WorldWideScience

Sample records for solid murine tumor

  1. Combination effect of cisplatin and radiation in murine solid tumors

    International Nuclear Information System (INIS)

    Egawa, Shin; Lee, Kan-ei; Ishibashi, Akira; Komiyama, Hiroki; Umezawa, Iwao.

    1986-01-01

    The combination effect of cisplatin and radiation was studied using the two different murine systems of sarcoma 180 and Ehrlich solid tumors. In sarcoma 180 solid tumor the minimal effective doses (MED) of cisplatin and radiation were 19.5 mg/kg and 10375 rad respectively whereas these doses did not show any effective antitumor activity practically. Administration of cisplatin with a doses of 9 mg/kg given 24 hours before radiation (1000 rad), however, showed synergistic antitumor activity. In Ehrlich solid tumor the MED of cisplatin and radiation were 13.8 mg/kg and 2892 rad respectively. Treatment with cisplatin, 3, 6 or 9 mg/kg, given 24 hours before radiation (1000 rad) showed also synergistic antitumor activity also. Sodium thiosulfate (STS) rescue was effective in reducing toxicity of cisplatin on combined use of the drug with radiation. Cell kinetics of sarcoma 180 solid tumor in vivo after the combined treatment was analyzed by computer aided flowcytometry. Accumulation of cells in the radiosensitive G 2 + M phase was observed 18 to 42 hours after a single intraperitoneal administration of 9 mg/kg of cisplatin. It is strongly suggested that this synchronization is one of the mechanisms of the synergism in the combination therapy. (author)

  2. Therapeutic efficacy and microSPECT/CT imaging of {sup 188}Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-J.; Chang, C.-H.; Yu, C.-Y.; Chang, T.-J.; Chen, L.-C. [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Chen, M.-H. [National Health Research Institutes, Miaoli, Taiwan (China); Lee, T.-W. [Institute of Nuclear Energy Research, Taoyuan, Taiwan (China); Ting Gann [National Health Research Institutes, Miaoli, Taiwan (China)], E-mail: gann.ting@msa.hinet.net

    2010-01-15

    Nanocarriers can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness and reducing toxicity. The objective of this study was to investigate the therapeutic efficacy of a new co-delivery radiochemotherapeutics of {sup 188}Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA)-labeled pegylated liposomal doxorubicin (DXR) ({sup 188}Re-DXR-liposome) in a C26 murine colon carcinoma solid tumor model. To evaluate the targeting and localization of {sup 188}Re-DXR-liposome in C26 murine tumor-bearing mice, biodistribution, microSPECT/CT imaging and pharmacokinetic studies were performed. The antitumor effect of {sup 188}Re-DXR-liposome was assessed by tumor growth inhibition, survival ratio and histopathological hematoxylin-eosin staining. The tumor target and localization of the nanoliposome delivery radiochemotherapeutics of {sup 188}Re-DXR-liposome were demonstrated in the biodistribution, pharmacokinetics and in vivo nuclear imaging studies. In the study on therapeutic efficacy, the tumor-bearing mice treated with bimodality radiochemotherapeutics of {sup 188}Re-DXR-liposome showed better mean tumor growth inhibition rate (MGI) and longer median survival time (MGI=0.048; 74 days) than those treated with radiotherapeutics of {sup 188}Re-liposome (MGI=0.134; 60 days) and chemotherapeutics of Lipo-Dox (MGI=0.413; 38 days). The synergistic tumor regression effect was observed with the combination index (CI) exceeding 1 (CI=1.145) for co-delivery radiochemotherapeutics of {sup 188}Re-DXR-liposome. Two (25%) of the mice treated with radiochemotherapeutics were completely cured after 120 days. The therapeutic efficacy of radiotherapeutics of {sup 188}Re-liposome and the synergistic effect of the combination radiochemotherapeutics of {sup 188}Re-DXR-liposome have been demonstrated in a C26 murine solid tumor animal model, which pointed to the potential benefit and promise of the co-delivery of

  3. First-in-Human Phase 1 Trial of Agarose Beads Containing Murine RENCA Cells in Advanced Solid Tumors

    Directory of Open Access Journals (Sweden)

    Barry H. Smith

    2016-01-01

    Full Text Available Purpose Agarose macrobeads containing mouse renal adenocarcinoma cells (RMBs release factors, suppressing the growth of cancer cells and prolonging survival in spontaneous or induced tumor animals, mediated, in part, by increased levels of myocyte-enhancing factor (MEF2D via EGFR-and AKT-signaling pathways. The primary objective of this study was to determine the safety of RMBs in advanced, treatment-resistant metastatic cancers, and then its efficacy (survival, which is the secondary objective. Methods Thirty-one patients underwent up to four intraperitoneal implantations of RMBs (8 or 16 macrobeads/kg via laparoscopy in this single-arm trial (FDA BB-IND 10091; NCT 00283075. Serial physical examinations, laboratory testing, and PET-CT imaging were performed before and three months after each implant. Results RMBs were well tolerated at both dose levels (mean 660.9 per implant. AEs were (Grade 1/2 with no treatment-related SAEs. Conclusion The data support the safety of RMB therapy in advanced-malignancy patients, and the preliminary evidence for their potential efficacy is encouraging. A Phase 2 efficacy trial is ongoing.

  4. Effect of SPG (Sonifilan) immunotherapy and PDT on murine tumor

    International Nuclear Information System (INIS)

    Korbelik, M.; Krosl, G.; Dougherty, G.J.; Chaplin, D.J.

    1992-01-01

    PhotoDynamic Therapy of solid tumors is unique in eliciting a strong host immune response unparalleled in other cancer therapies. This immune response is manifested as an acute inflammatory reaction, and can be readily seen as redness and edema around the treated area. Destruction of typical solid tumor cannot be accomplished solely by direct phototoxic action. This was shown to be the case even with drugs more potent in this direct killing effect than Photofrin, the photosensitizer presently used in clinical PDT. Limiting factors seem to be regional insufficiencies in supply of molecular oxygen, needed for generation of phototoxic species. They can be ascribed to the existence of chronically and acute hypoxic tumor regions, oxygen consumption by the photodynamic process, and vascular shutdown induced during PDT. The remaining tumor mass is eradicated by an indirect effect, necrosis induced by destruction of tumor vasculature. Since most events in PDT treated tumor that lead to vascular collapse are, in fact, typical inflammatory manifestations, it was suggested that PDT-induced acute inflammatory reaction actually leads to vascular damage. In a related report characteristics are shown of cellular inflammatory infiltrate in PDT-treated murine tumor. This work examines the effect of combining PDT with immunotherapy, in an attempt to investigate a possibility of amplification of immune reaction to PDT and its direction towards more pervasive destruction of treated tumors. (authors). 6 refs

  5. Macrophage content of murine tumors: Associations with TD50 and tumor radiocurability

    International Nuclear Information System (INIS)

    Wike, J.; Hunter, N.; Volpe, J.; Milas, L.

    1987-01-01

    The experiments were designed to investigate whether the tumor-associated macrophage (TAM) content of murine solid tumors correlates with tumor response to ionizing radiation and with the clonogenic ability of tumor cells to establish s.c. tumors. Of 13 tumors studied, 6 were sarcomas and 7 were carcinomas; all tumors were of spontaneous origin in C/sub 3/Hf/Kam mice, with the exception of one sarcoma that was induced by 3-methylcholanthrene. Tumors were growing in the hind thighs of syngeneic mice, and their TAM content was determined when they were 8 mm in diameter. Their macrophage content varied greatly, ranging from 9 to 83%. Radiocurability of 8 mm tumors, determined by TCD50, ranged from 42 Gy (fibrosarcoma FSA) to > 80 Gy (hepatocarcinoma HCA-I). There was an obvious trend toward positive correlation (r = 0.43) between TAM content and reduced local tumor radiocurability. However, there was a significant negative correlation between TAM content and TD50 values, implying that cells from tumors with higher macrophage content were more clonogenic. TAM from the NFSA sarcoma, a tumor with a low TD50 value and poorly responsive to radiation, stimulated the in vitro growth of NFSA tumor cells. These observations suggest that high TAM content could be conducive to tumor cell proliferation and could be a factor in poor tumor radioresponse

  6. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    International Nuclear Information System (INIS)

    Chang, Sei Kyung; Shin, Hyun Soo; Seong, Jin Sil; Kim, Sung Hee

    2006-01-01

    We investigated whether a relationship exists between tumor control dose 50 (TCD 50 ) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD 50 , TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 ∼ 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD 50 , TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21 WAF1/CIP1 , BAX, Bcl-2, Bcl-x L , Bcl-x S , and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD 50 or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD 50 , TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, ρ = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD 50 (ρ = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21 WAF1/CIP1 and p34 showed a significant correlation either with TCD 50 (R = 0.893, ρ = 0.041 and R = 0.904, ρ = 0.035) or with TGD (R = -0.922, ρ 0.026 and R = -0.890, ρ = 0.043). The tumors with high constitutive expression levels of p21 WAF1/CIP1 or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of p21 WAF1/CIP1 or p34 can be used as biological

  7. Biological markers as predictors of radiosensitivity in syngeneic murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sei Kyung; Shin, Hyun Soo [Bundang CHA General Hospital, Seongnam (Korea, Republic of); Seong, Jin Sil; Kim, Sung Hee [Yonsei Cancer Center, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2006-06-15

    We investigated whether a relationship exists between tumor control dose 50 (TCD{sub 50}) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between TCD{sub 50}, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used in this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were 8 {approx} 12 weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for TCD{sub 50}, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of p53, p21{sup WAF1/CIP1}, BAX, Bcl-2, Bcl-x{sub L}, Bcl-x{sub S}, and p34. Correlation analysis was performed whether the level of RIA were correlated with TCD{sub 50} or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with TCD{sub 50}, TGD, RIA. The level of RIA showed a significant positive correlation (R = 0.922, {rho} = 0.026) with TGD, and showed a trend to correlation (R = -0.848), marginally significant correlation with TCD{sub 50} ({rho} = 0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of p21{sup WAF1/CIP1} and p34 showed a significant correlation either with TCD{sub 50} (R = 0.893, {rho} = 0.041 and R = 0.904, {rho} = 0.035) or with TGD (R = -0.922, {rho} 0.026 and R = -0.890, {rho} = 0.043). The tumors with high constitutive expression levels of p21{sup WAF1/CIP1} or p34 were less radiosensitive than those with low expression. Radiosensitivity may be predicted with the level of RIA in murine tumors. The

  8. Enhancement of tumor radioresponse by combined chemotherapy in murine hepatocarcinoma

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Kim, Sung Hee; Suh, Chang Ok

    2000-01-01

    The purpose of this study was to identify drugs that can enhance radioresponse of murine hepatocarcinoma. C3H/HeJ mice bearing 8 mm tumors of murine hepatocarcinoma, HCa-l, were treated with 25 Gy radiation and one of the following drugs: 5-Fu, 150 mg/kg; adriamycin, 8 mg/kg; cisplatin, 6 mg/kg; paclitaxel, 40 mg/kg; and gemcitabine, 50 mg/kg. Tumor response to the treatment was determined by tumor growth delay assay and by enhancement factor. Apoptotic level was assessed in tissue sections. Expression of regulating molecules was analyzed by western blotting for p53, 8c1-2, Sax, Bel-XL, Bd-XS, and p21 WAF1/CIP1 . Among the drugs tested, only gemcitabine enhanced the antitumor effect of radiation, with enhancement factor of 1.6. Induction of apoptosis by a combination of gerncitabine and radiation was shown as only additive level. In analysis of radiation-induced expression of regulating molecules, the most significant change by combining gemcitabine was activation of p21 WAF1/CIP1 . Gemcitabine is the first drug showing an enhancement of radioresponse in murine hepatocarcinoma, when combined with radiation. The key element of enhancement is thought to be p21 WAF1/CIP1

  9. Enhancement of tumor radioresponse by combined chemotherapy in murine hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jin Sil; Kim, Sung Hee; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2000-12-01

    The purpose of this study was to identify drugs that can enhance radioresponse of murine hepatocarcinoma. C3H/HeJ mice bearing 8 mm tumors of murine hepatocarcinoma, HCa-l, were treated with 25 Gy radiation and one of the following drugs: 5-Fu, 150 mg/kg; adriamycin, 8 mg/kg; cisplatin, 6 mg/kg; paclitaxel, 40 mg/kg; and gemcitabine, 50 mg/kg. Tumor response to the treatment was determined by tumor growth delay assay and by enhancement factor. Apoptotic level was assessed in tissue sections. Expression of regulating molecules was analyzed by western blotting for p53, 8c1-2, Sax, Bel-XL, Bd-XS, and p21{sup WAF1/CIP1}. Among the drugs tested, only gemcitabine enhanced the antitumor effect of radiation, with enhancement factor of 1.6. Induction of apoptosis by a combination of gerncitabine and radiation was shown as only additive level. In analysis of radiation-induced expression of regulating molecules, the most significant change by combining gemcitabine was activation of p21 {sup WAF1/CIP1}. Gemcitabine is the first drug showing an enhancement of radioresponse in murine hepatocarcinoma, when combined with radiation. The key element of enhancement is thought to be p21{sup WAF1/CIP1}.

  10. Therapy-associated Solid Tumors

    International Nuclear Information System (INIS)

    Travis, Lois B.

    2002-01-01

    As survival after a diagnosis of cancer improves, characterization of the late sequelae of treatment becomes critical. The development of second malignant neoplasms represents one of the most serious side effects of treatment with radiation and chemotherapy. Although secondary leukemia was the first reported carcinogenic effect resulting from cancer treatment, solid tumors now comprise the largest second tumor burden in some populations of survivors. It should be recognized, however, that solid cancers do not necessarily represent an adverse effect of therapy, but may also reflect the operation of shared etiologic factors, host determinants, gene-environment interactions, and other influences. Quantification of second cancer risk is important in terms of patient management, enabling clinicians to make informed decisions with regard to optimal treatment of the initial cancer, balancing efficacy against acute and chronic sequelae. This article focuses on selected highlights and recent developments in treatment-associated solid malignancies, with emphasis on radiotherapy and chemotherapy in adults, and summarizes areas for future research. Although cancer therapy represents a double-edged sword, it should always be recognized that it is advances in treatment that are largely responsible for the tremendous improvement in patient survival. Thus, the benefit derived from many cancer therapies far outweighs any risk of developing a second cancer

  11. A murine model of targeted infusion for intracranial tumors.

    Science.gov (United States)

    Kim, Minhyung; Barone, Tara A; Fedtsova, Natalia; Gleiberman, Anatoli; Wilfong, Chandler D; Alosi, Julie A; Plunkett, Robert J; Gudkov, Andrei; Skitzki, Joseph J

    2016-01-01

    Historically, intra-arterial (IA) drug administration for malignant brain tumors including glioblastoma multiforme (GBM) was performed as an attempt to improve drug delivery. With the advent of percutaneous neuorovascular techniques and modern microcatheters, intracranial drug delivery is readily feasible; however, the question remains whether IA administration is safe and more effective compared to other delivery modalities such as intravenous (IV) or oral administrations. Preclinical large animal models allow for comparisons between treatment routes and to test novel agents, but can be expensive and difficult to generate large numbers and rapid results. Accordingly, we developed a murine model of IA drug delivery for GBM that is reproducible with clear readouts of tumor response and neurotoxicities. Herein, we describe a novel mouse model of IA drug delivery accessing the internal carotid artery to treat ipsilateral implanted GBM tumors that is consistent and reproducible with minimal experience. The intent of establishing this unique platform is to efficiently interrogate targeted anti-tumor agents that may be designed to take advantage of a directed, regional therapy approach for brain tumors.

  12. Radiobiologic effect of intermittent radiation exposure in murine tumors

    International Nuclear Information System (INIS)

    Sugie, Chikao; Shibamoto, Yuta; Ito, Masato; Ogino, Hiroyuki; Miyamoto, Akihiko; Fukaya, Nobuyuki; Niimi, Hiroshige; Hashizume, Takuya

    2006-01-01

    Purpose: In stereotactic irradiation using a linear accelerator, the effect of radiation may be reduced during intermittent exposures owing to recovery from sublethal damage in tumor cells. After our previous in vitro study suggesting this phenomenon, we investigated the issue in murine tumors. Methods and Materials: We used EMT6 and SCCVII tumors approximately 1 cm in diameter growing in the hind legs of syngeneic mice. Three schedules of intermittent radiation were investigated. First, 2 fractions of 10 Gy were given at an interval of 15-360 min to investigate the pattern of recovery from sublethal damage. Second, 5 fractions of 4 Gy were given with interfraction intervals of 2.5-15 min each. Third, 10 fractions of 2 Gy were given with interfraction intervals of 1-7 min each. Doses of 15-20 Gy were also given without interruption to estimate the dose-modifying factors. Tumors were excised 20 h later, and tumor cell survival was determined by an in vivo-in vitro assay. Results: In the 2-fraction experiment, the increase in cell survival with elongation of the interval was much less than that observed in our previous in vitro study. In the 5- and 10-fraction experiments, no significant increase in cell survival was observed after the intermittent exposures. Moreover, cell survival decreased at most points of the 5-fraction experiments by interruption of radiation in both EMT6 and SCCVII tumors. In the 10-fraction experiment, cell survival also decreased when the interruption was 3 or 7 min in EMT6 tumors. Conclusion: The results of the present in vivo studies were different from those of our in vitro studies in which cell survival increased significantly when a few minutes or longer intervals were posed between fractions. This suggests that recovery from sublethal damage in vivo may be counterbalanced by other phenomena such as reoxygenation that sensitizes tumor cells to subsequent irradiation

  13. Solid pseudopapillary pancreas tumors. Often neglected

    International Nuclear Information System (INIS)

    Herrmann, K.A.; Reiser, M.F.; Zech, C.J.; Helmberger, T.; Bruns, C.

    2008-01-01

    Solid pseudopapillary tumors of the pancreas (SPTP) are rare tumors of the pancreas with low malignancy potential and a very good prognostic outcome after surgery. They typically occur in young women or adolescents and consist of solid, cystic and cystic-hemorrhagic components. Imaging findings in these tumors are characteristic and include a fibrotic capsule with a clear delineation and exhibit solid and cystic-hemorrhagic signal and density characteristics. Calcifications may be present in the periphery of the tumor. The tumor capsule shows contrast enhancement, the solid components in the periphery enhance in the early phase and gradually and inhomogeneously in late phases. MRI is superior to CT and other imaging modalities for characterization of SPTP. Awareness and knowledge of this tumor entity with an excellent prognosis is crucial to guide the patient towards effective, predominantly organ-sparing surgical treatment. (orig.) [de

  14. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  15. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    International Nuclear Information System (INIS)

    Savion, N.; Disatnik, M.H.; Nevo, Z.

    1987-01-01

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [ 35 S]O 4 - -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of [ 35 S]O 4 - -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10μg/ml), arteparon (10μg/ml), and heparin at a concentration of 3 μg/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis

  16. Diltiazem enhances tumor blood flow: MRI study in a murine tumor

    International Nuclear Information System (INIS)

    Muruganandham, M.; Kasiviswanathan, A.; Jagannathan, N.R.; Raghunathan, P.; Jain, P.C.; Jain, V.

    1999-01-01

    Purpose: Diltiazem, a calcium-channel blocker, is known to differentially influence the radiation responses of normal and murine tumor tissues. To elucidate the underlying mechanisms, the effects of diltiazem on the radiation response of Ehrlich ascites tumor (EAT) in mice have been investigated, and the hemodynamic changes induced by diltiazem in tumor and normal muscle have been studied using magnetic resonance imaging (MRI) techniques. Methods and Materials: Ehrlich ascites tumors were grown subcutaneously in Swiss albino strain A mice. Dynamic gadodiamide and blood oxygen level dependent (BOLD) contrast enhanced 1 H MR imaging studies of EAT and normal muscle were performed after administration of diltiazem in mice using a 4.7 Tesla MR scanner. Tumor radiotherapy experiments (total dose = 10 Gy, 0.4-0.5 Gy/min, single fraction) were carried out with 30 min preadministration of diltiazem (27.5 or 55 mg/kg i.p.) to EAT-bearing mice using a teletherapy machine. Results: The diltiazem+ radiation treated group showed significant tumor regression (in congruent with 65% of the animals) and enhanced animal survival. MR-gadodiamide contrast kinetics revealed a higher magnitude of signal enhancement in diltiazem treated groups as compared to the controls. The observed changes in the magnitude of kinetic parameters were the same for both tumor and normal muscle. BOLD-MR images at 30 min after diltiazem administration showed a 25% and 8% (average) intensity enhancement from their basal values in tumor and normal muscle regions, respectively. The control group showed no significant changes. Conclusion: The present studies demonstrate the radiosensitization potential of diltiazem in the mice EAT model. The enhanced radiation response observed with diltiazem correlates with the diltiazem-induced increase in tumor blood flow (TBF) and tumor oxygenation. The present results also demonstrate the applications of BOLD-MR measurements in investigating the alterations in tumor

  17. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  18. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    International Nuclear Information System (INIS)

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-01-01

    Highlights: •IR-induced NO increased tissue perfusion and pO 2 . •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO 2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy

  19. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    2009-11-01

    Full Text Available Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  20. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Science.gov (United States)

    Liao, Debbie; Luo, Yunping; Markowitz, Dorothy; Xiang, Rong; Reisfeld, Ralph A

    2009-11-23

    Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+) T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  1. Photodynamic therapy of solid tumors

    Science.gov (United States)

    Jori, Giulio

    Some porphyrin compounds, which are characterized by a relatively large degree of hydrophobicity (n-octanol/water partition coefficient above 8), are accumulated in greater amounts and retained for longer periods of time by neoplastic as compared with normal tissues. The affinity of these dyes for tumors is partially a consequence of their in vivo transport by low-density lipoproteins, which are preferentially endocytosized by hyperproliferating tissues in a receptor-mediated process. In general, at 24-48 h after the systematic administration of porphyrin doses in the range of 2.5 mg/kg body weight, the ratio of drug concentration between the neoplastic and the surrounding tissues is sufficiently large to guarantee a selective photoexcitation of the porphyrin. Toward this aim, the porphyrin-containing tumor tissues are irradiated with light wavelengths longer than 600 nm, since the transmittance of biological tissues is maximal in this spectral region. The electronically excited porphyrin transfers its excitation energy to oxygen, thus generating activated oxygen species (mainly, singlet oxygen): as a consequence, the photooxidative modification of subcellular targets (e.g. the plasma membrane and mitochondria) is readily obtained leading to an irreversible necrosis of the cell. With the most frequently used porphyrins for clinical phototherapy (including hematoporphyrin and its derivatives HpD and Photofrin II), one observes the preferential photosensitized destruction of endothelial cells, hence the vascular damage is a major process involved in the necrosis of tumors. The optimization of the phototherapy of tumors is presently pursued by the definition of clinical protocols tailored to the optical properties of specific neoplastic tissues as well as by the use of porphyrin analogs, such as chlorins and phthalocyanines, having an extinction coefficient in the red spectral region larger than that typical of hematoporphyrin and HpD.

  2. Chimeric anti-tenascin antibody 81C6: Increased tumor localization compared with its murine parent

    International Nuclear Information System (INIS)

    Zalutsky, Michael R.; Archer, Gary E.; Garg, Pradeep K.; Batra, Surinder K.; Bigner, Darell D.

    1996-01-01

    When labeled using the Iodogen method, a chimeric antibody composed of the human IgG 2 constant region and the variable regions of murine anti-tenascin 81C6 exhibited superior uptake in human glioma xenografts compared with its murine parent. In the current study, three paired-label experiments were performed in athymic mice with subcutaneous D-54 MG human glioma xenografts to evaluate further the properties of radioiodinated chimeric 81C6. These studies demonstrated that (a) the enhanced tumor uptake of chimeric 81C6 is specific; (b) when labeling was performed using N-succinimidyl 3-iodobenzoate, chimeric 81C6 again showed preferential accumulation in tumor compared with murine 81C6; and (c) the tumor uptake advantage observed previously with murine 81C6 for N-succinimidyl 3-iodobenzoate compared with Iodogen labeling did not occur with chimeric 81C6

  3. Solid-pseudo papillary tumor of the pancreas: Frantz's tumor

    International Nuclear Information System (INIS)

    Oliveira, Bruno Righi Rodrigues de; Moreira, Reni Cecilia Lopes; Campos, Marcelo Esteves Chaves

    2010-01-01

    The pseudo papillary solid tumor of the pancreas, also known as Frantz's tumor, is a rare disease, taking place in approximately 0.17% to 2.7% of non-endocrine tumors of the pancreas. Recently, the increase of its incidence has been noted with more than two-thirds of the total cases described in the last 10 years. A possible explanation is a greater knowledge of the disease and a greater uniformity of conceptualization in the last years. Generally, it affects young adult females. In most of the series, the tumor principally attacks the body and tail of the pancreas. The objective of the present report is to present the diagnostic and therapeutic option used in this rare pancreatic tumor of low-grade malignancy. (author)

  4. Recurrence of Solid Pseudopapillary Tumor: A Rare Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Chandra Punch

    2016-01-01

    Full Text Available Solid pseudopapillary tumor of the pancreas (SPTP is a rare disease of young females that does not usually recur after resection. Here we report a case of an elderly female with history of SPTP ten years ago who presented with anorexia and a palpable left lower quadrant abdominal mass. Imaging revealed metastatic disease and US-guided biopsy of the liver confirmed the diagnosis of SPTP. Due to her advanced age and comorbidities, she elected to undergo hospice care. The objective of this case report is to increase awareness of this tumor and its possibility of recurrence, necessitating further guidelines for follow-up.

  5. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor

    International Nuclear Information System (INIS)

    Monzen, Hajime; Griffin, R.J.; Williams, B.W.; Amamo, Morikazu; Ando, Satoshi; Hasegawa, Takeo

    2004-01-01

    Arsenic trioxide (ATO) has been reported to be an effective chemotherapeutic agent for acute promyelocytic leukemia (APL), and, recently, anti-tumor effect has been demonstrated in solid tumors. However, little is known about the mechanism of action of the ATO effect on solid tumor. We investigated the anti-vascular effect of ATO and the potential of combining ATO with radiation therapy. We studied the anti-vascular effect of ATO and radiosensitization of squamous cell carcinoma (SCC) VII murine tumors of C3H mice. The anti-vascular effect was examined using magnetic resonance imaging (MRI), and radiosensitivity was studied by clonogenic assay and tumor growth delay. Histopathological changes of the tumors after various treatments were also observed with hematoxylin and eosin (H and E) staining. Necrosis and blood flow changes in the central region of tumors in the hind limbs of the animals were observed on T2-weighted imaging after an intraperitoneal (i.p.) injection of 8 mg/kg of ATO alone. ATO exposure followed by radiation decreased the clonogenic survival of SCC VII cells compared with either treatment alone. Tumor growth delay after 10-20 Gy of radiation alone was increased slightly compared with control tumors, but the combination of ATO injection 2 hours before exposure to 20 Gy of radiation significantly prolonged tumor growth delay by almost 20 days. The results suggest that ATO and radiation can enhance the radiosensitivity of solid tumor. (author)

  6. A novel Tc-99m and fluorescence-labeled arginine-arginine-leucine-containing peptide as a multimodal tumor imaging agent in a murine tumor model.

    Science.gov (United States)

    Kim, Myoung Hyoun; Kim, Seul-Gi; Kim, Dae-Weung

    2018-06-15

    We developed a Tc-99m and TAMRA-labeled peptide, Tc-99m arginine-arginine-leucine (RRL) peptide (TAMRA-GHEG-ECG-RRL), to target tumor cells and evaluated the diagnostic performance of Tc-99m TAMRA-GHEG-ECG-RRL as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-RRL was synthesized using Fmoc solid-phase peptide synthesis. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with PC-3 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-RRL complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-RRL determined by saturation binding was 41.7 ± 7.8 nM. Confocal microscopy images of PC-3 cells incubated with TAMRA-GHEG-ECG-RRL showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of RRL. Specific uptake of Tc-99m TAMRA-GHEG-ECG-RRL was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In conclusion, in vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-RRL in tumors. Tc-99m TAMRA-GHEG-ECG-RRL has potential as a dual-modality tumor imaging agent. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Synthesis and evaluation of Tc-99m and fluorescence-labeled elastin-derived peptide, VAPG for multimodal tumor imaging in murine tumor model.

    Science.gov (United States)

    Kim, Myoung Hyoun; Kim, Chang Guhn; Kim, Seul-Gi; Kim, Dae-Weung

    2017-12-01

    We developed a Tc-99m and fluorescence-labeled peptide, Tc-99m TAMRA-GHEG-ECG-VAPG to target tumor cells and evaluated the diagnostic performance as a dual-modality imaging agent for tumor in a murine model. TAMRA-GHEG-ECG-VAPG was synthesized by using Fmoc solid-phase peptide synthesis. Radiolabeling of TAMRA-GHEG-ECG-VAPG with Tc-99m was done by using ligand exchange via tartrate. Binding affinity and in vitro cellular uptake studies were performed. Gamma camera imaging, biodistribution, and ex vivo imaging studies were performed in murine models with SW620 tumors. Tumor tissue slides were prepared and analyzed with immunohistochemistry by using confocal microscopy. After radiolabeling procedures with Tc-99m, Tc-99m TAMRA-GHEG-ECG-VAPG complexes were prepared in high yield (>96%). The K d of Tc-99m TAMRA-GHEG-ECG-VAPG determined by saturation binding was 16.8 ± 3.6 nM. Confocal microscopy images of SW620 cells incubated with TAMRA-GHEG-ECG-VAPG showed strong fluorescence in the cytoplasm. Gamma camera imaging revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumors. Tumor uptake was effectively blocked by the coinjection of an excess concentration of VAPG. Specific uptake of Tc-99m TAMRA-GHEG-ECG-VAPG was confirmed by biodistribution, ex vivo imaging, and immunohistochemistry stain studies. In vivo and in vitro studies revealed substantial uptake of Tc-99m TAMRA-GHEG-ECG-VAPG in tumor cells. Tc-99m TAMRA-GHEG-ECG-VAPG has potential as a dual-modality tumor imaging agent. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  9. Radio-immunotherapy of solid tumors

    International Nuclear Information System (INIS)

    Chatal, J.F.; Faivre Chauvet, A.; Bardies, M.; Kraeber-Bodere, F.; Barbet, J.

    2001-01-01

    A convincing efficacy of radio-immunotherapy of solid tumors has not been documented yet in clinical studies. Consequently, a methodological optimization is needed within the scope in increasing absorbed doses delivered to tumor targets by amplifying cumulative tumor activity and in the same time in reducing absorbed doses delivered normal organs. Multi-step pre-targeting techniques allow to approach these goals. The most developed technique is based on the high affinity for biotin. In a first step an anti-tumor antibody coupled to avidin or biodin is injected. In a second step, 24 hours later, the circulating residual immuno-conjugate is bound to a molecular complex and eliminated through the reticulo endothelial system of the liver ('chase'phase). A third step, a few hours later, consists in injecting biotin coupled to DOTA chelating agent and labeled with yttrium 90. This small molecule rapidly diffuses to tumor targets and binds to pre-localized immuno-conjugate. Another technique, designed and developed in France, is based on antigen-antibody affinity. In a first step an anti-tumor / anti-hapten bi-specific antibody is injected and, in a second step, a few days later, the small hapten molecule is radiolabeled with I-131 and injected. It diffuses rapidly to the tumor targets and binds to the anti-hapten arm of the pre-localized bi-specific antibody. An alternative way to increase radio-immunotherapy efficacy consists in combining this low-dose rate irradiation to radiosensitizing molecules within the scope of an additive or supra additive effect which has previously documented. (author)

  10. Disseminated intravascular coagulation in solid tumors

    International Nuclear Information System (INIS)

    Terzieff, V.; Alonso, I.; Vázquez, A.

    2004-01-01

    It is estimated that 20-25% of cases of disseminated intravascular coagulation (DIC) relate to an underlying neoplasia primarily hematologic. It is estimated that about 5% of patients with solid tumors have CID clinic, although the incidence of subclinical alterations is much higher. The CID is not limited to the activation of the coagulation cascade, which leads to bleeding micro thrombosis and consumption of coagulation factors. Solid tumors are frequently associated adenocarcinomas producers mucin (especially gastric), usually in the context of a disseminated disease. The mucin may act as a promoter of the cascade, but probably it is a multi-event. High levels of TNF to produced by the tumor mass and chemotherapy-induced cell lysis have Also linked. Although the bleeding is usually oriented diagnosis, the most frequent cause of death is thrombosis. There are no specific tests for diagnosis. Elevated levels of D-dimer and products oriented fibrinogen degradation diagnosis. No reduction fibrinogen and almost always, one thrombocytopenia consumption. Treatment is complex and there is no consensus on many points. To recover the lost factors for consumption, it is recommended to use fresh frozen plasma and / or washed red blood cells. the heparin anticoagulation low dose is indicated since the disease causal can not be controlled quickly, but should not be initiated if there thrombocytopenia 50.000.El under profuse bleeding can require the use of tranexamic acid or EACA. Acute DIC, the case of our patient, is rare and very serious

  11. NetH2pan: A Computational Tool to Guide MHC peptide prediction on Murine Tumors

    DEFF Research Database (Denmark)

    DeVette, Christa I; Andreatta, Massimo; Bardet, Wilfried

    2018-01-01

    With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated and mainta......With the advancement of personalized cancer immunotherapies, new tools are needed to identify tumor antigens and evaluate T-cell responses in model systems, specifically those that exhibit clinically relevant tumor progression. Key transgenic mouse models of breast cancer are generated...... for evaluating antigen specificity in the murine FVB strain. Our study provides the first detailed molecular and immunoproteomic characterization of the FVB H-2q MHC Class I alleles, including >8500 unique peptide ligands, a multi-allele murine MHC peptide prediction tool, and in vivo validation of these data...

  12. Advances in Cancer Immunotherapy in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Smitha Menon

    2016-11-01

    Full Text Available Immunotherapy is heralded as one of the most important advances in oncology. Until recently, only limited immunotherapeutic options were available in selected immunogenic cancers like melanoma and renal cell carcinomas. Nowadays, there is an improved understanding that anti-tumor immunity is controlled by a delicate balance in the tumor microenvironment between immune stimulatory and immune inhibitory pathways. Either by blocking the inhibitory pathways or stimulating the activating pathways that regulate cytotoxic lymphocytes, anti-tumor immunity can be enhanced leading to durable anti-tumor responses. Drugs which block the immune regulatory checkpoints namely the PD-1/PDL1 and CTLA 4 pathway have shown tremendous promise in a wide spectrum of solid and hematological malignancies, significantly improving overall survival in newly diagnosed and heavily pretreated patients alike. Hence there is renewed enthusiasm in the field of immune oncology with current research focused on augmenting responses to checkpoint inhibitors by combination therapy as well as studies looking at other immune modulators and adoptive T cell therapy. In this article, we highlight the key clinical advances and concepts in immunotherapy with particular emphasis on checkpoint inhibition as well as the future direction in this field.

  13. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  14. Treatment of Murine Tumor Models of Breast Adenocarcinoma by Continuous Dual-Frequency Ultrasound

    Directory of Open Access Journals (Sweden)

    Amir Hoshang Barati

    2009-03-01

    Full Text Available Introduction: Acoustic transient cavitation is the primary mechanism of sonochemical reaction and has potential use for tumor treatment. In this study, the in vivo anti-tumor effect of simultaneous dual-frequency ultrasound at low-level intensity (ISATA < 6 W/cm2 was investigated in a spontaneous murine model of breast adenocarcinoma in Balb/c mice. Materials and Methods: Forty tumor bearing mice were divided into four groups (10 in each group. The treated groups received 15 or 30 minutes of combined dual-frequency ultrasound in continuous mode (1 MHzcon + 150 kHzcon respectively. The control and the sham groups contained the untreated mice. The tumor growth delay parameters including tumor volume, relative tumor volume, T5 and T2 (the needed time for each tumor to reach 5 and 2 times the initial tumor volume, respectively, survival period and percent of tumor growth inhibition ratio were measured on different days after treatment. Results: The results showed that the 30 min treatment was effective in tumor growth delay and percent of tumor growth inhibitory ratio compared to the sham and the control groups. The tumor volume growth and relative volume of tumors in the same treated group showed an anti-tumor effect relative to the sham and the control groups. There was a significant difference in tumor volume growth between this 30 min treatment group and the sham group 12 days after treatment (p-value

  15. CpG oligodeoxynucleotides are potent enhancers of radio- and chemoresponses of murine tumors

    International Nuclear Information System (INIS)

    Mason, Kathryn A.; Neal, Robert; Hunter, Nancy; Ariga, Hisanori; Ang, Kian; Milas, Luka

    2006-01-01

    Background and purpose: Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs bind to Toll-like receptor 9 (TLR9) and stimulate both innate and adaptive immune reactions and possess anti-tumor activity. We recently reported that CpG ODN 1826 strongly enhances radioresponse of both immunogenic [Milas L, Mason K, Ariga H, et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res 2004;64:5074-7] and non-immunogenic [Mason KA, Ariga H, Neal R, et al. Targeting toll-like receptor-9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005;11:361-9] murine tumors. Using two immunogenic murine tumors, a fibrosarcoma (FSa) and a mammary carcinoma (MCa-K), the present study explored whether CpG ODN 1826 also improves the response of murine tumors to the chemotherapeutic agent docetaxel (DOC). Materials and methods: CpG ODN 1826 (100 μg) was given sc three times: when leg tumors were 6 mm, when they grew to 8 mm and again 1 week later. DOC (33 mg/kg iv) and local tumor radiation (10 Gy) were given when tumors were 8 mm. Effects of the treatments were assayed by tumor growth delay, defined as days for tumors to grow from 8 to 12 mm in diameter. Results: Treatment with CpG ODN 1826 resulted in strongly enhanced response of FSa tumors to radiation and MCa-K tumors to the chemotherapeutic agent DOC. Enhancement of tumor treatment response was demonstrated by a strong prolongation in the primary tumor treatment endpoint, tumor growth delay. Coincidentally, this treatment also resulted in a higher rate of tumor cure than that observed after tumor radiotherapy or chemotherapy alone. When all three agents were combined the effect was comparable to that of the combination of CpG ODN 1826 with radiation in the case of FSa or of the combination of CpG ODN 1826 with DOC in the case of MCa-K. Conclusion: Overall results show that CpG ODN 1826 can markedly improve tumor response

  16. Enhancement of tumor response by MEK inhibitor in murine HCa-I tumors

    International Nuclear Information System (INIS)

    Kim, Sung Hee; Seong, Jin Sil

    2003-01-01

    Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protein kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Murine hepatocarcinoma, HCa-l is known to be highly radioresistant with a TCD50 (radiation dose yield in 50% cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case of radioresistant tumor. C3H/HeJ mice bearing 7.5-8 mm. HCa-l, were treated with PD98059 (intratumoral injection of 0.16 μg in 50 μl). Downregulation of ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number of apoptotic nuclei in 1000 nuclei X100) was 1.2% in the case of radiation treatment alone, 0.9% in the case of drug treatment alone and 4.9%, 5.3% in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed up regulation of p53, p21 WAF1 / CIP1 and Bcl-X s in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as Bcl-X L , Bax and BCI-2 were changed to a lesser extent. The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment

  17. Enhancement of tumor response by MEK inhibitor in murine HCa-I tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hee; Seong, Jin Sil [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2003-09-01

    Extracellular signal-regulated kinase (ERK), which is part of the mitogen-activated protein kinase cascade, opposes initiation of the apoptotic cell death which is programmed by diverse cytotoxic stimuli. In this regard, the inhibition of ERK may be useful in improving the therapeutic efficacy of established anticancer agents. Murine hepatocarcinoma, HCa-l is known to be highly radioresistant with a TCD50 (radiation dose yield in 50% cure) of more than 80 Gy. Various anticancer drugs have been found to enhance the radioresponse of this particular tumor but none were successful. The objective of this study was to explore whether the selective inhibition of MEK could potentiate the antitumor efficacy of radiation in vivo, particularly in the case of radioresistant tumor. C3H/HeJ mice bearing 7.5-8 mm. HCa-l, were treated with PD98059 (intratumoral injection of 0.16 {mu}g in 50 {mu}l). Downregulation of ERK by PD98059 was most prominent 1h after the treatment. In the tumor growth delay assay, the drug was found to increase the effect of the tumor radioresponse with an enhancement factor (EF) of 1.6 and 1.87. Combined treatment of 25 Gy radiation with PD98059 significantly increased radiation induced apoptosis. The peak apoptotic index (number of apoptotic nuclei in 1000 nuclei X100) was 1.2% in the case of radiation treatment alone, 0.9% in the case of drug treatment alone and 4.9%, 5.3% in the combination treatment group. An analysis of apoptosis regulating molecules with Western blotting showed up regulation of p53, p21{sup WAF1}/{sup CIP1} and Bcl-X{sub s} in the combination treatment group as compared to their levels in either the radiation alone or drug alone treatment groups. The level of other molecules such as Bcl-X{sub L}, Bax and BCI-2 were changed to a lesser extent. The selective inhibition of MEK in combination with radiation therapy may have potential benefit in cancer treatment.

