determine the capability of the modified R&P speciation sampler for measuring total PM2.5, including semi-volatile components. Data obtained with the modified speciation sampler agreed with the PC-BOSS results. Data obtained with the two unmodified speciation samplers were low by an average of 26% because of the loss of semi-volatile organic material from the quartz filter during sample collection.

  4. Analysis of optimization processses for solid state fabrication of olivine cathode materials

    Oladimeji, Charles

    Lithium ion battery discovered since the 1980s has become pivotal to our energy needs. With the need for a shift to renewable energy and increased use of portable devices, energy storage has become a very important aspect of modern day life and technology. In the thesis, optimization techniques for solid state calcination of lithium olivine batteries are characterized and analyzed. A brief introduction into lithium ion battery is discussed, the chemistry and physics of the materials is studied in details. Emphasis is placed on the olivine structure, industrially utilized synthesis method and the performance of olivine lithium ion batteries are also discussed in details. Olivine structure LiFePO4 (LFP) was synthesized via solid state processes, using Li2CO3, NH4H 2PO4 and FeC2O4˙H2O and C12H22O11 as precursor materials. The effects of calendaring in terms of charge/discharge capacity, cycle life performance, surface morphology, and ac impedance was analyzed. The resulting LFP electrode was divided in part, Part A was left as is and Part B was calendared. The calendared electrode exhibited lower impedance under electrochemical impedance test. The calendared electrode also exhibited a higher discharge capacity of about 130 mAh/g at 0.1C compared to the as-is electrode with discharge capacity of about 120mAh/g. Olivine structure LiMnPO4 (LMP) was also synthesized via solid state processes, using Li2CO3, NH4H 2PO4, MnCO3 and C12H22O 11 as precursor materials. Comparison of the carbon addition process was done by adding sucrose to the initial precursor mix and carbon black at the later stages of fabrication. The 3 step carbon addition exhibited the highest specific capacity of about 72mAh/g, 1 step carbon addition possessed the least capacity of about 45mAh/g, while the 2 step process had a capacity of about 65mA/g.

  5. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Palmqvist Benny


    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  6. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    Huang, Lei; Fantke, Peter; Jolliet, Olivier


    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...


    Willi Pabst


    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  8. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I


    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed.




    In the investigation of outbreaks of plague it is frequently more satisfactory to send specimens of suspected material collected in the field to a central laboratory, where usually better facilities for their more detailed examination are available. In the present study the authors have investigated the suitability of solid CO(2) (dry-ice) for the preservation of such material during transit. Three types of preparation were tested: broth suspensions of Pasteurella pestis, the livers and spleens of guinea-pigs dying after being infected with two different strains of P. pestis, and whole carcasses of mice and ground-squirrels infected with the organism. An additional test to ascertain the rate at which animal specimens became frozen and thawed was also carried out.These studies showed that (1) organisms in the various tissues frozen in dry-ice were not adversely affected by such treatment; (2) the survival of P. pestis cells did not depend on the number of organisms present in broth cultures or tissue suspensions, small numbers surviving equally well as large; and (3) plague bacilli contained in whole carcasses, even when present in small numbers, were also successfully preserved. It is concluded from these results, and also from the authors' practical use of the method over several years, that for the transport of plague-suspect materials from the field to the laboratory freezing with dry-ice can be confidently recommended.

  10. Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method

    Carlos Bueno


    Full Text Available Microtubes and rods with nanopipes of transparent conductive oxides (TCO, such as SnO2, TiO2, ZnO and In2O3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn. Energy Dispersive X-ray Spectroscopy (EDS measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to 3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.


    Pytko-Polończyk, Jolanta; Antosik, Agata; Zajac, Magdalena; Szlósarczyk, Marek; Krywult, Agnieszka; Jachowicz, Renata; Opoka, Włodzimierz


    Caries is the most popular problem affecting teeth and this is the reason why so many temporary dental filling materials are being developed. An example of such filling is zinc oxide paste mixed with eugenol, Thymodentin and Coltosol F®. Zinc-oxide eugenol is used in dentistry because of its multiplied values: it improves heeling of the pulp by dentine bridge formation; has antiseptic properties; is hygroscopic. Because of these advantages compouds of zinc oxide are used as temporary fillings, especially in deep caries lesions when treatment is oriented on support of vital pulp. Temporary dental fillings based on zinc oxide are prepared ex tempone by simple mixing powder (Thymodentin) and eugenol liqiud together or a ready to use paste Coltosol F®. Quantitative composition depends mainly on experience of person who is preparing it, therefore, exact qualitative composition of dental fillings is not replicable. The main goal of the study was to develop appropriate dental fillings in solid form containing set amount of zinc oxide. Within the study, the influence of preparation method on solid dental fillings properties like mechanical properties and zinc ions release were examined.

  12. Method of treating oils derived by thermal treatment of solid carbonaceous materials

    Culbertson, W.J.; Nevens, T.D.; Schnackenberg, W.D.


    A method for treating a heavy fraction separated under substantially non-cracking conditions from a crude oil derived by thermal treatment of solid carbonaceous material in order to produce a heavy fraction and a light fraction consists of heat treating the separated heavy fraction at a temperature above about 600$F. This temperature is below the point of incipient thermal decomposition of the heavy fraction. The heat treatment takes place for a period of time which is inversely proportional to the temperature to produce a product which, when combined with at least part of a light fraction, results in an oil having a pour point lower than that of the original crude oil. The heat treatment produces substantially no non-condensible hydrocarbons and substantially no elemental carbon. (21 claims)

  13. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.


    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  14. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    Saowadee, Nath

    in solid oxide fuel cell and electrolysis cell. Conductivity of STN is one of the important properties that researchers desire to improve. Grin boundary conductivity contributes to the overall conductivity of the STN. Grain boundary density controlled by mainly grain growth in material processing. Grain...... boundary migration in grain growth involves grain boundary mobility and net pressure on it. Thus grain boundary energy and pressure of STN were calculated in this work. Secondary phase is undesired in STN and YSZ synthesis. The secondary phase in ceramics with the same compounds can have different lattice...... the lattice constant. Both 2D and 3D EBSD were used in acquiring microstructure and crystallographic information of STN and YSZ. Prior to EBSD data collection, effect of FIB milling on STN and YSZ was investigated to optimize EBSD data quality and acquisition time for 3D-EBSD experiments by FIB serial...

  15. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  16. Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves

    Sutyajeet Soneja


    Full Text Available Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error. For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration, do not contain an RH threshold, and is straightforward.

  17. Humidity and gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid biomass fuel use in cookstoves.

    Soneja, Sutyajeet; Chen, Chen; Tielsch, James M; Katz, Joanne; Zeger, Scott L; Checkley, William; Curriero, Frank C; Breysse, Patrick N


    Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.

  18. Understanding particulate coating microstructure development

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  19. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Ruiz-Morales, J. C.


    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  20. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Sahoo S


    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  1. Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream

    Cohen, M.R.; Gal, E.


    A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

  2. Application of results of geological exploration of deposits of solid mineral raw materials in mining

    Ilić Miloje M.


    Full Text Available Important application in mining have the results of geological exploration of the deposits of solid mineral raw materials, before all geological data obtained (including their interpretations regarding basic properties of the deposts and their changeability, and regarding quantity and quality (i.e. resources and reserves of the belonging mineral raw material which have an essential significance for mineral projects. The geological data, together with the other relevant data (in the first place technical and economic ones are applied as basic parameters in documentation of mineral projects. Since the successfulness of the projects is dependent upon the confidence of the data, a special attention is dedicated to the acts that contribute to attaining of an adequate level of confidence of the data, as follows: a a gradual realization of the projects through two phases (geological and mining ones having seven development stages (reconnaissance, prospecting, preliminary exploration and detailed exploration stages of the geological phase and mine design, mine construction and mine production stages of the mining phase; b finding out optimal solutions in drawing up a plan of exploratory workings and its carrying out in accordance with basic properties of a deposit and their changeability; c a realistic estimation of mineral resources/reserves as a predominantly geological task (not 'calculation' of the resources/reserves as a mathematical task; d an objective evaluation of the successfulness of a project at the end of every geological stage ‒ presented in corresponding geological analyses and technical-economic studies.

  3. The physics of solid-state neutron detector materials and geometries.

    Caruso, A N


    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  4. Coupled fluid and solid mechanics study for improved permeability estimation of fines' invaded porous materials

    Mirabolghasemi, M.; Prodanovic, M.


    The problem of fine particle infiltration is seen in fields from subsurface transport, to drug delivery to industrial slurry flows. Sediment filtration and pathogen retention are well-known subsurface engineering problems that have been extensively studied through different macroscopic, microscopic and experimental modeling techniques Due to heterogeneity, standard constitutive relationships and models yield poor predictions for flow (e.g. permeability) and rock properties (e.g. elastic moduli) of the invaded (damaged) porous media. This severely reduces our ability to, for instance, predict retention, pressure build-up, newly formed flow pathways or porous medium mechanical behavior. We chose a coupled computational fluid dynamics (CFD) - discrete element modeling (DEM) approach to simulate the particulate flow through porous media represented by sphere packings. In order to minimize the uncertainty involved in estimating the flow properties of porous media on Darcy scale and address the dynamic nature of filtration process, this microscopic approach is adapted as a robust method that can incorporate particle interaction physics as well as the heterogeneity of the porous medium.. The coupled simulation was done in open-source packages which has both CFD (openFOAM) and DEM components (LIGGGHTS). We ran several sensitivity analyses over different parameters such as particle/grain size ratio, fluid viscosity, flow rate and sphere packing porosity in order to investigate their effects on the depth of invasion and damaged porous medium permeability. The response of the system to the variation of different parameters is reflected through different clogging mechanism; for instance, bridging is the dominant mechanism of pore-throat clogging when larger particles penetrate into the packing, whereas, in case of fine particles which are much smaller than porous medium grains (1/20 in diameter), this mechanism is not very effective due to the frequent formation and

  5. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids.