  18. Effect of small dose of radiation on induction of apoptosis in murine tumors

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Pyo, Hong Ryull; Chung, Eun Ji; Kim, Sung Hee; Suh, Chang Ok

    1999-01-01

    To investigate the presence of adaptive response by low dose radiation in murine tumors in relation to radiation induced apoptosis as well as related mechanism. Syngeneic murine tumors, OCa-1 and HCa-l, were given 0.05 Gy pretreatment followed by therapeutic dose of 25 Gy radiation. Induction of apoptosis was analyzed for each treatment group. Regulating molecules of apoptosis. p53, Bcl-2, Sax, Bel-X, were also analyzed by Western blotting. In 0.05 Gy pretreatment group of OCa-l, 25 Gy-induced apoptosis per 1000 cells was 229, which was estimated at 30% lower level than the expected (p<0.05). In contrast, this reduction in radiation induced apoptosis was not seen in HCa-1. In the expression of apoptosis regulating molecules, p53 increased in both tumors in response to radiation. Bcl-2 and Bax did not show significant change in both tumors however, the expression of Bcl-2 surpassed that of Bax in 0.05 Gy pretreatment group of OCa-1. Bcl-X was not expressed in OCa-1. In HCa-l, ScI-X showed increased expression even with 0.05 Gy. Adaptive response by low dose radiation is shown in one murine tumor, OCa-I, in relation to radiation induced apoptosis. Apoptosis regulating molecules including Bcl-2/Bax and Bcl-X, appear to related. This study shows an evidence that adaptive response is present, but not a generalized phenomenon in vivo

  19. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression.

    Directory of Open Access Journals (Sweden)

    Katharina Galmbacher

    Full Text Available A tumor promoting role of macrophages has been described for a transgenic murine breast cancer model. In this model tumor-associated macrophages (TAMs represent a major component of the leukocytic infiltrate and are associated with tumor progression. Shigella flexneri is a bacterial pathogen known to specificly induce apotosis in macrophages. To evaluate whether Shigella-induced removal of macrophages may be sufficient for achieving tumor regression we have developed an attenuated strain of S. flexneri (M90TDeltaaroA and infected tumor bearing mice. Two mouse models were employed, xenotransplantation of a murine breast cancer cell line and spontanous breast cancer development in MMTV-HER2 transgenic mice. Quantitative analysis of bacterial tumor targeting demonstrated that attenuated, invasive Shigella flexneri primarily infected TAMs after systemic administration. A single i.v. injection of invasive M90TDeltaaroA resulted in caspase-1 dependent apoptosis of TAMs followed by a 74% reduction in tumors of transgenic MMTV-HER-2 mice 7 days post infection. TAM depletion was sustained and associated with complete tumor regression.These data support TAMs as useful targets for antitumor therapy and highlight attenuated bacterial pathogens as potential tools.

  20. Immunoconjugates against solid tumors: mind the gap.

    Science.gov (United States)

    Ricart, A D

    2011-04-01

    The objective of immunoconjugate development is to combine the specificity of immunoglobulins with the efficacy of cytotoxic molecules. This therapeutic approach has been validated in hematologic malignancies; however, several obstacles to achieving efficacy in treating solid tumors have been identified. These include insufficient specificity of targets and poor antibody delivery, most specifically to the tumor core. Heterogeneous antigen expression, imperfect vascular supply, and elevated interstitial fluid pressure have been suggested as the factors responsible for the poor delivery of antibodies. Promising immunoconjugates are in development: immunoconjugates targeting the prostate-specific membrane antigen, trastuzumab-DM1, lorvotuzumab mertansine, and SS1P. Advances in cancer biology and antibody engineering may overcome some of the challenges. New small antibody formats, such as single-chain Fv, Fab, and diabodies, may improve penetration within tumor masses. Nevertheless, the cost of treatment might require justification in terms of demonstrable improvement in quality of life in addition to efficacy; further economic evaluation might be necessary before this approach can replace the current standards of care in clinical practice.

  1. Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors.

    Science.gov (United States)

    Yu, Man; Lee, Carol; Wang, Marina; Tannock, Ian F

    2015-10-01

    Cellular causes of resistance and limited drug distribution within solid tumors limit therapeutic efficacy of anticancer drugs. Acidic endosomes in cancer cells mediate autophagy, which facilitates survival of stressed cells, and may contribute to drug resistance. Basic drugs (e.g. doxorubicin) are sequestered in acidic endosomes, thereby diverting drugs from their target DNA and decreasing penetration to distal cells. Proton pump inhibitors (PPIs) may raise endosomal pH, with potential to improve drug efficacy and distribution in solid tumors. We determined the effects of the PPI lansoprazole to modify the activity of doxorubicin. To gain insight into its mechanisms, we studied the effects of lansoprazole on endosomal pH, and on the spatial distribution of doxorubicin, and of biomarkers reflecting its activity, using in vitro and murine models. Lansoprazole showed concentration-dependent effects to raise endosomal pH and to inhibit endosomal sequestration of doxorubicin in cultured tumor cells. Lansoprazole was not toxic to cancer cells but potentiated the cytotoxicity of doxorubicin and enhanced its penetration through multilayered cell cultures. In solid tumors, lansoprazole improved the distribution of doxorubicin but also increased expression of biomarkers of drug activity throughout the tumor. Combined treatment with lansoprazole and doxorubicin was more effective in delaying tumor growth as compared to either agent alone. Together, lansoprazole enhances the therapeutic effects of doxorubicin both by improving its distribution and increasing its activity in solid tumors. Use of PPIs to improve drug distribution and to inhibit autophagy represents a promising strategy to enhance the effectiveness of anticancer drugs in solid tumors. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  2. Effect of anesthetics on the radiosensitivity of a murine tumor

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, P.W.; Chu, A.M.

    1979-09-01

    The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken to minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam.

  3. Effect of anesthetics on the radiosensitivity of a murine tumor

    International Nuclear Information System (INIS)

    Sheldon, P.W.; Chu, A.M.

    1979-01-01

    The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken to minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam

  4. Cross-immunity among allogeneic tumors of rats immunized with solid tumors

    International Nuclear Information System (INIS)

    Ogasawara, Masamichi

    1979-01-01

    Several experiments were done for the study of cross-immunity among allogeneic rat tumors by immunization using gamma-irradiated or non-irradiated solid tumors. Each group of rats which were immunized with gamma-irradiation solid tumor inocula from ascites tumor cell line of tetra-ploid Hirosaki sarcoma, Usubuchi sarcoma or AH 130, showed an apparent resistance against the intraperitoneal challenge with Hirosaki sarcoma. A similar resistance was demonstrated in the case of the challenge with Usubuchi sarcoma into rats immunized with non-irradiated methylcholanthrene (MCA)-induced tumors. In using solid MCA tumors as immunogen and Hirosaki sarcoma as challenge tumor, it was also demonstrated in 2 out of 3 groups immunized with non-irradiated tumors. In the experiment of trying to induce cross-immunity between 2 MCA tumors by immunization with irradiated solid tumor only, the inhibitory effect on the growth was observed in the early stage in the treated groups as compared with the control one. From the above results, it may be considered that the immunization with irradiated solid tumors fromas cites cell lines and non-irradiated solid MCA tumors induced strong cross-immunity in general, but that the immunization with only irradiated solid MCA tumors induced weak cross-immunity commonly. (author)

  5. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors

    Science.gov (United States)

    Bowman, Tyler; Chavez, Tanny; Khan, Kamrul; Wu, Jingxian; Chakraborty, Avishek; Rajaram, Narasimhan; Bailey, Keith; El-Shenawee, Magda

    2018-02-01

    This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted using classification images assigned by a modal class decision rule. The corresponding receiver operating characteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9 tumors are investigated. The results show good correlation of THz images with pathology results in all samples of cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer and muscle tissues. The use of a supervised regression approach shows improvement in the classification images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice and the development of accurate statistical models will ultimately progress the technique for the assessment of human breast tumor margins.

  6. Combined calcitriol and menadione reduces experimental murine triple negative breast tumor.

    Science.gov (United States)

    Bohl, Luciana; Guizzardi, Solange; Rodríguez, Valeria; Hinrichsen, Lucila; Rozados, Viviana; Cremonezzi, David; Tolosa de Talamoni, Nori; Picotto, Gabriela

    2017-10-01

    Calcitriol (D) or 1,25(OH) 2 D 3 inhibits the growth of several tumor cells including breast cancer cells, by activating cell death pathways. Menadione (MEN), a glutathione-depleting compound, may be used to potentiate the antiproliferative actions of D on cancer cells. We have previously shown in vitro that MEN improved D-induced growth arrest on breast cancer cell lines, inducing oxidative stress and DNA damage via ROS generation. Treatment with MEN+D resulted more effective than D or MEN alone. To study the in vivo effect of calcitriol, MEN or their combination on the development of murine transplantable triple negative breast tumor M-406 in its syngeneic host. Tumor M-406 was inoculated s.c., and when tumors reached the desired size, animals were randomly assigned to one of four groups receiving daily i.p. injections of either sterile saline solution (controls, C), MEN, D, or both (MEN+D). Body weight and tumor volume were recorded three times a week. Serum calcium was determined before and at the end of the treatment, at which time tumor samples were obtained for histological examination. None of the drugs, alone or in combination, affected mice body weight in the period studied. The combined treatment reduced tumor growth rate (C vs. MEN+D, P<0.05) and the corresponding histological sections exhibited small remaining areas of viable tumor only in the periphery. A concomitant DNA fragmentation was observed in all treated groups and MEN potentiated the calcitriol effect on tumor growth. As previously observed in vitro, treatment with MEN and D delayed tumor growth in vivo more efficiently than the individual drugs, with evident signals of apoptosis induction. Our results propose an alternative protocol to treat triple negative breast cancer, using GSH depleting drugs together with calcitriol, which would allow lower doses of the steroid to maintain the antitumor effect while diminishing its adverse pharmacological effects. Copyright © 2017. Published by

  7. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Nielsen, T.; Wittenborn, T.

    2009-01-01

    following intravenous injection. Biocompatible iron oxide MNPs coated with PEG were prepared by replacing oleic acid with a biocompatible and commercially available silane-PEG to provide an easy and effective method for chemical coating. The colloidal stable PEGylated MNPs were magnetically separated...... into two distinct size subpopulations of 20 and 40 nm mean diameters with increased phagocytic uptake observed for the 40 nm size range in vitro. MRI detection revealed greater iron accumulation in murine tumors for 40 nm nanoparticles after intravenous injection. The enhanced MRI contrast of the larger...

  8. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  9. Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death

    Science.gov (United States)

    Marchong, Mellone N.; Yurkowski, Christine; Ma, Clement; Spencer, Clarellen; Pajovic, Sanja; Gallie, Brenda L.

    2010-01-01

    CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (p = 0.01) and had fewer multifocal tumors at PND28 (p = 0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (p = 0.121). Activated caspase-3 was significantly decreased and β-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death. PMID:20421947

  10. Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death.

    Directory of Open Access Journals (Sweden)

    Mellone N Marchong

    2010-04-01

    Full Text Available CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01. Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8 (p = 0.01 and had fewer multifocal tumors at PND28 (p = 0.016, compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003. In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers, while proliferation in vivo remained unaffected (p = 0.121. Activated caspase-3 was significantly decreased and beta-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death.

  11. The response of hypoxic cells in SCCVII murine tumors to treatment with cisplatin and x rays

    International Nuclear Information System (INIS)

    Yan, R.D.; Durand, R.E.

    1991-01-01

    Possible mechanisms of enhancement of radiation effects by cisplatin, including radiosensitization of hypoxic cells, drug-induced tumor reoxygenation, and inhibition of repair of sublethal radiation damage, were examined in the murine SCCVII model. Combination radiation/drug treatments were most effective when drug exposure preceded irradiation of animals breathing a reduced oxygen atmosphere, indicating that the primary interaction between the modalities was a cisplatin-induced increase in the oxygenation status of the acutely hypoxic cells in those tumors. Delivering cisplatin prior to or immediately after the first of two 5 Gy fractions was more effective than combinations with a single x-ray exposure, suggesting that proper sequences of the combined modalities may augment natural reoxygenation processes

  12. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  13. Radiotherapy of the most frequent solid tumors in childhood

    International Nuclear Information System (INIS)

    Pfeiffer, J.; Kamprad, F.

    1980-01-01

    During the past decade the prognosis of malignant tumors in childhood could be clearly improved, realized by combining surgery, radiation therapy and chemotherapy. Recommendations for the use of radiotherapy for the most frequent solid tumors in childhood are represented basing on the experience of the study groups 'Pediatric Hematology and Oncology' of the Society for Pediatrics of the GDR and 'Tumors in Childhood' of the Section of Children's Surgery of the GDR. Besides general problems which have to be taken into consideration in the treatment of infantile tumors the radiotherapeutical measures for Wilms' tumors, neuroblastomas, cerebral tumors, embryonal sarcomas of the soft parts and bone tumors are discussed. The necessary close cooperation of the attending branches is pointed out and both the regional centralization of patients' care and a superregional cooperation are required. (author)

  14. CT differentiation of solid ovarian tumor and uterine subserosal leiomyoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Rae; Cho, Kyoung Sik [Asan Medical Center, Ulsan Univ. College of Medicine, Seoul (Korea, Republic of); Sohn, Chul Ho [Dongsan Medical Center, Keimyung Univ. College of Medicine, Taegu (Korea, Republic of); Ji, Eun Kyung [Bombit Hospital, Seoul (Korea, Republic of)

    1999-06-01

    On the basis of CT findings, to differentiate between solid ovarian tumor and uterine subserosal myoma. In eight surgically proven cases of solid ovarian tumor and in ten uterine subserosal myoma patients, contrast-enhanced CT images were obtained. Two genitourinary radiologists reviewed the findings with regard to degree of enhancement of the mass as compared with enhancement of uterine myometrium, thickening of round ligaments, visualization of normal ovaries, contour of the mass, and the presence of ascites in the pelvic cavity. Six of eight ovarian tumors but only two of ten uterine myomas were less enhanced than normal uterine myometrium (p<0.05). Pelvic ascites were seen in six of eight ovarian tumors, but in only one of ten uterine myomas (P<0.05). Three of 16 ovaries in ovarian tumor patients, but 12 of 20 ovaries in uterine myoma patients, were normal (p<0.05). Six of 16 round ligaments of the uterus in ovarian tumor patients, were thichened but 11 of 20 round ligaments in uterine myoma patients, were thickened (p>0.05). The contour of the mass was lobulated in two of eight ovarian tumor patients, but in five of ten uterine myoma patients (p>0.05). CT findings suggestive of solid ovarian tumor were less contrast enhancement of the mass than of normal uterine myometrium, pelvic ascites, and nonvisualization of normal ovary.

  15. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  16. Murine mammary tumor virus pol-related sequences in human DNA: characterization and sequence comparison with the complete murine mammary tumor virus pol gene

    International Nuclear Information System (INIS)

    Deen, K.C.; Sweet, R.W.

    1986-01-01

    Sequences in the human genome with homology to the murine mammary tumor virus (MMTV) pol gene were isolated from a human phage library. Ten clones with extensive pol homology were shown to define five separate loci. These loci share common sequences immediately adjacent to the pol-like segments and, in addition, contain a related repeat element which bounds this region. This organization is suggestive of a proviral structure. The authors estimate that the human genome contains 30 to 40 copies of these pol-related sequences. The pol region of one of the cloned segments (HM16) and the complete MMTV pol gene were sequenced and compared. The nucleotide homology between these pol sequences is 52% and is concentrated in the terminal regions. The MMTV pol gene contains a single long open reading frame encoding 899 amino acids and is demarcated from the partially overlapping putative gag gene by termination codons and a shift in translational reading frame. The pol sequence of HM16 is multiply terminated but does contain open reading frames which encode 370, 105, and 112 amino acids residues in separate reading frames. The authors deduced a composite pol protein sequence for HM16 by aligning it to the MMTV pol gene and then compared these sequences with other retroviral pol protein sequences. Conserved sequences occur in both the amino and carboxyl regions which lie within the polymerase and endonuclease domains of pol, respectively

  17. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    International Nuclear Information System (INIS)

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-01-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted with two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 ± 0.04 for B16F1, 0.08 ± 0.04 for KHT-LP1, 0.17 ± 0.04 for RIF-1 and 0.04 ± 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO 2 values, or [ 3 H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs

  18. Microarray Gene Expression Analysis of Murine Tumor Heterogeneity Defined by Dynamic Contrast-Enhanced MRI

    Directory of Open Access Journals (Sweden)

    Nick G. Costouros

    2002-07-01

    Full Text Available Current methods of studying angiogenesis are limited in their ability to serially evaluate in vivo function throughout a target tissue. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI and pharmacokinetic modeling provide a useful method for evaluating tissue vasculature based on contrast accumulation and washout. While it is often assumed that areas of high contrast enhancement and washout comprise areas of increased angiogenesis and tumor activity, the actual molecular pathways that are active in such areas are poorly understood. Using DCE-MRI in a murine subcutaneous tumor model, we were able to perform pharmacokinetic functional analysis of a tumor, coregistration of MRI images with histological cross-sections, immunohistochemistry, laser capture microdissection, and genetic profiling of tumor heterogeneity based on pharmacokinetic parameters. Using imaging as a template for biologic investigation, we have not found evidence of increased expression of proangiogenic modulators at the transcriptional level in either distinct pharmacokinetic region. Furthermore, these regions show no difference on histology and CD31 immunohistochemistry. However, the expression of ribosomal proteins was greatly increased in high enhancement and washout regions, implying increased protein translation and consequent increased cellular activity. Together, these findings point to the potential importance of posttranscriptional regulation in angiogenesis and the need for the development of angiogenesis-specific contrast agents to evaluate in vivo angiogenesis at a molecular level.

  19. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  20. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  1. Rosiglitazone inhibits metastasis development of a murine mammary tumor cell line LMM3

    International Nuclear Information System (INIS)

    Magenta, Gabriela; Borenstein, Ximena; Rolando, Romina; Jasnis, María Adela

    2008-01-01

    Activation of peroxisome proliferator-activated receptors γ (PPARγ) induces diverse effects on cancer cells. The thiazolidinediones (TZDs), such as troglitazone and ciglitazone, are PPARγ agonists exhibiting antitumor activities; however, the underlying mechanism remains inconclusive. Rosiglitazone (RGZ), a synthetic ligand of PPARγ used in the treatment of Type 2 diabetes, inhibits growth of some tumor cells and is involved in other processes related to cancer progression. Opposing results have also been reported with different ligands on tumor cells. The purpose of this study was to determine if RGZ and 15d-PGJ 2 induce antitumor effects in vivo and in vitro on the murine mammary tumor cell line LMM3. The effect on LMM3 cell viability and nitric oxide (NO) production of different doses of RGZ, 15-dPGJ 2 , BADGE and GW9662 were determined using the MTS colorimetric assay and the Griess reaction respectively. In vivo effect of orally administration of RGZ on tumor progression was evaluated either on s.c. primary tumors as well as on experimental metastasis. Cell adhesion, migration (wound assay) and invasion in Transwells were performed. Metalloproteinase activity (MMP) was determined by zymography in conditioned media from RGZ treated tumor cells. PPARγ expression was detected by inmunohistochemistry in formalin fixed tumors and by western blot in tumor cell lysates. RGZ orally administered to tumor-bearing mice decreased the number of experimental lung metastases without affecting primary s.c. tumor growth. Tumor cell adhesion and migration, as well as metalloproteinase MMP-9 activity, decreased in the presence of 1 μM RGZ (non-cytotoxic dose). RGZ induced PPARγ protein expression in LMM3 tumors. Although metabolic activity -measured by MTS assay- diminished with 1–100 μM RGZ, 1 μM-treated cells recovered their proliferating capacity while 100 μM treated cells died. The PPARγ antagonist Biphenol A diglicydyl ether (BADGE) did not affect RGZ activity

  2. Radioprotection by murine and human tumor-necrosis factor; Dose-dependent effects on hematopoiesis in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, L; Muench, M O; Warren, D J; Moore, M A.S. [James Ewing Laboratory of Developmental Hematopoiesis, Memorial Sloan-Kettering Cancer Center, New York (USA)

    1989-01-01

    Tumor-necrosis factor (TNF) has been shown to confer significant radioprotection in murine models. Herein, we demonstrate a dose-dependent enhancement of hematological recovery when single doses of either murine or human recombinant TNF are administered prior to irradiation. In addition to its action upon leukocytes and erythocytes, TNF also alleviates radiation-induced thrombocytopenia in the mouse. These effects on circulating blood constituents are further reflected in increased numbers of both primitive (CFU-S) and more differentiated (CFU-GM, CFU-Mega) hematopoietic progenitors in TNF-treated animals. This suggests that TNF exerts it radioprotective effects on a pool of primitive multi-potential hematopoietic cells. (author).

  3. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  4. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    Directory of Open Access Journals (Sweden)

    Valentina E Schneeberger

    Full Text Available Patient-derived xenograft (PDX mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR amplicon length (ssPAL differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS, an immunomagnetic mouse cell depletion (MCD approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors.

  5. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Hideaki; Minowa, Osamu; Inoue, Maki; Motegi, Hiromi; Karashima, Yuko; Ikeda, Ami [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Kaneda, Hideki [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Sakuraba, Yoshiyuki [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Saiki, Yuriko [Department of Molecular Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi (Japan); Wakana, Shigeharu [Technology and Development Team for Mouse Phenotype Analysis, Riken BRC, Tsukuba, Ibaraki (Japan); Suzuki, Hiroshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Gondo, Yoichi [Mutagenesis and Genomics Team, Riken BRC, Tsukuba, Ibaraki (Japan); Shiroishi, Toshihiko [Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka (Japan); Noda, Tetsuo, E-mail: tnoda@jfcr.or.jp [Team for Advanced Development and Evaluation of Human Disease Models, Riken BioResource Center (BRC), Tsukuba, Ibaraki (Japan); Department of Cell Biology, Cancer Institute, The Japanese Foundation for Cancer Research, Tokyo (Japan)

    2016-08-05

    Dominant mutations in the Serca2 gene, which encodes sarco(endo)plasmic reticulum calcium-ATPase, predispose mice to gastrointestinal epithelial carcinoma [1–4] and humans to Darier disease (DD) [14–17]. In this study, we generated mice harboring N-ethyl-N-nitrosourea (ENU)-induced allelic mutations in Serca2: three missense mutations and one nonsense mutation. Mice harboring these Serca2 mutations developed tumors that were categorized as either early onset squamous cell tumors (SCT), with development similar to null-type knockout mice [2,4] (aggressive form; M682, M814), or late onset tumors (mild form; M1049, M1162). Molecular analysis showed no aberration in Serca2 mRNA or protein expression levels in normal esophageal cells of any of the four mutant heterozygotes. There was no loss of heterozygosity at the Serca2 locus in the squamous cell carcinomas in any of the four lines. The effect of each mutation on Ca{sup 2+}-ATPase activity was predicted using atomic-structure models and accumulated mutated protein studies, suggesting that putative complete loss of Serca2 enzymatic activity may lead to early tumor onset, whereas mutations in which Serca2 retains residual enzymatic activity result in late onset. We propose that impaired Serca2 gene product activity has a long-term effect on squamous cell carcinogenesis from onset to the final carcinoma stage through an as-yet unrecognized but common regulatory pathway. -- Highlights: •Novel mutations in murine Serca2 caused early onset or late onset of tumorigenesis. •They also caused higher or lower incidence of Darier Disease phenotype. •3D structure model suggested the former mutations led to severer defect on ATPase. •Driver gene mutations via long-range effect on Ca2+ distributions are suggested.

  6. Targeted radionuclide therapy for solid tumors: An overview

    International Nuclear Information System (INIS)

    De Nardo, Sally J.; De Nardo, Gerald L.

    2006-01-01

    Although radioimmunotherapy (RIT) has been effective in non-Hodgkin's lymphoma (NHL) as a single agent, solid tumors have shown less clinically significant therapeutic response to RIT alone. The clinical impact of RIT or other forms of targeted radionuclide therapy for solid tumors depends on the development of a high therapeutic index (TI) for the tumor vs. normal tissue effect, and the implementation of RIT as part of synergistic combined modality therapy (CMRIT). Preclinical and clinical studies have provided a wealth of information, and new prototypes or paradigms have shed light on future possibilities in many instances. Evidence suggests that combination and sequencing of RIT in CMRIT appropriately can provide effective treatment for many solid tumors. Vascular targets provide RIT enhancement opportunities and nanoparticles may prove to be effective carriers for RIT combined with intracellular drug delivery or alternating magnetic frequency (AMF) induced thermal tumor necrosis. The sequence and timing of combined modality treatments will be of critical importance to achieve synergy for therapy while minimizing toxicity. Fortunately, the radionuclide used for RIT also provides a signal useful for nondestructive quantitation of the influence of sequence and timing of CMRIT on events in animals and patients. This can be readily accomplished clinically using quantitative high-resolution imaging (e.g., positron emission tomography [PET])

  7. Epigenetic changes in solid and hematopoietic tumors.

    Science.gov (United States)

    Toyota, Minoru; Issa, Jean-Pierre J

    2005-10-01

    There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.

  8. Cytotoxic and toxicological effects of phthalimide derivatives on tumor and normal murine cells

    Directory of Open Access Journals (Sweden)

    PAULO MICHEL PINHEIRO FERREIRA

    2015-03-01

    Full Text Available Eleven phthalimide derivatives were evaluated with regards to their antiproliferative activity on tumor and normal cells and possible toxic effects. Cytotoxic analyses were performed against murine tumors (Sarcoma 180 and B-16/F-10 cells and peripheral blood mononuclear cells (PBMC using MTT and Alamar Blue assays. Following, the investigation of cytotoxicity was executed by flow cytometry analysis and antitumoral and toxicological potential by in vivo techniques. The molecules 3b, 3c, 4 and 5 revealed in vitro cytotoxicity against Sarcoma 180, B-16/F-10 and PBMC. Since compound 4 was the most effective derivative, it was chosen to detail the mechanism of action after 24, 48 and 72 h exposure (22.5 and 45 µM. Sarcoma 180 cells treated with compound 4 showed membrane disruption, DNA fragmentation and mitochondrial depolarization in a time- and dose-dependent way. Compounds 3c, 4 and 5 (50 mg/kg/day did not inhibit in vivotumor growth. Compound 4-treated animals exhibited an increase in total leukocytes, lymphocytes and spleen relative weight, a decreasing in neutrophils and hyperplasia of spleen white pulp. Treated animals presented reversible histological changes. Molecule 4 had in vitro antiproliferative action possibly triggered by apoptosis, reversible toxic effects on kidneys, spleen and livers and exhibited immunostimulant properties that can be explored to attack neoplasic cells.

  9. New Chimeric Antigen Receptor Design for Solid Tumors

    Directory of Open Access Journals (Sweden)

    Yuedi Wang

    2017-12-01

    Full Text Available In recent years, chimeric antigen receptor (CAR T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β. In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors.

  10. Potential of epigenetic therapies in the management of solid tumors

    International Nuclear Information System (INIS)

    Valdespino, Victor; Valdespino, Patricia M

    2015-01-01

    Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails

  11. Micro-MRI at 11.7 T of a Murine Brain Tumor Model Using Delayed Contrast Enhancement

    Directory of Open Access Journals (Sweden)

    Rex A. Moats

    2003-07-01

    Full Text Available In vivo imaging methodologies allow for serial measurement of tumor size, circumventing the need for sacrificing mice at given time points. In orthotopically transplanted murine models of brain tumors, cross-section micro-MRI allows for visualization and measurement of the physically inaccessible tumors. To allow for long resident times of a contrast agent in the tumor, intraperitoneal administration was used as a route of injection for contrast-enhanced micro-MRI, and a simple method for relative tumor volume measurements was examined. A strategy for visualizing the variability of the delayed tumor enhancement was developed. These strategies were applied to monitor the growth of brain tumors xenotransplanted into nude mice and either treated with the antiangiogenic peptide EMD 121974 or an inactive control peptide. Each mouse was used as its own control. Serial imaging was done weekly, beginning at Day 7 after tumor cell implantation and continued for 7 weeks. Images obtained were reconstructed on the MRI instrument. The image files were transferred off line to be postprocessed to assess tumor growth (volume and variability in enhancement (three-dimensional [3-D] intensity models. In a small study, tumor growth and response to treatment were followed using this methodology and the high-resolution images displayed in 3-D allowed for straightforward qualitative assessment of variable enhancement related to vascular factors and tumor age.

  12. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors.

    Science.gov (United States)

    Duan, Xiaoping; Guan, Hui; Cao, Ying; Kleinerman, Eugenie S

    2009-01-01

    This study evaluated the therapeutic efficacy of interleukin 12 (IL-12) gene therapy in Ewing sarcoma and whether murine mesenchymal stem cells (MSCs) could serve as vehicles for IL-12 gene delivery. MSCs were isolated from murine bone marrow cells. Cells were phenotyped using flow cytometry. Cultured MSCs differentiated into osteocytes and adipocytes using the appropriate media. Freshly isolated MSCs were transfected with adenoviral vectors containing either the beta-galactosidase (Ad:beta-gal) or the IL-12 (Ad:IL-12) gene. Expression of IL-12 was confirmed using reverse transcription polymerase chain reaction. Mice with TC71 Ewing sarcoma tumors were then treated intravenously with MSCs transfected with Ad:beta-gal or Ad:IL-12. Tumors were measured and analyzed by immunohistochemical analysis for expression of IL-12 protein. Expression of both p35 and p40 IL-12 subunits was demonstrated in MSCs transfected in vitro with Ad:IL-12. IL-12 expression was seen in tumors from mice treated with MSCs transfected with Ad:IL-12. Tumor growth was also significantly inhibited compared with that in mice treated with MSCs transfected with Ad:beta-gal. MSCs can be transfected with the IL-12 gene. These transfected cells localize to tumors after intravenous injection and induce local IL-12 protein production and the regression of established tumors. Copyright (c) 2008 American Cancer Society.

  13. Onconase-induced changes in radiation response and physiological parameters in solid tumors

    International Nuclear Information System (INIS)

    Lee, I.; Shui, C.; Shogen, K.; Mikulski, S.M.; Nunno, M.; Wallner, P.E.

    1996-01-01

    Purpose: Onconase (ONC), previously known as P-30 protein, is a novel basic amphibian protein isolated from eggs of the leopard frog. The original study conducted by Darzynkiewicz et al. (Cell Tissue Kinetics, 1988) demonstrated that ONC shows anti-proliferative and cytotoxic activities against several tumor cell lines in vitro. Since then, to our knowledge, no studies regarding the inhibitory effect of ONC in solid tumor models were performed. ONC is also known to inhibit cell-cycle progression from the radiation-sensitive G 1 phase to the radiation-resistant S phase. Thus, we examined the effect of ONC as a potential radiation sensitizer. The radiation response and physiological parameters were evaluated in C3H mice and/or nude mice bearing various (murine and/or human) tumor models. Materials and Method: First, we examined the effect of ONC on the cellular proliferative, as well as the clonogenic, response of various cell lines (i.e., H4IIE rat hepatoma, AsPC-1 human pancreas adenocarcinoma, DU145 human prostate carcinoma, LS174T human colon adenocarcinoma, A549 human lung carcinoma, MCaIV murine adenocarcinoma, FSaII murine fibrosarcoma, and CCL-209 bovine artery pulmonary endothelial cells) by using the MTT and clonogenic cell survival assays. Second, we determined the enhancement of radiation response before, during, and after treatment with ONC in several cell lines. Third, we determined whether ONC can inhibit the growth of solid tumors in vivo (i.e., FSaII and MCaIV in C3H mice, LS174T in nude mice). Fourth, we examined whether minocycline, an antiangiogenic agent, could amplify the tumoricidal efficacy of ONC in solid tumors. To test our hypothesis: if ONC could eradicate the outgrowth of tumor cells in confined spaces, it could lower the elevated pressure in solid tumors, we measured tumor interstitial fluid pressure (TIFP) using the wick-in-needle method, and systemic pressure using the right carotid artery cannulation method after treatment with ONC

  14. Silencing of Foxp3 delays the growth of murine melanomas and modifies the tumor immunosuppressive environment

    Directory of Open Access Journals (Sweden)

    Franco-Molina MA

    2016-01-01

    Full Text Available Moisés A Franco-Molina,* Diana F Miranda-Hernández,* Edgar Mendoza-Gamboa, Pablo Zapata-Benavides, Erika E Coronado-Cerda, Crystel A Sierra-Rivera, Santiago Saavedra-Alonso, Reyes S Taméz-Guerra, Cristina Rodríguez-Padilla Immunology and Virology Department, Biological Sciences Faculty, University Autonoma of Nuevo León (UANL, San Nicolás de los Garza, Nuevo León, Mexico*These authors contributed equally to this work Abstract: Forkhead box p3 (Foxp3 expression was believed to be specific for T-regulatory cells but has recently been described in non-hematopoietic cells from different tissue origins and in tumor cells from both epithelial and non-epithelial tissues. The aim of this study was to elucidate the role of Foxp3 in murine melanoma. The B16F10 cell line Foxp3 silenced with small interference Foxp3 plasmid transfection was established and named B16F10.1. These cells had lower levels of Foxp3 mRNA (quantitative real-time reverse transcription-polymerase chain reaction [0.235-fold], protein (flow cytometry [0.02%], CD25+ expression (0.06%, cellular proliferation (trypan blue staining, and interleukin (IL-2 production (enzyme-linked immunosorbent assay [72.35 pg/mL] than those in B16F10 wild-type (WT cells (P<0.05. Subcutaneous inoculation of the B16F10.1 cell line into C57BL/6 mice delayed the time of visible tumor appearance, increased the time of survival, and affected the weight of tumors, and also decreased the production of IL-10, IL-2, and transforming growth factor beta compared with mice inoculated with the B16F10 WT cell line. The B16F10.1 cells derived from tumors and free of T-cells (isolated by Dynabeads and plastic attachment expressed relatively lower levels of Foxp3 and CD25+ than B16F10 WT cells (P<0.05 in a time-dependent manner. The population of tumor-infiltrating lymphocytes of T CD4+ cells (CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ increased in a time-dependent manner (P<0.05 in tumors derived from B16F10 WT cells

  15. Photodynamic Therapy of the Murine LM3 Tumor Using Meso-Tetra (4-N,N,N-Trimethylanilinium) Porphine.

    Science.gov (United States)

    Colombo, L L; Juarranz, A; Cañete, M; Villanueva, A; Stockert, J C

    2007-12-01

    Photodynamic therapy (PDT) of cancer is based on the cytotoxicity induced by a photosensitizer in the presence of oxygen and visible light, resulting in cell death and tumor regression. This work describes the response of the murine LM3 tumor to PDT using meso-tetra (4-N,N,N-trimethylanilinium) porphine (TMAP). BALB/c mice with intradermal LM3 tumors were subjected to intravenous injection of TMAP (4 mg/kg) followed 24 h later by blue-red light irradiation (λmax: 419, 457, 650 nm) for 60 min (total dose: 290 J/cm(2)) on depilated and glycerol-covered skin over the tumor of anesthetized animals. Control (drug alone, light alone) and PDT treatments (drug + light) were performed once and repeated 48 h later. No significant differences were found between untreated tumors and tumors only treated with TMAP or light. PDT-treated tumors showed almost total but transitory tumor regression (from 3 mm to less than 1 mm) in 8/9 animals, whereas no regression was found in 1/9. PDT response was heterogeneous and each tumor showed different regression and growth delay. The survival of PDT-treated animals was significantly higher than that of TMAP and light controls, showing a lower number of lung metastasis but increased tumor-draining lymph node metastasis. Repeated treatment and reduction of tissue light scattering by glycerol could be useful approaches in studies on PDT of cancer.

  16. Solid-pseudo papillary tumor of the pancreas: Frantz's tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Righi Rodrigues de; Moreira, Reni Cecilia Lopes; Campos, Marcelo Esteves Chaves [Instituto Mario Penna, Belo Horizonte, MG (Brazil)], e-mail: brunorighi@yahoo.com.br

    2010-07-01

    The pseudo papillary solid tumor of the pancreas, also known as Frantz's tumor, is a rare disease, taking place in approximately 0.17% to 2.7% of non-endocrine tumors of the pancreas. Recently, the increase of its incidence has been noted with more than two-thirds of the total cases described in the last 10 years. A possible explanation is a greater knowledge of the disease and a greater uniformity of conceptualization in the last years. Generally, it affects young adult females. In most of the series, the tumor principally attacks the body and tail of the pancreas. The objective of the present report is to present the diagnostic and therapeutic option used in this rare pancreatic tumor of low-grade malignancy. (author)

  17. DNA supercoiling in proliferating and quiescent 67 murine mammary tumor cells

    International Nuclear Information System (INIS)

    Cochran-Sandhu, L.; Warters, R.L.; Dethlefsen, L.A.

    1985-01-01

    The nucleoid sedimentation assay, which is a measure of DNA ''compactness'' or supercoiling, was used to evaluate the supercoiling state of proliferating (P) and quiescent (Q) murine mammary tumor cells. Two day old cultures are referred to as P cells, whereas 7 day old cultures maintained without media replenishment are referred to as Q cells (>95% arrested in G/sub 1/). Q nucleoids sedimented significantly less far into neutral sucrose gradients than P nucleoids, suggesting a less compact DNA structure. This was further confirmed by the utilization of two other probes of DNA supercoiling: ionizing radiation and sedimentation through gradients containing the intercalator ethidium bromide (EtBr). Whereas nucleoids from P cells showed a decrease in sedimentation following ionizing radiation and an initial decrease, followed by an increase, in sedimentation through gradients containing increasing concentrations of EtBr, the sedimentation of nucleoids from Q cells did not change following either treatment. These data indicate that the DNA of nucleoids isolated from Q cells is in a ''relaxed'' state. The potential significance of these results is discussed

  18. In vivo and in vitro hyperthermia in a murine ovarian tumor model

    International Nuclear Information System (INIS)

    Hacker, N.F.; Ghozland, S.A.; Berek, J.S.; Resnick, B.; Lagasse, L.D.

    1984-01-01

    Preliminary studies using a noninvasive circumferential electrode to deliver low-frequency radiowave heat to a murine ovarian tumor (MOT) model demonstrated that noncancer-bearing anesthetised female C3FeJ/HeB mice could tolerate temperatures to the pelvis and abdomen of up to 43 0 C for 1 hour and that uniform heating of abdominal organs could be obtained. Following in vitro heating of 5 x 10/sup 6/ MOT cells and subsequent transfer of these cells into the naive mouse, a dose-response effect was noted, all animals inoculated with cells heated to 41 0 C for 1 hour dying of disease, compared to 50% of animals innoculated with cells heated to 42 0 C for 1 hour, and 25% of animals innoculated with cells heated to 43 0 C for 1 hour. Following intraperitoneal transfer of 10/sup 5/ MOT cells, in vivo heating to 42 0 C for 30 minutes on 2 occasions 72 hours apart increased median survival from 24 days to 33 days (P 0 C for 30 minutes daily for 5 days, and suggests the development of thermal tolerance with daily heating. The authors are presently investigating the value of indomethacin in preventing thermal tolerance

  19. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  20. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria.

    Science.gov (United States)

    Taniguchi, Shun'ichiro; Fujimori, Minoru; Sasaki, Takayuki; Tsutsui, Hiroko; Shimatani, Yuko; Seki, Keiichi; Amano, Jun

    2010-09-01

    Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment. © 2010 Japanese Cancer Association.

  1. Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies.

    Science.gov (United States)

    Shan, Liang; Liu, Yuanyi; Wang, Paul

    2013-01-01

    Immunotoxins are a group of protein-based therapeutics, basically comprising two functional moieties: one is the antibody or antibody Fv fragment that allows the immunotoxin to bind specifically to target cells; another is the plant or bacterial toxin that kills the cells upon internalization. Immunotoxins have several unique features which are superior to conventional chemotherapeutics, including high specificity, extraordinary potency, and no known drug resistance. Development of immunotoxins evolves with time and technology, but significant progress has been achieved in the past 20 years after introduction of recombinant DNA technique and generation of the first single-chain variable fragment of monoclonal antibodies. Since then, more than 1,000 recombinant immunotoxins have been generated against cancer. However, most success in immunotoxin therapy has been achieved against hematological malignancies, several issues persist to be significant barriers for effective therapy of human solid tumors. Further development of immunotoxins will largely focus on the improvement of penetration capability to solid tumor mass and elimination of immunogenicity occurred when given repeatedly to patients. Promising strategies may include construction of recombinant antibody fragments with higher binding affinity and stability, elimination of immunodominant T- and B-cell epitopes of toxins, modification of immunotoxins with macromolecules like poly(ethylene glycol) and liposomes, and generation of immunotoxins with humanized antibody fragments and human endogenous cytotoxic enzymes. In this paper, we briefly reviewed the evolution of immunotoxin development and then discussed the challenges of immunotoxin therapy for human solid tumors and the potential strategies we may seek to overcome the challenges.

  2. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Krishna Das

    Full Text Available In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY, were transfected with an expression plasmid encoding a β2m-specific single guide (sgRNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO clones did not give rise to tumors in syngeneic mice (C57BL/6N, unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.

  3. L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    Full Text Available Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase, which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue.

  4. Photoirradiation system for solid tumors in photodynamic therapy

    International Nuclear Information System (INIS)

    Pacheco, L.; Stolik, S.; Rosa, J.M. de la

    2012-01-01

    Photodynamic therapy (PDT) is a clinical procedure which induces cell death for destroying cancerous tissues mostly. This is accomplished by photochemical reaction produced by the combined action of three elements: photo sensitizer, light and oxygen. One aspect of the development of PDT is focused on the treatment of solid and deep tumors, where a set of delivering-light probes are placed into the tumor mass. However, this technique still has several challenges, for although certain parameters involved in the procedure may be adjusted, the complex geometry and non-homogeneity of a tumor difficult to establish the appropriate treatment planning. This paper addresses an overview of interstitial PDT and presents our proposal of photo irradiation system. (Author)

  5. Mathematical Based Calculation of Drug Penetration Depth in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2016-01-01

    Full Text Available Cancer is a class of diseases characterized by out-of-control cells’ growth which affect cells and make them damaged. Many treatment options for cancer exist. Chemotherapy as an important treatment option is the use of drugs to treat cancer. The anticancer drug travels to the tumor and then diffuses in it through capillaries. The diffusion of drugs in the solid tumor is limited by penetration depth which is different in case of different drugs and cancers. The computation of this depth is important as it helps physicians to investigate about treatment of infected tissue. Although many efforts have been made on studying and measuring drug penetration depth, less works have been done on computing this length from a mathematical point of view. In this paper, first we propose phase lagging model for diffusion of drug in the tumor. Then, using this model on one side and considering the classic diffusion on the other side, we compute the drug penetration depth in the solid tumor. This computed value of drug penetration depth is corroborated by comparison with the values measured by experiments.

  6. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.

    Science.gov (United States)

    Ambrosi, D; Pezzuto, S; Riccobelli, D; Stylianopoulos, T; Ciarletta, P

    2017-12-01

    The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

  7. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors

    Directory of Open Access Journals (Sweden)

    Griffiths Gary L

    2009-06-01

    Full Text Available Abstract Background The existence of large pores in the blood-tumor barrier (BTB of malignant solid tumor microvasculature makes the blood-tumor barrier more permeable to macromolecules than the endothelial barrier of most normal tissue microvasculature. The BTB of malignant solid tumors growing outside the brain, in peripheral tissues, is more permeable than that of similar tumors growing inside the brain. This has been previously attributed to the larger anatomic sizes of the pores within the BTB of peripheral tumors. Since in the physiological state in vivo a fibrous glycocalyx layer coats the pores of the BTB, it is possible that the effective physiologic pore size in the BTB of brain tumors and peripheral tumors is similar. If this were the case, then the higher permeability of the BTB of peripheral tumor would be attributable to the presence of a greater number of pores in the BTB of peripheral tumors. In this study, we probed in vivo the upper limit of pore size in the BTB of rodent malignant gliomas grown inside the brain, the orthotopic site, as well as outside the brain in temporalis skeletal muscle, the ectopic site. Methods Generation 5 (G5 through generation 8 (G8 polyamidoamine dendrimers were labeled with gadolinium (Gd-diethyltriaminepentaacetic acid, an anionic MRI contrast agent. The respective Gd-dendrimer generations were visualized in vitro by scanning transmission electron microscopy. Following intravenous infusion of the respective Gd-dendrimer generations (Gd-G5, N = 6; Gd-G6, N = 6; Gd-G7, N = 5; Gd-G8, N = 5 the blood and tumor tissue pharmacokinetics of the Gd-dendrimer generations were visualized in vivo over 600 to 700 minutes by dynamic contrast-enhanced MRI. One additional animal was imaged in each Gd-dendrimer generation group for 175 minutes under continuous anesthesia for the creation of voxel-by-voxel Gd concentration maps. Results The estimated diameters of Gd-G7 dendrimers were 11 ± 1 nm and those of Gd-G8

  8. The effect of tumor size on F-18-labeled fluorodeoxyglucose and fluoroerythronitroimidazole uptake in a murine sarcoma model

    International Nuclear Information System (INIS)

    Chung, June-Key; Chang, Young Soo; Lee, Yong Jin; Kim, Young Ju; Jeong, Jae Min; Lee, Dong Soo; Jang, Ja June; Lee, Myung Chul

    1999-01-01

    The purpose of this study was to evaluate the effect of tumor size on the uptake of 18 F-fluorodeoxyglucose (FDG) and fluoroerythronitroimidazole (FETNIM) in a murine sarcoma model. ICR mice were xenografted with sarcoma 180 cell line and tumors were allowed to grow to a weight of 0.26-5.82 grams. 18 F-FDG and 18 F-FETNIM were injected intravenously in separate groups of mice, and after 1 hr, the tumors were excised and radiotracer uptake was measured. In another group of mice tumors were autoradiographically analyzed and subjected to H and E staining. In both the FDG and FETNIM group, per-gram radiotracer uptake by a tumor was inversely proportional to tumor weight. 18 F-FETNIM correlated more (r=-0.593, p 18 F-FDG (r=-0.447, p 18 F-FETNIM, a direct correlation between tumor weight and the no-uptake-area to total-tumor-area was demonstrated. We concluded that increased tumor size is associated with decreased uptake of 18 F-FDG and FETNIM, though this depends on the type of radiotracers and distribution of necrosis. (author)

  9. Mycobacterium tuberculosis from chronic murine infections that grows in liquid but not on solid medium

    Directory of Open Access Journals (Sweden)

    Mitchison Denis A

    2004-11-01

    Full Text Available Abstract Background Old, stationary cultures of Mycobacterium tuberculosis contain a majority of bacteria that can grow in broth cultures but cannot grow on solid medium plates. These may be in a non-replicating, dormant growth phase. We hypothesised that a similar population might be present in chronic, murine tuberculosis. Methods Estimates of the numbers of viable M. tuberculosis, strain H37Rv, in the spleens and lungs of mice in a 7-day acute infection and in a 10-month chronic infection were made by conventional plate counts and, as broth counts, by noting presence or absence of growth in serial replicate dilutions in liquid medium. Results Plate and broth counts in 6 mice gave similar mean values in the acute infection, 7 days after infection. However, the broth counts were much higher in 36 mice with a chronic infection at 10 months. Broth counts averaged 5.290 log10 cfu /organ from spleens and 5.523 log10 cfu/organ from lungs, while plate counts were 3.858 log10 cfu/organ from spleens and 3.662 log10 cfu/organ from lungs, indicating that the total bacterial population contained only 3.7% bacilli in spleens and 1.4% bacilli in lungs, capable of growth on plates. Conclusion The proportion growing on plates might be a measure of the "dormancy" of the bacilli equally applicable to cultural and animal models.

  10. Productively infected murine Kaposi's sarcoma-like tumors define new animal models for studying and targeting KSHV oncogenesis and replication.

    Directory of Open Access Journals (Sweden)

    Brittany M Ashlock

    Full Text Available Kaposi's sarcoma (KS is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV. KS tumors are composed of KSHV-infected spindle cells of vascular origin with aberrant neovascularization and erythrocyte extravasation. KSHV genes expressed during both latent and lytic replicative cycles play important roles in viral oncogenesis. Animal models able to recapitulate both viral and host biological characteristics of KS are needed to elucidate oncogenic mechanisms, for developing targeted therapies, and to trace cellular components of KS ontogeny. Herein, we describe two new murine models of Kaposi's sarcoma. We found that murine bone marrow-derived cells, whether established in culture or isolated from fresh murine bone marrow, were infectable with rKSHV.219, formed KS-like tumors in immunocompromised mice and produced mature herpesvirus-like virions in vivo. Further, we show in vivo that the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat enhanced viral lytic reactivation. We propose that these novel models are ideal for studying both viral and host contributions to KSHV-induced oncogenesis as well as for testing virally-targeted antitumor strategies for the treatment of Kaposi's sarcoma. Furthermore, our isolation of bone marrow-derived cell populations containing a cell type that, when infected with KSHV, renders a tumorigenic KS-like spindle cell, should facilitate systematic identification of KS progenitor cells.

  11. Micro-computed tomography derived anisotropy detects tumor provoked deviations in bone in an orthotopic osteosarcoma murine model.

    Directory of Open Access Journals (Sweden)

    Heather A Cole

    Full Text Available Radiographic imaging plays a crucial role in the diagnosis of osteosarcoma. Currently, computed-tomography (CT is used to measure tumor-induced osteolysis as a marker for tumor growth by monitoring the bone fractional volume. As most tumors primarily induce osteolysis, lower bone fractional volume has been found to correlate with tumor aggressiveness. However, osteosarcoma is an exception as it induces osteolysis and produces mineralized osteoid simultaneously. Given that competent bone is highly anisotropic (systematic variance in its architectural order renders its physical properties dependent on direction of load and that tumor induced osteolysis and osteogenesis are structurally disorganized relative to competent bone, we hypothesized that μCT-derived measures of anisotropy could be used to qualitatively and quantitatively detect osteosarcoma provoked deviations in bone, both osteolysis and osteogenesis, in vivo. We tested this hypothesis in a murine model of osteosarcoma cells orthotopically injected into the tibia. We demonstrate that, in addition to bone fractional volume, μCT-derived measure of anisotropy is a complete and accurate method to monitor osteosarcoma-induced osteolysis. Additionally, we found that unlike bone fractional volume, anisotropy could also detect tumor-induced osteogenesis. These findings suggest that monitoring tumor-induced changes in the structural property isotropy of the invaded bone may represent a novel means of diagnosing primary and metastatic bone tumors.

  12. Obtaining S values for rectangular--solid tumors inside rectangular--solid host organs

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Durham, J.S.; Fisher, D.R.

    1991-01-01

    A method is described for obtaining S values between a tumor and its host organ for use with the MIRD formalism. It applies the point-source specific absorbed fractions for an infinite water medium, tabulated by Berger, to a rectangular solid of arbitrary dimensions which contains a rectangular tumor of arbitrary dimensions. Contributions from pairs of source and target volume elements are summed for the S values between the tumor and itself, between the remaining healthy host organ and itself, and between the tumor and the remaining healthy host organ, with the reciprocity theorem assumed for the last. This method labeled MTUMOR, is interfaced with the widely used MIRDOSE program which incorporates the MIRD formalism. An example is calculated

  13. Recent advances of bispecific antibodies in solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-09-01

    Full Text Available Abstract Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T, bispecific antibody (BsAb is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides and targets (e.g., tumor cells but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM, human epidermal growth factor receptor (HER family, carcinoembryonic antigen (CEA, and prostate-specific membrane antigen (PSMA related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.

  14. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    Science.gov (United States)

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  15. A preliminary study of murine walker-256 tumor hypoxia detected by blood oxygen level dependent-MR

    International Nuclear Information System (INIS)

    Zhang Shengjian; Mao Jian; Wu Bin; Peng Weijun

    2013-01-01

    Objective: To establish Walker-256 transplantation tumor model in SD Rats. To study of R_2"* signal changes on murine Walker-256 tumor after inhaling Carbogen by blood oxygen level dependent (BOLD)-MR, and to explore the feasibility of BOLD-MRI on detecting tumor hypoxia. Methods: Walker-256 tumor cell implanted subcutaneously in right lower abdomen of 95 female SD rats. MR was performed on the tumor-forming rats when the maximum diameter of tumor reached 1-3 cm, using a 3.0 T MR scanner equipped with a 3 inch animal surface coil. BOLD-MRI was done by using a multiecho SPGR sequence during inhaling air and at 10 minute after inhaling Carbogen, respectively. All images were transferred to GE ADW 4.3 workstation, then a baseline R_2"* (R_2"* a) and R_2"* (R_2"* b) after inhaling Carbogen of tumor was calculated using R_2 Star analysis software and ΔR_2"* was calculated through ΔR_2"* = R_2"* b -R_2"* a", meanwhile the volume of tumor were calculated as well. The difference of R_2"* signal pre and post-inhaling of Carbogen was compared with a paired t test, Pearson correlation was calculated between R_2"* a, ΔR_2"* and the volume of tumor, respectively. The correlation between ΔR_2"* and R_2"* a was also assessed by Pearson correlation. Results: Sixty-eight of ninety-five female SD rats formed the tumor (71.6%). The volume of tumor was from 352 to 13 173 mm"3. Mean ΔR_2"* decreased significantly (-2.26 ± 3.90) s"-"1 from (41.18 ± 22.29) s"-"1 during breathing air to (38.91 ± 21.35) s"-"1 10 min after inhaling Carbogen (t = 4.01, P 0.05). Conclusions: BOLD-MRI can detect the R_2"* signal change of murine Walker-256 tumor pre-and post-inhaling of Carbogen. The R_2"* signal showed significant decrease after inhaling Carbogen, however, the individual variation was remarkable. (authors)

  16. Prospective Clinical Study of Precision Oncology in Solid Tumors.

    Science.gov (United States)

    Sohal, Davendra P S; Rini, Brian I; Khorana, Alok A; Dreicer, Robert; Abraham, Jame; Procop, Gary W; Saunthararajah, Yogen; Pennell, Nathan A; Stevenson, James P; Pelley, Robert; Estfan, Bassam; Shepard, Dale; Funchain, Pauline; Elson, Paul; Adelstein, David J; Bolwell, Brian J

    2015-11-09

    Systematic studies evaluating clinical benefit of tumor genomic profiling are lacking. We conducted a prospective study in 250 patients with select solid tumors at the Cleveland Clinic. Eligibility required histopathologic diagnosis, age of 18 years or older, Eastern Cooperative Oncology Group performance status 0-2, and written informed consent. Tumors were sequenced using FoundationOne (Cambridge, MA). Results were reviewed at the Cleveland Clinic Genomics Tumor Board. Outcomes included feasibility and clinical impact. Colorectal (25%), breast (18%), lung (13%), and pancreatobiliary (13%) cancers were the most common diagnoses. Median time from consent to result was 25 days (range = 3-140). Of 223 evaluable samples, 49% (n = 109) of patients were recommended a specific therapy, but only 11% (n = 24) received such therapy: 12 on clinical trials, nine off-label, three on-label. Lack of clinical trial access (n = 49) and clinical deterioration (n = 29) were the most common reasons for nonrecommendation/nonreceipt of genomics-driven therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  18. Influence of misonidazole on the radiation response of murine tumors of different size: possible artifacts caused by pentobarbital sodium anesthesia

    International Nuclear Information System (INIS)

    Wondergem, J.; Haveman, J.; van der Schueren, E.; van den Hoeven, H.; Breur, K.

    1981-01-01

    The radiosensitivity of a transplantable murine adenocarcinoma decreased with increasing tumor volume. In unanesthetized mice this phenomenon (based on the effect of the hypoxic cell sensitizer misonidazole), in the range of volumes studied, can largely be explained by the appearance of hypoxic cells in the tumor during growth. The use of pentobarbital sodium during irradiation is confiremd to be a disturbing factor, as it may increase the hypoxic cell fraction in the tumors. No evidence was found for a direct radiochemical protection because of pentobarbital sodium. The radioprotective effect of the anesthetic could only be demonstrated in conditions where there is already a fraction of hypoxic cells; no influence of the anesthesia was found in small tumors in which the fraction of hypoxic cells was relatively small. This may account for the previously conflicting data on the influence of pentobarbital sodium anesthesia. The vascularization of larger tumors is apparently inferior to smaller tumors and this has important repercussions in the case of anesthesia. Changes in blood flow induced by pentobarbital sodium in larger tumors cause an insufficient oxygenation and hence acute hypoxia

  19. AKT Inhibition in Solid Tumors With AKT1 Mutations.

    Science.gov (United States)

    Hyman, David M; Smyth, Lillian M; Donoghue, Mark T A; Westin, Shannon N; Bedard, Philippe L; Dean, Emma J; Bando, Hideaki; El-Khoueiry, Anthony B; Pérez-Fidalgo, José A; Mita, Alain; Schellens, Jan H M; Chang, Matthew T; Reichel, Jonathan B; Bouvier, Nancy; Selcuklu, S Duygu; Soumerai, Tara E; Torrisi, Jean; Erinjeri, Joseph P; Ambrose, Helen; Barrett, J Carl; Dougherty, Brian; Foxley, Andrew; Lindemann, Justin P O; McEwen, Robert; Pass, Martin; Schiavon, Gaia; Berger, Michael F; Chandarlapaty, Sarat; Solit, David B; Banerji, Udai; Baselga, José; Taylor, Barry S

    2017-07-10

    Purpose AKT1 E17K mutations are oncogenic and occur in many cancers at a low prevalence. We performed a multihistology basket study of AZD5363, an ATP-competitive pan-AKT kinase inhibitor, to determine the preliminary activity of AKT inhibition in AKT-mutant cancers. Patients and Methods Fifty-eight patients with advanced solid tumors were treated. The primary end point was safety; secondary end points were progression-free survival (PFS) and response according to Response Evaluation Criteria in Solid Tumors (RECIST). Tumor biopsies and plasma cell-free DNA (cfDNA) were collected in the majority of patients to identify predictive biomarkers of response. Results In patients with AKT1 E17K-mutant tumors (n = 52) and a median of five lines of prior therapy, the median PFS was 5.5 months (95% CI, 2.9 to 6.9 months), 6.6 months (95% CI, 1.5 to 8.3 months), and 4.2 months (95% CI, 2.1 to 12.8 months) in patients with estrogen receptor-positive breast, gynecologic, and other solid tumors, respectively. In an exploratory biomarker analysis, imbalance of the AKT1 E17K-mutant allele, most frequently caused by copy-neutral loss-of-heterozygosity targeting the wild-type allele, was associated with longer PFS (hazard ratio [HR], 0.41; P = .04), as was the presence of coincident PI3K pathway hotspot mutations (HR, 0.21; P = .045). Persistent declines in AKT1 E17K in cfDNA were associated with improved PFS (HR, 0.18; P = .004) and response ( P = .025). Responses were not restricted to patients with detectable AKT1 E17K in pretreatment cfDNA. The most common grade ≥ 3 adverse events were hyperglycemia (24%), diarrhea (17%), and rash (15.5%). Conclusion This study provides the first clinical data that AKT1 E17K is a therapeutic target in human cancer. The genomic context of the AKT1 E17K mutation further conditioned response to AZD5363.

  20. Applications of lipid nanocarriers for solid tumors therapy: literature review

    International Nuclear Information System (INIS)

    Oliveira, Lidiane Correia de; Souza, Leonardo Gomes; Marreto, Ricardo Neves; Lima, Eliana Martins; Taveira, Stephania Fleury; Taveira, Eliseu Jose Fleury

    2012-01-01

    Introduction: Lipid nanocarriers are systems used to target drugs to its site of action and have attracted attention of the scientific community because they are biocompatible and biodegradable. These systems can target drugs to solid tumors, providing sustained drug release in the site of action, thus increasing the utility of the antineoplastic chemotherapy. Objective: To review the available literature on in vivo experiments with lipid nanocarriers containing cytotoxic drugs for solid tumors treatment. Method: A search study was carried out in Pubmed R database from 2007 to 2011, with subject descriptors: liposomes, lipid nanoparticles, cancer and in vivo, with the boolean operator 'and' among them, in English. Results: 1,595 papers related to the use of liposomes and 77 related to lipid nanoparticles were found. Few studies reported in vivo experiments with lipid nanoparticles (28 papers) compared to liposomes (472 papers), since liposomes were developed two decades before lipid nanoparticles. Four liposomal medicines have already been approved and are used in the clinic while only one medicine containing lipid nanoparticles is in phase I of clinical studies. Conclusion: The number of papers related to the use of nanotechnology for cancer treatment is increasing rapidly, making important to know the different kinds of nanocarriers and, especially, those which are already used in the clinic. There are only few clinical studies on lipid nanocarriers; however, these systems present an enormous potential to improve the clinical practice in oncology. (author)

  1. Anxiety, depression in patients receiving chemotherapy for solid tumors

    International Nuclear Information System (INIS)

    Mansoor, S.; Jehangir, S.

    2015-01-01

    To determine the frequency of anxiety and depression in patients undergoing chemotherapy for solid tumors using Hospital Anxiety Depression Scale (HADS). Study Design: Cross sectional descriptive study. Place and Duration of Study: Out-patient department of Armed Forces Institute of Mental Health, Rawalpindi from June 2011 to December 2011. Methodology: Consecutive non probability sampling technique was used to select patients of age (25-70 years), male or female, who had received atleast 03 cycles of chemotherapy for solid tumors. Those with history of prior psychiatric illness, current use of psychotropic medication or psychoactive substance use, and any major bereavement in past one year were excluded from the study. After taking informed consent, relevant socio- demographic data was collected and HADS was administered. HADS-A cut off score of 7 was taken as significant anxiety while a HADS-D cut off score of 7 was taken as significant depression. Results: The total number of participants was 209. The mean age of patients was 42.9 years, with 55.5% males and 44.5% females. Overall 33/209 (15.8%) patients had anxiety while 56/209 (26.8%) were found to have depression. There was a higher frequency of anxiety and depression in younger patients (less than age 40 years), females, patients who were single or divorced, and patients receiving chemotherapy for pancreatic carcinoma. Conclusion: Patients undergoing chemotherapy suffer from considerable levels of anxiety and depression, thus highlighting the need for specialized interventions. (author)

  2. In vivo targeting of dead tumor cells in a murine tumor model using a monoclonal antibody specific for the La autoantigen.

    Science.gov (United States)

    Al-Ejeh, Fares; Darby, Jocelyn M; Pensa, Katherine; Diener, Kerrilyn R; Hayball, John D; Brown, Michael P

    2007-09-15

    To investigate the potential of the La-specific monoclonal antibody (mAb) 3B9 as an in vivo tumor-targeting agent. The murine EL4 lymphoma cell line was used for in vitro studies and the EL4 model in which apoptosis was induced with cyclophosphamide and etoposide was used for in vivo studies. In vitro studies compared 3B9 binding in the EL4 cell with that in its counterpart primary cell type of the thymocyte. For in vivo studies, 3B9 was intrinsically or extrinsically labeled with carbon-14 or 1,4,7,10-tetra-azacylododecane-N,N',N'',N''''-tetraacetic acid-indium-111, respectively, and biodistribution of the radiotracers was investigated in EL4 tumor-bearing mice, which were treated or not with chemotherapy. La-specific 3B9 mAb bound EL4 cells rather than thymocytes, and binding was detergent resistant. 3B9 binding to dead EL4 cells in vitro was specific, rapid, and saturable. Significantly, more 3B9 bound dead EL4 tumor explant cells after host mice were treated with chemotherapy, which suggested that DNA damage induced 3B9 binding. Tumor binding of 3B9 in vivo was antigen specific and increased significantly after chemotherapy. Tumor accumulation of 3B9 peaked at approximately 50% of the injected dose per gram of tumor 72 h after chemotherapy and correlated with increased tumor cell death. Tumor/organ ratios of 3B9 biodistribution, which included the tumor/blood ratio, exceeded unity 48 or more hours after chemotherapy. La-specific mAb selectively targeted dead tumor cells in vivo, and targeting was augmented by cytotoxic chemotherapy. This novel cell death radioligand may be useful both for radioimmunoscintigraphy and radioimmunotherapy.

  3. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo [Dept. of Radiation Oncology, Yonsei Univ. Medical College, Seoul (Korea, Republic of)

    2007-09-15

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1{+-}0.6% in OCa-I and 0.2{+-}0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  4. Aflac ST0901 CHOANOME - Sirolimus in Solid Tumors

    Science.gov (United States)

    2018-05-15

    Ewing's Sarcoma; Osteosarcoma; Astrocytoma; Atypical Teratoid/Rhabdoid Tumor; Ependymoma; Germ Cell Tumor; Glioma; Medulloblastoma; Rhabdoid Tumor; Retinoblastoma; Clear Cell Sarcoma; Renal Cell Carcinoma; Wilms Tumor; Hepatoblastoma; Neuroblastoma; Rhabdomyosarcoma

  5. Multiple Delivery of siRNA against Endoglin into Murine Mammary Adenocarcinoma Prevents Angiogenesis and Delays Tumor Growth

    Science.gov (United States)

    Dolinsek, Tanja; Markelc, Bostjan; Sersa, Gregor; Coer, Andrej; Stimac, Monika; Lavrencak, Jaka; Brozic, Andreja; Kranjc, Simona; Cemazar, Maja

    2013-01-01

    Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches. PMID:23593103

  6. Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth.

    Directory of Open Access Journals (Sweden)

    Tanja Dolinsek

    Full Text Available Endoglin is a transforming growth factor-β (TGF- β co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11 by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.

  7. The inhibition effect of 211At-Te colloid and Na211 at injections on murine Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Wang Juan; Wang Xizhong; Zhang Jiazao

    1992-01-01

    Na 211 At and 211 At-Te colloid injections are prepared. It has been demonstrated that the 211 At-Te colloid is stable in vivo and in vitro, and can be applied in the study of biology and medicine. In the report, the model of Murine Ehrlich Ascites Cells cultured in vivo and in vitro is elected for a series of experiments. It has been proved that Na 211 At and 211 At-Te colloid injections possess an inhibition effect on tumor cells. The inhibition effect was expressed in surviving of the mice and inhibiting growth of tumor as well as the changes of enzyme activity. Meanwhile, it was also noticed that Na 211 At and 211 At-Te colloid injections of various dose inhibited the absorb of pyrimidine nucleosides in Murine Ehrlich Ascites Cells. And the effect is not reversible. It is closely related to the dose administrated and 50% inhibition rate needs about 1.48 x 10 5 Bq/ml culture

  8. The Use of Linezolid in Children with Malignant Solid Tumors

    Directory of Open Access Journals (Sweden)

    H.I. Klymniuk

    2015-09-01

    Full Text Available In recent decades, in the treatment of cancer there has been achieved a significant success not only by the introduction of cancer treatment protocol, but mostly due to the planned combination concomitant treatment of infectious complications. The need for antimicrobial agents against resistant Gram-positive bacteria, such as methicillin-resistant staphylococci, penicillin-resistant pneumococci, vancomycin-resistant enterococci, has significantly increased. In the department of pediatric oncology of the National cancer institute (Kyiv, linezolid preparations were used in children with infection of soft tissues and bones, febrile neutropenia and for the treatment of severe cases of sepsis. Experience of Linelid® use in the department of pediatric oncology of the National cancer institute indicates its effectiveness, safety and good tolerance in children with malignant solid tumors.

  9. Ultrasonic enhancement of drug penetration in solid tumors

    Directory of Open Access Journals (Sweden)

    Chun-yen eLai

    2013-08-01

    Full Text Available Increasing the penetration of drugs within solid tumors can be accomplished through multiple ultrasound-mediated mechanisms. The application of ultrasound can directly change the structure or physiology of tissues or can induce changes in a drug or vehicle in order to enhance delivery and efficacy. With each ultrasonic pulse, a fraction of the energy in the propagating wave is absorbed by tissue and results in local heating. When ultrasound is applied to achieve mild hyperthermia, the thermal effects are associated with an increase in perfusion or the release of a drug from a temperature-sensitive vehicle. Higher ultrasound intensities locally ablate tissue and result in increased drug accumulation surrounding the ablated region of interest. Further, the mechanical displacement induced by the ultrasound pulse can result in the nucleation, growth and collapse of gas bubbles. As a result of such cavitation, the permeability of a vessel wall or cell membrane can be increased. Finally, the radiation pressure of the propagating pulse can translate particles or tissues. In this perspective, we will review recent progress in ultrasound-mediated tumor delivery and the opportunities for clinical translation.

  10. Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.

    Science.gov (United States)

    Henriquez, Nico V; Forshew, Tim; Tatevossian, Ruth; Ellis, Matthew; Richard-Loendt, Angela; Rogers, Hazel; Jacques, Thomas S; Reitboeck, Pablo Garcia; Pearce, Kerra; Sheer, Denise; Grundy, Richard G; Brandner, Sebastian

    2013-09-15

    Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor. ©2013 AACR.

  11. Differentiation of Solid Renal Tumors with Multiparametric MR Imaging.

    Science.gov (United States)

    Lopes Vendrami, Camila; Parada Villavicencio, Carolina; DeJulio, Todd J; Chatterjee, Argha; Casalino, David D; Horowitz, Jeanne M; Oberlin, Daniel T; Yang, Guang-Yu; Nikolaidis, Paul; Miller, Frank H

    2017-01-01

    Characterization of renal tumors is critical to determine the best therapeutic approach and improve overall patient survival. Because of increased use of high-resolution cross-sectional imaging in clinical practice, renal masses are being discovered with increased frequency. As a result, accurate imaging characterization of these lesions is more important than ever. However, because of the wide array of imaging features encountered as well as overlapping characteristics, identifying reliable imaging criteria for differentiating malignant from benign renal masses remains a challenge. Multiparametric magnetic resonance (MR) imaging based on various anatomic and functional parameters has an important role and adds diagnostic value in detection and characterization of renal masses. MR imaging may allow distinction of benign solid renal masses from several renal cell carcinoma (RCC) subtypes, potentially suggest the histologic grade of a neoplasm, and play an important role in ensuring appropriate patient management to avoid unnecessary surgery or other interventions. It is also a useful noninvasive imaging tool for patients who undergo active surveillance of renal masses and for follow-up after treatment of a renal mass. The purpose of this article is to review the characteristic MR imaging features of RCC and common benign renal masses and propose a diagnostic imaging approach to evaluation of solid renal masses using multiparametric MR imaging. © RSNA, 2017.

  12. Association between tumor-stroma ratio and prognosis in solid tumor patients: a systematic review and meta-analysis.

    Science.gov (United States)

    Wu, Jiayuan; Liang, Caixia; Chen, Manyu; Su, Wenmei

    2016-10-18

    Tumor-related stroma plays an active role in tumor invasion and metastasis. The tumor-stroma ratio (TSR) in the pathologic specimen has drawn increasing attention from the field of predicting tumor prognosis. However, the prognostic value of TSR in solid tumors necessitates further elucidation. We conducted a meta-analysis on 14 studies with 4238 patients through a comprehensive electronic search on databases updated on May 2016 to explore the relationship between TSR and prognosis of solid tumors. The overall hazard ratio showed that rich stroma in tumor tissue was associated with poor overall survival (OS) (14 studies, 4238 patients) and disease-free survival (DFS) (9 studies, 2235 patients) of patients with solid tumors. The effect of low TSR on poor OS was observed among various cancer types, but not in the early stage of cervical caner. A significant relationship between low TSR and poor OS was also observed in the subgroup analyses based on study region, blinding status, and Newcastle-Ottawa Scale (NOS) score. Subgroup analyses indicated that cancer type, clinical stage, study region, blinding status, and NOS score did not affect the prognostic value of TSR for DFS. Moreover, low TSR was significantly correlated with the serious clinical stage, advanced depth of invasion, and positive lymph node metastasis. These findings indicate that a high proportion of stroma in cancer tissue is associated with poor clinical outcomes in cancer patients, and TSR may serve as an independent prognostic factor for solid tumors.

  13. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; He, W; Cvetkovic, D; Chen, L; Fan, J; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with the CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.

  14. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.

    Science.gov (United States)

    Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian

    2007-02-19

    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.

  15. Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53

    International Nuclear Information System (INIS)

    Seong, Jinsil; Oh, Hae Jin; Kim, Jiyoung; An, Jeung Hee; Kim, Wonwoo

    2007-01-01

    In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and >80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1±0.6% in OCa-I and 0.2±0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity. (author)

  16. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-01-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN - ) for murine Cu-Zn-SOD was determined to be 6.8 x 10 -6 M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied

  17. Targeting the PD-1 pathway in pediatric solid tumors and brain tumors

    Directory of Open Access Journals (Sweden)

    Wagner LM

    2017-04-01

    Full Text Available Lars M Wagner,1 Val R Adams2 1Division of Pediatric Hematology/Oncology, 2Department of Pharmacy Practice and Science, University of Kentucky, Lexington, KY, USA Abstract: While remarkable advances have been made in the treatment of pediatric leukemia over the past decades, new therapies are needed for children with advanced solid tumors and high-grade brain tumors who fail standard chemotherapy regimens. Immunotherapy with immune checkpoint inhibitors acting through the programmed cell death-1 (PD-1 pathway has shown efficacy in some chemotherapy-resistant adult cancers, generating interest that these agents may also be helpful to treat certain refractory pediatric malignancies. In this manuscript we review current strategies for targeting the PD-1 pathway, highlighting putative biomarkers and the rationale for investigation of these drugs to treat common pediatric tumors such as sarcoma, neuroblastoma, and high-grade glioma. We summarize the completed and ongoing clinical trial data available, and suggest potential applications for further study. Keywords: PD-1, nivolumab, pembrolizumab, pediatric, sarcoma, neuroblastoma, glioma

  18. Impact of MLH1 expression on tumor evolution after curative surgical tumor resection in a murine orthotopic xenograft model for human MSI colon cancer.