    Gordon, Andrew K; Palmer, Carolyn G


    Water quality guidelines for suspended solids generally rely on the percentage departure from reference condition, an approach that has been criticized. Attempts to develop a biological effects-base guideline have, however, been confounded by low data availability. Furthermore, the high biological response variability to suspended solids exposure suggests that organisms are responding not only to exposure concentration and duration but also to other mechanisms of effect associated with suspended particles (e.g., size, shape, and geochemical composition). An alternative option is to develop more situation and site specific guidelines by generating biological effects data to suspended particles of a particular geochemistry and restricted size range. With this in mind, aquatic organism responses to kaolin clay particle exposure were collated from the literature and incorporated into 2 exposure-response relationship approaches. The species sensitivity distribution approach produced a hazardous concentration affecting 5% of species estimate of 58 mg/L for mortality responses, and 36 mg/L for sublethal data. The severity-of-ill-effect approach produced similar estimates for lethal and sublethal data. These results suggest that aquatic organisms are slightly more tolerant of kaolin clay particles than particles from barite or bentonite clays, based on results from previous studies on these clay types. This type of information can enable better estimates of the risk faced by aquatic organisms exposed to suspended solids. For example, when the sediments of a particular water body are dominated by a particular type of clay particle, then the most appropriate exposure-response relationship can be applied. © 2015 SETAC.

  6. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations.

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian


    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05) for Mn (r2 = 0.0063), Cu (r2 = 0.0002, Cr (r2 = 0.021), Ni (r2 = 0.0023), Cd (r2 = 0.00001), Co (r2 = 0.096), Hg (r2 = 0.116) or Pb (r2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water.

  7. Using Arrested Solid-Solid Multiphase Reactions in Geological Materials to Deduce the Rate of Crustal Uplift

    Glassley, W.E.; Meike, A.


    The history geological terrains experience can be traced as a series of temperature and pressure changes. Each change drives the system toward a new state of thermodynamic equilibrium. The resultant overprinted rock fabrics, textures and chemical heterogeneities can be difficult to interpret. However, if carefully chosen, features from the scale of kilometers to nanometers can be used to reconstruct the history of mountain systems. Uplift of the Sri Lankan Central Highlands was rapid enough to preserve well-developed symplectite textures, some of which represent arrested solid-state diffusion-controlled reactions of garnet + O{sub 2} to form orthopyroxene + plagioclase + magnetite, as the rocks were exhumed from over 30 km in the earth's crust. Our objective has been to determine the reaction mechanisms responsible for symplectite development, and to establish the time interval over which these reactions occurred, to constrain the rate of mountain uplift. Considering that the most rapid mechanism is solid state grain-boundary diffusion of oxygen, the reaction time can be constrained by bounding the rate of oxygen supply to the reaction site. The solid state grain boundary diffusion rate of oxygen has been inferred to be ca. 10{sup -14}m{sup 2}-sec (Farver and Yund, 1991), but is sensitive to inferred grain boundary width. The range of rates thus determined allows the distinction between rapid uplift similar to that of the Himalayan Mountains, and the slow and progressive erosion of a less dramatic terrain. Further constraints on diffusion control and energetic relationships are determined from crystallographic relationships between the reactant and product phases, and submicron scale microstructure.

  8. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    Frederick S. Pettit; Gerald H. Meier


    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure

  9. Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    Jun Takeda


    Full Text Available In this review, we demonstrate a real-time time-frequency two-dimensional (2D pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation.

  10. Quasi-Solid-State Dye-Sensitized Solar Cells based on Mesoporous Silica SBA-15 Framework Materials

    YANG Hong; CHENG Yun-Fei; LI Fu-You; ZHOU Zhi-Guo; YI Tao; HUANG Chun-Hui; JIA Neng-Qin


    @@ We develop a novel and efficient quasi-solid-state electrolyte based on the mesoporous silica SBA-15 as a framework material for a dye sensitized nanocrystalline TiO2 solar cell. A solar energy-to-electricity conversion efficiency of 4.34% is achieved under AM 1.5 illumination (100mW/cm2).

  11. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  12. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.


    ... in Packing Group I. 173.211 Section 173.211 Transportation Other Regulations Relating to... materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I...

  13. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.


    ... in Packing Group III. 173.213 Section 173.213 Transportation Other Regulations Relating to... materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I, II or...

  14. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.


    ... in Packing Group II. 173.212 Section 173.212 Transportation Other Regulations Relating to... materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I or...

  15. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Pal, Nabanita; Bhaumik, Asim


    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places.

  16. Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf


    to protonconducting solid acids or transition metal phosphates as electrolytes. It was shown that Au is subject to corrosion in molten KH 2PO4 during polarisation. However, Ni and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as a construction material for bipolar...

  17. Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries.

    Zeng, Liang; Kawahito, Koji; Ikeda, Suguru; Ichikawa, Takayuki; Miyaoka, Hiroki; Kojima, Yoshitsugu


    Electrode performances of MgH2-LiBH4 composite materials for lithium-ion batteries have been studied using LiBH4 as the solid-state electrolyte, which shows a high reversible capacity of 1650 mA h g(-1) with an extremely low polarization of 0.05 V, durable cyclability and robust rate capability.

  18. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells

    Mai, Andreas; Haanappel, Vincent A.C.; Uhlenbruck, Sven; Tietz, Frank; Stoever, Detlev [Institute for Materials and Processes in Energy Systems, Forschungszentrum Juelich, IWV-1, D-52425 Juelich (Germany)


    The properties and the applicability of iron- and cobalt-containing perovskites were evaluated as cathodes for solid oxide fuel cells (SOFCs) in comparison to state-of-the-art manganite-based perovskites. The materials examined were La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (x=0.2 and 0.4; y=0-0.05), La{sub 0.8}Sr{sub 0.2}FeO{sub 3-{delta}}, La{sub 0.7}Ba{sub 0.3}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and Ce{sub 0.05}Sr{sub 0.95}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}. The main emphasis was placed on the electrochemical properties of the materials, which were investigated on planar anode-supported SOFCs with 8 mol% yttria-stabilised zirconia (8YSZ) electrolytes. An interlayer of the composition Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} was placed between the electrolyte and the cathode to prevent undesired chemical reactions between the materials. The sintering temperatures of the cathodes were adapted for each of the materials to obtain similar microstructures. In comparison to the SOFCs with state-of-the-art manganite-based cathodes, SOFCs with La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes achieved much higher current densities. Small A-site deficiency and high strontium content had a particularly positive effect on cell performance. The measured current densities of cells with these cathodes were as high as 1.76 A/cm{sup 2} at 800 {sup o}C and 0.7 V, which is about twice the current density of cells with LSM/YSZ cathodes. SOFCs with La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes have been operated for more than 5000 h in endurance tests with a degradation of 1.0-1.5% per 1000 h.

  19. Influence of the drying step within disk-based solid-phase extraction both on the recovery and the limit of quantification of organochlorine pesticides in surface waters including suspended particulate matter.

    Günter, Anastasia; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C


    In this study, 21 organochlorine pesticides (OCPs) were determined based on sample preparation using solid-phase extraction disks (SPE disks) coupled with programmable temperature vaporizer (PTV)-large-volume injection gas-chromatography mass spectrometry (LVI-GC-MS). The work includes a comprehensive testing scheme on the suitability of the method for routine analysis of surface and drinking water including suspended particulate matter (SPM) with regard to requirements derived from the European Water Framework Directive (WFD, Directive 2000/60/EC). SPM is an important reservoir for OCPs, which contributes to the transport of these compounds in the aquatic environment. To achieve the detection limits required by the WFD, a high pre-concentration factor during sample preparation is necessary, which was achieved by disk SPE in this study. The performance of disk SPE is strongly influenced by the drying step, which could be significantly improved by effective elimination of the residual water by combination of a high vacuum pump and a low humidity atmosphere. Detection limits of the WFD in the ng/L range were achieved by large volume injection of 100μL sample extract. The recoveries ranged from 82% to 117% with an RSD smaller than 13%. The applicability of this method to natural samples was tested for instrumental qualification and system suitability evaluation. Successful participation in an interlaboratory comparison proved the suitability of the method for routine analysis.

  20. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur


    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  1. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng


    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.

  2. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu


    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  3. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.


    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  4. Apparatus for Measuring Spectral Emissivity of Solid Materials at Elevated Temperatures

    Ren, Dengfeng; Tan, Hong; Xuan, Yimin; Han, Yuge; Li, Qiang


    Spectral emissivity measurements at high temperature are of great importance for both scientific research and industrial applications. A method to perform spectral emissivity measurements is presented based on two sample heating methods, the flat plate and tubular furnace. An apparatus is developed to measure the normal spectral emissivity of solid material at elevated temperatures from 1073 K to 1873 K and wavelengths from 2 \\upmu hbox {m} to 25 \\upmu hbox {m}. Sample heating is accomplished by a torch flame or a high temperature furnace. Two different variable temperature blackbody sources are used as standard references and the radiance is measured by a FTIR spectrometer. Following calibration of the spectral response and background radiance of the spectrometer, the effect of the blackbody temperature interval on calibration results is discussed. Measurements are performed of the normal spectral emissivity of SiC and graphite over the prescribed temperature and wavelength range. The emissivity of SiC at high temperatures is compared with the emissivity at room temperature, and the influence of an oxide layer formed at the surface of SiC on the emissivity is studied. The effect of temperature on the emissivity of graphite is also investigated. Furthermore, a thorough analysis of the uncertainty components of the emissivity measurement is performed.

  5. Selected Application of Electron Beams in Solid State Materials and Devies Technology

    S. C. Jain


    Full Text Available Experimental work on electron beam annealing of implanted or diffused semiconductor layers is reviewed. In the pulsed beam annealing technique, the top layer of the semiconductor melts and regrows epitaxially. All dopant atoms are frozen in electrically active state during this process. The point defects and clusters caused by radiation damage are completely annealed out. The bulk of the material remains unaffected as its temperature does not rise by more than a few degrees. In the CW electron beam annealing, the layer does not melt but due to sharp temperature gradient and high temperature of the layer, the growth of solid phase epitaxial layer is induced. However, a part of the dopant atoms may remain electrically inactive in this process of annealing. The pulsed beam annealing has also been used for growing high quality single crystal layers of germanium on silicon substrate. Recently, a new technology has been developed to grow silicon single crystal layers on amorphous substrates. Recent advances in the method of determination of lifetime using electron beams are also discussed.