    Science.gov (United States)

    Meunier, Katy; Ferron, Marianne; Calmel, Claire; Fléjou, Jean-François; Pocard, Marc; Praz, Françoise

    2017-09-01

    Colorectal cancers (CRCs) displaying microsatellite instability (MSI) most often result from MLH1 deficiency. The aim of this study was to assess the impact of MLH1 expression per se on tumor evolution after curative surgical resection using a xenograft tumor model. Transplantable tumors established with the human MLH1-deficient HCT116 cell line and its MLH1-complemented isogenic clone, mlh1-3, were implanted onto the caecum of NOD/SCID mice. Curative surgical resection was performed at day 10 in half of the animals. The HCT116-derived tumors were more voluminous compared to the mlh1-3 ones (P = .001). Lymph node metastases and peritoneal carcinomatosis occurred significantly more often in the group of mice grafted with HCT116 (P = .007 and P = .035, respectively). Mlh1-3-grafted mice did not develop peritoneal carcinomatosis or liver metastasis. After surgical resection, lymph node metastases only arose in the group of mice implanted with HCT116 and the rate of cure was significantly lower than in the mlh1-3 group (P = .047). The murine orthotopic xenograft model based on isogenic human CRC cell lines allowed us to reveal the impact of MLH1 expression on tumor evolution in mice who underwent curative surgical resection and in mice whose tumor was left in situ. Our data indicate that the behavior of MLH1-deficient CRC is not only governed by mutations arising in genes harboring microsatellite repeated sequences but also from their defect in MLH1 as such. © 2017 Wiley Periodicals, Inc.

  19. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  20. Using a 3-d model system to screen for drugs effective on solid tumors

    OpenAIRE

    Fayad, Walid

    2011-01-01

    There is a large medical need for the development of effective anticancer agents with minimal side effects. The present thesis represents an attempt to identify potent drugs for treatment of solid tumors. We used a strategy where 3-D multicellular tumor spheroids (cancer cells grown in three dimensional culture) were utilized as in vitro models for solid tumors. Drug libraries were screened using spheroids as targets and using apoptosis induction and loss of cell viability as endpoints. The h...

  1. Combination therapy of murine tumors with a degraded D-manno-D-glucan (DMG) from Microellobosporia grisea, and cyclophosphamide.

    Science.gov (United States)

    Nakajima, H; Hashimoto, S; Kita, Y; Takashi, T; Tsukada, W; Kohno, M; Ogawa, H; Abe, S; Mizuno, D

    1983-12-01

    DMG, a degraded D-manno-D-glucan with a host-mediated antitumor activity did not significantly enhance nor inhibit the development of suppressor cells for either the antibody-forming response or the delayed hypersensitivity reaction to sheep red blood cells. Cyclophosphamide (CY), which inhibited the generation of suppressor cells, was combined with DMG in treatment of murine syngeneic tumors to obtain a higher antitumor activity. The antitumor activity of the combination against MH134 hepatoma was synergistically higher than that of either component alone. A marked antitumor effect of the combination treatment against MM46 mammary carcinoma was also shown. High levels of antitumor delayed hypersensitivity reactions were observed with this combination therapy. The possible roles of DMG and CY in this combination therapy are discussed.

  2. Immunological tumor destruction in a murine melanoma model by targeted LTalpha independent of secondary lymphoid tissue

    DEFF Research Database (Denmark)

    Schrama, D.; Voigt, H.; Eggert, A.O.

    2008-01-01

    BACKGROUND: We previously demonstrated that targeting lymphotoxin alpha (LTalpha) to the tumor evokes its immunological destruction in a syngeneic B16 melanoma model. Since treatment was associated with the induction of peritumoral tertiary lymphoid tissue, we speculated that the induced immune...... response was initiated at the tumor site. METHODS AND RESULTS: In order to directly test this notion, we analyzed the efficacy of tumor targeted LTalpha in LTalpha knock-out (LTalpha(-/-)) mice which lack peripheral lymph nodes. To this end, we demonstrate that tumor-targeted LTalpha mediates the induction...... of specific T-cell responses even in the absence of secondary lymphoid organs. In addition, this effect is accompanied by the initiation of tertiary lymphoid tissue at the tumor site in which B and T lymphocytes are compartmentalized in defined areas and which harbor expanded numbers of tumor specific T cells...

  3. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system.

    Science.gov (United States)

    Kraus, Benjamin; Fischer, Katrin; Büchner, Sarah M; Wels, Winfried S; Löwer, Roswitha; Sliva, Katja; Schnierle, Barbara S

    2013-01-01

    Human endogenous retrovirus (HERV) genomes are chromosomally integrated in all cells of an individual. They are normally transcriptionally silenced and transmitted only vertically. Enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed in tumor patients and HIV-infected individuals. As HERV-K is usually not expressed and immunological tolerance development is unlikely, it is an appropriate target for the development of immunotherapies. We generated a recombinant vaccinia virus (MVA-HKenv) expressing the HERV-K envelope glycoprotein (ENV), based on the modified vaccinia virus Ankara (MVA), and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) or the HERV-K ENV gene (RLZ-HKenv cells). Intravenous injection of RLZ-HKenv cells into syngenic BALB/c mice led to the formation of pulmonary metastases, which were detectable by X-gal staining. A single vaccination of tumor-bearing mice with MVA-HKenv drastically reduced the number of pulmonary RLZ-HKenv tumor nodules compared to vaccination with wild-type MVA. Prophylactic vaccination of mice with MVA-HKenv precluded the formation of RLZ-HKenv tumor nodules, whereas wild-type MVA-vaccinated animals succumbed to metastasis. Protection from tumor formation correlated with enhanced HERV-K ENV-specific killing activity of splenocytes. These data demonstrate for the first time that HERV-K ENV is a useful target for vaccine development and might offer new treatment opportunities for diverse types of cancer.

  4. Development of cell-cycle checkpoint therapy for solid tumors.

    Science.gov (United States)

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. BRAF mutation testing in solid tumors: a methodological comparison.

    Science.gov (United States)

    Weyant, Grace W; Wisotzkey, Jeffrey D; Benko, Floyd A; Donaldson, Keri J

    2014-09-01

    Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    Energy Technology Data Exchange (ETDEWEB)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India); Majumdar, Subrata [Bose Institute, Division of Molecular Medicine (India); Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour University, Pharmaceutical Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2013-11-15

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  7. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  8. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    International Nuclear Information System (INIS)

    Cabrales, Luis E Bergues; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio

    2010-01-01

    Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice

  9. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    Science.gov (United States)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  10. Molecular events in the induction of murine tumors by ionizing radiation

    International Nuclear Information System (INIS)

    Andrews, K.L.

    1993-01-01

    A new method is presented to identify and clone novel transforming genes from radiation-induced tumors. It involves the creation of a cDNA expression library from radiation-induced tumors. The library is transfected into non-transformed cells, and the nude mouse tumorigenicity assay functionally defines the acquisition of a transformed phenotype. cDNA clones responsible for transformation are rescued by PCR amplification. This method is applicable to a variety of mammalian systems. The only requirement is a functional assay with which to measure the acquisition of an altered phenotype following transfection of a cDNA library. This method has identified a cDNA for the 16 kD subunit of v-H + -ATPase, which has been associated with cellular transformation. Two protocols were used to generate radiation-induced tumors. One experiment utilizing fractionated doses of ionizing radiation had a much greater tumor yield than the second protocol using a single dose of 11.25 Gy. To determine if the mechanism of gene activation is different in radiation- and chemically-induced tumors, the expression pattern of five tumor-associated genes was analyzed. The expression patterns of mals 1-4 were not significantly different. However, transin, a secreted protease, was overexpressed in radiation-induced papillomas and undetectable in chemically-induced papillomas. Transin degrades basement membrane proteins and may be involved in the progression of benign, encapsulated tumors to malignant, invasive squamous cell carcinomas. Isolation and characterization of genes with dominant transforming activity from radiation-induced tumors will provide information to bridge the gap between the initial ionizing radiation event and the subsequent development of malignant tumors. The function of these genes may also provide information about the development of human malignancies. An understanding the natural biology of cells will help elucidate the pathogenesis cancer and other diseases

  11. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    Science.gov (United States)

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  12. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    Seong, J. S.

    1997-01-01

    To analyze the involvement of apoptosis regulatory genes p53, p21 waf1/cip1 , bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21 waf1/cip1 , and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21 waf1/cip1 , although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21 waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21 waf1/cip1 . These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  13. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J S [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Hunter, N R; Milas, L [Texas Univ., Houston, TX (United States)

    1997-09-01

    To analyze the involvement of apoptosis regulatory genes p53, p21{sup waf1/cip1}, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21{sup waf1/cip1}, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21{sup waf1/cip1}, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21{sup waf1/cip1} as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21{sup waf1/cip1}. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author).

  14. HLA-mismatched hematopoietic stem cell tranplantation for pediatric solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea Pession

    2011-06-01

    Full Text Available Even if the overall survival of children with cancer is significantly improved over these decades, the cure rate of high-risk pediatric solid tumors such as neuroblastoma, Ewing’s sarcoma family tumors or rhabdomiosarcoma remain challenging. Autologous hematopoietic stem cell transplantation (HSCT allows chemotherapy dose intensification beyond marrow tolerance and has become a fundamental tool in the multimodal therapeutical approach of these patients. Anyway this procedure does not allow to these children an eventfree survival approaching more than 50% at 5 years. New concepts of allogeneic HSCT and in particular HLA-mismatched HSCT for high risk solid tumors do not rely on escalation of chemo therapy intensity and tumor load reduction but rather on a graft-versus-tumor effect. We here report an experimental study design of HLA-mismatched HSCT for the treatment of pediatric solid tumors and the inherent preliminary results.

  15. Impact of MR-guided boiling histotripsy in distinct murine tumor models.

    Science.gov (United States)

    Hoogenboom, Martijn; Eikelenboom, Dylan C; van den Bijgaart, Renske J E; Heerschap, Arend; Wesseling, Pieter; den Brok, Martijn H; Fütterer, Jurgen J; Adema, Gosse J

    2017-09-01

    Interest in mechanical high intensity focused ultrasound (HIFU) ablation is rapidly growing. Boiling histotripsy (BH) is applied for mechanical fragmentation of soft tissue into submicron fragments with limited temperature increase using the shock wave and cavitation effects of HIFU. Research on BH has been largely limited to ex vivo experiments. As a consequence, the in vivo pathology after BH treatment and the relation to preexistent tissue characteristics are not well understood. This study reports on in vivo MR guided BH treatment, either with 100 or 200 pulses per focal spot, in three different subcutaneous mouse tumor models: a soft-tissue melanoma (B16OVA), a compact growing thymoma (EL4), and a highly vascularized neuroblastoma (9464D). Extensive treatment evaluation was performed using MR imaging followed by histopathology 2h after treatment. T2 weighted MRI allowed direct in vivo visualization of the BH lesions in all tumor models. The 100-pulse treated area in the B16OVA tumors was larger than the predicted treatment volume (500±10%). For the more compact growing EL4 and 9464D tumors this was 95±13% and 55±33%, respectively. Histopathology after the 100-pulse treatment revealed completely disintegrated lesions in the treated area with sharp borders in the compact EL4 and 9464D tumors, while for B16OVA tumors the lesion contained a mixture of discohesive (partly viable) clusters of cells, micro-vessel remainings, and tumor cell debris. The treatment of B16OVA with 200 pulses increased the fragmentation of tumor tissue. In all tumor types only micro-hemorrhages were detected after ablation (slightly higher after 200-pulse treatment for the highly vascularized 9464D tumors). Collagen staining revealed that the collagen fibers were to a greater or lesser extent still intact and partly clotted together near the lesion border in all tumor models. In conclusion, this study reveals effective mechanical fragmentation of different tumor types using BH without

  16. Characterization of TEM1/endosialin in human and murine brain tumors

    International Nuclear Information System (INIS)

    Carson-Walter, Eleanor B; Walter, Kevin A; Winans, Bethany N; Whiteman, Melissa C; Liu, Yang; Jarvela, Sally; Haapasalo, Hannu; Tyler, Betty M; Huso, David L; Johnson, Mahlon D

    2009-01-01

    TEM1/endosialin is an emerging microvascular marker of tumor angiogenesis. We characterized the expression pattern of TEM1/endosialin in astrocytic and metastatic brain tumors and investigated its role as a therapeutic target in human endothelial cells and mouse xenograft models. In situ hybridization (ISH), immunohistochemistry (IH) and immunofluorescence (IF) were used to localize TEM1/endosialin expression in grade II-IV astrocytomas and metastatic brain tumors on tissue microarrays. Changes in TEM1/endosialin expression in response to pro-angiogenic conditions were assessed in human endothelial cells grown in vitro. Intracranial U87MG glioblastoma (GBM) xenografts were analyzed in nude TEM1/endosialin knockout (KO) and wildtype (WT) mice. TEM1/endosialin was upregulated in primary and metastatic human brain tumors, where it localized primarily to the tumor vasculature and a subset of tumor stromal cells. Analysis of 275 arrayed grade II-IV astrocytomas demonstrated TEM1/endosialin expression in 79% of tumors. Robust TEM1/endosialin expression occurred in 31% of glioblastomas (grade IV astroctyomas). TEM1/endosialin expression was inversely correlated with patient age. TEM1/endosialin showed limited co-localization with CD31, αSMA and fibronectin in clinical specimens. In vitro, TEM1/endosialin was upregulated in human endothelial cells cultured in matrigel. Vascular Tem1/endosialin was induced in intracranial U87MG GBM xenografts grown in mice. Tem1/endosialin KO vs WT mice demonstrated equivalent survival and tumor growth when implanted with intracranial GBM xenografts, although Tem1/endosialin KO tumors were significantly more vascular than the WT counterparts. TEM1/endosialin was induced in the vasculature of high-grade brain tumors where its expression was inversely correlated with patient age. Although lack of TEM1/endosialin did not suppress growth of intracranial GBM xenografts, it did increase tumor vascularity. The cellular localization of TEM1

  17. Evaluation of In-111 DTPA-paclitaxel scintigraphy to predict response on murine tumors to paclitaxel

    International Nuclear Information System (INIS)

    Inoue, Tomio; Li, C.; Yang, D.J.

    1999-01-01

    Our goal was to determine whether scintigraphy with 111 In-DTPA-paclitaxel could predict the response to chemotherapy with paclitaxel. Ovarian carcinoma (OCA 1), mammary carcinoma (MCA-4), fibrosarcoma (FSA) and squamous cell carcinoma (SCC VII) were inoculated into the thighs of female C3Hf/Kam mice. Mice bearing 8 mm tumors were treated with paclitaxel (40 mg/kg). The growth delay, which was defined as the time in days for tumors in the treated groups to grow from 8 to 12 mm in diameter minus the time in days for tumors in the untreated control group to reach the same size, was measured to determine the effect of paclitaxel on the tumors. Sequential scintigraphy in mice bearing 10 to 14 mm tumors was conducted at 5, 30, 60, 120, 240 min and 24 hrs postinjection of 111 In-DTPA-paclitaxel (3.7 MBq) or 111 In-DTPA as a control tracer. The tumor uptakes (% injection dose/pixel) were determined. The growth delay of OCA 1, MCA-4, FSA and SCC VII tumors was 13.6, 4.0, -0.02 and -0.28 days, respectively. In other words, OCA 1 and MCA-4 were paclitaxel-sensitive tumors, whereas FSA and SCC VII were paclitaxel-resistant tumors. The tumor uptakes at 24 hrs postinjection of In-111 DTPA paclitaxel of OCA 1, MCA-4, FSA and SCC VII were 1.0 x 10 -3 , 1.6 x 10 -3 , 2.2 x 10 -3 and 9.0 x 10 -3 % injection dose/pixel, respectively. There was no correlation between the response to chemotherapy with paclitaxel and the tumor uptakes of 111 In-DTPA-paclitaxel. Scintigraphy with 111 In-DTPA-paclitaxel could not predict the response to paclitaxel chemotherapy. Although there was significant accumulation of the paclitaxel in the tumor cells, additional mechanisms must be operative for the agent to be effective against the neoplasm. 111 In-DTPA-paclitaxel activity is apparently different from that of paclitaxel with Cremophor. (author)

  18. A Multimodal Imaging Approach for Longitudinal Evaluation of Bladder Tumor Development in an Orthotopic Murine Model.

    Directory of Open Access Journals (Sweden)

    Chantal Scheepbouwer

    Full Text Available Bladder cancer is the fourth most common malignancy amongst men in Western industrialized countries with an initial response rate of 70% for the non-muscle invasive type, and improving therapy efficacy is highly needed. For this, an appropriate, reliable animal model is essential to gain insight into mechanisms of tumor growth for use in response monitoring of (new agents. Several animal models have been described in previous studies, but so far success has been hampered due to the absence of imaging methods to follow tumor growth non-invasively over time. Recent developments of multimodal imaging methods for use in animal research have substantially strengthened these options of in vivo visualization of tumor growth. In the present study, a multimodal imaging approach was addressed to investigate bladder tumor proliferation longitudinally. The complementary abilities of Bioluminescence, High Resolution Ultrasound and Photo-acoustic Imaging permit a better understanding of bladder tumor development. Hybrid imaging modalities allow the integration of individual strengths to enable sensitive and improved quantification and understanding of tumor biology, and ultimately, can aid in the discovery and development of new therapeutics.

  19. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Science.gov (United States)

    Vilaseca, Antoni; Campillo, Noelia; Torres, Marta; Musquera, Mireia; Gozal, David; Montserrat, Josep M; Alcaraz, Antonio; Touijer, Karim A; Farré, Ramon; Almendros, Isaac

    2017-01-01

    We investigate the effects of intermittent hypoxia (IH), a characteristic feature of obstructive sleep apnea (OSA), on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50) of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF) and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001) and circulating VEGF (p<0.001) in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  20. Intermittent hypoxia increases kidney tumor vascularization in a murine model of sleep apnea.

    Directory of Open Access Journals (Sweden)

    Antoni Vilaseca

    Full Text Available We investigate the effects of intermittent hypoxia (IH, a characteristic feature of obstructive sleep apnea (OSA, on renal cancer progression in an animal and cell model. An in vivo mouse model (Balb/c, n = 50 of kidney cancer was used to assess the effect of IH on tumor growth, metastatic capacity, angiogenesis and tumor immune response. An in vitro model tested the effect of IH on RENCA cells, macrophages and endothelial cells. Tumor growth, metastatic capacity, circulating vascular endothelial growth factor (VEGF and content of endothelial cells, tumor associated macrophages and their phenotype were assessed in the tumor. In vitro, VEGF cell expression was quantified.Although IH did not boost tumor growth, it significantly increased endothelial cells (p = 0.001 and circulating VEGF (p<0.001 in the in vivo model. Macrophages exposed to IH in vitro increased VEGF expression, whereas RENCA cells and endothelial cells did not. These findings are in keeping with previous clinical data suggesting that OSA has no effect on kidney cancer size and that the association observed between OSA and higher Fuhrman grade of renal cell carcinoma may be mediated though a proangiogenic process, with a key role of macrophages.

  1. CAR-T cells: the long and winding road to solid tumors.

    Science.gov (United States)

    D'Aloia, Maria Michela; Zizzari, Ilaria Grazia; Sacchetti, Benedetto; Pierelli, Luca; Alimandi, Maurizio

    2018-02-15

    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles.

  2. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors

    Directory of Open Access Journals (Sweden)

    MIchael P. Endsley

    2015-07-01

    Full Text Available High-grade serous carcinoma (HGSC is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH. The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.

  3. Bone marrow transplantation in aplastic anemia, acute leukemia and solid tumors

    International Nuclear Information System (INIS)

    Champlin, R.; Feig, S.; Gale, R.P.

    1980-01-01

    Results of bone marrow transplantation for the treatment of aplastic anemia, acute leukemia and solid tumors in the first 141 patients treated between September 1973 and January 1980 are reviewed. Preparation for transplantation with total body irradiation is described. (Auth.)

  4. CBT-501 Study for Select Advanced or Relapsed/Recurrent Solid Tumors

    Science.gov (United States)

    2018-02-07

    Solid Tumor; Advanced Cancer; ColoRectal Cancer; Endometrial Cancer; Gastric Cancer; Hepatocellular Cancer; Nonsmall Cell Lung Cancer; Mesothelioma; Ovarian Cancer; Renal Cancer; Nasopharyngeal Cancer; Esophageal Cancer; Gastroesophageal Junction Adenocarcinoma

  5. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  6. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  7. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  8. Nutritional status changes in children with malignant solid tumor before and after chemotherapy

    OpenAIRE

    Boris Januar; Sri S Nasar; Rulina Suradi; Maria Abdulsalam

    2016-01-01

    Background Although aggressive multimodal treatment programs in childhood cancer have significantly increased survival rates, the morbidity caused by protein energy malnutrition related to therapy is still high. Objective To describe nutritional status changes in children with malignant solid tumors after 21 days of chemotherapy. Methods A descriptive prospective study with pre- and post-test design in children with malignant solid tumors was conducted in the Departmen...

  9. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  10. Combined effect of radiation and YM-881 (SMANCS) on murine tumors and bone marrow

    International Nuclear Information System (INIS)

    Ono, K.; Wandl, E.; Sasai, K.; Tsutsui, K.; Shibamoto, Y.; Takahashi, M.; Abe, M.; Vienna Univ.

    1990-01-01

    The combined effect of radiation and YM-881 (SMANCS) was studied in vitro and in vivo. When 0.25 μg/ml of YM-881 was simultaneously combined with radiation, during and after irradiation for 30 min in total, D q decreased from 3.3 Gy to 1.4 Gy without changing D 0 in the dose-survival curve of exponentially growing SCC VII tumor cells. Five or ten times administrations of 0.1 mg/kg YM-881 at an interval of 24 h did not inhibit tumor growth. However, administration of 0.1 mg/kg YM-881 just before every irradiation which was repeated five times at an interval of 24 h yielded dose modifying factors (DMFs) of 1.8-1.2 when the tumor response to treatment was evaluated by the time for the tumors to regrow to three times the original volume. Administration of YM-881 ten times just before every irradiation yielded DMFs of 1.3-1.2. Adverse effects of the combination on bone marrow were examined by spleen colony assay. After five injections of 0.1 mg/kg YM-881, the mean number of CFU-S per femur decreased to 77% of the pretreatment level, but this was not significant statistically (0.1>p>0.05). The slope of radiation response curve for CFU-S per femur was not affected by the combination. (orig.)

  11. Targeted drug delivery and penetration into solid tumors.

    Science.gov (United States)

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  12. Angiogenesis and anti-angiogenesis: Perspectives for the treatment of solid tumors

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Collen, A.; Koolwijk, P.

    1999-01-01

    Angiogenesis is the formation of new blood vessels from preexisting ones. Many solid tumors depend on an extensive newly formed vascular network to become nourished and to expand. Tumor cells induce the formation of an extensive but aberrant vascular network by the secretion of angiogenic factors. A

  13. Approaches to drug resistance in solid tumors : with emphasis on lung cancer

    NARCIS (Netherlands)

    Bakker, Marleen

    2005-01-01

    De novo or acquired resistance of tumor cells to anticancer agents remains a major problem for the therapeutic efficacy of chemotherapeutic drugs. Most solid tumors are intrinsically insensitive or acquire resistance after initial response to chemotherapy. Different mechanisms seem to play a role in

  14. Molecular mechanism behind the synergistic activity of diphenylmethyl selenocyanate and Cisplatin against murine tumor model.

    Science.gov (United States)

    Chakraborty, Pramita; Roy, Somnath Singha; Bhattacharya, Sudin

    2015-01-01

    Various preclinical, clinical and epidemiological studies have already well established the cancer chemopreventive and chemoprotective potential of selenium compounds. In addition to its protective efficacy, recent studies have also proved the abilities of selenium compounds to induce cell death specifically in malignant cells. Therefore, our intention is to improve the therapeutic efficacy of an alkylating agent, cisplatin, by the adjuvant use of an organoselenium compound, diphenylmethyl selenocyanate (DMSE). It was observed that combined treatment decreased the tumor burden significantly through reactive oxygen species generation and modulation of antioxidant and detoxifying enzyme system in tumor cells. These activities ultimately led to significant DNA damage and apoptosis in tumor cells. Study of the molecular pathway disclosed that the adjuvant treatment caused induction of p53, Bax and suppressed Bcl-2 followed by the activation of caspase cascade. Furthermore, a concomitant decrease in cisplatin-induced nephrotoxicity and hematopoietic toxicity by DMSE might also have enhanced the efficacy of cisplatin and provided survival advantage to the host. Results suggested that the combination treatment with DMSE and cisplatin may offer potential therapeutic benefit, and utilization of cisplatin in cancer chemotherapy exempt of its limitations.

  15. Effect of fractionated radiotherapy using a hypoxic cell radiosensitizer, RK-28, on experimental murine tumor

    International Nuclear Information System (INIS)

    Tanaka, Shukaku

    1990-01-01

    The effect of a hypoxic cell radiosensitizer RK-28, on fractionated radiotherapy was studied using mice with implanted tumors. Experimental animal tumors were third generation isoplants of a mammary carcinoma which arose spontaneously in a C 3 H/He mouse. RK-28 was given to the mice at two dosages: 0.4 mg/g,b.wt. and 0.2 mg/g.b.wt. Total dose of irradiation was 20 Gy which was divided into the first 10 Gy irradiation and the second 10 Gy performed after a proper time interval such as 1, 24, 48 and 72 hours after the first 10 Gy irradiation. Tumor growth was evaluated by TGT 50 /3 times, which was defined as the time required for 50% of the tumors to regrow to the 3 times value of its initial volume. Tumor volume was measured every day and TGT 50 /3 times was calculated by logit analysis method. No significant differences were found in the TGT 50 /3 times among the groups treated by radiation alone, those treated by RK-administration alone and those without any treatment. TGT 50 value of control group without any treatment was 3.40 (days). TGT 50 value of another group treated by RK-28 alone was 3.46. and TGT 50 value of 20 Gy X-ray irradiation alone was 10.23. Under the fractionated X-ray irradiation alone, TGT 50 values of the various time interval such as 9, 14, 48 and 72 hours were 11.26, 10.42, 12.14 and 1.10. Under the combined treatment of the fractionated X-ray irradiation and RK-28 administration, TGT 50 values were 17.84, 16.42, 16.59 and 17.49. These TGT 50 /3 times values showed that RK-28 had a radiosensitizing effect when given with fractionated radiotherapy even at lower doses of RK-28 administration and radiation. Therefore, it was suggested that fractionated radiotherapy using RK-28 was useful in the cancer treatment. (author) 52 refs

  16. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    OpenAIRE

    Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal),...

  17. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    Science.gov (United States)

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  18. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.

    Science.gov (United States)

    Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J

    2015-11-01

    Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  20. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  1. New Strategies for the Treatment of Solid Tumors with CAR-T Cells.

    Science.gov (United States)

    Zhang, Hao; Ye, Zhen-Long; Yuan, Zhen-Gang; Luo, Zheng-Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2016-01-01

    Recent years, we have witnessed significant progresses in both basic and clinical studies regarding novel therapeutic strategies with genetically engineered T cells. Modification with chimeric antigen receptors (CARs) endows T cells with tumor specific cytotoxicity and thus induce anti-tumor immunity against malignancies. However, targeting solid tumors is more challenging than targeting B-cell malignancies with CAR-T cells because of the histopathological structure features, specific antigens shortage and strong immunosuppressive environment of solid tumors. Meanwhile, the on-target/off-tumor toxicity caused by relative expression of target on normal tissues is another issue that should be reckoned. Optimization of the design of CAR vectors, exploration of new targets, addition of safe switches and combination with other treatments bring new vitality to the CAR-T cell based immunotherapy against solid tumors. In this review, we focus on the major obstacles limiting the application of CAR-T cell therapy toward solid tumors and summarize the measures to refine this new cancer therapeutic modality.

  2. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery.

    Science.gov (United States)

    Sydor, R I; Khranovska, N M; Skachkova, O V; Skivka, L M

    2016-01-01

    We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P dexketoprofen against (50.2 ± 3.3)% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  3. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  4. Cytogenetics of solid tumors Revisión de tema Citogenética de tumores sólidos

    Directory of Open Access Journals (Sweden)

    José Luis Ramírez Castro

    2002-02-01

    Full Text Available Cytogenetic analysis of tumors has provided valuable information on the biology of cancer. It has been established that more than half of solid tumors show chromosomal anomalies; therefore, cytogenetic analysis is of great usefulness for diagnostic and prognostic purposes. Identification of recurrent chromosomal anomalies in numerous tumors has been considered as an indicador of clinical importance. Cytogenetic studies in tissue tumors have revealed near 100,000 clonal chromosome abnormalities belonging to more that 30,000 human neoplasms. However, due to technical difficulties in cell cultures, only one third of solid tumors have been cytogenetically characterized. Conventional cytogenetics has been very useful for molecular characterization of new oncogenes and tumor-suppressor genes involved in human tumorigenesis. In this review, some important issues related with tumors of chromosomal etiology, the diverse types of chromosomal anomalies with their frequencies, modern diagnostic techniques as well as their impact on the diagnosis and prognosis of cancer are presented. EL análisis citogenético de tumores ha proporcionado valiosa información sobre la biología del cáncer. Se ha establecido que más de la mitad de los tumores sólidos presentan alteraciones cromosómicas; por lo tanto, el análisis citogenético es de gran utilidad para el diagnóstico y el pronóstico. La identificación de cambios cromosómicos específicos recurrentes en numerosos tumores se considera un indicador de importancia clínica. Los estudios en este campo han revelado cerca de 100.000 alteraciones cromosómicas en más de 30.000 neoplasias humanas. Sin embargo, los tumores sólidos son los menos caracterizados citogenéticamente, sólo una tercera parte del total de ellos, debido a problemas técnicos en los cultivos celulares. La citogenética convencional ha sido muy útil para la posterior caracterización molecular de nuevos oncogenes y genes supresores de

  5. Uptake of labelled tallysomycin by solid Ehrlich ascites tumors in mice

    International Nuclear Information System (INIS)

    Liniecki, J.; Rembelska, M.; Koniarek, B.

    1983-01-01

    Tumor and normal tissue uptake of 51 Cr- or 57 Co-labelled bleomycin (BLEO) and tallysomycin (TLM) was compared in female solid Ehrlich ascites tumor mice of Swiss strain. The complexes were administered intraperitoneally: 30-50 μg of each complex with an activity of 40-120 μCi. Activity distribution factors (ADF) and tumor/non-tumor ratios for blood, bone, skeletal muscles, kidneys and liver were determined. The ratios were generally higher for complexes labelled with 57 Co than for the 51 Cr-labelled ones; bleomycin appears equivalent or superior to tallysomycin. (orig.) [de

  6. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    Science.gov (United States)

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  7. Nanobody-based cancer therapy of solid tumors

    NARCIS (Netherlands)

    Kijanka, Marta|info:eu-repo/dai/nl/328212792; Dorresteijn, Bram|info:eu-repo/dai/nl/31401635X; Oliveira, Sabrina; van Bergen en Henegouwen, Paul M P|info:eu-repo/dai/nl/071919481

    The development of tumor-targeted therapies using monoclonal antibodies has been successful during the last 30 years. Nevertheless, the efficacy of antibody-based therapy is still limited and further improvements are eagerly awaited. One of the promising novel developments that may overcome the

  8. Endoscopic ultrasound-guided radiofrequency ablation for management of benign solid pancreatic tumors.

    Science.gov (United States)

    Choi, Jun-Ho; Seo, Dong-Wan; Song, Tae Jun; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2018-05-04

     Radiofrequency ablation (RFA) has been increasingly employed in experimental and clinical settings for the management of pancreatic lesions. This study aimed to assess the safety and efficacy of endoscopic ultrasound (EUS)-guided RFA for benign solid pancreatic tumors.  In a single-center, prospective study, 10 patients with benign solid pancreatic tumors underwent EUS-RFA. After the RFA electrode had been inserted into the pancreatic mass, the radiofrequency generator was activated to deliver 50 W of ablation power.  Among the 10 patients, 16 sessions of EUS-RFA were successfully performed. Diagnoses included nonfunctioning neuroendocrine tumor (n = 7), solid pseudopapillary neoplasm (n = 2), and insulinoma (n = 1); the median largest diameter of the tumors was 20 mm (range 8 - 28 mm). During follow-up (median 13 months), radiologic complete response was achieved in seven patients. Two adverse events (12.4 %; 1 moderate and 1 mild) occurred.  EUS-RFA may be a safe and potentially effective treatment option in selected patients with benign solid pancreatic tumors. Multiple sessions may be required if there is a remnant tumor, and adverse events must be carefully monitored. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    International Nuclear Information System (INIS)

    Liu, Ying; Zhou, Mei; Luo, Dan; Wang, Lijun; Hong, Yuankai; Yang, Yepeng; Sha, Yinlin

    2012-01-01

    Highlights: ► New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. ► Bifidobacterium bifidum delivery system has intrinsic biocompatibility. ► The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  10. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Zhou, Mei [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Luo, Dan; Wang, Lijun; Hong, Yuankai [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Yang, Yepeng, E-mail: yangyepeng@bjmu.edu.cn [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Sha, Yinlin, E-mail: shyl@hsc.pku.edu.cn [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Biomed-X Center, Peking University, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. Black-Right-Pointing-Pointer Bifidobacterium bifidum delivery system has intrinsic biocompatibility. Black-Right-Pointing-Pointer The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  11. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  12. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  13. Solid and papillary epithelial tumor of the pancreas

    International Nuclear Information System (INIS)

    Vega, Alejandro de la; Eyheremendy, Eduardo; Mondello, Eduardo; Florenzano, Nestor

    2001-01-01

    We report a case of a teenage female patient who presented upper abdominal pain and bilious vomiting. Laboratory analysis, abdominal ultrasound and contrast enhanced CT was performed. On the bases of these results she underwent a corporocaudal pancreatectomy. Pathology studied with immunohistochemical test, showed a solid and papillary epithelial neoplasm of the pancreas, which is an unusual disease. (author)

  14. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Some epidemiological and clinical characteristics of solid malignant tumors in children from Las Tunas

    Directory of Open Access Journals (Sweden)

    Silvio Laffita Estévez

    2015-11-01

    Full Text Available Background: cancer has kept up as the second cause of death in Las Tunas pediatric population.Objective: to characterize clinical and epidemiological variables of the cases diagnosed with solid malignant tumors in children seen and treated in the onco-pediatric consultation of “Mártires de Las Tunas” Pediatric Hospital from 2010 to 2014.Methods: a descriptive and retrospective study was carried out in 62 patients with solid malignant tumors in the pediatric population of Las Tunas province, from January, 2010 to December, 2014. The variables considered were: presumptive diagnosis, age, family history of tumors, clinical signs of alarm related to the tumor at the moment of diagnosis and investigations to confirm the diagnosis.  Results: non-Hodgkin lymphoma was the most frequently diagnosed tumor, with a 19, 35% of the patients. The most affected age group was between 11 and 14 years old, with a 33, 87%. The 16, 13% of the patients had family history of solid malignant tumors. The most frequent form of presentation was the abdominal tumor, with 29, 03 %. Abdominal ultrasound and computerized axial tomography were the most used complementary diagnostic means, both in the 17, 74% of the patients. Biopsy was used to confirm the 96, 77% of the cases.Conclusions: the clinical and epidemiological variables were characterized in pediatric patients diagnosed with solid malignant tumors in Las Tunas. Children between 11 and 14 years old and family history of malignant tumors were the most significant findings.

  16. The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tayebeh Hamzehloie

    2012-03-01

    Full Text Available The gene TP53 (also known as protein 53 or tumor protein 53, encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2 protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclin dependent kinase 2 (cdk2 by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1.

  17. Photothermal Therapy Using Gold Nanorods and Near-Infrared Light in a Murine Melanoma Model Increases Survival and Decreases Tumor Volume

    Directory of Open Access Journals (Sweden)

    Mary K. Popp

    2014-01-01

    Full Text Available Photothermal therapy (PTT treatments have shown strong potential in treating tumors through their ability to target destructive heat preferentially to tumor regions. In this paper we demonstrate that PTT in a murine melanoma model using gold nanorods (GNRs and near-infrared (NIR light decreases tumor volume and increases animal survival to an extent that is comparable to the current generation of melanoma drugs. GNRs, in particular, have shown a strong ability to reach ablative temperatures quickly in tumors when exposed to NIR light. The current research tests the efficacy of GNRs PTT in a difficult and fast growing murine melanoma model using a NIR light-emitting diode (LED light source. LED light sources in the NIR spectrum could provide a safer and more practical approach to photothermal therapy than lasers. We also show that the LED light source can effectively and quickly heat in vitro and in vivo models to ablative temperatures when combined with GNRs. We anticipate that this approach could have significant implications for human cancer therapy.

  18. Maternal and Birth Characteristics and Childhood Embryonal Solid Tumors: A Population-Based Report from Brazil.

    Science.gov (United States)

    de Paula Silva, Neimar; de Souza Reis, Rejane; Garcia Cunha, Rafael; Pinto Oliveira, Júlio Fernando; Santos, Marceli de Oliveira; Pombo-de-Oliveira, Maria S; de Camargo, Beatriz

    2016-01-01

    Several maternal and birth characteristics have been reported to be associated with an increased risk of many childhood cancers. Our goal was to evaluate the risk of childhood embryonal solid tumors in relation to pre- and perinatal characteristics. A case-cohort study was performed using two population-based datasets, which were linked through R software. Tumors were classified as central nervous system (CNS) or non-CNS-embryonal (retinoblastoma, neuroblastoma, renal tumors, germ cell tumors, hepatoblastoma and soft tissue sarcoma). Children aged birth anomalies were independent risk factors. Among children diagnosed older than 24 months of age, cesarean section (CS) was a significant risk factor. Five-minute Apgar ≤8 was an independent risk factor for renal tumors. A decreasing risk with increasing birth order was observed for all tumor types except for retinoblastoma. Among children with neuroblastoma, the risk decreased with increasing birth order (OR = 0.82 (95% CI 0.67-1.01)). Children delivered by CS had a marginally significantly increased OR for all tumors except retinoblastoma. High maternal education level showed a significant increase in the odds for all tumors together, CNS tumors, and neuroblastoma. This evidence suggests that male gender, high maternal education level, and birth anomalies are risk factors for childhood tumors irrespective of the age at diagnosis. Cesarean section, birth order, and 5-minute Apgar score were risk factors for some tumor subtypes.

  19. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Dolores Hernán Pérez de la Ossa

    Full Text Available Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9-Tetrahydrocannabinol (THC and Cannabidiol (CBD - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  20. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps☆

    OpenAIRE

    Beatty, Gregory L.; O’Hara, Mark

    2016-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promise in CD19 expressing hematologic malignancies, but how to translate this success to solid malignancies remains elusive. Effective translation of CAR T cells to solid tumors will require an understanding of potential therapeutic barriers, including factors that regulate CAR T cells expansion, persistence, trafficking, and fate within tumors. Herein, we describe the current state of CAR T cells in solid tumors; define key barriers t...

  1. Molecular mechanisms for synergistic effect of proteasome inhibitors with platinum-based therapy in solid tumors.

    Science.gov (United States)

    Chao, Angel; Wang, Tzu-Hao

    2016-02-01

    The successful development of the proteasome inhibitor bortezomib as an anticancer drug has improved survival in patients with multiple myeloma. With the emergence of the newly US Food and Drug Administration-approved proteasome inhibitor carfilzomib, ongoing trials are investigating this compound and other proteasome inhibitors either alone or in combination with other chemotherapy drugs. However, in solid tumors, the efficacy of proteasome inhibitors has not lived up to expectations. Results regarding the potential clinical efficacy of bortezomib combined with other agents in the treatment of solid tumors are eagerly awaited. Recent identification of the molecular mechanisms (involving apoptosis and autophagy) by which bortezomib and cisplatin can overcome chemotherapy resistance and sensitize tumor cells to anticancer therapy can provide insights into the development of novel therapeutic strategies for patients with solid malignancies. Copyright © 2016. Published by Elsevier B.V.

  2. Analysis of the value of imaging in diagnosing pancreatic solid-pseudopapillary tumor

    International Nuclear Information System (INIS)

    Sun Canhui; Li Ziping; Meng Quanfei; Feng Shiting; Fan Miao; Peng Zhenpeng

    2007-01-01

    Objective: To describe the imaging features of solid-pseudopapillary tumor of the pancreas(SPTP) and evaluate the value of imaging in diagnosing SPTP. Methods: The imaging appearances in seven cases of SPTP confirmed by surgery and pathology were analyzed retrospectively. The un-enhanced and biphasic enhanced CT scanning were per- formed on all seven cases, including gastrointestinal barium meal series on three cases, endoscopic ultrasonography (EUS) on three cases, and MRI on one case. Results All tumors presented well-encapsulated heterogeneous soft tissue mass with varying degrees of solid and cystic components. Barium meal examination showed displaced gastrointestinal wall due to the tumoral compression. EUS demonstrated hyper-echoic mass with scattered small anechoic areas within the tumor. The tumor capsules were hyper-echoic. On un-enhanced CT, the mass appeared hypo-dense with mixed solid and cystic portions in six cases, and with predominantly cystic portion in one case. Calcification appeared in two cases. On biphasic enhanced CT, the mass showed peripheral and heterogeneous enhancement. Three tumors showed marked enhancement, and four tumors showed mild enhancement. Multiple small vessels within the tumor revealed on the arterial phase scanning in one case. The tumor capsules showed discontinuous enhancement in three cases. On T 1 WI, the mass appeared heterogeneous and predominantly isodense. On T 2 WI, the mass appeared heterogeneous and predominantly hyper-dense. The tumor capsule was hypo-dense on T 1 WI and T 2 WI. The mild dilatation of the biliary tract and pancreatic duct was revealed in two cases, respectively. Conclusion: Both CT and MRI can describe characteristic features of SPTP well, and should be used as the main diagnostic methods for SPTP before operation. (authors)

  3. Pregnancy following Radical Resection of Solid Pseudopapillary Tumor of the Pancreas

    Directory of Open Access Journals (Sweden)

    James M. O’Brien

    2014-01-01

    Full Text Available Solid pseudopapillary tumor of the pancreas is a rare tumor seen in predominately young women and carries a low malignant potential. We discuss a patient, who presented to our high risk clinic, with a clinical history of solid pseudopapillary tumor of the pancreas, predating her pregnancy. The patient had undergone previous surgery and imaging which had excluded recurrence of disease; however, increased attention was paid to the patient during her pregnancy secondary to elevated hormonal levels of progesterone, which any residual disease would have a heightened sensitivity to. In cases of pregnant patients with a history of pancreatic tumors, a multidisciplinary approach with maternal fetal medicine, medicine, and general surgery is appropriate and can result in a healthy mother and healthy term infant.

  4. Albumin-bound paclitaxel in solid tumors: clinical development and future directions.

    Science.gov (United States)

    Kundranda, Madappa N; Niu, Jiaxin

    2015-01-01

    Albumin-bound paclitaxel (nab-paclitaxel) is a solvent-free formulation of paclitaxel that was initially developed more than a decade ago to overcome toxicities associated with the solvents used in the formulation of standard paclitaxel and to potentially improve efficacy. Nab-paclitaxel has demonstrated an advantage over solvent-based paclitaxel by being able to deliver a higher dose of paclitaxel to tumors and decrease the incidence of serious toxicities, including severe allergic reactions. To date, nab-paclitaxel has been indicated for the treatment of three solid tumors in the USA. It was first approved for the treatment of metastatic breast cancer in 2005, followed by locally advanced or metastatic non-small-cell lung cancer in 2012, and most recently for metastatic pancreatic cancer in 2013. Nab-paclitaxel is also under investigation for the treatment of a number of other solid tumors. This review highlights key clinical efficacy and safety outcomes of nab-paclitaxel in the solid tumors for which it is currently indicated, discusses ongoing trials that may provide new data for the expansion of nab-paclitaxel's indications into other solid tumors, and provides a clinical perspective on the use of nab-paclitaxel in practice.

  5. Solid pseudopapillary tumor of pancreas with sickle cell trait: A rare case report

    Directory of Open Access Journals (Sweden)

    Harish S Permi

    2013-01-01

    Full Text Available Solid pseudopapillary tumor of pancreas is a rare pancreatic neoplasm affecting young women, has low malignant potential and amenable for surgical excision with good long-term survival. Sickle cell trait is benign condition, which involves one normal beta-globin chain and one HbS chain. Although it is a benign condition, individuals are prone to have rare complications that may predispose to death under certain circumstances. We report a rare coexistence of solid pseudopapillary tumor of pancreas with sickle cell trait in an 18-year-old female who underwent distal pancreatectomy with splenectomy. Histopathological examination and haemoglobin electrophoresis confirmed the diagnosis.

  6. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  7. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    International Nuclear Information System (INIS)

    Serrano, Fabiana A; Machado, Joel Jr; Santos, Edson L; Pesquero, João B; Martins, Rafael M; Travassos, Luiz R; Caires, Antonio CF; Rodrigues, Elaine G; Matsuo, Alisson L; Monteforte, Priscila T; Bechara, Alexandre; Smaili, Soraya S; Santana, Débora P; Rodrigues, Tiago; Pereira, Felipe V; Silva, Luis S

    2011-01-01

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd 2 [S (-) C 2 , N-dmpa] 2 (μ-dppe)Cl 2 } named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is

  8. Subcutaneous administration of ketoprofen delays Ehrlich solid tumor growth in mice

    Directory of Open Access Journals (Sweden)

    C.M. Souza

    2014-10-01

    Full Text Available Ketoprofen, a nonsteroidal anti-inflammatory drug (NSAID has proven to exert anti-inflammatory, anti-proliferative and anti-angiogenic activities in both neoplastic and non-neoplastic conditions. We investigated the effects of this compound on tumor development in Swiss mice previously inoculated with Ehrlich tumor cells. To carry out this study the solid tumor was obtained from cells of the ascites fluid of Ehrlich tumor re-suspended in physiological saline to give 2.5x106 cells in 0.05mL. After tumor inoculation, the animals were separated into two groups (n = 10. The animals treated with ketoprofen 0.1µg/100µL/animal were injected intraperitoneally at intervals of 24h for 10 consecutive days. Animals from the control group received saline. At the end of the experiment the mice were killed and the tumor removed. We analyzed tumor growth, histomorphological and immunohistochemical characteristics for CDC47 (cellular proliferation marker and for CD31 (blood vessel marker. Animals treated with the ketoprofen 0.1µg/100µL/animal showed lower tumor growth. The treatment did not significantly influence the size of the areas of cancer, inflammation, necrosis and hemorrhage. Moreover, lower rates of tumor cell proliferation were observed in animals treated with ketoprofen compared with the untreated control group. The participation of ketoprofen in controlling tumor malignant cell proliferation would open prospects for its use in clinical and antineoplasic therapy.

  9. Four cases of solid pseudopapillary tumors of pancreas: Imaging findings and pathological correlations

    International Nuclear Information System (INIS)

    Vargas-Serrano, Blanca; Dominguez-Ferreras, Esther; Chinchon-Espino, David

    2006-01-01

    Objective: Solid pseudopapillary tumor of the pancreas (SPTP tumor) is a rare pancreatic neoplasm with low malignant potential, which usually affects female patients in the second or third decades of life. It is a non-functional, slow-growing neoplasm that very often reaches considerable size before the first symptoms appear. Symptomatology is frequently related to tumor size. Surgical excision is usually curative in most cases. Infrequently the tumor can appear in male patients or in aged women, which can make the diagnosis more difficult. Some patients develop liver metastases in the follow-up that can be resected. Our purpose is to review the radiological and pathological findings of SPTP with emphasis on these infrequent cases. Subjects and methods: The medical records and radiological findings of patients who underwent surgery for SPTP between 2000 and 2005 were retrospectively reviewed. Study eligibility required that patients had undergone surgical resection and that a SPTP had been pathologically proved. Results: Four cases of solid pseudopapillary tumor of the pancreas were diagnosed and treated in our institution in the study period. Two of the patients, developed on follow-up liver metastases, and peritoneal, hepatic, and nodal metastases, respectively. Conclusion: Solid pseudopapillary tumors are well-encapsulated neoplasms that usually have a good prognosis after surgical excision. A malignant behavior is uncommon and in this case lymph node involvement, hepatic metastases and occasionally peritoneal invasion may also occur. Resection of liver metastases can prolong the long-term survival of the patients

  10. Solid and cystic pseudopapillary tumor of the pancreas: A case report

    Directory of Open Access Journals (Sweden)

    Milošević Bojan Z.

    2013-01-01

    Full Text Available Introduction. Solid and cystic pseudopapillary tumor of the pancreas is a rare tumor of the pancreas, for the first time described by Frantz et al. in 1959. The majority of patients are young females and most of them are asymptomatic. Case Outline. We report a case of 25-year old woman who was admitted to our institution with abdominal pain and a palpable mass in the left hypochondrial area. US and CT scan revealed a solid and cystic pseudopapillary tumor in the head of the pancreas. The patient was treated by Whipple procedure, modification Longmire-Traverso. There was no metastatic disease either in the liver or peritoneum. Histologically the tumor was diagnosed as a solid and cystic pseudopapillary tumor of the pancreas. Conclusion. The unclear pre-operative diagnoses, together with incidence of potential malignancy as well as good outcome with resection, suggest that all suspected cystic tumors of the pancreas should be resected. The exact diagnosis is based on histological findings. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. III41010

  11. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    International Nuclear Information System (INIS)

    Bonde, Anne-Katrine; Tischler, Verena; Kumar, Sushil; Soltermann, Alex; Schwendener, Reto A

    2012-01-01

    Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC). Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. Data presented here identify a novel role for macrophages in EMT

  12. In vitro anti-proliferative effect of interferon alpha in solid tumors: A potential predicative test

    International Nuclear Information System (INIS)

    Fuchsberger, N.; Kubes, M.; Kontsek, P.; Borecky, L.; Hornak, M.; Silvanova; Godal, A.; Svec, J.

    1993-01-01

    An in vitro test for the anti-proliferative effect of human leukocyte interferon (IFN-alpha) was performed in primary cultures of tumor cells obtained from 32 patients with either malignant melanoma (13), renal carcinoma (4) or bladder carcinoma (15). Our results demonstrated activity of IFN in all three groups of solid tumors. However, appreciable differences in sensitivity to anti-proliferative effect of IFN between individual tumors of the same type were found. The potential of this anti-proliferative test for prediction of treatment response in IFN-therapy is discussed. (author)

  13. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    Science.gov (United States)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  14. Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor.

    Directory of Open Access Journals (Sweden)

    Mathilda Eriksson

    Full Text Available Virus-like particles (VLPs consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV VLPs carrying the entire human Prostate Specific Antigen (PSA (PSA-MPyVLPs for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs. Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4(+ and CD8(+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4(+ and CD8(+ cells with a low induction of anti-VLP antibodies.

  15. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model.

    Science.gov (United States)

    Borgna, Vincenzo; Villegas, Jaime; Burzio, Verónica A; Belmar, Sebastián; Araya, Mariela; Jeldes, Emanuel; Lobos-González, Lorena; Silva, Verónica; Villota, Claudio; Oliveira-Cruz, Luciana; Lopez, Constanza; Socias, Teresa; Castillo, Octavio; Burzio, Luis O

    2017-07-04

    Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.

  16. Murine Polyomavirus Virus-Like Particles Carrying Full-Length Human PSA Protect BALB/c Mice from Outgrowth of a PSA Expressing Tumor

    Science.gov (United States)

    Eriksson, Mathilda; Andreasson, Kalle; Weidmann, Joachim; Lundberg, Kajsa; Tegerstedt, Karin

    2011-01-01

    Virus-like particles (VLPs) consist of capsid proteins from viruses and have been shown to be usable as carriers of protein and peptide antigens for immune therapy. In this study, we have produced and assayed murine polyomavirus (MPyV) VLPs carrying the entire human Prostate Specific Antigen (PSA) (PSA-MPyVLPs) for their potential use for immune therapy in a mouse model system. BALB/c mice immunized with PSA-MPyVLPs were only marginally protected against outgrowth of a PSA-expressing tumor. To improve protection, PSA-MPyVLPs were co-injected with adjuvant CpG, either alone or loaded onto murine dendritic cells (DCs). Immunization with PSA-MPyVLPs loaded onto DCs in the presence of CpG was shown to efficiently protect mice from tumor outgrowth. In addition, cellular and humoral immune responses after immunization were examined. PSA-specific CD4+ and CD8+ cells were demonstrated, but no PSA-specific IgG antibodies. Vaccination with DCs loaded with PSA-MPyVLPs induced an eight-fold lower titre of anti-VLP antibodies than vaccination with PSA-MPyVLPs alone. In conclusion, immunization of BALB/c mice with PSA-MPyVLPs, loaded onto DCs and co-injected with CpG, induces an efficient PSA-specific tumor protective immune response, including both CD4+ and CD8+ cells with a low induction of anti-VLP antibodies. PMID:21858228

  17. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    Energy Technology Data Exchange (ETDEWEB)

    Selle, F.; Gligorov, J. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France); Richard, S.; Khalil, A. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Alexandre, I. [Medical Oncology Department, Hospital Centre of Bligny, Briis-sous-Forges (France); Avenin, D.; Provent, S.; Soares, D.G. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Lotz, J.P. [Medical Oncology and Cellular Therapy Department, Hospital Tenon, Public Assistance Hospitals of Paris, Alliance for Cancer Research (APREC), Paris (France); Pierre & Marie Curie University (UPMC Paris VI), Paris (France)

    2014-11-04

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis.

  18. Intensive chemotherapy as salvage treatment for solid tumors: focus on germ cell cancer

    International Nuclear Information System (INIS)

    Selle, F.; Gligorov, J.; Richard, S.; Khalil, A.; Alexandre, I.; Avenin, D.; Provent, S.; Soares, D.G.; Lotz, J.P.

    2014-01-01

    Germ cell tumors present contrasting biological and molecular features compared to many solid tumors, which may partially explain their unusual sensitivity to chemotherapy. Reduced DNA repair capacity and enhanced induction of apoptosis appear to be key factors in the sensitivity of germ cell tumors to cisplatin. Despite substantial cure rates, some patients relapse and subsequently die of their disease. Intensive doses of chemotherapy are used to counter mechanisms of drug resistance. So far, high-dose chemotherapy with hematopoietic stem cell support for solid tumors is used only in the setting of testicular germ cell tumors. In that indication, high-dose chemotherapy is given as the first or late salvage treatment for patients with either relapsed or progressive tumors after initial conventional salvage chemotherapy. High-dose chemotherapy is usually given as two or three sequential cycles using carboplatin and etoposide with or without ifosfamide. The administration of intensive therapy carries significant side effects and can only be efficiently and safely conducted in specialized referral centers to assure optimum patient care outcomes. In breast and ovarian cancer, most studies have demonstrated improvement in progression-free survival (PFS), but overall survival remained unchanged. Therefore, most of these approaches have been dropped. In germ cell tumors, clinical trials are currently investigating novel therapeutic combinations and active treatments. In particular, the integration of targeted therapies constitutes an important area of research for patients with a poor prognosis

  19. Expression of membrane anchored cytokines and B7-1 alters tumor microenvironment and induces protective antitumor immunity in a murine breast cancer model.

    Science.gov (United States)

    Bozeman, Erica N; Cimino-Mathews, Ashley; Machiah, Deepa K; Patel, Jaina M; Krishnamoorthy, Arun; Tien, Linda; Shashidharamurthy, Rangaiah; Selvaraj, Periasamy

    2013-05-07

    Many studies have shown that the systemic administration of cytokines or vaccination with cytokine-secreting tumors augments an antitumor immune response that can result in eradication of tumors. However, these approaches are hampered by the risk of systemic toxicity induced by soluble cytokines. In this study, we have evaluated the efficacy of 4TO7, a highly tumorigenic murine mammary tumor cell line, expressing glycosyl phosphatidylinositol (GPI)-anchored form of cytokine molecules alone or in combination with the costimulatory molecule B7-1 as a model for potential cell or membrane-based breast cancer vaccines. We observed that the GPI-anchored cytokines expressed on the surface of tumor cells greatly reduced the overall tumorigenicity of the 4TO7 tumor cells following direct live cell challenge as evidenced by transient tumor growth and complete regression within 30 days post challenge. Tumors co-expressing B7-1 and GPI-IL-12 grew the least and for the shortest duration, suggesting that this combination of immunostimulatory molecules is most potent. Protective immune responses were also observed following secondary tumor challenge. Further, the 4TO7-B7-1/GPI-IL-2 and 4TO7-B7-1/GPI-IL-12 transfectants were capable of inducing regression of a wild-type tumor growing at a distant site in a concomitant tumor challenge model, suggesting the tumor immunity elicited by the transfectants can act systemically and inhibit the tumor growth at a distant site. Additionally, when used as irradiated whole cell vaccines, 4TO7-B7-1/GPI-IL-12 led to a significant inhibition in tumor growth of day 7 established tumors. Lastly, we observed a significant decrease in the prevalence of myeloid-derived suppressor cells and regulatory T-cells in the tumor microenvironment on day 7 post challenge with 4TO7-B7-1/GPI-IL-12 cells, which provides mechanistic insight into antitumor efficacy of the tumor-cell membrane expressed IL-12. These studies have implications in designing membrane

  20. Targeting the epidermal growth factor receptor in solid tumor malignancies

    DEFF Research Database (Denmark)

    Nedergaard, Mette K; Hedegaard, Chris J; Poulsen, Hans S

    2012-01-01

    been proposed as valid targets in many cancer therapy settings. Different strategies have been developed in order to either inhibit EGFR/EGFRvIII activity or to ablate EGFR/EGFRvIII-positive tumor cells. Drugs that inhibit these receptors include monoclonal antibodies (mAbs) that bind...... to the extracellular part of EGFR, blocking the binding sites for the EGFR ligands, and intracellular tyrosine kinase inhibitors (TKIs) that block the ATP binding site of the tyrosine kinase domain. Besides an EGFRvIII-targeted vaccine, conjugated anti-EGFR mAbs have been used in different settings to deliver lethal...... agents to the EGFR/EGFRvIII-positive cells; among these are radio-labelled mAbs and immunotoxins. This article reviews the current status and efficacy of EGFR/EGFRvIII-targeted therapies....

  1. Dynamic density functional theory of solid tumor growth: Preliminary models

    Directory of Open Access Journals (Sweden)

    Arnaud Chauviere

    2012-03-01

    Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

  2. Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models

    Energy Technology Data Exchange (ETDEWEB)

    Koonce, Nathan A. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Quick, Charles M. [Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hardee, Matthew E.; Jamshidi-Parsian, Azemat; Dent, Judith A. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Paciotti, Giulio F. [CytImmune Sciences, Rockville, Maryland (United States); Nedosekin, Dmitry [Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Dings, Ruud P.M. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Griffin, Robert J., E-mail: RJGriffin@uams.edu [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2015-11-01

    Purpose: Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. Methods and Materials: The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. Results: In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose—notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Conclusions: Our results have demonstrated that TNF-labeled gold

  3. Oral mucositis in patients treated with chemotherapy for solid tumors: a retrospective analysis of 150 cases

    NARCIS (Netherlands)

    Raber-Durlacher, J. E.; Weijl, N. I.; Abu Saris, M.; de Koning, B.; Zwinderman, A. H.; Osanto, S.

    2000-01-01

    The incidence and the severity of chemotherapy-associated oral mucositis were determined in a retrospective analysis of 150 patients with various solid tumors. In addition, possible risk factors for the development of mucositis were identified. Patients were treated with chemotherapeutic regimens

  4. Solid Pseudopapillary Tumor of the Pancreas: One Case with a Metastatic Evolution in a Caucasian Woman

    Directory of Open Access Journals (Sweden)

    Valentin Lestelle

    2015-10-01

    Full Text Available We report the case of a Caucasian woman, operated on for a solid pseudopapillary tumor of the pancreas in 2009, who recurred 4 years later with multiple liver metastases requiring liver resection. This disease is infrequent, particularly among the Caucasian population, and metastatic evolution is very rare.

  5. Solid Pseudopapillary Tumor of the Pancreas: One Case with a Metastatic Evolution in a Caucasian Woman.

    Science.gov (United States)

    Lestelle, Valentin; de Coster, Claire; Sarran, Anthony; Poizat, Flora; Delpero, Jean-Robert; Raoul, Jean-Luc

    2015-01-01

    We report the case of a Caucasian woman, operated on for a solid pseudopapillary tumor of the pancreas in 2009, who recurred 4 years later with multiple liver metastases requiring liver resection. This disease is infrequent, particularly among the Caucasian population, and metastatic evolution is very rare.

  6. Secondary solid tumors following radiation in Hodgkin's disease: experience of the Institut Gustave-Roussy

    International Nuclear Information System (INIS)

    Cosset, J.M.; Henry-Amar, M.; Dietrich, P.Y.; Socie, G.; Girinsky, T.; Hayat, M.; Tubiana, M.

    1992-01-01

    From 1961 to 1984, in the Institut Gustave-Roussy, 893 patients have been treated in Hodgkin's disease. The authors study the solid tumors that they have observed after exclusive radiotherapy and chemo-radiotherapy in order to know the radiation effect in the birth of this type of cancer

  7. Antibody or Antibody Fragments : Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    NARCIS (Netherlands)

    Xenaki, Katerina T; Oliveira, Sabrina; van Bergen En Henegouwen, Paul M P

    2017-01-01

    The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody-drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are

  8. Solid pancreatic pseudopapillary tumor managed laparoscopically: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    D. Cuccurullo

    Full Text Available Background: Solid pancreatic pseudopapillary tumors are a rare neoplasms, about 1–3% of all pancreatic neoplasms. This cancer mainly affects women between the third and fourth decade of life.They are not well known; the molecular origins represent a low degree of malignancy, in which the complete resection is curative. We report our experience with a case report of SPT in a young man. Presentation of case: Thirty-six years old male patient with a mass about 10 cm in the pancreatic tail and splenic ilum. After following CT and MR, the patient was subjected to surgery. Histophatological result was solid tumor pseudopapillary of pancreas with no pathological lymph nodes. Discussion and conclusion: Solid pseudopapillary neoplasm shows histological characteristic solid and pseudopapillary proliferation. Immunohistochemistry detects, among the causes of tumor development, a correlation between the Beta-catenin mutations, alteration of the E-cadherin. In the most cases, therapy is surgical treatment with laparoscopic. Keywords: Pancreatic pseudopapillary neoplasm, Pancreatic tumor, Laparoscopic surgery

  9. Biochemical parameters of bone metabolism in bone metastases of solid tumors (Review)

    NARCIS (Netherlands)

    Meijer, Wilhelmus; van der Veer, E; Willemse, P H

    1998-01-01

    The role of biochemical markers of bone metabolism in the diagnosis and monitoring of bone metastases in solid tumors is reviewed. Emphasis is on the recently developed markers, which may provide a more accurate quantitation of bone metabolism. In metastatic bone disease, bone formation and

  10. Tumor-targeting properties of 90Y- and 177Lu-labeled α-melanocyte stimulating hormone peptide analogues in a murine melanoma model

    International Nuclear Information System (INIS)

    Miao Yubin; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-01-01

    The purpose of this study was to compare the tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH in a murine melanoma mouse model. Methods: The in vitro properties of cellular internalization and retention of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were studied in B16/F1 murine melanoma cells. The pharmacokinetics of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were determined in B16/F1 melanoma-bearing C57 mice. Results: 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH exhibited fast cellular internalization and extended cellular retention in B16/F1 cells. High receptor-mediated tumor uptake and retention coupled with fast whole-body clearance of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were demonstrated in B16/F1 tumor-bearing C57 mice. The tumor uptakes of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH were 25.70±4.64 and 14.48±0.85 %ID/g at 2 h, and 14.09±2.73 and 17.68±3.32 %ID/g at 4 h postinjection. There was little activity accumulated in normal organs except for kidney. Conclusions: High tumor-targeting properties of 90 Y-DOTA-Re(Arg 11 )CCMSH and 177 Lu-DOTA-Re(Arg 11 )CCMSH highlighted their potential as radiopharmaceuticals for targeted radionuclide therapy of melanoma in further investigations

  11. The effect of perioperative analgesic drugs omnopon and dexketoprofen on the functional activity of immune cells in murine model of tumor surgery

    Directory of Open Access Journals (Sweden)

    R. I. Sydor

    2016-08-01

    Full Text Available We aimed to investigate the effect of perioperative analgesia with nonselective cyclooxygenase-2 inhibitor dexketoprofen and opioid drug omnopon on the functional activity of immune cells in tumor excision murine model. Lewis lung carcinoma cells were transplanted into hind paw of C57/black mice. On the 23th day tumor was removed. Analgesic drugs were injected 30 min before and once a day for 3 days after the surgery. Biological material was obtained a day before, 1 day and 3 days after the tumor removal. IFN-γ, IL-4, IL-10 and TGF-β mRNA levels in splenic cells were assessed by quantitative real-time RT-PCR. Cytotoxic activity of splenocytes was estimated by flow cytometry. We found that in splenocytes of mice received opioid analgesia IL-10 mRNA level was increased 2.3 times on day one after the surgery compared to preoperative level (P < 0.05, while in dexketoprofen group this parameter did not change. IFN-γ gene expression level on day 3 after tumor removal was 40% higher in splenocytes of dexketoprofen treated mice as compared with omnopon treated animals (P < 0.05. Cytotoxic activity of splenocytes on day 3 postsurgery was (62.2 ± 2.4% in dexketoprofen against (50.2 ± 3.3% in omnopon group. In conclusion, perioperative analgesia with cyclooxygenase inhibitor dexketoprofen in contrast to opioid analgesia with omnopon preserves higher functional activity of murine immune cells in the experimental model of tumor surgery.

  12. Hydrodynamic properties of the gonadotropin receptor from a murine Leydig tumor cell line are altered by desensitization

    International Nuclear Information System (INIS)

    Rebois, R.V.; Bradley, R.M.; Titlow, C.C.

    1987-01-01

    The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (G/sub s/). The binding of human choriogonadotropin (hGC) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H 2 O and D 2 O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (v/sub c/), sedimentation coefficient (s/sub 20,w/), and molecular weight (M/sub r/) of the detergent-solubilized hormone-receptor complex (hCG-GR). [ 125 I]hCG was bound to MLTC-1 cells under conditions that allow (37 0 C) or prevent (0 0 C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a M/sub r/ of 213,000, whereas desensitized hCG-GR had a M/sub r/ of 158,000. Deglycosylated hCG (DG-HCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. [ 125 I]DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or G/sub s/ with GR in Triton X-100 solubilized preparations. When hCG was cross-linked to GR and solubilized with sodium dodecyl sulfate (SDS), the M/sub r/ was found to be 116,000, which was similar to that determined by SDS-polyacrylamide gel electrophoresis and less than that of the Triton X-100 solubilized control hCG-GR

  13. Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors.

    Directory of Open Access Journals (Sweden)

    Dickson K Kirui

    Full Text Available BACKGROUND: Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs. We also determined the optimal time window at which maximal accumulation occur. RESULTS: In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm(2 amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. CONCLUSIONS: Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy.

  14. GU81, a VEGFR2 antagonist peptoid, enhances the anti-tumor activity of doxorubicin in the murine MMTV-PyMT transgenic model of breast cancer

    International Nuclear Information System (INIS)

    Lynn, Kristi D; Udugamasooriya, D Gomika; Roland, Christina L; Castrillon, Diego H; Kodadek, Thomas J; Brekken, Rolf A

    2010-01-01

    Vascular endothelial growth factor (VEGF) is a primary stimulant of angiogenesis under physiological and pathological conditions. Anti-VEGF therapy is a clinically proven strategy for the treatment of a variety of cancers including colon, breast, lung, and renal cell carcinoma. Since VEGFR2 is the dominant angiogenic signaling receptor, it has become an important target in the development of novel anti-angiogenic therapies. We have reported previously the development of an antagonistic VEGFR2 peptoid (GU40C4) that has promising anti-angiogenic activity in vitro and in vivo. In the current study, we utilize a derivative of GU40C4, termed GU81 in therapy studies. GU81 was tested alone or in combination with doxorubicin for in vivo efficacy in the MMTV-PyMT transgenic model of breast cancer. The derivative GU81 has increased in vitro efficacy compared to GU40C4. Single agent therapy (doxorubicin or GU81 alone) had no effect on tumor weight, histology, tumor fat content, or tumor growth index. However, GU81 is able to significantly to reduce total vascular area as a single agent. GU81 used in combination with doxorubicin significantly reduced tumor weight and growth index compared to all other treatment groups. Furthermore, treatment with combination therapy significantly arrested tumor progression at the premalignant stage, resulting in increased tumor fat content. Interestingly, treatment with GU81 alone increased tumor-VEGF levels and macrophage infiltration, an effect that was abrogated when used in combination with doxorubicin. This study demonstrates the VEGFR2 antagonist peptoid, GU81, enhances the anti-tumor activity of doxorubicin in spontaneous murine MMTV-PyMT breast tumors

  15. An overview of viral oncology in Italy - report from the Pavia meeting on solid tumors

    Directory of Open Access Journals (Sweden)

    Perfetti Vittorio

    2012-09-01

    Full Text Available Abstract This is a report on some of the research activities currently ongoing in Italy as outlined at the “Viruses and solid tumors” meeting jointly organized by the Oncology Sections of IRCCS Policlinico “San Matteo” (Pavia and IRCCS National Cancer Institute (Aviano, held in Pavia, Italy, on October 2011. Experts from the various disciplines involved in the study of the complex relationships between solid tumors and viruses met to discuss recent developments in the field and to report their personal contributions to the specified topics. Secondary end point was to establish a multidisciplinary work group specifically devoted to solid tumors and infectious agents, aimed to identify areas of common interest, promoting and establishing collaborative projects and programs, and to coordinate clinical and research activities. The group, which will be named IVOG (Italian Viral Oncology Group, will operate under the patronage of the various scientific societies of interest.

  16. Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors

    Science.gov (United States)

    Moeendarbari, Sina; Tekade, Rakesh; Mulgaonkar, Aditi; Christensen, Preston; Ramezani, Saleh; Hassan, Gedaa; Jiang, Ruiqian; Öz, Orhan K.; Hao, Yaowu; Sun, Xiankai

    2016-02-01

    Malignant tumors are considered “unresectable” if they are adhere to vital structures or the surgery would cause irreversible damages to the patients. Though a variety of cytotoxic drugs and radiation therapies are currently available in clinical practice to treat such tumor masses, these therapeutic modalities are always associated with substantial side effects. Here, we report an injectable nanoparticle-based internal radiation source that potentially offers more efficacious treatment of unresectable solid tumors without significant adverse side effects. Using a highly efficient incorporation procedure, palladium-103, a brachytherapy radioisotope in clinical practice, was coated to monodispersed hollow gold nanoparticles with a diameter about 120 nm, to form 103Pd@Au nanoseeds. The therapeutic efficacy of 103Pd@Au nanoseeds were assessed when intratumorally injected into a prostate cancer xenograft model. Five weeks after a single-dose treatment, a significant tumor burden reduction (>80%) was observed without noticeable side effects on the liver, spleen and other organs. Impressively, >95% nanoseeds were retained inside the tumors as monitored by Single Photon Emission Computed Tomography (SPECT) with the gamma emissions of 103Pd. These findings show that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors.

  17. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.

    Science.gov (United States)

    Jin, Rong; Guo, Xuelian; Dong, Lingli; Xie, Enyuan; Cao, Aoneng

    2017-10-01

    A group of micelles self-assembled from deoxycholic acid-doxorubicin-conjugated dextran (denoted as Dex-DCA-DOX) prodrugs were designed and prepared for pH-triggered drug release and cancer chemotherapy. These prodrugs could be successfully produced by chemically coupling hydrophobic deoxycholic acid (DCA) to dextran hydrazine (denoted as Dex-NHNH 2 ) and hydrazone linker formation between doxorubicin (DOX) and Dex-NHNH 2 . These Dex-DCA-DOX prodrugs self-assembled to form micelles under physiological conditions with varied particle sizes depending on molecular weight of dextran, degree of substitution (DS) of DCA and DOX. After optimization, Dex10k-DCA9-DOX5.5 conjugate comprising dextran of 10kDa, DCA of DS 9 and DOX loading content of 5.5wt%, formed the micelles with the smallest size (110nm). These prodrug micelles could slowly liberate DOX under physiological conditions but efficiently released the drug at an acidified endosomal pH by the hydrolysis of acid-labile hydrazone linker. In vitro cytotoxicity experiment indicated that Dex10k-DCA9-DOX5.5 micelles exerted marked antitumor activity against MCF-7 and SKOV-3 cancer cells. Besides, intravenous administration of the micelles afforded growth inhibition of SKOV-3 tumor bearing in nude mice at a dosage of 2.5mg per kg with anti-cancer efficacy comparable to free DOX-chemotherapy but low systemic toxicity. This study highlights the feasibility of bio-safe and efficient dextran-based prodrug micelles designed for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cancer stem cells in solid tumors: is 'evading apoptosis' a hallmark of cancer?

    Science.gov (United States)

    Enderling, Heiko; Hahnfeldt, Philip

    2011-08-01

    Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Maternal and Birth Characteristics and Childhood Embryonal Solid Tumors: A Population-Based Report from Brazil.

    Directory of Open Access Journals (Sweden)

    Neimar de Paula Silva

    Full Text Available Several maternal and birth characteristics have been reported to be associated with an increased risk of many childhood cancers. Our goal was to evaluate the risk of childhood embryonal solid tumors in relation to pre- and perinatal characteristics.A case-cohort study was performed using two population-based datasets, which were linked through R software. Tumors were classified as central nervous system (CNS or non-CNS-embryonal (retinoblastoma, neuroblastoma, renal tumors, germ cell tumors, hepatoblastoma and soft tissue sarcoma. Children aged <6 years were selected. Adjustments were made for potential confounders. Odds ratios (OR with 95% confidence intervals (CI were computed by unconditional logistic regression analysis using SPSS.Males, high maternal education level, and birth anomalies were independent risk factors. Among children diagnosed older than 24 months of age, cesarean section (CS was a significant risk factor. Five-minute Apgar ≤8 was an independent risk factor for renal tumors. A decreasing risk with increasing birth order was observed for all tumor types except for retinoblastoma. Among children with neuroblastoma, the risk decreased with increasing birth order (OR = 0.82 (95% CI 0.67-1.01. Children delivered by CS had a marginally significantly increased OR for all tumors except retinoblastoma. High maternal education level showed a significant increase in the odds for all tumors together, CNS tumors, and neuroblastoma.This evidence suggests that male gender, high maternal education level, and birth anomalies are risk factors for childhood tumors irrespective of the age at diagnosis. Cesarean section, birth order, and 5-minute Apgar score were risk factors for some tumor subtypes.

  20. Investigation of particle accumulation, chemosensitivity and thermosensitivity for effective solid tumor therapy using thermosensitive liposomes and hyperthermia

    NARCIS (Netherlands)

    W.J.M. Lokerse (Wouter); M. Bolkestein (Michiel); T.L.M. ten Hagen (Timo); M. de Jong (Marcel); A.M.M. Eggermont (Alexander); Grüll, H. (Holger); G.A. Koning (Gerben)

    2016-01-01

    textabstractDoxorubicin (Dox) loaded thermosensitive liposomes (TSLs) have shown promising results for hyperthermia-induced local drug delivery to solid tumors. Typically, the tumor is heated to hyperthermic temperatures (41-42 °C), which induced intravascular drug release from TSLs within the tumor

  1. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth.