  6. Chaotic exchange of solid material between planetary systems: implications for lithopanspermia

    Belbruno, Edward; Malhotra, Renu; Savransky, Dmitry


    We examine a low energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we find that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology as it addresses whether life on Earth could have been transferred to other planetary systems in the solar system's birth cluster and whether life on Earth could have been transferred here from beyond the solar system. In the solar system, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (~100-500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. ...

  7. Relative humidity-­dependent viscosity of secondary organic material from toluene  photo-­oxidation and possible implications for organic particulate matter over megacities

    Song, Mijung; Liu, Pengfei; Hanna, Sarah; Zaveri, Rahul A.; Potter, K.; You, Yuan; Martin, Scot T.; Bertram, Allan K.


    To improve predictions of air quality, visibility, and climate change, knowledge of the viscosities and diffusion rates within organic particulate matter consisting of secondary organic material (SOM) is required. Most qualitative and quantitative measurements of viscosity and diffusion rates within organic particulate matter have focused on SOM particles generated from biogenic VOCs such as α-pinene and isoprene. In this study, we quantify the relative humidity (RH)-dependent viscosities at 295 ± 1 K of SOM produced by photo-oxidation of toluene, an anthropogenic VOC. The viscosities of toluene-derived SOM were 2 × 10-1 to ~ 6 × 10 Pa·s from 30 to 90% RH, and greater than ~2 × 108 Pa·s (similar to or greater than the viscosity of tar pitch) for RH ≤ 17%. These viscosities correspond to Stokes-Einstein-equivalent diffusion   coefficients for large organic molecules of ~2 × 10-15 cm2·s-1 for 30% RH, and lower than ~3 × 10-17 cm2·s-1 for RH ≤ 17%. Based on these estimated diffusion coefficients, the mixing time of large organic molecules within 200 nm toluene-derived SOM particles is 0.1 - 5 hr for 30% RH, and higher than ~100 hr for RH ≤ 17%. These results were used, as a first-order approximation, to estimate if organic particulate matter will be in equilibrium with large organic molecules over the world’s top 15 most populous megacities. If the organic particulate matter in the megacities is similar to the toluene-derived SOM in this study, in Kolkata, Istanbul, Dhaka, Tokyo, Shanghai, and Mumbai, mixing times in organic particulate matter during extended periods of the year will be very short, and equilibrium can be assumed. On the other hand, the mixing times of large organic molecules in organic particulate matter in Delhi, Beijing, Mexico City, Cairo, and Karachi may be long and the particles may be out of equilibrium in the afternoon (3:00 – 15  5:00 local time) during certain times of the year.

  8. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank


    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a "solid" solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  9. Material synthesis and fabrication method development for intermediate temperature solid oxide fuel cells

    Ding, Hanping

    Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 °C). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 °C). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides as novel cathode materials to minimize the potential electrode polarization on oxygen reduction reaction resulting from the unique crystal structure. The high performance of such perovskites under lower temperatures lies in the fact that a simple cubic perovskite with randomly occupied A-sites transforming into a layered compound with ordered lanthanide and alkali-earth cations may reduce the oxygen bonding strength and provide disorder-free channels for oxygen ion migrations. In order to compromise the cell performance and chemical and mechanical stability, the substitution of Fe in B site was comprehensively investigated to explore the effects of Fe doping on the crystal structure, thermal and electrical properties, as well as electrochemical performance. Furthermore, a platinum nanowire network was successfully developed as an ultrathin electrochemically efficient current collector for SOFCs. The unique platinum network on cathode surface can connect the oxygen reduction reaction (ORR) sites at the nano-scale to the external circuit while being able to substantially avoid blocking the open pores of the cathode. The superior electrochemical performance was exhibited, including the highly reduced electrode polarization resistance

  10. New directions for high-performance materials via postextrusion solid state polymerization

    Almonacil, Celine

    Solid state polymerization (SSP) usually consists of heating condensation polymers to temperatures below their melting point and holding there for a significant time to raise their molecular weight. The process is common in the polymer industry for the production of high molecular weight polyesters and polyamides for industrial fibers and molded products. Recent research has shown that post-extrusion SSP, where polymerization is performed on extruded products such as thin films or fibers, has the potential to lead to high performance materials. Although literature on SSP is abundant, the mechanisms and possible morphological consequences have remained largely unexplored. The purpose of this work is to explore the potential for generating high performance oriented polymer morphologies by performing a fundamental analysis of the mechanisms and morphological consequences of post-extrusion SSP in oriented polymers. It is based on recent research that has shown that interchange reactions can play a fundamental role during many solid state polymerizations by providing the primary mechanism for migration of functionality. It is also based on the recent recognition that these reactions can cause profound changes in the morphology of the polymer. A coarse-grained model which can be used to explore quantitatively the effect of interchange reactions on the topological distribution of chains in inter-crystalline regions is presented here. It includes a novel thermodynamic scheme, coupled with Monte Carlo Rotational Isomeric State simulations, to determine quantitatively the relative probabilities of morphologically different reaction pathways. The results show the role of intrinsic molecular rigidity on interconversions of bridges and loops during SSP of different polymers. The generalized scheme presented here can serve to identify, via gedanken experiments, appropriate semi-rigid systems to explore through real synthesis and processing of high mechanical performance polymers

  11. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households.

    Hensgen, F; Richter, F; Wachendorf, M


    Green cut material is a potential source of renewable energy which is not fully exploited through conventional energy recovery systems. A new energy conversion process, the integrated generation of solid fuel and biogas from biomass (IFBB), which includes mechanical separation after hydro-thermal conditioning, was investigated. Ash softening temperature and lower heating value of the solid fuel were increased through the IFFB process in comparison to the untreated raw material. The net energy yield of IFBB at 40 °C conditioning temperature ranged between 1.96 and 2.85 kWh kg(-1) dry matter (DM) and for the direct combustion between 1.75 and 2.65 kWh kg(-1) DM. Conversion efficiencies for the IFBB system were 0.42-0.68 and for direct combustion 0.42-0.63. The IFBB system produces storable energy from material which is nowadays not used for energy conversion.

  12. Approximated empirical correlations to the characterization of physical and geometrical properties of solid particulate biomass: case studies of the elephant grass and sugar cane trash

    Olivares Gomez, Edgardo; Cortez, Luis A. Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Lab. de Termodinamica e Energia; Alarcon, Guillermo A. Rocca; Perez, Luis E. Brossard [Universidad de Oriente, Santiago de Cuba (Cuba)


    Two types of biomass solid particles, elephant grass (Pennisetum purpureum Schum. variety) and sugar cane trash, were studied in laboratory in order to obtain information about several physical and geometrical properties. In the both case, the length, breadth, and thickness of fifty particles selected randomly from each fraction of the size class, obtained by mechanical fractionation through sieves, were measured manually given their size. A geometric model of type rectangular base prism was adopted because based on observations it was demonstrated that the most of particles that were measured exhibited length which was significantly greater that width ( l >> a ). From these measurements average values for other properties were estimated, for example, characteristic dimension of particle, projected area of the rectangular prism, area of the prism rectangular section, volume of the rectangular prism, shape factors, sphericity, particles specific superficial area and equivalent diameter. A statistical analysis was done and proposed empirical and semi-empirical mathematical correlation models obtained by lineal regression, which show a goodness of fit of these equations to the reported experimental data. (author)

  13. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Bin Hassan, Oskar Hasdinor


    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  14. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Bin Hassan, Oskar Hasdinor


    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported


    Aziz I. Abdullah


    Full Text Available Solid Detergent is one of  the Economic materials and Environmentally friendly method towards enhancing properties of concrete. Lightweight, slow reaction and anti acid concrete can achieving by using this materials, so many test made to validate the advantage and disadvantage ; initial and final hardening time  for cement mortar and compressive strength of concrete, also anti acid test made for cement mortar.The results of tests show this materials are suitable for achieving the purpose to lightweight, slow reaction additional  anti acid concrete.

  16. New methods and materials for solid phase extraction and high performance liquid chromatography

    Dumont, Philip John [Iowa State Univ., Ames, IA (United States)


    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  17. CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?

    Tratt, D.


    This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.

  18. Thermodynamic study of semiconducting related materials by use of EMF method with solid electrolyte

    Katayama Iwao


    Full Text Available Electromotive force method with solid electrolyte is briefly explained, and a thermodynamic study of semi conducting compound solid solution ZnTe-CdTe is picked up to show the way how thermodynamic functions of this system are obtained by several experimental methods based on our published papers and recently published data are added for comparison.

  19. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  20. Contribution to the study of the behaviour of solid particles in a confined turbulent flow using direct numerical simulation; Contribution a l'etude du comportement de particules solides en ecoulement turbulent confine par simulation numerique directe

    Rambaud, P.


    The theme of this numerical thesis is on the behavior of solid particles embedded in a non-homogeneous and non-isotropic turbulent gas flow as the one tacking place in a plane channel. The turbulence is generated through the direct numerical simulation of Navier-Stokes equations discretized by formally second order in time and space finite difference operators. This Eulerian vision of the incompressible gas flow is completed by a Lagrangian formulation allowing to follow solid particles. In this formulation, the considered forces are the non-linear drag and the Saffman lift both corrected for wall effects. Furthermore, depending on the test cases studied, particle bouncing forces on the wall, gravity or electrostatic forces are taken into account. A three-dimensional Hermitian interpolation highlight the special care spend on the determination of the fluid velocity at the solid particle location. The first code application is dedicated to solid particles dispersion inside an horizontal channel, or in a channel operated in a weightlessness state. The huge amount of data from the Lagrangian tracking is reduced to the integral times of the turbulence seen by the solid particles on their trajectories. Those times are crucial in Lagrangian methods associated with a low numerical cost compared with the ones used in the present study. Among those methods, the one based on Langevin type equations have the best potential to handle industrial type problems. Nevertheless, this method needs to rebuild the fluid velocity fluctuations seen by the solid particles on their trajectories. This technic is able to reproduce the crossing trajectory effect, the inertial effect and the continuity effect, only if the integral times of the turbulence seen are known. Till now, those times were known thanks to a semi-empirical correlation from direct numerical simulation in homogeneous and isotropic turbulence (Wang and Stock 1993). However, although these conditions, this correlation was

  1. Novel materials and methods for solid-phase extraction and liquid chromatography

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)


    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  2. Cluster-Expanded Solids: A Strategy for Assembling Functional Porous Materials

    Long, Jeffrey R.