    Science.gov (United States)

    Pérez-Pérez, María-Jesús; Priego, Eva-María; Bueno, Oskía; Martins, Maria Solange; Canela, María-Dolores; Liekens, Sandra

    2016-10-13

    The unique characteristics of the tumor vasculature offer the possibility to selectively target tumor growth and vascularization using tubulin-destabilizing agents. Evidence accumulated with combretastatin A-4 (CA-4) and its prodrug CA-4P support the therapeutic value of compounds sharing this mechanism of action. However, the chemical instability and poor solubility of CA-4 demand alternative compounds that are able to surmount these limitations. This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αβ-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery. In addition, dissecting the mechanism of action of CA-4 and analogues allows a closer insight into the advantages and drawbacks associated with these tubulin-destabilizing agents that behave as vascular disrupting agents (VDAs).

  2. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening

    Directory of Open Access Journals (Sweden)

    Millard M

    2017-10-01

    Full Text Available Marie Millard,1,2 Ilya Yakavets,1–3 Vladimir Zorin,3,4 Aigul Kulmukhamedova,1,2,5 Sophie Marchal,1,2 Lina Bezdetnaya1,2 1Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, 2Research Department, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France; 3Laboratory of Biophysics and Biotechnology, 4International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus; 5Department of Radiology, Medical Company Sunkar, Almaty, Kazakhstan Abstract: The increasing number of publications on the subject shows that nanomedicine is an attractive field for investigations aiming to considerably improve anticancer chemotherapy. Based on selective tumor targeting while sparing healthy tissue, carrier-mediated drug delivery has been expected to provide significant benefits to patients. However, despite reduced systemic toxicity, most nanodrugs approved for clinical use have been less effective than previously anticipated. The gap between experimental results and clinical outcomes demonstrates the necessity to perform comprehensive drug screening by using powerful preclinical models. In this context, in vitro three-dimensional models can provide key information on drug behavior inside the tumor tissue. The multicellular tumor spheroid (MCTS model closely mimics a small avascular tumor with the presence of proliferative cells surrounding quiescent cells and a necrotic core. Oxygen, pH and nutrient gradients are similar to those of solid tumor. Furthermore, extracellular matrix (ECM components and stromal cells can be embedded in the most sophisticated spheroid design. All these elements together with the physicochemical properties of nanoparticles (NPs play a key role in drug transport, and therefore, the MCTS model is appropriate to assess the ability of NP to penetrate the tumor tissue. This review presents recent developments in MCTS models for a

  3. MRI after magnetic drug targeting in patients with advanced solid malignant tumors

    International Nuclear Information System (INIS)

    Lemke, A.-J.; Senfft von Pilsach, M.-I.; Felix, R.; Luebbe, A.; Bergemann, C.; Riess, H.

    2004-01-01

    The purpose of this study was to evaluate the ability of MRI to detect magnetic particle uptake into advanced solid malignant tumors and to document the extension of these tumors, carried out in the context of magnetic drug targeting. In a prospective phase I trial, 11 patients were examined with MRI before and after magnetic drug targeting. The sequence protocol included T1-WI and T2-WI in several planes, followed by quantitative and qualitative evaluation of the signal intensities and tumor extensions. In nine patients, a signal decrease was observed in the early follow-up (2-7 days after therapy) on the T2-weighted images; two patients did not show a signal change. The signal changes in T1-WI were less distinct. In late follow-up (4-6 weeks after therapy), signal within nine tumors reached their initially normal level on both T1-WI and T2-WI; two tumors showed a slight signal decrease on T2-WI and a slight signal increase on T1-WI. Within the surveillance period, tumor remission in 3 out of 11 patients was observed, and in 5 patients tumor growth had stopped. The remaining three patients showed significant tumor growth. There was no statistically significant correlation between signal change and response. MRI is a suitable method to detect magnetite particles, deposited at the tumor site via magnetic drug targeting. MRI is therefore eligible to control the success of MDT and to assess the tumor size after the end of therapy. (orig.)

  4. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  5. Differentiation between benign and malignant solid pseudopapillary tumor of the pancreas by MDCT

    International Nuclear Information System (INIS)

    Yin, Qihua; Wang, Mingliang; Wang, Chengsheng; Wu, Zhiyuan; Yuan, Fei; Chen, Kun; Tang, Yonghua; Zhao, Xuesong; Miao, Fei

    2012-01-01

    Purpose: The purpose of this study was to determine if characteristic features on computed tomographic and (or) magnetic resonance imaging can differentiate benign and malignant solid pseudopapillary neoplasms (SPN). Materials and methods: A total of 82 pathologically diagnosed SPN patients were included. CT and MRI were reviewed by 3 radiologists. Each tumor was analyzed through the clinical and imaging features. Results: The highest occurrence of malignant SPN was observed in the group of patients (11–19 years old) followed by the group of patients (50–65 years old). When the tumor was located in the tail and the size was equal or larger than 6.0 cm, the positive and predictive value, the predictive value, sensitivity and specificity for a malignant SPN were 61.5%, 100%, 100% and 78.6%, respectively. Presence of complete encapsulation was more frequent in benign SPNs, but focal discontinuity in the malignant SPNs. Amorphous or scattered calcifications, all near-solid tumors and presence of upstream pancreatic ductal was found in the benign SPNs. Conclusion: A focal discontinuity of the capsule, large tumor size (>6.0 cm) and a pancreatic tail location may suggest malignancy of SPN. In contrast, tumors with amorphous or scattered calcifications, and all near-solid tumors may be indicative of benignancy. Age (less than 20 or more than 50 years old) is a possible risk factor of SPN. In comparison to other pancreatic neoplasms, such as ductal adenocarcinoma, a complete/incomplete pseudo-capsule, without upstream pancreatic duct dilatation and lymph nodes metastasis, and the presence of internal calcification and hemorrhage are more likely SPN.

  6. Evaluation of malignant solid tumor in childhood with FDG-PET

    International Nuclear Information System (INIS)

    Ishida, Amane; Goto, Hiroaki; Kuroki, Fumiko

    2006-01-01

    Usefulness of FDG-PET (18F-deoxyglucose PET) was examined in evaluation of diagnosis and therapeutic efficacy of childhood malignant solid tumors. Subjects were 32 patients (16 males) of the median age of 7 y (1 - 27 y), involving those with neuroblastoma (9 cases), hepatoblastoma (4), chronic granulomatous disorder (4) and others (each ≤2). They underwent 75 FDG-PET examinations for diagnosis before and during treatment in authors' hospital in the period from May 2001 to December 2003. Standard uptake value (SUV), 1 x 1 cm region of interest (ROI) of abnormally high distribution area of radioactivity in the lesion/FDG dose/kg body wt., was used for evaluation: SUV>1.5 was defined positive. In neuroblastoma, FDG was found to be highly distributed and kinetics of SUV, to be useful for evaluation of therapeutic efficacy and early metastasis detection. In some cases of hepatoblastoma, the therapeutic effectiveness and recurrence were not satisfactorily evaluative. The distribution of FDG was not satisfactory in Wilms' tumor relative to other tumors. The PET was thought to be useful, despite their small case number examined, for those evaluations of Ewing's tumor, dysgerminoma and Langerhans cell histiocytosis. Thus FDG-PET was found useful for detection, evaluation of therapeutic efficacy and early metastasis detection of pediatric malignant solid tumors. (T.I.)

  7. Solid and Cystic Tumor (SCT of the Pancreas in an Adult Man

    Directory of Open Access Journals (Sweden)

    K. Ohiwa

    1997-01-01

    Full Text Available Solid and cystic tumor (SCT of the pancreas predominantly Occurs in women, and the occurrence in men is extremely rare. We experienced a male case of SCT. A 38-year-old man was admitted with the complaint of upper abdominal pain. CT scan showed the presence of a mass in the head of the pancreas. The mass was composed of high density areas and low density areas. Ultrasonograms revealed the mass being composed of high echoic areas and low echoic areas. The mass .was hypovascular on angiography. SCT was suspected and pancreaticoduodenectomy was performed. The cut surface of the tumor showed mainly cystic degenerative areas containing dark red hemorrhagic materials. Microscopically, there were solid areas in the periphery and pseudopapillary areas in the center. No metastasis was found in the removed lymph nodes. The tumor cells were not stained by Grimelius' silver stain. The tumor cells were positive for alpha-l-antitrypsin (AAT and neuron-specific enolase (NSE. Pancreatic hormones such as insulin, glucagon, and somatostatin were all negative. Electron micrograph showed that tumor cells were rich in mitochondria. Zymogen granules and neurosecretory granules were not detected. Estrogen receptor (ER and progesterone receptor (PR were both negative.

  8. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model.

    Science.gov (United States)

    Pishali Bejestani, Elham; Cartellieri, Marc; Bergmann, Ralf; Ehninger, Armin; Loff, Simon; Kramer, Michael; Spehr, Johannes; Dietrich, Antje; Feldmann, Anja; Albert, Susann; Wermke, Martin; Baumann, Michael; Krause, Mechthild; Bornhäuser, Martin; Ehninger, Gerhard; Bachmann, Michael; von Bonin, Malte

    2017-01-01

    The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.

  9. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    Science.gov (United States)

    2015-12-01

    MDSCs facilitate tumor progression by impairing T-cell and natural killer (NK)–cell activation (9) and by modulating angiogenesis. Preclinical data...tasquinimod. Left, tumor growth curves by serial calipermeasurements. Right, tumor weights at the endpoint. B, mice were inoculated s.c. with B16...25 mg/kg) was given as daily i.v. injections on days 3 to 6. Left, tumor growth curves by serial caliper measurements. Right, end-of-treatment tumor

  10. Immunohistochemical expression of protein 53, murine double minute 2, B-cell lymphoma 2, and proliferating cell nuclear antigen in odontogenic cysts and keratocystic odontogenic tumor.

    Science.gov (United States)

    Galvão, Hebel Cavalcanti; Gordón-Núñez, Manuel Antonio; de Amorim, Rivadavio Fernandes Batista; Freitas, Roseana de Almeida; de Souza, Lelia Batista

    2013-01-01

    Even though odontogenic cysts share a similar histogenesis, they show different growth and differentiation profile due to differences in the proliferative cellular activity. We perform an immunohistochemical assessment of protein 53 (p53), proliferating cell nuclear antigen (PCNA), B-cell lymphoma 2 (bcl-2), and murine double minute 2 (MDM2) expression in odontogenic cysts and keratocystic odontogenic tumor analyzing their correlation with the biological behavior of these lesions. By the streptavidin-biotin-peroxidase method with antibodies against p53, PCNA, bcl-2, and MDM2 proteins, 11 radicular cysts, 11 dentigerous cysts, and 11 keratocystic odontogenic tumor were analyzed. The non-parametric Mann-Whitney U-test and Kruskall-Wallis test (P ≤ 0.05) were used to analyze the data. Immunopositivity for PCNA was observed in all cases appraised, predominantly in the suprabasal layer of keratocystic odontogenic tumor epithelial lining (SD ± 19.44), but no significant differences were found among the groups of lesions. Bcl-2 immunoexpression was observed especially in the basal layer of keratocystic odontogenic tumor. PCNA LI was significantly higher than bcl-2 LI in keratocystic odontogenic tumor. MDM2 and p53 immunoexpression were not detected in the lesions studied. Among the evaluated lesions, the keratocystic odontogenic tumor showed different immunoexpression of the proliferation and apoptosis markers. The results of this study suggest that the keratocystic odontogenic tumor presents distinct biological behavior of the odontogenic cysts, as for the processes of proliferation, apoptosis, and differentiation, reinforcing the information in favor of the neoplastic nature of this lesion.

  11. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review.

    LENUS (Irish Health Repository)

    Shrotriya, Shiva

    2015-01-01

    A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence.

  12. Effect of hyperthermia and misonidazole on the radiosensitivity of a transplant murine tumor: influence of factors modifying the fraction of hypoxic cells

    International Nuclear Information System (INIS)

    Wondergem, J.; Haveman, J.; van der Schueren, E.; van den Hoeven, H.; Breur, K.

    1982-01-01

    Hypoxia has been demonstrated to play an important role in the effect of hyperthermia on tumors. The influence of different factors modifying the oxygenation status of a transplantable murine mammary adenocarcinoma has been studied. The effect of hyperthermia alone on the tumor is not significantly influenced by the change in oxygenation status during the growth of the tumor. Also, the large increase of the acutely hypoxic cell fraction, as a result of anesthesia, does not change the effect of hyperthermia alone. In the combined irradiation-heat treatment there is a clear influence of the chronically hypoxic cell fraction on the response to hyperthermia: an increase in tumor size, resulting in a larger hypoxic cell fraction, leads to an increase in thermal enhancement ratio. However, the increased acutely hypoxic cell fraction, resulting from anesthesia, did not lead to an increase in thermal enhancement ratio; in fact the enhancement ratio apparently decreased. In spite of the fact that hyperthermia was applied immediately after irradiation no potentiation of radiation effects was found. The thermal enhancement of the radiation response was never larger than the enhancement as a result of misonidazole

  13. Eosinophilia in routine blood samples as a biomarker for solid tumor development

    DEFF Research Database (Denmark)

    Andersen, Christen Bertel L; Siersma, V.D.; Hasselbalch, H.C.

    2014-01-01

    eosinophilia in routine blood samples as a potential biomarker of solid tumor development in a prospective design. MATERIAL AND METHODS: From the Copenhagen Primary Care Differential Count (CopDiff) Database, we identified 356 196 individuals with at least one differential cell count (DIFF) encompassing...... was increased with mild eosinophilia [OR 1.93 (CI 1.29-2.89), p = 0.0013]. No associations with eosinophilia were observed for the remaining solid cancers. CONCLUSION: We demonstrate that eosinophilia in routine blood samples associates with an increased risk of bladder cancer. Our data emphasize...... that additional preclinical studies are needed in order to shed further light on the role of eosinophils in carcinogenesis, where it is still unknown whether the cells contribute to tumor immune surveillance or neoplastic evolution....

  14. Monitoring the effect of belinostat in solid tumors by H4 acetylation

    DEFF Research Database (Denmark)

    Marquard, L.; Petersen, K.D.; Persson, M.

    2008-01-01

    after treatment with HDAC inhibitors, and could thus be used as a marker for monitoring cellular response to HDAC inhibitor treatment. Here we describe the utility of a newly described monoclonal antibody against acetylated H4 for immunohistochemistry on paraffin-embedded fine needle biopsies from nude...... acetylation in fine needle biopsies using the T25 antibody may prove useful in monitoring HDAC inhibitor efficacy in clinical trials involving humans with solid tumors Udgivelsesdato: 2008/5...

  15. Echinococcus cysticus of the liver - sonographic pattern suggestive of solid tumor

    International Nuclear Information System (INIS)

    Grosser, G.; Hauenstein, K.H.; Henke, W.

    1985-01-01

    In a patient with Hodgkin's disease, an intrahepatic echodense mass was diagnosed incidentally by ultrasonography. The sonographic pattern suggested a solid tumor. Despite negative or borderline serology, computed tomography establised the diagnosis of echinococcus cysticus by documentation of one ''daughter'' cyst; this diagnosis was confirmed by surgery. The criteria of echinococcus cysticus in modern imaging methods like sonography and computed tomography are summarized and the diagnostic value of various procedures including diagnostic procedure in seronegative cases are discussed. (orig.) [de

  16. Polymodification. Short-term hyperglycemia and local hyperthermia in hypoxiradiotherapy of transplantable solid tumors

    International Nuclear Information System (INIS)

    Kozin, S.V.; Krimker, V.M.; Yarmonenko, S.P.

    1984-01-01

    Application possibilities of hyperglycemia and local hyperthermia in combination with hypoxiradiotherapy of solid tumors, have been evaluated. The experiments conducted have shown the great possibilities of combined use of radiation, hyperglycemia, hyperthermia, for selective affection of tumours, and application of gaseous hypoxia during irradiation - for simultaneous principal protection of normal tissues. Interaction of all the agents will undoubtedly require a versatile study to develop the optimum regimes of action

  17. Factors associated with abandonment of therapy by children diagnosed with solid tumors in Peru.

    Science.gov (United States)

    Vasquez, Liliana; Diaz, Rosdali; Chavez, Sharon; Tarrillo, Fanny; Maza, Ivan; Hernandez, Eddy; Oscanoa, Monica; García, Juan; Geronimo, Jenny; Rossell, Nuria

    2018-06-01

    Abandonment of treatment is a major cause of treatment failure and poor survival in children with cancer in low- and middle-income countries. The incidence of treatment abandonment in Peru has not been reported. The aim of this study was to examine the prevalence of and factors associated with treatment abandonment by pediatric patients with solid tumors in Peru. We retrospectively reviewed the sociodemographic and clinical data of children referred between January 2012 and December 2014 to the two main tertiary centers for childhood cancer in Peru. The definition of treatment abandonment followed the International Society of Paediatric Oncology, Paediatric Oncology in Developing Countries, Abandonment of Treatment recommendation. Data from 1135 children diagnosed with malignant solid tumors were analyzed, of which 209 (18.4%) abandoned treatment. Bivariate logistic regression analysis showed significantly higher abandonment rates in children living outside the capital city, Lima (forest; odds ratio [OR] 3.25; P < 0.001), those living in a rural setting (OR 3.44; P < 0.001), and those whose parent(s) lacked formal employment (OR 4.39; P = 0.001). According to cancer diagnosis, children with retinoblastoma were more likely to abandon treatment compared to children with other solid tumors (OR 1.79; P = 0.02). In multivariate regression analyses, rural origin (OR 2.02; P = 0.001) and lack of formal parental employment (OR 2.88; P = 0.001) were independently predictive of abandonment. Treatment abandonment prevalence of solid tumors in Peru is high and closely related to sociodemographical factors. Treatment outcomes could be substantially improved by strategies that help prevent abandonment of therapy based on these results. © 2018 Wiley Periodicals, Inc.

  18. Phase I study of single-agent ribociclib in Japanese patients with advanced solid tumors.

    Science.gov (United States)

    Doi, Toshihiko; Hewes, Becker; Kakizume, Tomoyuki; Tajima, Takeshi; Ishikawa, Norifumi; Yamada, Yasuhide

    2018-01-01

    The cyclin D-CDK4/6-INK4-Rb pathway is frequently dysregulated in cancers. Ribociclib, an orally available, selective CDK4/6 inhibitor, showed preliminary clinical activity in a phase I study in the USA and Europe for patients with solid tumors and lymphomas. The present study aimed to determine the single-agent maximum tolerated dose (MTD) and recommended dose for expansion (RDE) in Japanese patients with advanced solid tumors. Ribociclib safety, tolerability, pharmacokinetic profile, and preliminary antitumor activity were also assessed. Japanese patients with solid tumors that had progressed on prior therapies received escalating doses of single-agent ribociclib on a 3-weeks-on/1-week-off schedule. Treatment continued until the development of toxicity or disease progression. A dose escalation was planned for patients with esophageal cancer. In the dose-escalation phase, 4 patients received 400 mg ribociclib and 13 patients received 600 mg ribociclib. Four patients experienced dose-limiting toxicities, 3 of whom were in the 600 mg group. The RDE was declared to be 600 mg, and the MTD was not determined. The most frequent adverse events were hematologic and gastrointestinal. Four patients achieved stable disease at the 600 mg dose; no patients achieved complete or partial response. All patients discontinued the study, the majority due to disease progression. No patients discontinued due to adverse events. Dose escalation was not pursued due to lack of observed efficacy in esophageal cancer. At the RDE of 600 mg/d on a 3-weeks-on/1-week-off schedule, ribociclib showed acceptable safety and tolerability profiles in Japanese patients with advanced solid tumors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Anti-m antibody in solid tumors-two case reports.

    Science.gov (United States)

    Soni, Shiv Kumar; Goyal, Hari; Sood, S K; Setia, Rasika

    2014-09-01

    Anti-M antibodies are usually of IgM, appear as cold agglutinins and are clinically insignificant. We are reporting two cases of anti-M in cases of solid tumors where the anti-M caused discrepancy in blood grouping, reacted in coombs phase of crossmatching. Anti-M in first case showed dosage effect. These antibodies can be clinical significant when detected in coombs phase, making M antigen negative coombs compatible unit transfusion imperative.

  20. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  1. Evaluating the Needs of Patients Living With Solid Tumor Cancer: A Survey Design.

    Science.gov (United States)

    Schmidt, April L; Lorenz, Rebecca A; Buchanan, Paula M; McLaughlin, Laura

    2018-03-01

    To describe the unmet needs of adult patients living with solid tumor cancer. Survey design. Adult patients living with solid tumor cancer from two outpatient clinics were mailed the Sheffield Profile for Assessment and Referral to Care, a holistic screening questionnaire for assessing palliative care needs, and a demographics questionnaire. One hundred fifteen patients returned the instruments, corresponding to a 62% response rate. There were no significant differences by cancer type (breast, non-breast) or gender. However, Caucasians reported significantly more psychological issues, such as anxiety, than non-Caucasians ([ n = 101 (87.8%)] and [ n = 14 (12.2%)], respectively, p = .032). Older patients reported more concerns about loss of independence/activity ( p = .012) compared with younger age groups. Patients living with Stage III/IV cancer reported more distressed about independence/activity ( p = .034), family/social issues ( p = .007), and treatment side effects ( p = .027) than patients living with Stage I/II cancer. Patients living with solid tumor cancer have a myriad of unmet needs regardless of age, gender, cancer type, or cancer stage. There appears to be important differences by cancer stage. The Sheffield Profile for Assessment and Referral to Care questionnaire provides a holistic approach for nurses to identify unmet needs and concerns. Future research should explore the preferred methods of receiving support and information.

  2. The prognostic role of controlling nutritional status scores in patients with solid tumors.

    Science.gov (United States)

    Liang, Ruo-Fei; Li, Jun-Hong; Li, Mao; Yang, Yuan; Liu, Yan-Hui

    2017-11-01

    We conducted a meta-analysis to investigate the association between preoperative controlling nutritional status (CONUT) scores in various solid tumors and clinical outcomes. Relevant studies published up to August 12, 2017 were identified using electronic databases, including PubMed, Embase, and Web of Science. The pooled hazard ratios (HR) and their corresponding 95% confidence intervals (CI) for overall survival (OS) and event-free survival (EFS) were calculated to explore the relationship between preoperative CONUT score and prognosis. In total, 674 patients with solid tumors from four published studies were included in this meta-analysis. The pooled HR for OS was 1.98 (95% CI, 1.34-2.91, p=0.001), indicating that patients with high CONUT scores had worse OS. The pooled HR for EFS was 1.98 (95% CI, 1.34-2.93, p=0.001), revealing that high CONUT scores were significantly associated with short EFS. Our data suggest that high preoperative CONUT scores indicate poor prognosis for patients with solid tumors. Further studies are needed to verify the significance of CONUT scores in clinical practice. Copyright © 2017. Published by Elsevier B.V.

  3. Induction of oncogene addiction shift to NF-κB by camptothecin in solid tumor cells

    International Nuclear Information System (INIS)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto; Tsuruo, Takashi; Umezawa, Kazuo; Higashihara, Masaaki; Watanabe, Toshiki; Horie, Ryouichi

    2009-01-01

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-κB activity driven by IκB kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-κB during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-κB inhibitors.

  4. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko; Nakashima, Makoto [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Tsuruo, Takashi [Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-10-6 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Umezawa, Kazuo [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-0061 (Japan); Higashihara, Masaaki [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Watanabe, Toshiki [Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Horie, Ryouichi, E-mail: rhorie@med.kitasato-u.ac.jp [Department of Hematology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.

  5. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  6. The combined effect of interferon synthesis inductors, radiosensitizing and antitumoral agents on solid tumors

    International Nuclear Information System (INIS)

    Leonidze, D.L.

    1987-01-01

    In experiments with mice bearing solid sarcoma 37 a study was conducted on the combined effect of radiation and inductors of endogenous inerferon synthesis (IEIS), together with hyperthermia or together with an alkylating and carbomoilating agent, dimethinur. The effect was estimated by the tumor growth coefficient and by the number of animals with the regressed tumors. Poly I; polyC was not shiown to influence the efficiency of hyperthermia combined with radiation with radiation; dextransulphate and tiloron increased the radiosensitizing effect of hyperthermia. Dimethinur aggravated the effect of radiation, but with IEIS used together with dimethynur and radiation, the response of the tumor increased insignificantly as compared to the effect of IEIS together with radiation

  7. Targeting doxorubicin encapsulated in stealth liposomes to solid tumors by non thermal diode laser.

    Science.gov (United States)

    Ghannam, Magdy M; El Gebaly, Reem; Fadel, Maha

    2016-04-05

    The use of liposomes as drug delivery systems is the most promising technique for targeting drug especially for anticancer therapy. In this study sterically stabilized liposomes was prepared from DPPC/Cholesterol/PEG-PE encapsulated doxorubicin. The effect of lyophilization on liposomal stability and hence expiration date were studied. Moreover, the effect of diode laser on the drug released from liposomesin vitro and in vivo in mice carrying implanted solid tumor were also studied. The results indicated that lyophilization of the prepared liposomes encapsulating doxorubicin led to marked stability when stored at 5 °C and it is possible to use the re-hydrated lyophilized liposomes within 12 days post reconstitution. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells is a promising method in cancer therapy. We can conclude that lyophilization of the liposomes encapsulating doxorubicin lead to marked stability for the liposomes when stored at 5 °C. Moreover, the use of low energy diode laser for targeting anticancer drug to the tumor cells through the use of photosensitive sterically stabilized liposomes loaded with doxorubicin is a promising method. It proved to be applicable and successful for treatment of Ehrlich solid tumors implanted in mice and eliminated toxic side effects of doxorubicin.

  8. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development

    Directory of Open Access Journals (Sweden)

    Ana Flávia C. Ribeiro

    2012-04-01

    Full Text Available The aim of this study was to investigate the effect of Arrabidaea chica (Humb. & Bonpl. B. Verl., Bignoniaceae, extracts on Ehrlich solid tumor development in Swiss mice. Leaves of A. chica were extracted with two distinct solvents, ethanol and water. The phytochemical analysis of the extracts indicated different classes of secondary metabolites like as anthocyanidins, flavonoids, tannins and saponins. Ethanol (EE and aqueous (AE extracts at 30 mg/kg reduced the development of Ehrlich solid tumor after ten days of oral treatment. The EE group presented increase in neutrophil count, α1 and β globulin values, and decrease of α2 globulin values. Furthermore, EE reduced the percentage of CD4+ T cells in blood but did not alter the percentage of inflammatory mononuclear cells associated with tumor suggesting a direct action of EE on tumor cells. Reduced tumor development observed in AE group was accompanied by a lower percentage of CD4+ T lymphocytes in blood. At the tumor microenvironment, this treatment decreased the percentage of CD3+ T cells, especially due to a reduction of CD8+ T subpopulation and NK cells. The antitumor activity presented by the AE is possibly related to an anti-inflammatory activity. None of the extracts produced toxic effects in animals. In conclusion, the ethanol and aqueous extracts of A. chica have immunomodulatory and antitumor activities attributed to the presence of flavonoids, such as kaempferol. These effects appear to be related to different mechanisms of action for each extract. This study demonstrates the potential of A. chica as an antitumor agent confirming its use in traditional popular medicine.

  9. Concepts for treatment of micrometastases developed in murine systems

    International Nuclear Information System (INIS)

    Schabel, F.M. Jr.

    1976-01-01

    Current knowledge of tumor cell population growth kinetics indicates that the growth fraction (viable tumor cells undergoing active cell replication) is inversely related to population size. Tumor cells in micrometastases should, therefore, be more sensitive to anticancer drugs active against anabolizing cells than are tumor cells in the larger, grossly apparent primary tumor from which they were derived. This indicates the probability that micrometastases will be effectively responsive to more drugs than is the primary and clinically apparent tumor from which they came. Studies with at least four metastatic and uniformly fatal murine solid tumors (lung, breast, colon, and melanoma) have demonstrated significantly improved cure rates with drug treatment following surgical removal of the grossly apparent primary tumor than can be obtained with either surgery or drug treatment when used alone. Further, both disease staging and drug dosage have been shown to influence cure rates of combined-modality treatment. With several mouse tumors, a significantly smaller number of viable tumor cells can establish lethal tumors in the presence of radiation-inactivated tumor cells than in their absence. This suggests that small numbers of residual viable tumor cells in radiation-treated tumor sites may be a greater threat to clinical cure than smaller tumor cell populations remaining in situ after surgery

  10. Solid tumors after chemotherapy or surgery for testicular nonseminoma: a population-based study.

    Science.gov (United States)

    Fung, Chunkit; Fossa, Sophie D; Milano, Michael T; Oldenburg, Jan; Travis, Lois B

    2013-10-20

    Increased risks of solid tumors after older radiotherapy strategies for testicular cancer (TC) are well established. Few population-based studies, however, focus on solid cancer risk among survivors of TC managed with nonradiotherapy approaches. We quantified the site-specific risk of solid cancers among testicular nonseminoma patients treated in the modern era of cisplatin-based chemotherapy, without radiotherapy. Standardized incidence ratios (SIRs) for solid tumors were calculated for 12,691 patients with testicular nonseminoma reported to the population-based Surveillance, Epidemiology, and End Results program (1980 to 2008) and treated initially with either chemotherapy (n = 6,013) or surgery (n = 6,678) without radiotherapy. Patients accrued 116,073 person-years of follow-up. Two hundred ten second solid cancers were observed. No increased risk followed surgery alone (SIR, 0.93; 95% CI, 0.76 to 1.14; n = 99 solid cancers), whereas significantly increased 40% excesses (SIR, 1.43; 95% CI, 1.18 to 1.73; n = 111 solid cancers) occurred after chemotherapy. Increased risks of solid cancers after chemotherapy were observed in most follow-up periods (median latency, 12.5 years), including more than 20 years after treatment (SIR, 1.54; 95% CI, 0.96 to 2.33); significantly increased three- to seven-fold risks occurred for cancers of the kidney (SIR, 3.37; 95% CI, 1.79 to 5.77), thyroid (SIR, 4.40; 95% CI, 2.19 to 7.88), and soft tissue (SIR, 7.49; 95% CI, 3.59 to 13.78). To our knowledge, this is the first large population-based series reporting significantly increased risks of solid cancers among patients with testicular nonseminoma treated in the modern era of cisplatin-based chemotherapy. Subsequent analytic studies should focus on the evaluation of dose-response relationships, types of solid cancers, latency patterns, and interactions with other possible factors, including genetic susceptibility.

  11. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities.

    Science.gov (United States)

    Shum, Thomas; Kruse, Robert L; Rooney, Cliona M

    2018-05-04

    Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. Areas covered: We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. Expert opinion: CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.

  12. Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials

    OpenAIRE

    Kelly, K; Infante, JR; Taylor, MH; Patel, MR; Wong, DJ; Iannotti, N; Mehnert, JM; Loos, AH; Koch, H; Speit, I; Gulley, JL

    2018-01-01

    © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. BACKGROUND: Antibodies targeting the programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint may cause adverse events (AEs) that are linked to the mechanism of action of this therapeutic class and unique from those observed with conventional chemotherapy. METHODS: Patients with advanced solid tumors who were enrolled in the phase 1 JAVELIN Solid Tumor (1650 patient...

  13. In vivo therapy of a murine B cell tumor (BCL1) using antibody-ricin A chain immunotoxins

    International Nuclear Information System (INIS)

    Krolick, K.A.; Uhr, J.W.; Slavin, S.; Vitetta, E.S.

    1982-01-01

    Prolonged remissions were induced in mice bearing advanced BCL1 tumors by the combined approach of nonspecific cytoreductive therapy and administration of a tumor-reactive immunotoxin. Thus, the vast majority of the tumor cells (approximately 95%) were first killed by nonspecific cytoreductive therapy using total lymphoid irradiation (TLI) and splenectomy. The residual tumor cells were then eliminated by intravenous administration of an anti-delta immunotoxin. In three of four experiments, all animals treated in the above fashion appeared tumor free 12-16 wk later. In one experiment, blood cells from the mice in remission were transferred to normal BALB/c recipients, and the latter animals have not developed detectable tumor for the 6 mo of observation. Because 1-10 adoptively transferred BCL1 cells will cause tumor in normal BALB/c mice by 12 wk, the inability to transfer tumor to recipients might indicate that the donor animals were tumor free. In the remainder of the animals treated with the tumor-reactive immunotoxin there was a substantial remission in all animals, but the disease eventually reappeared. In contrast, all mice treated with the control immunotoxin or antibody alone relapsed significantly earlier

  14. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  15. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  16. Strategy of diagnosis and treatment for pediatric solid tumor patients using FDG-PET

    International Nuclear Information System (INIS)

    Hosono, Ako; Watanabe, Atsuko; Tsuji, Naoko; Kawamoto, Hiroshi; Makimoto, Atsushi; Tateishi, Ukihide; Terauthi, Takashi

    2006-01-01

    Usefulness of FDG-PET (18F-deoxyglucose PET) was investigated in diagnosis and therapeutic planning of childhood and adolescence malignant solid tumors. Evidence was based on 46 patients (25 males) of ages 5-30 y, involving those with rhabdomyosarcoma (17 cases), Ewing's sarcoma (13), osteosarcoma (5), neuroblastoma (4), Wilms' tumor (2), germinoma (2), and each 1 case of ganglioblastoma, retinoblastoma and hepatoblastoma. In total, they underwent 104 FDG-PET examinations for diagnosis before and during treatment in authors' hospital in the period from January 2005 to February 2006. Evaluations were done with the standard uptake value (SUV, 1 x 1 cm ROI of abnormally high distribution area of radioactivity in the lesion/FDG dose/kg body wt.), by recurrence, by early detection of exacerbation and by follow up of residual tumors, of which typical image findings were herein presented. From the aspects of the present purposes, it was concluded that FDG-PET had advantages of high resolution, short imaging time, quantitative diagnosis (SUV) as well as the tumor detection, and had defects of difficulty of detection of tumors of <1 cm size, of distribution to normal or benign tissues and of difficulty of central nervous system (CNS) imaging. (T.I.)

  17. Clinicopathologic features and surgical outcome of solid pseudopapillary tumor of the pancreas: analysis of 17 cases

    Directory of Open Access Journals (Sweden)

    Wang Xiao-Guang

    2013-02-01

    Full Text Available Abstract Background We summarize our experience of the diagnosis, surgical treatment, and prognosis of solid pseudopapillary tumors (SPTs. Methods We carried out a retrospective study of clinical data from a series of 17 patients with SPT managed in two hospitals between October 2001 and November 2011. Results All of the 17 patients were female and the average age at diagnosis was 26.6 years (range 11 years to 55 years. The tumor was located in the body or tail in ten patients, the head in five patients, and the neck in two patients. The median tumor size was 5.5 cm (range 2 cm to 10 cm. All 17 patients had curative resections, including seven distal pancreatectomies, five local resections, four pancreaticoduodenectomies, and one central pancreatectomy. Two patients required concomitant splenic vein resection due to local tumor invasion. All patients were alive and disease-free at a median follow-up of 48.2 months (range 2 to 90 months. There were no significant associations between clinicopathologic factors and malignant potential of SPT. Ki-67 was detected in three patients with pancreatic parenchyma invasion. Conclusions The SPT is an infrequent tumor, typically affecting young women without notable symptoms. Surgical resection is justified even in the presence of local invasion or metastases, as patients demonstrate excellent long-term survival. Positive immunoreactivity for Ki-67 may predict the malignant potential of SPTs.

  18. Non-toxic approach for treatment of breast cancer and its cutaneous metastasis: Capecitabine (Xeloda) enhanced photodynamic therapy in a murine tumor model

    Science.gov (United States)

    Anand, Sanjay; Denisyuk, Anton; Bullock, Taylor; Govande, Mukul; Maytin, Edward V.

    2018-02-01

    Breast cancer (BCA) is the most frequently diagnosed cancer in women, with distant metastases to lung, liver, bone and skin occurring in approximately 40% of cases. Radiation therapy (RT) has been successfully employed for the treatment of BCA; however, multiple rounds of RT are associated with undesirable cutaneous side effects. This study explores PDT as a therapeutic alternative, to be given alone or in combination with RT and chemotherapy. Earlier, we had developed differentiation-enhanced combination photodynamic therapy (cPDT) using a neoadjuvant (5-fluorouracil; 5FU) prior to PDT. The neoadjuvant increases the levels of PpIX, leading to better efficacy following aminolevulinate (ALA)- based PDT. Here, to avoid the toxicity of systemic 5FU, we used a nontoxic 5FU precursor (Capecitabine; CPBN) in a new cPDT regimen. CBPN, a standard chemotherapeutic for BCA, is metabolized to 5FU specifically within tumor tissue. Murine (4T1) BCA cells were injected into breast fat pads of nude mice. CPBN was administered by oral gavage followed by intraperitoneal ALA and red light for PDT. CPBN pretreatment of 4T1 tumors led to increased tumor cell differentiation (3.5 fold), homogenous elevation of intratumoral PpIX levels (4.5 fold), and enhanced tumor cell death post-PDT (5 fold), relative to vehicle control. Using an in vivo imaging system (IVIS), a decline in tumor growth following CPBN-PDT was observed. Results showing the effect of CPBN-PDT on distant metastases of BCA to lung, lymph nodes and skin will be presented. In summary, CPBN-PDT, a novel combination approach, has a significant potential for translation into the clinic.

  19. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  20. Deriving mechanisms responsible for the lack of correlation between hypoxia and acidity in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    Full Text Available Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997 provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2 are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2 and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels.

  1. Filter Paper-based Nucleic Acid Storage in High-throughput Solid Tumor Genotyping.

    Science.gov (United States)

    Stachler, Matthew; Jia, Yonghui; Sharaf, Nematullah; Wade, Jacqueline; Longtine, Janina; Garcia, Elizabeth; Sholl, Lynette M

    2015-01-01

    Molecular testing of tumors from formalin-fixed paraffin-embedded (FFPE) tissue blocks is central to clinical practice; however, it requires histology support and increases test turnaround time. Prospective fresh frozen tissue collection requires special handling, additional storage space, and may not be feasible for small specimens. Filter paper-based collection of tumor DNA reduces the need for histology support, requires little storage space, and preserves high-quality nucleic acid. We investigated the performance of tumor smears on filter paper in solid tumor genotyping, as compared with paired FFPE samples. Whatman FTA Micro Card (FTA preps) smears were prepared from 21 fresh tumor samples. A corresponding cytology smear was used to assess tumor cellularity and necrosis. DNA was isolated from FTA preps and FFPE core samples using automated methods and quantified using SYBR green dsDNA detection. Samples were genotyped for 471 mutations on a mass spectrophotometry-based platform (Sequenom). DNA concentrations from FTA preps and FFPE correlated for untreated carcinomas but not for mesenchymal tumors (Spearman σ=0.39 and σ=-0.1, respectively). Average DNA concentrations were lower from FTA preps as compared with FFPE, but DNA quality was higher with less fragmentation. Seventy-six percent of FTA preps and 86% of FFPE samples generated adequate DNA for genotyping. FTA preps tended to perform poorly for collection of DNA from pretreated carcinomas and mesenchymal neoplasms. Of the 16 paired DNA samples that were genotyped, 15 (94%) gave entirely concordant results. Filter paper-based sample preservation is a feasible alternative to FFPE for use in automated, high-throughput genotyping of carcinomas.

  2. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10 −9 ), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10 −3 ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection

  3. Outcome for children with metastatic solid tumors over the last four decades.

    Directory of Open Access Journals (Sweden)

    Stephanie M Perkins

    Full Text Available Outcomes for pediatric solid tumors have significantly improved over the last 30 years. However, much of this improvement is due to improved outcome for patients with localized disease. Here we evaluate overall survival (OS for pediatric patients with metastatic disease over the last 40 years.The United States Surveillance, Epidemiology, and End Results (SEER database was used to conduct this study. Patients diagnosed between 0 and 18 years of age with metastatic Ewings sarcoma, neuroblastoma, osteosarcoma, rhabdomyosarcoma or Wilms tumor were included in the analysis.3,009 patients diagnosed between 1973-2010 met inclusion criteria for analysis. OS at 10 years for patients diagnosed between 1973-1979, 1980-1989, 1990-1999 and 2000-2010 was 28.3%, 37.2%, 44.7% and 49.3%, respectively (p<0.001. For patients diagnosed between 2000-2010, 10-year OS for patients with Ewing sarcoma, neuroblastoma, osteosarcoma, rhabdomyosarcoma and Wilms tumor was 30.6%, 54.4%, 29.3%, 27.5%, and 76.6%, respectively, as compared to 13.8%, 25.1%, 13.6%, 17.9% and 57.1%, respectively, for patients diagnosed between 1973-1979. OS for neuroblastoma significantly increased with each decade. For patients with osteosarcoma and Ewing sarcoma, there was no improvement in OS over the last two decades. There was no improvement in outcome for patients with rhabdomyosarcoma or Wilms tumor over the last 30 years.OS for pediatric patients with metastatic solid tumors has significantly improved since the 1970s. However, outcome has changed little for some malignancies in the last 20-30 years. These data underscore the importance of continued collaboration and studies to improve outcome for these patients.

  4. Intra-adrenal murine TH-MYCN neuroblastoma tumors grow more aggressive and exhibit a distinct tumor microenvironment relative to their subcutaneous equivalents.

    Science.gov (United States)

    Kroesen, Michiel; Brok, Ingrid C; Reijnen, Daphne; van Hout-Kuijer, Maaike A; Zeelenberg, Ingrid S; Den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2015-05-01

    In around half of the patients with neuroblastoma (NBL), the primary tumor is located in one of the adrenal glands. We have previously reported on a transplantable TH-MYCN model of subcutaneous (SC) growing NBL in C57Bl/6 mice for immunological studies. In this report, we describe an orthotopic TH-MYCN transplantable model where the tumor cells were injected intra-adrenally (IA) by microsurgery. Strikingly, 9464D cells grew out much faster in IA tumors compared to the subcutis. Tumors were infiltrated by equal numbers of lymphocytes and myeloid cells. Within the myeloid cell population, however, tumor-infiltrating macrophages were more abundant in IA tumors compared to SC tumors and expressed lower levels of MHC class II, indicative of a more immunosuppressive phenotype. Using 9464D cells stably expressing firefly luciferase, enhanced IA tumor growth could be confirmed using bioluminescence. Collectively, these data show that the orthotopic IA localization of TH-MYCN cells impacts the NBL tumor microenvironment, resulting in a more stringent NBL model to study novel immunotherapeutic approaches for NBL.

  5. Metronomic Chemotherapy vs Best Supportive Care in Progressive Pediatric Solid Malignant Tumors: A Randomized Clinical Trial.

    Science.gov (United States)

    Pramanik, Raja; Agarwala, Sandeep; Gupta, Yogendra Kumar; Thulkar, Sanjay; Vishnubhatla, Sreenivas; Batra, Atul; Dhawan, Deepa; Bakhshi, Sameer

    2017-09-01

    Although oral metronomic chemotherapy is often used in progressive pediatric solid malignant tumors, a literature review reveals that only small single-arm retrospective or phase 1 and 2 studies have been performed. Skepticism abounds because of the lack of level 1 evidence. To compare the effect of metronomic chemotherapy on progression-free survival (PFS) with that of placebo in pediatric patients with primary extracranial, nonhematopoietic solid malignant tumors that progress after at least 2 lines of chemotherapy. A double-blinded, placebo-controlled randomized clinical trial was conducted from October 1, 2013, through December 31, 2015, at the cancer center at All India Institute of Medical Sciences in children aged 5 to 18 years with primary extracranial, nonhematopoietic solid malignant tumors that progressed after at least 2 lines of chemotherapy and had no further curative options. One arm received a 4-drug oral metronomic regimen of daily celecoxib and thalidomide with alternating periods of etoposide and cyclophosphamide, whereas the other arm received placebo. Disease status was assessed at baseline, 9 weeks, 18 weeks, and 27 weeks or at clinical progression. The primary end point was PFS as defined by the proportion of patients without disease progression at 6 months, and PFS duration and overall survival (OS) were secondary end points. A total of 108 of the 123 patients screened were enrolled, with 52 randomized to the placebo group (median age, 15 years; 40 male [76.9%]) and 56 to the metronomic chemotherapy group (median age, 13 years; 42 male [75.0%]). At a median follow-up of 2.9 months, 100% of the patients had disease progression by 6 months in the placebo group vs 96.4% in the metronomic chemotherapy group (P = .24). Median PFS and OS in the 2 groups was similar (hazard ratio [HR], 0.69; 95% CI, 0.47-1.03 [P = .07] for PFS; and HR, 0.74; 95% CI, 0.50-1.09 [P = .13] for OS). In post hoc subgroup analysis, cohorts receiving more than

  6. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  7. Antibody-Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review.

    Science.gov (United States)

    Lambert, John M; Morris, Charles Q

    2017-05-01

    Attaching a cytotoxic "payload" to an antibody to form an antibody-drug conjugate (ADC) provides a mechanism for selective delivery of the cytotoxic agent to cancer cells via the specific binding of the antibody to cancer-selective cell surface molecules. The first ADC to receive marketing authorization was gemtuzumab ozogamicin, which comprises an anti-CD33 antibody conjugated to a highly potent DNA-targeting antibiotic, calicheamicin, approved in 2000 for treating acute myeloid leukemia. It was withdrawn from the US market in 2010 following an unsuccessful confirmatory trial. The development of two classes of highly potent microtubule-disrupting agents, maytansinoids and auristatins, as payloads for ADCs resulted in approval of brentuximab vedotin in 2011 for treating Hodgkin lymphoma and anaplastic large cell lymphoma, and approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive breast cancer. Their success stimulated much research into the ADC approach, with >60 ADCs currently in clinical evaluation, mostly targeting solid tumors. Five ADCs have advanced into pivotal clinical trials for treating various solid tumors-platinum-resistant ovarian cancer, mesothelioma, triple-negative breast cancer, glioblastoma, and small cell lung cancer. The level of target expression is a key parameter in predicting the likelihood of patient benefit for all these ADCs, as well as for the approved compound, ado-trastuzumab emtansine. The development of a patient selection strategy linked to target expression on the tumor is thus critically important for identifying the population appropriate for receiving treatment.

  8. Palliative Care Use Among Patients With Solid Cancer Tumors: A National Cancer Data Base Study.

    Science.gov (United States)

    Osagiede, Osayande; Colibaseanu, Dorin T; Spaulding, Aaron C; Frank, Ryan D; Merchea, Amit; Kelley, Scott R; Uitti, Ryan J; Ailawadhi, Sikander

    2018-01-01

    Palliative care has been increasingly recognized as an important part of cancer care but remains underutilized in patients with solid cancers. There is a current gap in knowledge regarding why palliative care is underutilized nationwide. To identify the factors associated with palliative care use among deceased patients with solid cancer tumors. Using the 2016 National Cancer Data Base, we identified deceased patients (2004-2013) with breast, colon, lung, melanoma, and prostate cancer. Data were described as percentages. Associations between palliative care use and patient, facility, and geographic characteristics were evaluated through multivariate logistic regression. A total of 1 840 111 patients were analyzed; 9.6% received palliative care. Palliative care use was higher in the following patient groups: survival >24 months (17% vs 2%), male (54% vs 46%), higher Charlson-Deyo comorbidity score (16% vs 8%), treatment at designated cancer programs (74% vs 71%), lung cancer (76% vs 28%), higher grade cancer (53% vs 24%), and stage IV cancer (59% vs 13%). Patients who lived in communities with a greater percentage of high school degrees had higher odds of receiving palliative care; Central and Pacific regions of the United States had lower odds of palliative care use than the East Coast. Patients with colon, melanoma, or prostate cancer had lower odds of palliative care than patients with breast cancer, whereas those with lung cancer had higher odds. Palliative care use in solid cancer tumors is variable, with a preference for patients with lung cancer, younger age, known insurance status, and higher educational level.

  9. Smart thermosensitive liposomes for effective solid tumor therapy and in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Kevin Affram

    Full Text Available In numerous studies, liposomes have been used to deliver anticancer drugs such as doxorubicin to local heat-triggered tumor. Here, we investigate: (i the ability of thermosensitive liposomal nanoparticle (TSLnp as a delivery system to deliver poorly membrane-permeable anticancer drug, gemcitabine (Gem to solid pancreatic tumor with the aid of local mild hyperthermia and, (ii the possibility of using gadolinium (Magnevist® loaded-TSLnps (Gd-TSLnps to increase magnetic resonance imaging (MRI contrast in solid tumor. In this study, we developed and tested gemcitabine-loaded thermosensitive liposomal nanoparticles (Gem-TSLnps and gadolinium-loaded thermosensitive liposomal nanoparticles (Gd-TSLnps both in in-vitro and in-vivo. The TSLnps exhibited temperature-dependent release of Gem, at 40-42°C, 65% of Gem was released within 10 min, whereas < 23% Gem leakage occurred at 37°C after a period of 2 h. The pharmacokinetic parameters and tissue distribution of both Gem-TSLnps and Gd-TSLnps were significantly greater compared with free Gem and Gd, while Gem-TSLnps plasma clearance was reduced by 17-fold and that of Gd-TSLpns was decreased by 2-fold. Area under the plasma concentration time curve (AUC of Gem-TSLnps (35.17± 0.04 μghr/mL was significantly higher than that of free Gem (2.09 ± 0.01 μghr/mL whereas, AUC of Gd-TSLnps was higher than free Gd by 3.9 fold high. TSLnps showed significant Gem accumulation in heated tumor relative to free Gem. Similar trend of increased Gd-TSLnps accumulation was observed in non-heated tumor compared to that of free Gd; however, no significant difference in MRI contrast enhancement between free Gd and Gd-TSLnps ex-vivo tumor images was observed. Despite Gem-TSLnps dose being half of free Gem dose, antitumor efficacy of Gem-TSLnps was comparable to that of free Gem(Gem-TSLnps 10 mg Gem/kg compared with free Gem 20 mg/kg. Overall, the findings suggest that TSLnps may be used to improve Gem delivery and enhance

  10. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells.

    Science.gov (United States)

    Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan

    2017-08-01

    Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Directory of Open Access Journals (Sweden)

    Nina Mayorek

    Full Text Available BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX, diclofenac potently inhibits phospholipase A(2 (PLA(2, thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  12. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Science.gov (United States)

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-09-15

    Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  13. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  14. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Science.gov (United States)

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  15. A novel gene therapy-based approach that selectively targets hypoxic regions within solid tumors

    International Nuclear Information System (INIS)

    Dougherty, S.T.; Dougherty, G.J.; Davis, P.D.

    2003-01-01

    There is compelling evidence that malignant cells present within the hypoxic regions that are commonly found within solid tumors contribute significantly to local recurrence following radiation therapy. We describe now a novel strategy designed to target such cells that exploits the differential production within hypoxic regions of the pro-angiogenic cytokine vascular endothelial cell growth factor (VEGF). Specifically, we have generated cDNA constructs that encode two distinct chimeric cell surface proteins that incorporate, respectively, the extracellular domains of the VEGF receptors Flk-1 or Flt-1, fused in frame to the membrane spanning and cytoplasmic domains of the pro-apoptotic protein Fas. Both chimeric proteins (Flk/Fas and Flt/Fas) appear stable and can be readily detected on the surface of transfected cells by Western blot and/or FACS analysis. Importantly, tumor cells expressing the chimeric proteins were rapidly killed in a dose-dependent fashion upon the addition of exogenous recombinant VEGF. Adenoviral vectors encoding Flk/Fas have been generated and shown to induce tumor cells to undergo apoptosis upon transfer to hypoxic conditions in vitro. This activity is dependent upon the endogenous production of VEGF. Studies are currently underway to test the ability of adenoviral Flk/Fas (Ad.Flk/Fas) to reduce tumor recurrence in vivo when used as an adjuvant therapy in conjunction with clinically relevant doses of ionizing radiation

  16. Therapeutic potential and challenges of Natural killer cells in treatment of solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea eGras Navarro

    2015-04-01

    Full Text Available Natural killer (NK cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing requiring one–to-one target engagement and site directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells (CSCs and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME and augment adaptive immune responses by promoting differentiation, activation and/ or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.

  17. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    Science.gov (United States)

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  18. Echinococcus cysticus of the liver - sonographic pattern suggestive of solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Grosser, G.; Hauenstein, K.H.; Henke, W.

    1985-09-01

    In a patient with Hodgkin's disease, an intrahepatic echodense mass was diagnosed incidentally by ultrasonography. The sonographic pattern suggested a solid tumor. Despite negative or borderline serology, computed tomography establised the diagnosis of echinococcus cysticus by documentation of one ''daughter'' cyst; this diagnosis was confirmed by surgery. The criteria of echinococcus cysticus in modern imaging methods like sonography and computed tomography are summarized and the diagnostic value of various procedures including diagnostic procedure in seronegative cases are discussed.

  19. Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    OpenAIRE

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-01-01

    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac tre...

  20. In vivo relaxation time measurements on a murine tumor model--prolongation of T1 after photodynamic therapy.

    Science.gov (United States)

    Liu, Y H; Hawk, R M; Ramaprasad, S

    1995-01-01

    RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.

  1. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.

  2. Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors.

    Science.gov (United States)

    Wadee, Ameena; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Penny, Clement; Ndesendo, Valence M K; Kumar, Pradeep; Murphy, Caragh S

    2011-10-01

    The effective treatment of solid tumors continues to be a great challenge to clinicians, despite the development of novel drugs. In order to improve the clinical efficacy of existing chemotherapeutic agents, researchers have considered the possibility of site-specific solid tumor treatment. The greatest advantage of localized delivery is the significantly fewer side effects experienced by patients. Recently, in situ forming implants have attracted considerable interest. These polymeric systems are injected as solutions into tumor sites and the injected solution forms an implant as a result of local environmental stimuli and hence removes the need for surgical implantation. This review summarizes the attempts that have been made to date in the development of polymeric implants for the treatment of solid tumors. Both in situ forming implants and preformed implants, fabricated using natural and synthetic polymers, are described. In addition, the peri- or intra-tumoral delivery of chemotherapeutic agents based on implants inserted surgically into the affected region is also discussed along with a short coverage of implants having an undesirable initial burst release effect. Although these implants have been shown to improve the treatment of various solid tumors, the ideal implant that is able to deliver high doses of chemotherapeutics to the tumor site, over prolonged periods with relatively few side effects on normal tissue, is yet to be formulated.

  3. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells.

    Science.gov (United States)

    Ma, Hak-Ling; Napierata, Lee; Stedman, Nancy; Benoit, Stephen; Collins, Mary; Nickerson-Nutter, Cheryl; Young, Deborah A

    2010-02-01

    Patients with psoriasis and psoriatic arthritis respond well to tumor necrosis factor alpha (TNFalpha) blockers in general; however, there is now mounting evidence that a small cohort of patients with rheumatoid arthritis who receive TNFalpha blockers develop psoriasis. This study was undertaken to explore the mechanisms underlying TNFalpha blockade-induced exacerbation of skin inflammation in murine psoriasis-like skin disease. Skin inflammation was induced in BALB/c scid/scid mice after they received CD4+CD45RB(high)CD25- (naive CD4) T cells from donor mice. These mice were treated with either anti-interleukin-12 (anti-IL-12)/23p40 antibody or murine TNFRII-Fc fusion protein and were examined for signs of disease, including histologic features, various cytokine levels in the serum, and cytokine or FoxP3 transcripts in the affected skin and draining lymph node (LN) cells. In a separate study, naive CD4+ T cells were differentiated into Th1 or Th17 lineages with anti-CD3/28 magnetic beads and appropriate cytokines in the presence or absence of TNFalpha. Cytokine gene expression from these differentiated cells was also determined. Neutralization of TNFalpha exacerbated skin inflammation and markedly enhanced the expression of the proinflammatory cytokines IL-1beta, IL-6, IL-17, IL-21, and IL-22 but suppressed FoxP3 expression in the skin and reduced the number of FoxP3-positive Treg cells in the draining LNs. TNFalpha also demonstrated a divergent role during priming and reactivation of naive T cells. These results reveal a novel immunoregulatory role of TNFalpha on Th17 and Treg cells in some individuals, which may account for the exacerbation of skin inflammation in some patients who receive anti-TNF treatments.

  4. Magnetite nanoparticles inhibit tumor growth and upregulate the expression of p53/p16 in Ehrlich solid carcinoma bearing mice.

    Directory of Open Access Journals (Sweden)

    Heba Bassiony

    Full Text Available BACKGROUND: Magnetite nanoparticles (MNPs have been widely used as contrast agents and have promising approaches in cancer treatment. In the present study we used Ehrlich solid carcinoma (ESC bearing mice as a model to investigate MNPs antitumor activity, their effect on expression of p53 and p16 genes as an indicator for apoptotic induction in tumor tissues. METHOD: MNPs coated with ascorbic acid (size: 25.0±5.0 nm were synthesized by co-precipitation method and characterized. Ehrlich mice model were treated with MNPs using 60 mg/Kg day by day for 14 injections; intratumorally (IT or intraperitoneally (IP. Tumor size, pathological changes and iron content in tumor and normal muscle tissues were assessed. We also assessed changes in expression levels of p53 and p16 genes in addition to p53 protein level by immunohistochemistry. RESULTS: Our results revealed that tumor growth was significantly reduced by IT and IP MNPs injection compared to untreated tumor. A significant increase in p53 and p16 mRNA expression was detected in Ehrlich solid tumors of IT and IP treated groups compared to untreated Ehrlich solid tumor. This increase was accompanied with increase in p53 protein expression. It is worth mentioning that no significant difference in expression of p53 and p16 could be detected between IT ESC and control group. CONCLUSION: MNPs might be more effective in breast cancer treatment if injected intratumorally to be directed to the tumor tissues.

  5. Imaging of solid tumor using near-infrared emitting purple bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Kim, Sun A; Choy, Hyon E.; Bom, Hee Seung

    2005-01-01

    Rhodobacter sphaeroides 2.4.1 is α-3 purple nonsulfur eubacterium with an extensive metabolism. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. When grown photosynthetically, it uses wavelengths of light in the near-infrared and contains a reaction center that is the peripheral light-harvesting (LH2) complex. These molecules absorb and emit near-infrared light. Using this near-infrared fluorescent bacterial we investigated its targeting capacity of solid tumor in small animals. R. sphaeroides 2.4.1 strains were cultured in sistrons minimal medium A (SIS) at 32 C. Xenograft tumor model has been established by subcutaneous injection of CT26 mouse colon cancer cell line. 1X10 8 Rhodobacter sphaeroides cells suspended in 100 ul of PBS were injected via tail vein with 1-cc insulin syringe into tumor bearing mouse. In vivo fluorescence imaging has been done after 20 min to 30 days of purple bacteria using indocyanine (ICG) emission filter (Em=810∼835 nm). Near-infrared imaging signal from Rhodobacter sphaeroides was initially detected at liver for 3 days but at the necrotic region of tumor mass thereafter. Total photon flux measured 5.5X10 8 (p/s/cm 2 /sr) at Day 1. Also it was increased to 7.8X10 8 (p/s/cm 2 /sr) at 12 day. One of important characteristic is that the signal appeared only at central necrosis area. It has been monitored for 36 day. We successfully imaged cancer with near-infrared fluorescence bacteria. Our result indicate that near-infrared fluorescence purple bacteria are able to be used to monitor bacterial trafficking in living tumor models

  6. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors

    International Nuclear Information System (INIS)

    Lee, Carol M; Tannock, Ian F

    2010-01-01

    Poor distribution of some anticancer drugs in solid tumors may limit their anti-tumor activity. Here we used immunohistochemistry to quantify the distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab in relation to blood vessels and to regions of hypoxia in human tumor xenografts. The antibodies were injected into mice implanted with human epidermoid carcinoma A431 or human breast carcinoma MDA-MB-231 transfected with ERBB2 (231-H2N) that express high levels of ErbB1 and ErbB2 respectively, or wild-type MDA-MB-231, which expresses intermediate levels of ErbB1 and low levels of ErbB2. The distribution of cetuximab in A431 xenografts and trastuzumab in 231-H2N xenografts was time and dose dependent. At early intervals after injection of 1 mg cetuximab into A431 xenografts, the concentration of cetuximab decreased with increasing distance from blood vessels, but became more uniformly distributed at later times; there remained however limited distribution and binding in hypoxic regions of tumors. Injection of lower doses of cetuximab led to heterogeneous distributions. Similar results were observed with trastuzumab in 231-H2N xenografts. In MDA-MB-231 xenografts, which express lower levels of ErbB1, homogeneity of distribution of cetuximab was achieved more rapidly. Cetuximab and trastuzumab distribute slowly, but at higher doses achieve a relatively uniform distribution after about 24 hours, most likely due to their long half-lives in the circulation. There remains poor distribution within hypoxic regions of tumors

  7. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Meng Guo

    2017-01-01

    Full Text Available Solid pseudopapillary tumor of the pancreas (SPT is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels and single nucleotide polymorphisms (SNPs. In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%, and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism.

  8. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Shoya Shiromizu

    2018-04-01

    Full Text Available Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Keywords: l-asparaginase, Asparagine, Solid tumor, Chrono-pharmacotherapy

  9. Studies of murine tumor control using x-ray fractionation schedules alone or in combination with hyperthermia

    International Nuclear Information System (INIS)

    Imbra, R.J.

    1981-01-01

    The effectiveness of an experimental radiation fractionation schedule of decreasing-sized dose fractions administered at optimal time intervals was compared with a conventional fractionation schedule of constant-sized dose fractions administered five times per week. Also, the effect of the addition of hyperthermia (42.5 0 C) to radiation therapy was investigated. For some experiments, Ehrlich mammary tumors were growth in the right thighs of Swiss mice. The tumor response was determined by measuring the tumor-bearing leg diameter and converting this value to volume. The time for the treated tumor to regrow to its pre-tratment volume was used as an endpoint in Swiss mice. The maximum total treatment dose is limited by the amount of normal tissue damage. A total treatment dose of six thousand rads was most suitable for the further investigations. Definitive investigations were performed using the RIF-1 tumor grown in the right thigh of C3H mice. The length of mitotic delay of RIF-1 cells, in vivo, was determined after various single doses of x radiation. A direct (exponential) relationship betwen x-ray dose and mitotic delay time was observed. Times of release of the RIF-1 cells from radiation-induced mitotic delay were used to determine the optimum time intervals to deliver the decreasing-sized dose fractions. Six thousand rads administered as decreasing-sized dose fractions resulted in significantly greater RIF-1 tumor control, as compared to conventional radiation therapy. The best treatment schedule, overall, was decreasing-sized dose fractions plus hyperthermia

  10. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review.

    Science.gov (United States)

    Shrotriya, Shiva; Walsh, Declan; Bennani-Baiti, Nabila; Thomas, Shirley; Lorton, Cliona

    2015-01-01

    A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence. MeSH (Medical Subject Heading) terms were used to search multiple electronic databases (PubMed, EMBASE, Web of Science, SCOPUS, EBM-Cochrane). Two independent reviewers selected research papers. We also included a quality Assessment (QA) score. Reports with QA scores <50% were excluded. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) methodology was utilized for this review (S1 PRISMA Checklist). 271 articles were identified for final review. There were 45% prospective studies and 52% retrospective. 264 had intermediate QA score (≥50% but <80%); Seven were adequate (80% -100%); A high CRP was predictive of prognosis in 90% (245/271) of studies-80% of the 245 studies by multivariate analysis, 20% by univariate analysis. Many (52%) of the articles were about gastrointestinal malignancies (GI) or kidney malignancies. A high CRP was prognostic in 90% (127 of 141) of the reports in those groups of tumors. CRP was also prognostic in most reports in other solid tumors primary sites. A high CRP was associated with higher mortality in 90% of reports in people with solid tumors primary sites. This was particularly notable in GI malignancies and kidney malignancies. In other solid tumors (lung, pancreas, hepatocellular cancer, and bladder) an elevated CRP also predicted prognosis. In addition there is also evidence to support the use of CRP to help decide treatment response and identify tumor recurrence. Better designed large scale studies should be conducted to examine these issues more comprehensively.

  11. Solid pseudopapillary tumors of the pancreas: 27 cases from a single institution

    Directory of Open Access Journals (Sweden)

    ZHOU Haiyang

    2013-01-01

    Full Text Available ObjectiveTo summarize the clinicopathologic features and treatment outcomes of solid pseudopapillary tumors (SPTs of the pancreas. MethodsTwenty-seven cases of SPT of the pancreas admitted for treatment to the Peking University Cancer Hospital between September 2008 and September 2012 were retrospectively analyzed. ResultsThe majority of the pancreatic SPT patients were young adults (median age: 29 years old and females (85.2%. All 27 patients were treated with surgical resection using pancreaticoduodenectomy (n=4, duodenum preserving pancreatic tumor resection (n=6, middle pancreatectomy (n=5, distal pancreatectomy (n=5, or distal pancreatectomy plus splenectomy (n=7. The minimum tumor diameter was 1.5 cm, the maximum diameter was 12.0 cm, and the average diameter was 5.4 cm. Twelve patients developed pancreatic leakage and pyrexia following the operation. One patient suffered splenic artery hemorrhage. All 27 patients survived and completed follow-up. Only one patient developed recurrence, which was treated by a second surgical resection, and all other patients showed no clinical signs of recurrence or metastasis. ConclusionSPT of the pancreas has uncertain malignant potential with good prognosis. Radical resection with preservation of the surrounding tissues is an effective and safe treatment for SPT.

  12. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics.

    Science.gov (United States)

    Magliacane, Gilda; Grassini, Greta; Bartocci, Paola; Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-10-13

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.

  13. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis.

    Science.gov (United States)

    Maletzki, Claudia; Beyrich, Franziska; Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-08-16

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT).All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors' natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line.Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.

  14. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors

    Directory of Open Access Journals (Sweden)

    Brellier Florence

    2012-09-01

    Full Text Available Abstract Background Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. Methods We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. Results From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. Conclusions The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.

  15. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  16. 4-1BB Aptamer-Based Immunomodulation Enhances the Therapeutic Index of Radiation Therapy in Murine Tumor Models

    Energy Technology Data Exchange (ETDEWEB)

    Benaduce, Ana Paula; Brenneman, Randall; Schrand, Brett; Pollack, Alan; Gilboa, Eli; Ishkanian, Adrian, E-mail: aishkanian@med.miami.edu

    2016-10-01

    Purpose: To report a novel strategy using oligonucleotide aptamers to 4-1BB as an alternate method for costimulation, and show that combinatorial therapy with radiation improves the therapeutic ratio over equivalent monoclonal antibodies. Methods and Materials: Subcutaneous 4T1 (mouse mammary carcinoma) tumors were established (approximately 100 mm{sup 3}), and a radiation therapy (RT) dose/fractionation schedule that optimally synergizes with 4-1BB monoclonal antibody (mAb) was identified. Comparable tumor control and animal survival was observed when either 4-1BB antibody or aptamer were combined with RT using models of breast cancer and melanoma (4T1 and B16-F10). Off-target CD8{sup +} T-cell toxicity was evaluated by quantification of CD8{sup +} T cells in livers and spleens of treated animals. Results: When combined with 4-1BB mAb, significant differences in tumor control were observed by varying RT dose and fractionation schedules. Optimal synergy between RT and 4-1BB mAb was observed at 5 Gy × 6. Testing 4-1BB mAb and aptamer independently using the optimal RT (5 Gy × 6 for 4T1/Balb/c and 12 Gy × 1 for B16/C57BL6J mouse models) revealed equivalent tumor control using 4-1BB aptamer and 4-1BB mAb. 4-1BB mAb, but not 4-1BB aptamer-treated animals, exhibited increased lymphocytic liver infiltrates and increased splenic and liver CD8{sup +} T cells. Conclusions: Radiation therapy synergizes with 4-1BB mAb, and this effect is dependent on RT dose and fractionation. Tumor control by 4-1BB aptamer is equivalent to 4-1BB mAb when combined with optimal RT dose, without eliciting off-target liver and spleen CD8{sup +} expansion. 4-1BB aptamer-based costimulation affords a comparable and less toxic strategy to augment RT-mediated tumor control.

  17. Synergistic anti-tumor effects of melatonin and PUFAs from walnuts in a murine mammary adenocarcinoma model.

    Science.gov (United States)

    Garcia, Carolina P; Lamarque, Alicia L; Comba, Andrea; Berra, María A; Silva, Renata A; Labuckas, Diana O; Das, Undurti N; Eynard, Aldo R; Pasqualini, Maria E

    2015-04-01

    The aim of this study was to determine the effects of some polyunsaturated fatty acids plus phytomelatonin from walnuts in the development of mammary gland adenocarcinoma. BALB/c mice were fed a semisynthetic diet supplemented with either 6% walnut oil and 8% walnut flour containing phytomelatonin (walnut diet: WD); or 6% corn oil plus commercial melatonin (melatonin diet: MD), or the control group (CD), which received only 6% of corn oil. Membrane fatty acids of tumor cells (TCs) were analyzed by gas liquid chromatography, cyclooxygenase (COX) and lipoxygenase (LOX) derivatives, and plasma melatonin by high-performance liquid chromatography; apoptosis and tumor-infiltrating lymphocytes by flow cytometry. TCs from the MD and WD mice showed significant decreases in linoleic acid compared with the CD group (P < 0.05). Significantly lower levels of LOX-[13(S)-HODE] were found in TCs from the MD and WD group than in CD (P < 0.0001). COX-[12(S)-HHT] was lower and 12 LOX-[12(S)-HETE] was higher in TCs from the MD group than form the WD and CD arms (P < 0.05). Plasma melatonin, apoptosis, tumor infiltration, and survival time were significantly lower in CD mice than in MD and WD mice (P < 0.05). This study shows that melatonin, along with polyunsaturated fatty acids, exerts a selective inhibition of some COX and LOX activities and has a synergistic anti-tumor effect on a mammary gland adenocarcinoma model. Published by Elsevier Inc.

  18. Solid tumor models for the assessment of different treatment modalities. XIV. The evaluation of host and tumor response to cyclophosphamide and radiation

    International Nuclear Information System (INIS)

    Looney, W.B.; Hopkins, H.A.; MacLeod, M.S.; Ritenour, E.R.

    1979-01-01

    The effect of increasing doses of cyclophosphamide (50 to 250 mg/kg) on the time of occurrence of maximal and minimal tumor growth rates, tumor volume reduction, and linear doubling times (LDT) on the solid tumor model H-4-II-E has been determined. Tumor response to cyclophosphamide was classified as class I, tumor regression; class II, pseudo-regression; and class III, slow-down. The overall treatment efficiency (OTE) has been used to assess the magnitude of tumor volume changes after treatment. The maximum OTE occurred after 150 mg/kg of cyclophosphamide. Increasing the dose to 200 and 250 mg/kg of cyclophosphamide resulted in a decrease in OTE. Similar parameters were utilized to measure the effectiveness of increasing doses of local tumor radiation (750, 1500, 2000, 2500, 3000 and 3500R). The major increase in OTE occurs when the radiation dose is increased from 750R to 2000R. Increasing the dose further to 3500R results in smaller incremental increases in the OTE. Results of the study indicate that increasing the cyclophosphamide dose beyond a certain level (i.e., 150 mg/kg) increases mortality and morbidity without concomitant therapeutic benefit. The effects of increasing the dose of local tumor radiation on life span have given results which suggest that increasing the total radiation dose beyond a certain limit is less effective in increasing life span

  19. Comparison of F-18-FDG PET/CT findings between pancreatic solid pseudopapillary tumor and pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Yong-il; Kim, Seok-ki; Paeng, Jin Chul; Lee, Ho-Young

    2014-01-01

    Objective: Pancreatic solid pseudopapillary tumor (SPT) is a rare benign tumor. Little data are available on positron emission tomographic/computed tomographic (PET/CT) characteristics of this tumor. Therefore, we analyzed the metabolic characteristics of SPT using F-18-FDG PET/CT and compared the results with those of pancreatic ductal adenocarcinoma. Methods: We retrospectively reviewed the records of 11 SPT patients and 46 patients with ductal adenocarcinoma. Ten SPT patients had primary tumors and 1 patient had metastatic SPT. Maximum standardized uptake value (max SUV), mean SUV, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and tumor-to-background ratio (TBR) were evaluated. Mann–Whitney U test between pancreatic SPT and ductal adenocarcinoma was performed. In addition, age, gender and tumor size-adjusted analysis of covariance (ANCOVA) was done between pancreatic SPT and ductal adenocarcinoma. Results: Compared with pancreatic ductal adenocarcinomas, SPTs had significantly higher tumor size-adjusted MTV and TLG. MTV and TLG values were significantly correlated with T-stage of the SPTs. In 1 SPT patient, metastases in the liver and mesentery were revealed by intense uptake of FDG on F-18-FDG PET/CT, and after PET/CT had suggested the presence of pancreatic SPT. Conclusion: We recommend that SPT be considered when a solid pancreatic mass with increased FDG metabolism is encountered on PET/CT. F-18-FDG PET/CT may be useful in detecting subtle metastases of SPT

  20. A specific and sensitive method for visualization of tumor necrosis factor in the murine central nervous system

    DEFF Research Database (Denmark)

    Lambertsen, K L; Drøjdahl, N; Owens, T

    2001-01-01

    -PCR and Western blot analysis on homogenates prepared from microdissected brain regions. Advantages and disadvantages of the methods are discussed with emphasis on the specificity and sensitivity of the histological procedures. Our strategy for detection of TNF mRNA and protein provides a solid basis...... for clarifying the cellular synthesis, regulation and function of TNF in the normal, injured or diseased CNS. Furthermore, the methodology can readily be applied in studies of other cytokines and growth factors in the CNS....

  1. A Case of Recurrent Solid Pseudopapillary Tumor of the Pancreas with Involvement of the Spleen and Kidney

    OpenAIRE

    Park, Sang Eun; Park, Nam Sook; Chun, Jae Min; Park, Nam Whan; Yang, Young Joon; Yun, Gak Won; Lee, Hyo Jin; Yun, Hwan Jung; Jo, Deog Yeon; Song, Kyu Sang; Kim, Samyong

    2006-01-01

    Solid pseudopapillary tumor of the pancreas (SPTP) is a rare primary pancreatic tumor of an unknown etiology that is usually diagnosed in adolescent girls and young women. Most SPTPs are considered to be benign and only rarely metastasize. We report here on a 27-year old woman with recurrent SPTP with involvement of both the spleen and left kidney at the time of the initial diagnosis, and with aggressive behavior. In July 1995, she was admitted with abdominal discomfort and mass. She underwen...