    This grant provided (partial) support for the research efforts of three graduate students and two undergraduate students. The intention of the program was to explore the use of molecular precursors in generating functional porous materials with precisely tailored structures and properties. Prior work in our laboratory had demonstrated the feasibility of employing face-capped octahedral clusters of the type [Re{sub 6}Q{sub 8}(CN){sub 6}]{sup 3-/4-} (Q = S, Se, Te) in the expansion of known metal-cyanide frameworks. For example, the use of [Re{sub 6}Se{sub 8}(CN){sub 6}]{sup 4-} as a reactant in place of [Fe(CN){sub 6}]{sup 4-} resulted in formation of Fe{sub 4}[Re{sub 6}Se{sub 8}(CN){sub 6}]{sub 3}·36H{sub 2}O, featuring an expanded form of the porous three-dimensional framework of Prussian blue (Fe{sub 4}[Fe(CN){sub 6}]{sub 3}·14H{sub 2}O). This compound could be dehydrated without loss of integrity, and the increase in void volume significantly enhances its capacity as a molecular sieve, enabling absorption of larger molecules. For this project, we continued with our efforts to devise new routes to microporous coordination solids that function as molecular sieves, sensors, or catalysts. In particular, our focus was on: (i) the synthesis of new molecular precursors of specific utility for such purposes, and (ii) attempts to incorporate these and existing molecular precursors into new coordination solids. Investigations of the terminal ligand substitution chemistry of the carbon-centered, trigonal prismatic cluster [W{sub 6}CCl{sub 18}]{sup 2-} generated the solvated species [W{sub 6}CCl{sub 12}(DMF){sub 6}]{sup 2+} and [W{sub 6}CCl{sub 12}(py){sub 6}]{sup 2+}, as well as the potential framework building units [W{sub 6}C(CN){sub 18}]{sup 3-}, [W6CCl{sub 12}(pyrazine){sub 6}]{sup 2+}, [W6CCl{sub 12}(4-cyanopyridine){sub 6}]{sup 2+}, and [W{sub 6}CCl{sub12}(4,4-bipyridine){sub 6}]{sup 2+}. Efforts to produce microporous magnets capable of performing magnetic

  3. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  4. Identification and Quantification of the Temporal and Spatial Scales of Variability in Particulate and Dissolved Material Associated with Specific Land-use Activities in the Penobscot River System


    response to release of phosphate by the mill. We observed a troublesome relationship between the calibrated in situ chlorophyll fluorometer...Time Series In order to determine high-resolution carbon component time series we apply the conversion equations (proxy relationship) derived from...discharge rate converted to (m3/h) with proper unit conversion . Similarly, the total particulate organic carbon load is computed from the time series

  5. Electrically heated particulate filter enhanced ignition strategy

    Gonze, Eugene V; Paratore, Jr., Michael J


    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  6. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Lee, Yueh-Lin


    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  7. On the nature, formation and diversity of particulate coherent structures in microgravity conditions and their relevance to materials science and problems of astrophysical interest

    Lappa, Marcello


    Different phenomena related to the spontaneous accumulation of solid particles dispersed in a fluid medium in microgravity conditions are discussed, with an emphasis on recent discoveries and potential links with the general field of astrophysical fluid-dynamics on the one hand, and with terrestrial applications in the field of materials science on the other hand. With special attention to the typical physical forces at play in such an environment, namely, surface-tension gradients, oscillatory residual gravity components, inertial disturbances and forces of an electrostatic nature, specific experimental and numerical examples are presented to provide inputs for an increased understanding of the underlying cause-and-effect relationships. Studying these systems can be seen as a matter of understanding how macroscopic scenarios arise from the cooperative behaviour of sub-parts or competing mechanisms (nonlinearities and interdependencies on various spatial and temporal scales). Through a critical assessment of the properties displayed by the resulting structures (which appear in the form of one-dimensional circuits formed by aligned particles, planar accumulation surfaces, three-dimensional compact structures resembling "quadrics", micro-crystallites or fractal aggregates), we discuss a possible classification of the related particle attractors in the space of parameters according to the prevailing effect.

  8. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material.

    Wang, Tingting; Zhu, Yiming; Ma, Junfeng; Xuan, Rongrong; Gao, Haoqi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui


    In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1-9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid-phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.

  9. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos


    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher

  10. Photo-physical Characterisation of Novel Organic Dye-doped Solid-state Laser Materials

    A.Penzkofer; A.Tyagi; T.Susdorf; D.del; Agua; O.García; R.Sastre; A.Costela; I.García-Moreno


    1 Results The development of tuneable solid-state organic dye lasers is a subject of considerable interest and research activity.Compared to conventional liquid dye lasers they have the advantage of being free of solvent handling,having small size,and being easy to operate.For high-performance solid-state dye lasers highly photo-stable dyes with low quantum yield of triplet formation and low triplet-triplet absorption cross-section in the lasing wavelength region are required.For solid state dye lasers ...

  11. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng


    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method.

  12. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia


    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  13. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Bui Thanh-Tuan


    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  14. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    Ding, I-Kang


    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  15. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis.

    Sun, Shaohuan; Bai, Rongxian; Gu, Yanlong


    Lignosulfonate (LS) is an organic waste generated as a byproduct of the cooking process in sulfite pulping in the manufacture of paper. In this paper, LS was used as an anionic supporting material for immobilizing cationic species, which can then be used as heterogeneous catalysts in some organic transformations. With this strategy, three lignin-supported catalysts were prepared including 1) lignin-SO3 Sc(OTf)2 , 2) lignin-SO3 Cu(OTf), and 3) lignin-IL@NH2 (IL=ionic liquid). These solid materials were then examined in many organic transformations. It was finally found that, compared with its homogeneous counterpart as well as some other solid catalysts that are prepared by using different supports with the same metal or catalytically active species, the lignin-supported catalysts showed better performance in these reactions not only in terms of activity but also with regard to recyclability.

  16. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation.

    Ibrahim, Wan Aini Wan; Nodeh, Hamid Rashidi; Sanagi, Mohd Marsin


    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.

  17. Ultrasonic Processing of Materials

    Han, Qingyou


    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  18. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R


    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  19. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  20. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 (L4ST) to 161 -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦ 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  1. Method for analysis of psychopharmaceuticals in real industrial wastewater and groundwater with suspended organic particulate matter using solid phase extraction disks extraction and ultra-high performance liquid chromatography/time-of-flight mass spectrometry.

    Křesinová, Zdena; Linhartová, Lucie; Petrů, Klára; Krejčová, Lucie; Šrédlová, Kamila; Lhotský, Ondřej; Kameník, Zdeněk; Cajthaml, Tomáš


    A rapid and reliable analytical method was developed for the quantitative determination of psychopharmaceuticals, their precursors and by-products in real contaminated samples from a pharmaceutical company in Olomouc (Czech Republic), based on SPE disk extraction and detection by ultra performance liquid chromatography, combined with time-of-flight mass spectrometry. The target compounds were quantified in the real whole-water samples (water including suspended particles), both in the presence of suspended particulate matter (SPM) and high concentrations of other organic pollutants. A total of nine compounds were analyzed which consisted of three commonly used antidepressants (tricyclic antidepressants and antipsychotics), one antitussive agent and five by-products or precursors. At first, the SPE disk method was developed for the extraction of water samples (dissolved analytes, recovery 84-104%) and pressurised liquid extraction technique was verified for solid matrices (sludge samples, recovery 81-95%). In order to evaluate the SPE disk technique for whole water samples containing SPM, non contaminated groundwater samples were also loaded with different amounts (100 and 300mgL(-1)) of real contaminated sludge originating from the same locality. The recoveries from the whole-water samples obtained by SPE disk method ranged between 67 and 119% after the addition of the most contaminated sludge. The final method was applied to several real groundwater (whole-water) samples from the industrial area and high concentrations (up to 10(3)μgL(-1)) of the target compounds were detected. The results of this study document and indicate the feasibility of the SPE disk method for analysis of groundwater.

  2. Molecularly imprinted polymers: New molecular recognition materials for selective solid-phase extraction of organic compounds

    Martín Esteban, A.


    During the last few years molecularly imprinted polymers have appeared as new selective sorbents for solid-phase extraction of organic compounds in different samples. Molecular imprinting technology involves the preparation of a polymer with specific recognition sites for certain molecules. Once the polymer has been obtained, it can be used in solid-phase extraction protocols, where a careful selection of the most appropriate solvents to be used in the different steps (sample loading, washing...

  3. Characterization of dielectric constant of solid materials (Leather belt at X-Band

    Ambika Singh


    Full Text Available This paper discusses the experimental measurement technique for dielectric constant (i.e.permittivity of leather belt at X-band. This measurement play selection of dielectric constant for antenna substrate. This leather can be used as flexible substrate of wearable microstrip antenna. This measurement system consist of solid state klystron power supply, isolator, VSWR meter, frequency meter, solid dielectric cell (XC-501. This data may be interested in flexibility wearable microstrip antenna studies.

  4. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)


    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  5. An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems

    Sarikaya, A.; Ladisch, M.R. [Purdue Univ., West Lafayette, IN (United States)


    Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logistic function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.

  6. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Sedigheh Sina


    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  7. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  8. Use of gas chromatography-mass spectrometry/solid phase microextraction for the identification of MVOCs from moldy building materials.

    Wady, Loay; Bunte, Annicka; Pehrson, Christina; Larsson, Lennart


    Gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) was applied to identify microbial volatile organic compounds (MVOCs) in water-damaged, mold-infested building materials (gypsum board papers (n=2), mineral wool, and masonite) and in cultivated molds (Aspergillus penicillioides, Stachybotrys chartarum, and Chaetomium globosum). Three SPME fibers (65-microm PDMS-DVB, 75-microm Carboxen-PDMS, and 70-microm Carbowax-stableflex) designed for automated injection were used of which the latter showed best performance. A number of previously reported MVOCs were detected both in the building materials and the cultivated molds. In addition, methyl benzoate was identified both in the S. chartarum and A. penicillioides cultures and in the building materials. SPME combined with GC-MS may be a useful method for the determination of MVOCs emitted from mold-infested building materials.

  9. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K


    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017. Published by Elsevier Ltd.

  10. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro


    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.

    Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui


    Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.


    Pasternak Ia.M.


    Full Text Available The paper presents a review on the recent advances in the theoretical and experimental studies of functional (smart materials and structures. Particular attention is paid to piezoelectric and magnetoelectroelastic materials, which internally couple mechanical, electric and magnetic fields and can operate as sensors or actuators. Modern smart magnetoelectroelastic materials consisting of piezoelectric and piezomagnetic phases are widely used due to the effect of electromagnetic coupling, which is hundred or even thousand times larger than that of a single crystal magnetoelectroelastic materials. The highest electromagnetic coupling due to the regular arrangement of phases is possessed by ferrite-piezoelectric nanostructures, in particular self-assembled nanocomposite thin films. Ferroelectric materials are widely used in modern technologies, especially precise devices, due to the highest values of electro-mechanical coupling among other piezoelectric materials. In turn, all ferroelectric materials are pyroelectric ones, thus, polarize when heated or cooled. The presence of different defects (e.g. cracks or inclusions can additionally cause high stress and electric displacement intensity under the applied thermal load, especially, when the pyroelectric material is not homogeneous, or consists of homogeneous parts bonded together. The paper presents a comprehensive review on the methods, especially numeric and analytic ones, used to study the influence of different fields on stress concentration at defects and fibers. The questions on fracture of defective solids with thin inclusions are also examined.

  13. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials.

    Green, B S; Lahav, M


    Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left-handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.

  14. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Lee Kyoung-Jin; Choe Yeong-Ju; Hwang Hae-Jin


    Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resista...

  15. Polarization signatures of airborne particulates

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.


    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  16. Computation of single solid particle impact on the target of ductile material to study the rebound characteristics of particle

    Yeuan, Jian Jong


    The objective of this research work is to simulate a single solid particle impact on a solid target using elastic-plastic theory. The entire impact process involves the adhesion, deformation and rebound process interacting between the solid particle and the target. The governing equations for two dimensional elastic-plastic flow are formulated in Lagrangian coordinates. The equation of state in the elastic region is the time rate of change of Hooke's law. In the plastic region, the experimental Hugoniot equation of state and the yield condition of R. von Mises are used. The effect of strain rate on the material strength is considered using a semi-empirical formulation. The developed computer program employs a finite volume numerical technique and two step explicit MacCormack scheme, which is second order accurate in time, allowing finer resolution of the transient phenomena of impact. Results are presented for a hard tool steel particle impacting on a mild steel target at impact angles of 20 to 90 degrees. The computational results are compared with experimental data for a range of impacting velocities up to 350 m/sec. The effect of particle in the particle rebound characteristics are also investigated. In the previous research, the particle rebound characteristics obtained from experiments were correlated and used in the calculation of particle trajectories in turbomachinery flows. Here, the computational results are applied to predict solid particle trajectories in a highly loaded axial flow turbine.


    Jie Guan; Nguyen Minh


    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} (SSC) has been developed. Polarization of {approx}0.23 ohm-cm{sup 2} has been achieved at 600 C with Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3}cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte.

  18. Radon diffusion studies in some building materials using solid state nuclear track detectors

    Singh, S; Singh, B; Singh, J


    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  19. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances.

    Calvo, Natalia L; Maggio, Rubén M; Kaufman, Teodoro S


    Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, (13)C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    Sharma, Prabhakar; Poulsen, Tjalfe G


    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  1. Holographic Investigation of Solid Propellant Particulates.


    4~ .A*4 ~.Zwe SOUMVV Ch.&4 0IVC&TIN 0 e*9 066so. 4 evt’ o R..e High speed, high resolution motion pictures were taken to compare the cinematic data...propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms. TABLE employ finely powered aluminum (1-50 microns) in an attempt to capitalize on the conversion of its high heat of formation to kinetic energy for

  2. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.

    Miles, Benjamin N; Ivanov, Aleksandar P; Wilson, Kerry A; Doğan, Fatma; Japrung, Deanpen; Edel, Joshua B


    This tutorial review will introduce and explore the fundamental aspects of nanopore (bio)sensing, fabrication, modification, and the emerging technologies and applications that both intrigue and inspire those working in and around the field. Although nanopores can be classified into two categories, solid-state and biological, they are essentially two sides of the same coin. For instance, both garner popularity due to their ability to confine analytes of interest to a nanoscale volume. Due to the vast diversity of nanopore platforms and applications, no single review can cover the entire landscape of published work in the field. Therefore, in this article focus will be placed on recent advancements and developments taking place in the field of solid-state nanopores. It should be stated that the intention of this tutorial review is not to cite all articles relating to solid-state nanopores, but rather to highlight recent, select developments that will hopefully benefit the new and seasoned scientist alike. Initially we begin with the fundamentals of solid-state nanopore sensing. Then the spotlight is shone on the sophisticated fabrication methods that have their origins in the semiconductor industry. One inherent advantage of solid-state nanopores is in the ease of functionalizing the surface with a range of molecules carrying functional groups. Therefore, an entire section is devoted to highlighting various chemical and bio-molecular modifications and explores how these permit the development of novel sensors with specific targets and functions. The review is completed with a discussion on novel detection strategies using nanopores. Although the most popular mode of nanopore sensing is based upon what has come to be known as ionic-current blockade sensing, there is a vast, growing literature based around exploring alternative detection techniques to further expand on the versatility of the sensors. Such techniques include optical, electronic, and force based methods

  3. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value


    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack......NOVELTY - The end plate is made of material whose thermal expansion coefficient is corresponding to that of material of a cell (103). The thermal expansion coefficient of material is 9asterisk10-6 K-1 to 14asterisk10-6 K11. The thickness of the end plate is within the range of 0.001-1 mm and 0...


    Jie Guan; Nguyen Minh


    This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

  5. The municipal solid waste and the quality of life of collectors of recyclable materials in Juiz de Fora, Minas Gerais.

    de Barros Pimenta, Aline; Santos, Sueli Maria dos Reis; de Jesus, Maria Cristina Pinto; Borges, Marcos Mantins; de Oliveira Marques, Geraldo Luciano; Abdalla, E José Gustavo Francis


    The generation growing and diversified of Municipal Solid Waste is configured as an environmental problem, economic and social deterioration, especially, by application of inappropriate management of them. Faced with this urban context, the research in development presents as specific objective assessment of the quality of life of the gatherers of recyclable materials were active in the city of Juiz de Fora, in the brazilian state of Minas Gerais. In addition, the objective is, still, the recognition of the activity of sorting performed by "scavengers" in order to maximize the reduction, reuse and recycling energy and material waste daily. The proposed methodology is based on the application of the questionnaire Word Health Organization Quality of Life (WHOQOL-100), prepared by the World Health Organization, in order to value the quality of life of the gatherers of recyclable materials, involved, even in educational workshops in order to discuss and organize strategies of health care and scouting to the basement to public policies.

  6. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.


    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  7. Solid-state synthesis and electrochemical properties of SmVO4 cathode materials for low temperature SOFCs

    SUN Xueli; LI Song; SUN Juncai


    A new cathode material fabricated by solid state reaction method was reported. The SmVO4 powder was obtained by firing the mixture of Sm2O3 and V2O5 powders in the temperature range of 700-1200 ℃. Its structure was identified by X-ray diffraction method and the electrochemical properties of SmVO4 as cathodes for solid oxide fuel cells (SOFCs) were investigated in single unit cell at the temperature ranged from 450-550 ℃. The results of the single fuel cell unit show that the maximum current densities are 641, 797, 688 mA·cm-2 and the maximum power output are 165, 268, 303 mW·cm-2 and the open circuit voltage are 1.04,0.96,0.92Vat 450, 500 and 550 ℃, respectively.

  8. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M


    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  9. Capacity Titration Technique for Determining the Solid Diffusion Coefficient of Intercalary Species within Insertion-host Materials

    Xin Cun TANG; Tian Duo LI


    In this paper, the capacity titration technique (CT technique) was developed on basis of the RPG (ratio of potentio-charge capacity to galvano-charge capacity) method to continuously determine the solid diffusion coefficient D of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs. q (value of ratio of the potentio-charge capacity to the galvano-charge capacity) were given in different range of q. By the CT technique,the Li+ solid diffusion coefficients D within LiMn2O4 at different voltages were determined. The results showed that the values of D varied from 3.447× 10-9 cm2/s to 7.60× 10-11cm2/s in the voltage range of charge from 3.3V to 4.3V as a function of voltage with "W" shape.

  10. Diesel particulate filter regeneration via resistive surface heating

    Gonze, Eugene V; Ament, Frank


    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  11. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials

    Ashton, Michael; Paul, Joshua; Sinnott, Susan B.; Hennig, Richard G.


    The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structure's unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials that are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory was used to calculate the exfoliation energy of each material and 680 monolayers emerge with exfoliation energies below those of already-existent two-dimensional materials. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other calculated data for all 826 monolayers are provided at our database (

  12. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.

    Churnside, Allison B; Tung, Ryan C; Killgore, Jason P


    Viscoelastic property measurements made at the solid-liquid interface are key to characterizing materials for a variety of biological and industrial applications. Further, nanostructured materials require nanoscale measurements. Here, material loss tangents (tan δ) were extracted from confounding liquid effects in nanoscale contact resonance force microscopy (CR-FM), an atomic force microscope based technique for observing mechanical properties of surfaces. Obtaining reliable CR-FM viscoelastic measurements in liquid is complicated by two effects. First, in liquid, spurious signals arise during cantilever excitation. Second, it is challenging to separate changes to cantilever behavior due to the sample from changes due to environmental damping and added mass effects. We overcame these challenges by applying photothermal cantilever excitation in multiple resonance modes and a predictive model for the hydrodynamic effects. We demonstrated quantitative, nanoscale viscoelastic CR-FM measurements of polymers at the solid-liquid interface. The technique is demonstrated on a point-by-point basis on polymer samples and while imaging in contact mode on a fixed plant cell wall. Values of tan δ for measurements made in water agreed with the values for measurements in air for some experimental conditions on polystyrene and for all examined conditions on polypropylene.

  13. Progress in Solid Tritium Breeder Materials%固态氚增殖剂研究进展

    赵林杰; 肖成建; 陈晓军; 龚宇; 彭述明; 龙兴贵


    增殖包层作为实现可控核聚变燃料“自持”的关键,不仅能实现氚的增殖,而且起着能量转换的作用,氚增殖剂是其中最重要的功能材料。本文从材料体系的制备、性能以及改性总结了固态氚增殖剂的发展趋势。同时,基于当前的研究现状对固态氚增殖剂的发展进行了展望。%The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction.Tritium breeding material is one of the most important functional materials.Herein,we reviewed the trends in solid tritium breeder development,including the fabrication,properties and modification.Meanwhile,the focus of the solid tritium breeder materials were prospected based on the current research situa-tion.

  14. Homogeneous Diffusion Solid Model as a Realistic Approach to Describe Adsorption onto Materials with Different Geometries

    Sabio, E.; Zamora, F.; González-García, C. M.; Ledesma, B.; Álvarez-Murillo, A.; Román, S.


    In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.

  15. Neutron cross sections of cryogenic materials: a synthetic kernel for molecular solids

    Granada, J.R.; Gillette, V.H.; Petriw, S. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Inst. Balseiro (Argentina); Cantargi, F.; Pepe, M.E.; Sbaffoni, M.M. [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes (Argentina)


    A new synthetic scattering function aimed at the description of the interaction of thermal neutrons with molecular solids has been developed. At low incident neutron energies, both lattice modes and molecular rotations are specifically accounted for, through an expansion of the scattering law in few phonon terms. Simple representations of the molecular dynamical modes are used, in order to produce a fairly accurate description of neutron scattering kernels and cross sections with a minimum set of input data. As the neutron energies become much larger than that corresponding to the characteristic Debye temperature and to the rotational energies of the molecular solid, the 'phonon formulation' transforms into the traditional description for molecular gases. (orig.)

  16. Improved efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) from the National Institute of Standards and Technology (NIST) Standard Reference Material Diesel Particulate Matter (SRM 2975) using accelerated solvent extraction.

    Masala, Silvia; Ahmed, Trifa; Bergvall, Christoffer; Westerholm, Roger


    The efficiency of extraction of polycyclic aromatic hydrocarbons (PAHs) with molecular masses of 252, 276, 278, 300, and 302 Da from standard reference material diesel particulate matter (SRM 2975) has been investigated using accelerated solvent extraction (ASE) with dichloromethane, toluene, methanol, and mixtures of toluene and methanol. Extraction of SRM 2975 using toluene/methanol (9:1, v/v) at maximum instrumental settings (200 °C, 20.7 MPa, and five extraction cycles) with 30-min extraction times resulted in the following elevations of the measured concentration when compared with the certified and reference concentrations reported by the National Institute of Standards and Technology (NIST): benzo[b]fluoranthene, 46%; benzo[k]fluoranthene, 137%; benzo[e]pyrene, 103%; benzo[a]pyrene, 1,570%; perylene, 37%; indeno[1,2,3-cd]pyrene, 41%; benzo[ghi]perylene, 163%; and coronene, 361%. The concentrations of the following PAHs were comparable to the reference values assigned by NIST: indeno[1,2,3-cd]fluoranthene, dibenz[a,h]anthracene, and picene. The measured concentration of dibenzo[a,e]-pyrene was lower than the information value reported by the NIST. The measured concentrations of other highly carcinogenic PAHs (dibenzo[a,l]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,h]pyrene) in SRM 2975 are also reported. Comparison of measurements using the optimized ASE method and using similar conditions to those applied by the NIST for the assignment of PAH concentrations in SRM 2975 indicated that the higher values obtained in the present study were associated with more complete extraction of PAHs from the diesel particulate material. Re-extraction of the particulate samples demonstrated that the deuterated internal standards were more readily recovered than the native PAHs, which may explain the lower values reported by the NIST. The analytical results obtained in the study demonstrated that the efficient extraction of PAHs from SRM 2975 is a critical requirement for the

  17. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.


    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  18. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.


    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  19. Dendrimers-modified solid supports: towards nanostructures materials for clinical diagnostic

    Vida, Y.; Collado, D; Najera, F.; Montañe, M I; Perez-Inestrosa, E.; Ruiz-Sanchez, A


    The design and synthesis of new materials for biomedical applications is a high-priority research topic in a number of biomedical areas. The rapid development of nanotechnology over the past few decades has created wide prospects for using nano- and micro-scale materials in such areas, where careful control of interactions between particles and biosystems is essential for effective use of these materials in biomedicine. Worth special note in this respect is the use of nanoparticles in diagnos...

  20. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul


    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  1. High efficiency light source using solid-state emitter and down-conversion material

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul


    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  2. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  3. Comparison of particulate verification techniques study

    Rivera, Rachel


    The efficacy of five particulate verification techniques on four types of materials was studied. Statistical Analysis Software/JMP 6.0 was used to create a statistically valid design of experiments. In doing so, 35 witness coupons consisting of the four types of materials being studied, were intentionally contaminated with particulate fallout. Image Analysis was used to characterize the extent of particulate fallout on the coupons and was used to establish a baseline, or basis of comparison, against the five techniques that were studied. The five particulate verification techniques were the Tapelift, the Particulate Solvent Rinse, the GelPak lift, an in-line vacuum filtration probe, and the Infinity Focusing Microscope (IFM). The four types of materials consisted of magnesium flouride (MgF II) coated mirrors, composite coated silver aluminum (CCAg), Z93 and NS43G coated aluminum, and silicon (si) wafers. The vacuum probe was determined to be most effective for Z93, the tapelift or vacuum probe for MgF2, and the GelPak Lift for CCAg and si substrates. A margin of error for each technique, based on experimental data from two experiments, for si wafer substrates, yielded the following: Tapelift - 67%, Solvent Rinse - 58%, GelPak- 26%, Vacuum Probe - 93%, IFM-to be determined.

  4. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen


    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  5. Solid Warehouse Material Management System Based on ERP and Bar Code Technology

    ZHANG Cheng; WANG Jie; YUAN Bing; WU Chao; HU Qiao-dan


    This paper presents a manufacturing material management system based on ERP, which is combined with industrial bar code information collection and material management, and carries out extensive research on the system structure and function model, as well as a detailed application scheme.

  6. 75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste


    ... avoided extraction and processing emissions 0.006 MTCO 2 E/ MMBtu for coal, the total avoided GHG is 0.019.../MMBtu of PM associated with extraction and processing of the coal. Please see the Materials... (fly ash, bottom ash, and boiler slag); foundry sand; silica fume; and secondary glass material....

  7. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.


    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  8. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    Gonze, Eugene V [Pinckney, MI


    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  9. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    Boukamp, B.A.; Vinke, I.C.; Vries, de K.J.; Burggraaf, A.J.


    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The magn

  10. Mass spectrometric methods for the direct elemental and isotopic analysis of solid material

    Ganeev, A. A.; Gubal, A. R.; Potapov, S. V.; Agafonova, N. N.; Nemets, V. M.


    Methods for the direct analysis of solids have a number of undeniable advantages over the methods that require preliminary dissolution of samples. High sensitivity and selectivity make the direct mass spectrometric techniques the most in-demand. The review concerns spark source mass spectrometry, laser ionization mass spectrometry, laser ablation inductively coupled plasma mass spectrometry, secondary ion mass spectrometry, secondary neutral mass spectrometry and glow discharge mass spectrometry. Basic principles, analytical characteristics and trends in the development of these techniques are discussed. Particular attention is given to applications of the techniques as well as to their competitive advantages and drawbacks. The bibliography includes 123 references.

  11. Solid State Raman Materials Characterization for High Average Power 1.3 micrometer Laser Frequency Shift


    reflectivity at 1067 rim wavelength. Solid state phototrop filter based on gallium -scandium- gadolinium garnet doped with chromium was used as a passive Q-switch... gadolinium tungstate, KGd(W0 4)2 exhibited efficient Raman properties . In spite of the fact that its Raman gain coefficient at 1064 nm (6 cm/GW) is twice less...studied by high- temperature Raman scattering (HTRS) technique. According to [1], the lattice cell of KGd(W04) 2 low - temperature modification is a base

  12. Directory of crystal growth and solid state materials production and research

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)


    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  13. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Pancoast, Justin; Garrett, William; Moe, Gulia


    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  14. Surfactant assisted solid-state synthesis and gas sensor application of a SWCNT/SnO2 nanocomposite material.

    Lu, Jun; Ma, Anson; Yang, Shihe; Ng, Ka Ming


    Although tin oxide has been the most widely investigated metal oxide material for gas detection, it suffers from the large resistance and high operating temperature. This could be overcome by hybridization with nanostructured carbon. In this work, tin oxide nanoparticles with ultrasmall sizes of 1-3 nm have been uniformly coated onto bundles of single-walled carbon nanotubes by a surfactant assisted solid state synthesis approach for the first time. Gas sensor properties of the as-synthesized nanocomposite material toward NO2 (from 5 to 60 ppm) are measured at 150 degrees C. Compared to the pure carbon tubes gas sensors, the nanocomposite gas sensor responds to NO2 in low concentrations with good linearity, high sensitivity, and fast recovery, while working at a relatively low temperature.

  15. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk


    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  16. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C.

    Zhang, Yuan; Knibbe, Ruth; Sunarso, Jaka; Zhong, Yijun; Zhou, Wei; Shao, Zongping; Zhu, Zhonghua


    Solid-oxide fuel cells (SOFCs) are electricity generators that can convert the chemical energy in various fuels directly to the electric power with high efficiency. Recent advances in materials and related key components for SOFCs operating at ≈500 °C are summarized here, with a focus on the materials, structures, and techniques development for low-temperature SOFCs, including the analysis of most of the critical parameters affecting the electrochemical performance of the electrolyte, anode, and cathode. New strategies, such as thin-film deposition, exsolution of nanoparticles from perovskites, microwave plasma heating, and finger-like channeled electrodes, are discussed. These recent developments highlight the need for electrodes with higher activity and electrolytes with greater conductivity to generate a high electrochemical performance at lower temperatures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanomechanical analysis of high performance materials (solid mechanics and its applications)


    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in the i...

  18. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  19. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)


    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  20. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    Paul Guerry


    Full Text Available It has been shown previously that for magic angle spinning (MAS solid state NMR the refocused INADEQUATE spin-echo (REINE experiment can usefully quantify scalar (J couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ∼1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength, the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (∼1−10 %.

  1. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.


    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ˜1.1-2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2-1.0 Hz (˜1-10 %).

  2. Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors

    Leroy, W. P.; Detavernier, C.; Van Meirhaeghe, R. L.; Lavoie, C.


    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin films. The solid-state reaction was examined between 11 transition metals (W, Mo, Fe, Cr, V, Nb, Mn, Ti, Ta, Zr, and Hf) and an amorphous carbon layer. Capping layers (C or TiN) of different thicknesses were applied to prevent oxidation. Carbide formation is evidenced for nine metals and the phases formed have been identified (for a temperature ranging from 100to1100°C). W first forms W2C and then WC; Mo forms Mo2C; Fe forms Fe3C; Cr first forms metastable phases Cr2C and Cr3C2-x, and finally forms Cr3C2; V forms VCx; Nb transforms into Nb2C followed by NbC; Ti forms TiC; Ta first forms Ta2C and then TaC; and Hf transforms into HfC. The activation energy for the formation of the various carbide phases has been obtained by in situ x-ray diffraction.

  3. A novel approach to engineer the microstructure of solid oxide fuel cell materials

    Ruiz-Morales, J.C.; Nunez, P.; Dominguez-Gonzalez, J.M. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200-La Laguna, Tenerife (Spain); Marrero-Lopez, D. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C. S. I. C.) Universidad de Malaga, 29071 Malaga (Spain); Canales-Vazquez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain)


    A novel and cost-effective process to accurately control the design of 3D structures of SOFC materials is proposed. A master mould is fabricated from a rubber-based material. Metallic meshes are used to transfer any type of patterns to the rubber-based material. The reusable master mould can then be filled with a slurry of inorganic materials made of single or complex oxides and other organic components commonly used in tape-casting technology. After drying at room temperature, the master-mould can be easily peeled-off and then a slow thermal process allows obtaining a sintered material with precisely controlled features such as the size and distribution of the pore holes in the structure, the thickness of the electrode and electrolyte layers, type of patterning, etc. The potential advantages of micro- and nanoengineering of materials for energy applications are also discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Black, Hayden T; Harrison, Katharine Lee


    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  5. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Vanessa Cascos


    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  6. Development of materials for solid state electrochemical sensors and fuel cell applications. Final report, September 30, 1995--December 30, 1995

    Bobba, R.; Hormes, J.; Young, V.; Baker, J.A.


    The intent of this project was two fold: (1) to develop new ionically conducting materials for solid state gas phase sensors and fuel cells and (2) to train students and create an environment conducive to Solid State Ionics research at Southern University. The authors have investigated the electrode-electrolyte interfacial reactions, defect structure and defect stability in some perovoskite type solid electrolyte materials and the effect of electrocatalyst and electrolyte on direct hydrocarbon and methanol/air fuel cell performance using synchrotron radiation based Extended X-ray Absorption Spectroscopy (EXAFS), surface analytical and Impedance Spectroscopic techniques. They have measured the AC impedance and K edge EXAFS of the entire family of rare earth dopants in Cerium Oxide to understand the effect of dopants on the conductivity and its impact on the structural properties of Cerium Oxide. All of the systems showed an increase in the conductivity over undoped ceria with ceria doped Gd, Sm and Y showing the highest values. The conductivity increased with increasing ionic radius of the dopant cation. The authors have measured the K edge of the EXAFS of these dopants to determine the local structural environment and also to understand the nature of the defect clustering between oxygen vacancies and trivalent ions. The analysis and the data reduction of these complex EXAFS spectra is in progress. Where as in the DOWCs, the authors have attempted to explore the impact of catalyst loadings on the performance of direct oxidation of methanol fuel cells. Their initial measurements on fuel cell performance characteristics and EXAFS are made on commercial membranes Pt/Ru/Nafion 115, 117 and 112.

  7. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  8. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin


    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  9. Modeling and Simulations of Particulate Flows through Functionalized Porous Media

    Li, Chunhui; Dutta, Prashanta; Liu, Jin


    Transport of particulate fluid through a functionalized porous material is of significant interest in many industrial applications, such as earth sciences, battery designs and water/air purifications. The entire process is complex, which involves the convection of fluid, diffusion of reactants as well as reversible chemical reactions at the fluid-solid interface In this work we present a convection-diffusion-reaction model and simulate the transport of particulate fluid through a functionalized porous media. The porous structures are generated and manipulated through the quartet structure generation set method. The Navier-Stokes with convection-diffusion equations are solved using the lattice Boltzmann method. The chemical reactions at the interface are modeled by an absorption-desorption process and treated as the boundary conditions for above governing equations. Through our simulations we study the effects of porous structures, including porosity, pore orientation, and pore size as well as the kinetic rates of surface reactions on the overall performance of removal efficiency of the species from the solution. Our results show that whole process is highly affected by both the porous structures and absorption rate. The optimal parameters can be achieved by proper design. This work is supported by NSF Grants: CBET-1250107 and CBET -1604211.

  10. Particulate COD balance of particulate cod in eletrocuagulation/flotation reactor treating tannery effluent

    Rodrigo Babora Borri


    Full Text Available Mass balance or particulate organic matter was studied in terms of COD, by means of electrocoagulation/flotation (ECF reactor treating tannery effluent. Reactor was operated in fill and draw (batch mode. Operating in hydraulic residence time of 65 minutes, ECF reactor reached 55 % COD removal. Although volatile solids were also removed from liquid phase (removal of 40%, fixed solids concentration, and hence total solids concentration, showed to be higher in withdrawn effluent than in ECF’s influent. This was assigned to NaCl added in order to enhance conductivity in wastewater.

  11. Solid Matter

    Angelo, Joseph A


    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  12. Optical characterization and crystal field calculations for some erbium based solid state materials for laser refrigeration

    Hasan, Z.; Qiu, Z.; Johnson, Jackie; Homerick, Uwe


    The potential of three erbium based solids hosts has been investigated for laser cooling. Absorption and emission spectra have been studied for the low lying IR transitions of erbium that are relevant to recent reports of cooling using the 4I15/2-4I9/2 and4I15/2 -4I13/2 transitions. Experimental studies have been performed for erbium in three hosts; ZBLAN glass and KPb2Cl5 and Cs2NaYCl6 crystals. In order to estimate the efficiencies of cooling, theoretical calculations have been performed for the cubic Elpasolite (Cs2NaYCl6 ) crystal. These calculations also provide a first principle insight into the cooling efficiency for non-cubic and glassy hosts where such calculations are not possible.

  13. III-nitride nanowires: novel materials for solid-state lighting

    Wang, George T.; Li, Qiming; Huang, Jianyu; Talin, A. Alec; Armstrong, Andrew; Upadhya, Prashanth C.; Prasankumar, Rohit P.


    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  14. III-nitride nanowires : novel materials for solid-state lighting.

    Wang, George T.; Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Armstrong, Andrew M.; Huang, Jian Yu; Li, Qiming; Talin, Albert Alec (NIST, Gaithersburg, MD)


    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  15. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed


    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Thunaipragasam Selvakumaran


    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  17. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Freeze, Ronald [Iowa State Univ., Ames, IA (United States)


    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  18. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura


    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%.

  19. The Tribological Behavior of PTFE-based Bonded Solid Lubrica ting Coatings Modified with Particulate Synthetic Paraffin Wax%合成蜡粉改性聚四氟乙烯基粘结涂层摩擦学性能的研究

    冶银平; 陈建敏


    The tribological behavior of polytetraflouroethyl ene-based bonded solid lubricating coatings modified with particulate synthetic paraffin wax was investigated on a block-on-ring friction and wear tester. Th e effect of the particulate filler on the deviation of wear data was examined as well, while the worn surface morphology of and the composition of elemental Fe on the coating observed and determined with a scanning electron microscope. As t he results, the friction and wear properties of PTFE-based bonded solid lubrica ting coatings are improved by filling with particulate synthetic paraffin wax, s o is the repeatability of the wear data of the coatings. Scanning electron micro scopic observation and energy dispersive X-ray analysis of the worn coating sur faces indicate that the bonded solid lubricating coating transfers to the counte rpart steel surface, thus to decrease the friction coefficient and wear rate, by forming a transfer film thereon. Moreover, the particulate synthetic paraffin w ax helps to restrain the transfer of counterpart Fe onto the coating surface, th erefore to abate the scuffing of the coating and subsequently increase the antiw ear life of the coating.%用合成蜡粉改善聚四氟乙烯基粘结涂层并考察了其摩擦磨损性能以及合成蜡粉添加量对摩擦磨损试验结果重复性的影响.结果表明:合成蜡粉可明显改善聚四氟乙烯基粘结涂层的减摩耐磨性能;随着合成蜡粉添加量的增加,其摩擦磨损试验数据的重复性显著提高.通过对其磨痕形貌和磨痕表层转移物的分析发现,在摩擦过程中,合成蜡粉可阻止偶件金属元素向聚四氟乙烯基粘结涂层摩擦表面的转移和大尺寸磨屑的产生.

  20. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo


    The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in

  1. Segregation of Granular Material in Two and Three-Dimensional Units

    Sandhya Mishra; Ankit Namdev; Munindra Bisen; Jeeshan Ahmad; Vishal Mishra


    Segregation of particulate materials in mixtures is controlledby differences in density, shape, and size. Experiments on segregationwere performed in two and three-dimensional demonstrationunits. The results conclusively indicated that the segregationof solids is affected by the shape, size and density ofgranular particles.

  2. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Wells, R.L. [Duke Univ., Durham, NC (United States)


    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  3. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia


    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals.

  4. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    Nicolaides, CP


    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  5. Glass-containing composite cathode contact materials for solid oxide fuel cells

    Tucker, Michael C.; Cheng, Lei; DeJonghe, Lutgard C.


    The feasibility of adding glass to conventional SOFC cathode contact materials in order to improve bonding to adjacent materials in the cell stack is assessed. A variety of candidate glass compositions are added to LSM and SSC. The important properties of the resulting composites, including conductivity, sintering behavior, coefficient of thermal expansion, and adhesion to LSCF and Mn1.5Co1.5O4-coated 441 stainless steel are used as screening parameters. Adhesion of LSM to LSCF improved from 3.9 to 5.3 MPa upon addition of SCZ-8 glass. Adhesion of LSM to coated stainless steel improved from 1.8 to 3.9 MPa upon addition of Schott GM31107 glass. The most promising cathode contact material/glass composites are coated onto Mn1.5Co1.5O4-coated 441 stainless steel substrates and subjected to area-specific resistance testing at 800 °C. In all cases, area-specific resistance is found to be in the range 2.5-7.5 mOhm cm2 and therefore acceptable. Indeed, addition of glass is found to improve bonding of the cathode contact material layer without sacrificing acceptable conductivity.

  6. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.


    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' struc

  7. Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks

    WEI Xueying; HAO Hong


    In this paper,numerical method is used to study the strain rate effect on masonry materials.A typical unit of masonry is selected to serve as a representative volume element (RVE).Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests.The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials.Dynamic loads of different loading rates are applied to RVE.The equivalent homogenized uniaxial compressive strength,threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE.The strain rate effect on the masonry material with clay brick and mortar,such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.

  8. Solid state laser employing diamond having color centers as a laser active material

    Rand, S.C.; De Shazer, L.G.


    A laser is described comprising: resonant cavity means for supporting coherent radiation; a diamond containing color centers as a laser active material; means for exciting the color centers to emit coherent radiation; and optical path means for providing an exit path for the radiation from the resonant cavity means.

  9. The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters.

    Malham, Shelagh K; Rajko-Nenow, Paulina; Howlett, Eleanor; Tuson, Karen E; Perkins, Tracy L; Pallett, Denise W; Wang, Hui; Jago, Colin F; Jones, Davey L; McDonald, James E


    Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater-marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial

  10. Electrification of particulates in industrial and natural multiphase flows

    Gu, Zhaolin


    This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

  11. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems


    decreases for LS5 to CS5 as seen in Fig. I, A parameters since a simple model is being used to describe must decrease from LS5 to CSS . Therefore, the...materials such as quire incorporation of multiple trapping levels in describ- Bi12SiO𔃺 , 2’ BaTiO 3,𔄀’ 7 GaAs, 22 and CdTe . 23 In the pi- ing the

  12. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices


    conductive polyarylene ethynylene polymers for photovoltaic applications. The structure at the molecular scale was characterized using X-ray scattering...Processing of Thin Film Flexible Solar Cells” who exchanged knowledge about device-level questions and capabilities of simulations. The Ohio Department of...Indianapolis, IN, May, 2011. (2) “Hybrid Photovoltaic Materials: Characterization of Polymer -Nanoparticle composites” Lama, B.; Espe, M. P.; Central Regional

  13. Plutonium and americium monazite materials: Solid state synthesis and X-ray diffraction study

    Bregiroux, D. [DEN/DEC/SPUA, Commissariat a l' Energie Atomique, Cadarache, 13108 Saint Paul Lez Durance (France); Laboratoire Science des Procedes Ceramiques et de Traitements de Surface, UMR CNRS-Universite no. 6638, Batiment Chimie, 123 avenue Albert Thomas, 87060 Limoges (France); E-mail:; Belin, R. [DEN/DEC/SPUA, Commissariat a l' Energie Atomique, Cadarache, 13108 Saint Paul Lez Durance (France); Valenza, P. [DEN/DEC/SPUA, Commissariat a l' Energie Atomique, Cadarache, 13108 Saint Paul Lez Durance (France); Audubert, F. [DEN/DEC/SPUA, Commissariat a l' Energie Atomique, Cadarache, 13108 Saint Paul Lez Durance (France); Bernache-Assollant, D. [Ecole Nationale Superieure des Mines, 158 Cours Fauriel, 42023 Saint Etienne (France)


    High-temperature solid state syntheses of monazite powders containing plutonium (III), plutonium (IV) and americium (III) were performed. Resulting powders were characterized by X-ray diffraction. Pu{sup 3+}PO{sub 4} was readily obtained as a single phase by heating a Pu{sup 4+}O{sub 2}-NH{sub 4}H{sub 2}PO{sub 4} mixture under argon atmosphere. Traces of tetravalent plutonium phosphate Pu{sup 4+}P{sub 2}O{sub 7} were detected when synthesized under air atmosphere. The incorporation of (Pu{sup 4+},Ca{sup 2+}) in the monazite structure was investigated under air and argon atmosphere. We showed that Pu{sup 4+} is fully reduced in Pu{sup 3+} under argon atmosphere whereas, under air, the compound with the formula Pu{sub 0.4}{sup 3+}Pu{sub 0.3}{sup 4+}Ca{sub 0.3}{sup 2+}PO{sub 4} was obtained. Pure Am{sup 3+}PO{sub 4} was also synthesized under argon atmosphere. X-ray patterns revealed a complete amorphisation of the monazite structure at a relatively low cumulative alpha dose for {sup 241}AmPO{sub 4}.

  14. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.


    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  15. Organic proton-conducting molecules as solid-state separator materials for fuel cell applications

    Jimenez-Garcia, Lucia; Kaltbeitzel, Anke; Enkelmann, Volker; Gutmann, Jochen S.; Klapper, Markus; Muellen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)


    Organic proton-conducting molecules are presented as alternative materials to state-of-the-art polymers used as electrolytes in proton-exchanging membrane (PEM) fuel cells. Instead of influencing proton conductivity via the mobility offered by polymeric materials, the goal is to create organic molecules that control the proton-transport mechanism through supramolecular order. Therefore, a series of phosphonic acid-containing molecules possessing a carbon-rich hydrophobic core and a hydrophilic periphery was synthesized and characterized. Proton conductivity measurements as well as water uptake and crystallinity studies (powder and single-crystal X-ray analysis) were performed under various conditions. These experiments reveal that proton mobility is closely connected to crystallinity and strongly dependent on the supramolecular ordering of the compound. This study provides insights into the proton-conducting properties of this novel class of materials and the mechanisms responsible for proton transport. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The mechanical behaviour of packed particulates

    Dutton, R


    Within the Canadian Nuclear Fuel Waste Management program, the central concept is to package used fuel in containers that would be deposited in an underground vault in a plutonic rock formation. To provide internal mechanical support for the container, the reference design specifies it to be filled with a matrix of compacted particulate material (called 'packed particulate'), such as quartz sand granules. The focus of this report is on the mechanical properties of the packed-particulate material, based on information drawn from the extant literature. We first consider the packing density of particulate matrices to minimize the remnant porosity and maximize mechanical stability under conditions of external pressure. Practical methods, involving vibratory packing, are reviewed and recommendations made to select techniques to achieve optimum packing density. The behaviour of particulates under compressive loading has been of interest to the powder metallurgy industry (i.e., the manufacture of products from pressed/sintered metal and ceramic powders) since the early decades of this century. We review the evidence showing that in short timescales, stress induced compaction occurs by particle shuffling and rearrangement, elastic distortion, plastic yielding and microfracturing. Analytical expressions are available to describe these processes in a semiquantitative fashion. Time-dependent compaction, mainly via creep mechanisms, is more complex. Much of the theoretical and experimental information is confined to higher temperatures (> 500 degrees C), where deformation rates are more rapid. Thus, for the relatively low ambient temperatures of the waste container ({approx}100 degrees C), we require analytical techniques to extrapolate the collective particulate creep behaviour. This is largely accomplished by employing current theories of creep deformation, particularly in the form of Deformation Mechanism Maps, which allow estimation of creep rates over a wide

  17. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Del Angel S, A.


    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  18. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander


    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  19. Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells

    Kong, Xiaowei; Zhou, Xiaoliang; Tian, Yu; Wu, Xiaoyan; Zhang, Jun; Zuo, Wei


    Development of cost-effective and efficient electrochemical catalysts for the fuel cells electrode is of prime importance to emerging renewable energy technologies. Here, we report for the first time the novel La0.9Ca0.1Fe0.9Nb0.1O3-δ (LCFNb) perovskite with good potentiality for the electrode material of the symmetrical solid oxide fuel cells (SSOFC). The Sc0.2Zr0.8O2-δ (SSZ) electrolyte supported symmetrical cells with impregnated LCFNb and LCFNb/SDC (Ce0.8Sm0.2O2-δ) electrodes achieve relatively high power outputs with maximum power densities (MPDs) reaching up to 392 and 528.6 mW cm-2 at 850 °C in dry H2, respectively, indicating the excellent electro-catalytic activity of LCFNb towards both hydrogen oxidation and oxygen reduction. Besides, the MPDs of the symmetrical cells with LCFNb/SDC composite electrodes in CO and syngas (CO: H2 = 1:1) are almost identical to those in H2, implying that LCFNb material has similar catalytic activities to carbon monoxide compared with hydrogen. High durability in both H2, CO and syngas during the short term stability tests for 50 h are also obtained, showing desirable structure stability, and carbon deposition resistance of LCFNb based electrodes. The present results indicate that the LCFNb perovskite with remarkable cell performance is a promising electrode material for symmetrical SOFCs.

  20. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Muneeb Irshad


    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.