  2. Geldanamycin Analogue in Treating Patients With Advanced Solid Tumors or Non-Hodgkin's Lymphoma

    Science.gov (United States)

    2013-12-13

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Non-Hodgkin Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific

  3. Reproducibility study of [{sup 18}F]FPP(RGD){sub 2} uptake in murine models of human tumor xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Edwin; Liu, Shuangdong; Chin, Frederick; Cheng, Zhen [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Gowrishankar, Gayatri; Yaghoubi, Shahriar [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Wedgeworth, James Patrick [Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Berndorff, Dietmar; Gekeler, Volker [Bayer Schering Pharma AG, Global Drug Discovery, Berlin (Germany); Gambhir, Sanjiv S. [Stanford University, Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford, CA (United States); Stanford University, Molecular Imaging Program at Stanford, Department of Bioengineering, School of Medicine, Stanford, CA (United States); Canary Center at Stanford for Cancer Early Detection, Nuclear Medicine, Departments of Radiology and Bioengineering, Molecular Imaging Program at Stanford, Stanford, CA (United States)

    2011-04-15

    An {sup 18}F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer [{sup 18}F]FPP(RGD){sub 2} has been used to image tumor {alpha}{sub v}{beta}{sub 3} integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin {alpha}{sub v}{beta}{sub 3}-targeted PET probe, [{sup 18}F ]FPP(RGD){sub 2} using small animal PET. Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5-15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [{sup 18}F]FPP(RGD){sub 2} (1.9-3.8 MBq, 50-100 {mu}Ci) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility. The coefficient of variation (mean {+-}SD) for %ID{sub mean}/g and %ID{sub max}/g values between [{sup 18}F]FPP(RGD){sub 2} small animal PET scans performed 6 h apart on the same day were 11.1 {+-} 7.6% and 10.4 {+-} 9.3%, respectively. The corresponding differences in %ID{sub mean}/g and %ID{sub max}/g values between scans were -0.025 {+-} 0.067 and -0.039 {+-} 0.426. Immunofluorescence studies revealed a direct relationship between extent of {alpha}{sub {nu}}{beta}{sub 3} integrin expression in tumors and tumor vasculature

  4. Effect of Au-dextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations.

    Science.gov (United States)

    Medhat, Dalia; Hussein, Jihan; El-Naggar, Mehrez E; Attia, Mohamed F; Anwar, Mona; Latif, Yasmine Abdel; Booles, Hoda F; Morsy, Safaa; Farrag, Abdel Razik; Khalil, Wagdy K B; El-Khayat, Zakaria

    2017-07-01

    Dextran-capped gold nanoparticles (Au-dextran NPs) were prepared exploiting the natural polysaccharide polymer as both reducing and stabilizing agent in the synthesis process, aiming at studying their antitumor effect on solid carcinoma and EAC-bearing mice. To this end, Au-dextran NPs were designed via simple eco-friendly chemical reaction and they were characterized revealing the monodispersed particles with narrow distributed size of around 49nm with high negative charge. In vivo experiments were performed on mice. Biochemical analysis of liver and kidney functions and oxidation stress ratio in addition to histopathological investigations of such tumor tissues were done demonstrating the potentiality of Au-dextran NPs as antitumor agent. The obtained results revealed that EAC and solid tumors caused significant increase in liver and kidney functions, liver oxidant parameters, alpha feto protein levels and diminished liver antioxidant accompanied by positive expression of tumor protein p53 of liver while the treatment with Au-dextran NPs for both types caused improvement in liver and kidney functions, increased liver antioxidant, increased the expression level of B-cell lymphoma 2 gene and subsequently suppressed the apoptotic pathway. As a result, the obtained data provides significant antitumor effects of the Au-dextran NPs in both Ehrlich ascites and solid tumor in mice models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  6. Radiation Therapy Intensification for Solid Tumors: A Systematic Review of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Yamoah, Kosj [Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL (United States); Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Ohri, Nitin, E-mail: ohri.nitin@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States)

    2015-11-15

    Purpose: To systematically review the outcomes of randomized trials testing radiation therapy (RT) intensification, including both dose escalation and/or the use of altered fractionation, as a strategy to improve disease control for a number of malignancies. Methods and Materials: We performed a literature search to identify randomized trials testing RT intensification for cancers of the central nervous system, head and neck, breast, lung, esophagus, rectum, and prostate. Findings were described qualitatively. Where adequate data were available, pooled estimates for the effect of RT intensification on local control (LC) or overall survival (OS) were obtained using the inverse variance method. Results: In primary central nervous system tumors, esophageal cancer, and rectal cancer, randomized trials have not demonstrated that RT intensification improves clinical outcomes. In breast cancer and prostate cancer, dose escalation has been shown to improve LC or biochemical disease control but not OS. Radiation therapy intensification may improve LC and OS in head and neck and lung cancers, but these benefits have generally been limited to studies that did not incorporate concurrent chemotherapy. Conclusions: In randomized trials, the benefits of RT intensification have largely been restricted to trials in which concurrent chemotherapy was not used. Novel strategies to optimize the incorporation of RT in the multimodality treatment of solid tumors should be explored.

  7. Retrotransposition of long interspersed nucleotide element-1 is associated with colitis but not tumors in a murine colitic cancer model.

    Directory of Open Access Journals (Sweden)

    Takeshi Otsubo

    Full Text Available Long interspersed element-1 (L1 is a transposable element that can move within the genome, potentially leading to genome diversity and modified gene function. Although L1 activity in somatic cells is normally suppressed through DNA methylation, some L1s are activated in tumors including colorectal carcinoma. However, how L1-retrotransposition (L1-RTP is involved in gastrointestinal disorders remains to be elucidated. We hypothesized that L1-RTP in somatic cells might contribute to colitis-associated cancer (CAC. To address this, we employed an experimental model of CAC using transgenic L1-reporter mice carrying a human L1-EGFP reporter gene. Mice were subjected to repeated cycles of colitis induced by administration of dextran sodium sulfate (DSS in drinking water with injection of carcinogen azoxymethane (AOM. L1-RTP levels were measured by a quantitative polymerase chain reaction targeting the newly inserted reporter EGFP in various tissues and cell types, including samples obtained by laser microdissection and cell sorting with flow cytometry. DNA methylation levels of the human L1 promoter were analyzed by bisulfite pyrosequencing. AOM+DSS-treated mice exhibited significantly higher levels of L1-RTP in whole colon tissue during the acute phase of colitis when compared with control naïve mice. L1-RTP levels in whole colon tissue were positively correlated with the histological severity of colitis and degree of neutrophil infiltration into the lamina propria (LP, but not with tumor development in the colon. L1-RTP was enriched in LP mesenchymal cells rather than epithelial cells (ECs, myeloid, or lymphoid cells. DNA methylation levels of the human L1 promoter region showed a negative correlation with L1-RTP levels. L1-RTP was absent from most tumors found in 22-week-old mice. In conclusion, we demonstrated that L1-RTP was induced in the mouse CAC mucosa in accordance with the acute inflammatory response; however, retrotransposition appears

  8. Investigation of the effects of long-term infusion of 125I-iododeoxyuridine on tumor growth in mice (solid mouse tumor sarcoma-180)

    International Nuclear Information System (INIS)

    Wirtz, F.

    1987-05-01

    The present experiments were designed to test the therapeutic qualification of 125 I incorporated in DNA of tumor cells. The tumor-host system used was the solid mouse tumor sarcoma-180 growing on female albino mice (NMRI). A device was built which makes it possible to intravenously infuse tumor bearing mice with solutions of 125 IUdR for several weeks. Three or, respectively, 5 days before the onset of the infusions the mice were inocculated into the right hind leg with 3x10 5 tumor cells in 0.1 ml physiological salt solution. The total activity administered per mouse was 100 μCi infused during a period of 10 days. After termination of the infusions tumor sizes and retained radioactivities were measured every 5 days until death of the animals occured. In comparison with tumors of control animals tumors of mice infused with 125 IUdR showed a mean retardation in growth of about 27% of the volumes of control tumors during the total period of post-infusion observation (25 days). Extension of life expectancy and an increase of the rate of final tumor regression did not occur. Likewise, no significant differences were observed between tumors which were 3 or 5 days old on the first day of infusion. After termination of the infusions the residual whole-body radioactivity per mouse was about 1% of the total activity infused per animal. This was in good agreement with calculations considering rates of incorporation and excretion and confirmed earlier assumptions that only about 5% of the administered IUdR is incorporated initially. The number further confirmed that, during the first 10 days after incorporation, the daily loss of activity - due to cell death - is about 30%. Control animals without tumors showed a faster decrease of incorporated activity or, respectively, loss of cells than tumor bearing mice. This difference could in part be explained by an exhaution of the short-lived cell populations of the reticulo-endothelial system of tumor bearing animals. (orig

  9. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  10. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F; Preis, Meir; Yezefski, Todd

    2010-01-01

    of altered miRNA expression in solid tumors, we developed a sensitive fluorescence-based in situ hybridization (ISH) method to visualize miRNA accumulation within individual cells in formalin-fixed, paraffin-embedded tissue specimens. This ISH method was implemented to be compatible with routine clinical...

  11. PNU-145156E, a novel angiogenesis inhibitor, in patients with solid tumors : A phase I and pharmacokinetic study

    NARCIS (Netherlands)

    Groen, HJM; de Vries, EGE; Wynendaele, W; van der Graaf, WTA; Lechuga, EFMJ; Poggesi, [No Value; Dirix, LY; van Oosterom, AT

    2001-01-01

    Our aim was to establish, in patients with solid tumors, the dose-limiting toxicity, maximum tolerated dose (MTD), and pharmacology of PNU-145156E, a new sulfonated distamycin A derivative that blocked circulating angiogenesis-promoting growth factors in animal studies and exhibited an antitumor

  12. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion. © 2014 The Authors. Phytotherapy Research published by John Wiley & Sons, Ltd.

  13. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography.

    Science.gov (United States)

    Sun, Jihong; Zhang, Shizheng; Jiang, Shaojie; Bai, Weixian; Liu, Fei; Yuan, Hong; Ji, Jiansong; Luo, Jingfeng; Han, Guocan; Chen, Lumin; Jin, Yin; Hu, Peng; Yu, Lei; Yang, Xiaoming

    2016-09-01

    Magnetic resonance (MR) contrast agents focusing on special functions are required to improve cancer diagnosis, particularly in the early stages. Here, we designed multifunctional solid lipid nanoparticles (SLNs) with simultaneous loading of gadolinium (Gd) diethylenetriaminepentaacetic acid (Gd-DTPA) and octadecylamine fluorescein isothiocyanate (FITC) to obtain Gd-FITC-SLNs as a tumor-absorbable nanoparticle contrast agent for the histological confirmation of MR imaging (MRI) findings. Colorectal tumors were evaluated in vitro and in vivo via direct uptake of this contrast agent, which displayed reasonable T1 relaxivity and no significant cytotoxicity at the experimental concentrations in human colon carcinoma cells (HT29) and mouse colon carcinoma cells (CT26). In vitro cell uptake experiments demonstrated that contrast agent absorption by the two types of cancer cells was concentration-dependent in the safe concentration range. During in vivo MRI, transrectal infusion of Gd-FITC-SLNs showed more significant enhancement at the tumor site compared with the infusion of Gd-DTPA in female C57/BL mice with azoxymethane/dextran sulfate sodium-induced colorectal highgrade intraepithelial neoplasia. Subsequent confocal fluorescence microscopy demonstrated Gd-FITC-SLNs as highly concentrated green fluorescent spots distributed from the tumor capsule into the tumor. This study establishes the "proof-of-principle" of a new MRI technique wherein colorectal tumors are enhanced via direct absorption or uptake of the nanoparticle contrast agent.

  14. Optimizing the dosing schedule of l-asparaginase improves its anti-tumor activity in breast tumor-bearing mice.

    Science.gov (United States)

    Shiromizu, Shoya; Kusunose, Naoki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro

    2018-04-01

    Proliferation of acute lymphoblastic leukemic cells is nutritionally dependent on the external supply of asparagine. l-asparaginase, an enzyme hydrolyzing l-asparagine in blood, is used for treatment of acute lymphoblastic leukemic and other related blood cancers. Although previous studies demonstrated that l-asparaginase suppresses the proliferation of cultured solid tumor cells, it remains unclear whether this enzyme prevents the growth of solid tumors in vivo. In this study, we demonstrated the importance of optimizing dosing schedules for the anti-tumor activity of l-asparaginase in 4T1 breast tumor-bearing mice. Cultures of several types of murine solid tumor cells were dependent on the external supply of asparagine. Among them, we selected murine 4T1 breast cancer cells and implanted them into BALB/c female mice kept under standardized light/dark cycle conditions. The growth of 4T1 tumor cells implanted in mice was significantly suppressed by intravenous administration of l-asparaginase during the light phase, whereas its administration during the dark phase failed to show significant anti-tumor activity. Decreases in plasma asparagine levels due to the administration of l-asparaginase were closely related to the dosing time-dependency of its anti-tumor effects. These results suggest that the anti-tumor efficacy of l-asparaginase in breast tumor-bearing mice is improved by optimizing the dosing schedule. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors.

    Science.gov (United States)

    Milowsky, Matthew I; Nanus, David M; Kostakoglu, Lale; Sheehan, Christine E; Vallabhajosula, Shankar; Goldsmith, Stanley J; Ross, Jeffrey S; Bander, Neil H

    2007-02-10

    Based on prostate-specific membrane antigen (PSMA) expression on the vasculature of solid tumors, we performed a phase I trial of antibody J591, targeting the extracellular domain of PSMA, in patients with advanced solid tumor malignancies. This was a proof-of-principle evaluation of PSMA as a potential neovascular target. The primary end points were targeting,toxicity, maximum-tolerated dose, pharmacokinetics (PK), and human antihuman antibody (HAHA) response. Patients had advanced solid tumors previously shown to express PSMA on the neovasculature. They received 111Indium (111ln)-J591 for scintigraphy and PK, followed 2 weeks later by J591 with a reduced amount of 111In for additional PK measurements. J591 dose levels were 5, 10, 20, 40, and 80 mg. The protocol was amended for six weekly administrations of unchelated J591. Patients with a response or stable disease were eligible for re-treatment. Immunohistochemistry assessed PSMA expression in tumor tissues. Twenty-seven patients received monoclonal antibody (mAb) J591. Treatment was well tolerated. Twenty (74%) of 27 patients had at least one area of known metastatic disease targeted by 111In-J591, with positive imaging seen in patients with kidney, bladder, lung, breast, colorectal, and pancreatic cancers, and melanoma. Seven of 10 patient specimens available for immunohistochemical assessment of PSMA expression in tumor-associated vasculature demonstrated PSMA staining. No HAHA response was seen. Three patients of 27 with stable disease received re-treatment. Acceptable toxicity and excellent targeting of known sites of metastases were demonstrated in patients with multiple solid tumor types, highlighting a potential role for the anti-PSMA antibody J591 as a vascular-targeting agent.

  16. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    International Nuclear Information System (INIS)

    Valous, Nektarios A.; Lahrmann, Bernd; Halama, Niels; Grabe, Niels; Bergmann, Frank; Jäger, Dirk

    2016-01-01

    not only on percentage content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. Conclusions: The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  17. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors.

    Science.gov (United States)

    Valous, Nektarios A; Lahrmann, Bernd; Halama, Niels; Bergmann, Frank; Jäger, Dirk; Grabe, Niels

    2016-06-01

    content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  18. Spatial intratumoral heterogeneity of proliferation in immunohistochemical images of solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Valous, Nektarios A. [Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120 (Germany); Lahrmann, Bernd; Halama, Niels; Grabe, Niels [Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany); Bergmann, Frank [Institute of Pathology, Heidelberg University Hospital, Heidelberg 69120 (Germany); Jäger, Dirk [Department of Medical Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg 69120, Germany and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg 69120 (Germany)

    2016-06-15

    not only on percentage content of proliferation phase but also on how the phase fills the space. Lacunarity curves demonstrate variations in the sampled image sections. Since the spatial distribution of proliferation in each case is different, the width of the curves changes too. Image sections that have smaller numerical variations in the computed features correspond to neoplasms with spatially homogeneous proliferation, while larger variations correspond to cases where proliferation shows various degrees of clumping. Grade 1 (uniform/nonuniform: 74%/26%) and grade 3 (uniform: 100%) pNENs demonstrate a more homogeneous proliferation with grade 1 neoplasms being more variant, while grade 2 tumor regions render a more diverse landscape (50%/50%). Hence, some cases show an increased degree of spatial heterogeneity comparing to others with similar grade. Whether this is a sign of different tumor biology and an association with a more benign/malignant clinical course needs to be investigated further. The extent and range of spatial heterogeneity has the potential to be evaluated as a prognostic marker. Conclusions: The association with tumor grade as well as the rationale that the methodology reflects true tumor architecture supports the technical soundness of the method. This reflects a general approach which is relevant to other solid tumors and biomarkers. Drawing upon the merits of computational biomedicine, the approach uncovers salient features for use in future studies of clinical relevance.

  19. CD 99 immunocytochemistry in solid pseudopapillary tumor of pancreas: A study on fine-needle aspiration cytology smears.

    Science.gov (United States)

    Ghosh, Ranajoy; Mallik, Saumya R; Mathur, Sandeep R; Iyer, Venkateswaran K

    2013-07-01

    Solid pseudopapillary tumor of pancreas (SPTP) is a rare pancreatic tumor of uncertain histogenesis usually affecting young women. Though these tumors have characteristic cytomorphology, it is sometimes difficult to differentiate them from neuroendocrine tumors of the pancreas. We reviewed cases of SPTP to delineate the diagnostic cytological features and also observed utility of CD 99 (MIC 2) immunostaining to aid in the diagnosis of this tumor. This study was designed to demonstrate the utility of CD 99 immunostaining along with cytological features for making a pre-operative diagnosis and delineating it from the neuroendocrine tumor of pancreas which is a close mimic. Cytomorphological features of 11 cases of solid pseudopapillary neoplasm diagnosed by pre-operative fine-needle aspiration cytology (FNAC) at our institute were reviewed. Immunocytochemistry for CD 99 was also performed on the smears. All the cases had cellular smears with monomorphic cells lying singly, as loosely cohesive clusters as well as forming delicate pseudopapillae. Presence of intra and extra-cellular basement membrane material, background foamy macrophages and nuclear grooves were the other salient features. Immunocytochemistry for CD 99 could be performed on eight cases and demonstrated typical paranuclear dot-like positivity. Pre-operative early diagnosis of SPTP can be made by FNAC which can further be aided by CD 99 immunocytochemistry.

  20. Application of 10BSH entrapped transferrin-PEG-liposome to boron neutron-capture therapy (BNCT) for solid tumor

    International Nuclear Information System (INIS)

    Maruyama, K.; Ishida, O.; Iwatsuru, M.; Yanagie, H.; Eriguchi, M.; Kobayashi, H.

    2000-01-01

    The successful treatment of cancer by BNCT requires the selective concentration of 10 B within malignant tumor cells. Intracellular targeting ability and cytotoxic effects of 10 B entrapped TF-PEG-liposomes, in which TF is covalently linked to the distal terminal of PEG chains on the external surface of PEG-liposomes, were examined in Colon 26 tumor-bearing mice. TF-PEG-liposomes readily bound to tumor cells in vivo, and were internalized by receptor-mediated endocytosis. 10 B-PEG-liposomes and 10 B-TF-PEG-liposomes showed prolonged residence time in the circulation and low RES uptake in tumor-bearing mice, resulting in enhanced extravasation of the liposomes into the solid tumor tissue and reached high level of 10 B content in tumor. After thermal neutron irradiation of mice injected with 10 B-PEG-liposomes or 10 B-TF-PEG-liposome, tumor growth was suppressed relative to controls. These results suggest that intravenous injection of 10 B TF-PEG-liposome can increase the intracellular retention of 10 B atoms, which were introduced by receptor mediated endocytosis after binding, causing tumor growth suppression in vivo upon thermal neutron irradiation. (author)

  1. Solid state NMR of isotope labelled murine fur: a powerful tool to study atomic level keratin structure and treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wai Ching Veronica; Narkevicius, Aurimas; Chow, Wing Ying; Reid, David G.; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2016-10-15

    We have prepared mouse fur extensively {sup 13}C,{sup 15}N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. {sup 13}C double quantum–single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α-helical, and β-sheet/random coil components, enables resolution of otherwise overlapped α-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.

  2. Birth weight and risk of childhood solid tumors in Brazil: a record linkage between population-based data sets

    Directory of Open Access Journals (Sweden)

    Neimar de Paula Silva

    2017-04-01

    Full Text Available ABSTRACT Objective To analyze the relationship between the development of childhood solid tumors and 1 birth weight and 2 fetal growth, using two Brazilian population-based data sets. Methods A case–cohort study was performed using two population-based data sets, and linkage between the Live Birth Information System (Sistema de Informação sobre Nascidos Vivos, SINASC and 14 population-based cancer registries (PBCRs was established. Four controls per case were chosen randomly from the SINASC data set. Tumors were classified as central nervous system (CNS, non-CNS embryonal, and other tumors (“miscellaneous”. Adjustments were made for potential confounders (maternal age, mode of delivery, maternal education, birth order, gestational age, sex, and geographic region. Odds ratios (ORs with 95% confidence intervals (CIs were computed using unconditional logistic regression analysis. Results In a trend analysis, for every 500 g of additional birth weight, the crude OR was 1.12 (CI: 1.00–1.24 and the adjusted OR was 1.02 (CI: 0.90–1.16 for all tumors. For every 1 000 g of additional birth weight, the crude OR was 1.25 (CI: 1.00–1.55 and the adjusted OR was 1.04 (CI: 0.82–1.34 for all tumors. Among children diagnosed after reaching the age of 3 years, in the miscellaneous tumor category, the OR was significantly increased for every additional 500 g and 1 000 g of birth weight. Conclusions The study data suggested that increased birth weight was associated with childhood solid tumor development, especially among children more than 3 years old with “miscellaneous” tumors.

  3. Birth weight and risk of childhood solid tumors in Brazil: a record linkage between population-based data sets.

    Science.gov (United States)

    de Paula Silva, Neimar; de Souza Reis, Rejane; Cunha, Rafael Garcia; Oliveira, Julio Fernando; da Silva de Lima, Fernanda Cristina; Pombo-de-Oliveira, Maria Socorro; Santos, Marceli Oliveira; de Camargo, Beatriz

    2017-04-20

    To analyze the relationship between the development of childhood solid tumors and 1) birth weight and 2) fetal growth, using two Brazilian population-based data sets. A case-cohort study was performed using two population-based data sets, and linkage between the Live Birth Information System (Sistema de Informação sobre Nascidos Vivos, SINASC) and 14 population-based cancer registries (PBCRs) was established. Four controls per case were chosen randomly from the SINASC data set. Tumors were classified as central nervous system (CNS), non-CNS embryonal, and other tumors ("miscellaneous"). Adjustments were made for potential confounders (maternal age, mode of delivery, maternal education, birth order, gestational age, sex, and geographic region). Odds ratios (ORs) with 95% confidence intervals (CIs) were computed using unconditional logistic regression analysis. In a trend analysis, for every 500 g of additional birth weight, the crude OR was 1.12 (CI: 1.00-1.24) and the adjusted OR was 1.02 (CI: 0.90-1.16) for all tumors. For every 1 000 g of additional birth weight, the crude OR was 1.25 (CI: 1.00-1.55) and the adjusted OR was 1.04 (CI: 0.82-1.34) for all tumors. Among children diagnosed after reaching the age of 3 years, in the miscellaneous tumor category, the OR was significantly increased for every additional 500 g and 1 000 g of birth weight. The study data suggested that increased birth weight was associated with childhood solid tumor development, especially among children more than 3 years old with "miscellaneous" tumors.

  4. Serum cross-linked n-telopeptides of type 1 collagen (NTx in patients with solid tumors

    Directory of Open Access Journals (Sweden)

    Fernando Jablonka

    Full Text Available CONTEXT AND OBJECTIVE: Cross-linked N-telopeptides of type I collagen (NTx increase in concentration in situations in which bone resorption is increased, such as osteoporosis and bone metastasis (BM. We aimed to evaluate the serum concentrations of NTx in a sample of patients with several types of solid tumors. DESIGN AND SETTING: Cross-sectional analytical study with a control group in a tertiary public hospital. METHODS: We performed the quantitative enzyme-linked immunosorbent assay (ELISA on serum NTx levels in 19 subjects without a history of cancer and 62 patients with various solid tumors who had been referred for a bone scan. Three experienced analysts read all bone scans. RESULTS: The serum NTx levels in patients with cancer and BM, with cancer but without BM and without cancer were 46.77 ± 2.58, 32.85 ± 2.05 and 22.32 ± 2.90 respectively (P < 0.0001. We did not find any significant correlations of serum NTx with age, gender, history of bone pain, tumor type and bone alkaline phosphatase levels. We found a significant correlation between serum NTx and alkaline phosphatase levels (R² = 0.08; P = 0.022. CONCLUSIONS: Serum NTx levels are significantly higher in patients with solid tumors and bone metastases than they are in patients without bone metastases and in normal controls.

  5. A Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors.

    Science.gov (United States)

    Pitot, Henry C; Reid, Joel M; Sloan, Jeff A; Ames, Matthew M; Adjei, Alex A; Rubin, Joseph; Bagniewski, Pamela G; Atherton, Pamela; Rayson, Daniel; Goldberg, Richard M; Erlichman, Charles

    2002-03-01

    To evaluate the toxicities, characterize the pharmacokinetics, and determine the maximum-tolerated dose of bizelesin administered once every 4 weeks. Patients with advanced solid tumors received escalating doses of bizelesin as an i.v. push every 4 weeks. Pharmacokinetic studies were performed with the first treatment cycle. Nineteen eligible patients received a total of 54 courses of bizelesin at doses ranging from 0.1 to 1 microg/m(2). Dose-limiting toxicity of neutropenia was seen in 2 of 4 patients treated at the 1 microg/m(2) dose level. Nonhematological toxicity was generally mild with maximum toxicity being

  6. Chemotherapy Toxicity Risk Score for Treatment Decisions in Older Adults with Advanced Solid Tumors.

    Science.gov (United States)

    Nishijima, Tomohiro F; Deal, Allison M; Williams, Grant R; Sanoff, Hanna K; Nyrop, Kirsten A; Muss, Hyman B

    2018-05-01

    The decision whether to treat older adults with advanced cancer with standard therapy (ST) or reduced therapy (RT) is complicated by heterogeneity in aging. We assessed the potential utility of the chemotherapy toxicity risk score (CTRS) [J Clin Oncol 2011;29:3457-3465] for treatment decisions in older adults. This was a prospective observational study of patients aged ≥65 years receiving first-line chemotherapy for advanced cancer for which combination chemotherapy is the standard of care. Patients were categorized as high risk (CTRS ≥10), for whom RT (dose-reduced combination or single-agent chemotherapy) is deemed appropriate, or nonhigh risk (CTRS statistic. Fifty-eight patients (median age, 71 years) were enrolled. Thirty-eight patients received ST (21 had CTRS advanced solid tumors receiving first-line chemotherapy was assessed. Little agreement was found between chemotherapy treatment decisions based on the clinical impression versus what was recommended based on the CTRS. Among patients treated with standard-dose combination chemotherapy, patients with CTRS ≥10 had a very high incidence of grade 3-4 toxicities and hospitalization, which was significantly greater than that of patients with a low CTRS (<10). These findings suggest that the addition of CTRS to the clinical impression has a potential to improve treatment decisions. © AlphaMed Press 2018.

  7. Effect of Itraconazole and Rifampin on the Pharmacokinetics of Olaparib in Patients With Advanced Solid Tumors

    DEFF Research Database (Denmark)

    Dirix, Luc; Swaisland, Helen; Verheul, Henk M W

    2016-01-01

    ) and inducer (rifampin) to alter the pharmacokinetic (PK) profile of olaparib following single oral tablet doses. METHODS: Two Phase I, open-label, non-randomized trials were conducted in patients with advanced solid tumors. In Study 7, patients received olaparib alone and co-administered with itraconazole...... analysis following treatment with olaparib alone and olaparib plus itraconazole, respectively; in Study 8 (N = 22; 4 male, 18 female), all patients were evaluable. Co-administration of olaparib with itraconazole resulted in a statistically significant increase in the relative bioavailability of olaparib......: Cmax treatment ratio, 1.42 (90% CI, 1.33-1.52); mean AUC treatment ratio, 2.70 (90% CI, 2.44-2.97). Mean CL/F and Vz/F were reduced (8.16 vs 3.05 L/h and 192 vs 75.1 L), although mean t½ was unchanged (15.0 vs 15.6 hours). Co-administration of olaparib with rifampin resulted in a statistically...

  8. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer.

    Science.gov (United States)

    Ghaghada, Ketan B; Sato, Amy F; Starosolski, Zbigniew A; Berg, John; Vail, David M

    2016-01-01

    Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. Liposomal-I resulted in significant (p contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small and large tumors in companion dogs with naturally occurring cancer. The study warrants future work to assess the sensitivity and specificity of the Liposomal-I agent in various types of

  9. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multiinstitutional research project

    International Nuclear Information System (INIS)

    Zips, D.; Petersen, C.; Adam, M.; Molls, M.; Philbrook, C.; Flentje, M.; Haase, A.; Schmitt, P.; Mueller-Klieser, W.; Thews, O.; Walenta, S.; Baumann, M.

    2004-01-01

    Background: recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. Material and methods: the present article will introduce a multiinstitutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Wuerzburg, Germany. Results: the joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Conclusion: besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation. (orig.)

  10. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  11. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Science.gov (United States)

    Soltani, M; Chen, P

    2013-01-01

    Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries) are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  12. Pneumothorax as a complication of combination antiangiogenic therapy in children and young adults with refractory/recurrent solid tumors.

    Science.gov (United States)

    Interiano, Rodrigo B; McCarville, M Beth; Wu, Jianrong; Davidoff, Andrew M; Sandoval, John; Navid, Fariba

    2015-09-01

    Antiangiogenic agents show significant antitumor activity against various tumor types. In a study evaluating the combination of sorafenib, bevacizumab, and low-dose cyclophosphamide in children with solid tumors, an unexpectedly high incidence of pneumothorax was observed. We evaluated patient characteristics and risk factors for the development of pneumothorax in patients receiving this therapy. Demographics, clinical course, and radiographic data of 44 patients treated with sorafenib, bevacizumab and cyclophosphamide were reviewed. Risk factors associated with the development of pneumothorax were analyzed. Pneumothorax likely related to study therapy developed in 11 of 44 (25%) patients of whom 33 had pulmonary abnormalities. Median age of patients was 14.7 years (range, 1.08-24.5). Histologies associated with pneumothorax included rhabdoid tumor, synovial sarcoma, osteosarcoma, Ewing sarcoma, Wilms tumor, and renal cell carcinoma. Cavitation of pulmonary nodules in response to therapy was associated with pneumothorax development (Ppneumothorax was 5.7 weeks (range, 2.4-31). The development of cavitary pulmonary nodules in response to therapy is a risk factor for pneumothorax. As pneumothorax is a potentially life-threatening complication of antiangiogenic therapy in children with solid tumors, its risk needs to be evaluated when considering this therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Radiation-induced autologous in situ tumor vaccines

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Radiation therapy (RT) has been used as a definitive treatment for many solid tumors. While tumoricidal properties of RT are instrumental for standard clinical application, irradiated tumors can potentially serve as a source of tumor antigens in vivo, where dying tumor cells would release tumor antigens and danger signals and serve as autologous in situ tumor vaccines. Using murine tumor models of prostate, metastatic lung cancer and melanoma, we have demonstrated evidence of radiation-enhanced tumor-specific immune response that resulted in improved primary tumor control and reduction in systemic metastasis and cure. We will discuss the immunogenic properties of RT and determine how immunotherapeutic approaches can synergize with RT in boosting immune cells cell function. (author)

  14. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  15. Radiobiologic significance of apoptosis and micronucleation in quiescent cells within solid tumors following γ-ray irradiation

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao

    2001-01-01

    Purpose: To determine the frequency of apoptosis in quiescent (Q) cells within solid tumors following γ-ray irradiation, using four different tumor cell lines. In addition, to assess the significance of detecting apoptosis in these cell lines. Methods and Materials: C3H/He mice bearing SCC VII or FM3A tumors, Balb/c mice bearing EMT6/KU tumors, and C57BL mice bearing EL4 tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously for 5 days via implanted mini-osmotic pumps to label all proliferating (P) cells. The mice then received γ-ray irradiation at a dose of 4-25 Gy while alive or after tumor clamping. Immediately after irradiation, the tumors were excised, minced, and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU labeling (=Q cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 hours after irradiation, tumor cell suspensions obtained in the same manner were fixed. The apoptosis frequency in Q cells was also determined with immunofluorescence staining for BrdU. The MN and apoptosis frequency in total (P+Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Results: In total cells, SCC VII, FM3A, and EMT6/KU cells showed reasonable relationships between MN frequency and surviving fraction (SF). However, fewer micronuclei were induced in EL4 cells than the other cell lines. In contrast, a comparatively close relationship between apoptosis frequency and SF was found in total cells of EL4 cell line. Less apoptosis was observed in the other cell lines. Quiescent tumor cells exhibited significantly lower values of MN and apoptosis frequency probably due to their large hypoxic fraction, similar to total tumor cells on clamped irradiation. Conclusion: γ-ray irradiation induced MN formation in SCC VII, FM3A, and EMT6/KU tumor cells, and the apoptosis was marked in EL4 cells compared with

  16. Novel Therapeutic Strategies for Solid Tumor Based on Body's Intrinsic Antitumor Immune System.

    Science.gov (United States)

    Duan, Haifeng

    2018-05-22

    The accumulation of mutated somatic cells due to the incompetency of body's immune system may lead to tumor onset. Therefore, enhancing the ability of the system to eliminate such cells should be the core of tumor therapy. The intrinsic antitumor immunity is triggered by tumor-specific antigens (TSA) or TSA-sensitized dendritic cells (DC). Once initiated, specific anti-tumor antibodies are produced and tumor-specific killer immune cells, including cytotoxic T lymphocytes (CTL), NK cells, and macrophages, are raised or induced. Several strategies may enhance antitumor action of immune system, such as supplying tumor-targeted antibody, activating T cells, enhancing the activity and tumor recognition of NK cells, promoting tumor-targeted phagocytosis of macrophages, and eliminating the immunosuppressive myeloid-derived suppressor cells (MDSCs) and Treg cells. Apart from the immune system, the removal of tumor burden still needs to be assisted by drugs, surgery or radiation. And the body's internal environment and tumor microenvironment should be improved to recover immune cell function and prevent tumor growth. Multiple microenvironment modulatory therapies may be applied, including addressing hypoxia and oxidative stress, correcting metabolic disorders, and controlling chronic inflammation. Finally, to cure tumor and prevent tumor recurrence, repairing or supporting therapy that consist of tissue repair and nutritional supplement should be applied properly. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts

    International Nuclear Information System (INIS)

    Bandopadhayay, Pratiti; Thomas, David M; Algar, Elizabeth; Ekert, Paul G; Jabbour, Anissa M; Riffkin, Christopher; Salmanidis, Marika; Gordon, Lavinia; Popovski, Dean; Rigby, Lin; Ashley, David M; Watkins, David N

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53 +/- and p53 -/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT

  18. 17-DMAG in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphomas

    Science.gov (United States)

    2013-01-24

    Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult T-cell Leukemia/Lymphoma; Stage III Cutaneous T-cell Non-Hodgkin Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Mycosis Fungoides/Sezary Syndrome; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenstr

  19. First-in-Human Clinical Trial of Oral ONC201 in Patients with Refractory Solid Tumors.

    Science.gov (United States)

    Stein, Mark N; Bertino, Joseph R; Kaufman, Howard L; Mayer, Tina; Moss, Rebecca; Silk, Ann; Chan, Nancy; Malhotra, Jyoti; Rodriguez, Lorna; Aisner, Joseph; Aiken, Robert D; Haffty, Bruce G; DiPaola, Robert S; Saunders, Tracie; Zloza, Andrew; Damare, Sherri; Beckett, Yasmeen; Yu, Bangning; Najmi, Saltanat; Gabel, Christian; Dickerson, Siobhan; Zheng, Ling; El-Deiry, Wafik S; Allen, Joshua E; Stogniew, Martin; Oster, Wolfgang; Mehnert, Janice M

    2017-08-01

    Purpose: ONC201 is a small-molecule selective antagonist of the G protein-coupled receptor DRD2 that is the founding member of the imipridone class of compounds. A first-in-human phase I study of ONC201 was conducted to determine its recommended phase II dose (RP2D). Experimental Design: This open-label study treated 10 patients during dose escalation with histologically confirmed advanced solid tumors. Patients received ONC201 orally once every 3 weeks, defined as one cycle, at doses from 125 to 625 mg using an accelerated titration design. An additional 18 patients were treated at the RP2D in an expansion phase to collect additional safety, pharmacokinetic, and pharmacodynamic information. Results: No grade >1 drug-related adverse events occurred, and the RP2D was defined as 625 mg. Pharmacokinetic analysis revealed a C max of 1.5 to 7.5 μg/mL (∼3.9-19.4 μmol/L), mean half-life of 11.3 hours, and mean AUC of 37.7 h·μg/L. Pharmacodynamic assays demonstrated induction of caspase-cleaved keratin 18 and prolactin as serum biomarkers of apoptosis and DRD2 antagonism, respectively. No objective responses by RECIST were achieved; however, radiographic regression of several individual metastatic lesions was observed along with prolonged stable disease (>9 cycles) in prostate and endometrial cancer patients. Conclusions: ONC201 is a selective DRD2 antagonist that is well tolerated, achieves micromolar plasma concentrations, and is biologically active in advanced cancer patients when orally administered at 625 mg every 3 weeks. Clin Cancer Res; 23(15); 4163-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available BACKGROUND: The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs, which are abundant in solid tumors, can be utilized for identification of rearranged ends. METHOD: As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP microarray method entailing CNB-region refinement by competitor DNA. RESULT: Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9% were identified, and two polymerase chain reaction (PCR-amplifiable rearrangements were obtained in six cases (66.7%. And significantly, TNGS-CNB, with its high positive identification rate (82.6% of PCR-amplifiable rearrangements at candidate sites (19/23, just from filtering of aligned sequences, requires little effort for validation. CONCLUSION: Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  1. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Science.gov (United States)

    Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man

    2014-01-01

    The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  2. Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors

    International Nuclear Information System (INIS)

    Ghanem, N.; Altehoefer, C.; Winterer, J.; Schaefer, O.; Bley, T.A.; Langer, M.; Kelly, T.; Moser, E.

    2004-01-01

    The aim of this study was to compare the diagnostic efficacy of whole-body magnetic resonance imaging (WB-MRI) as a new and rapid examination technique with skeletal scintigraphy for detection of skeletal metastases from solid tumors. In 129 patients with solid malignant tumors, WB-MRI was performed for individual comparison with skeletal scintigraphy. Examinations were performed with the innovative AngioSURF trademark rolling table with integrated phased array surface coil and coronary TIRM sequences for different body regions. The results for WB-MRI and skeletal scintigraphy were concordant in 81% of the cases, whereby both procedures excluded skeletal metastases in 43%. WB-MRI and skeletal scintigraphy demonstrated skeletal metastases in 38% of the cases, whereby WB-MRI provided more comprehensive findings in 45%. In 12% of the cases, skeletal scintigraphy was superior to WB-MRI and in 19% the findings were discordant, whereby WB-MRI detected skeletal metastases in 15 cases which had not been found on skeletal scintigraphy. In nine cases, skeletal scintigraphy was positive when the WB-MRI was negative. In 60% of the cases, WB-MRI evidenced tumor-associated findings. WB-MRI represents a promising new staging technique for detection of skeletal metastases, which is more sensitive in many cases than skeletal scintigraphy in detecting and assessing the extent of skeletal metastases - and tumor-associated findings that are relevant for treatment strategy. (orig.) [de

  3. BRAFV600 mutations in solid tumors, other than metastatic melanoma and papillary thyroid cancer, or multiple myeloma: a screening study

    Directory of Open Access Journals (Sweden)

    Cohn AL

    2017-02-01

    Full Text Available Allen L Cohn,1 Bann-Mo Day,2 Sarang Abhyankar,3 Edward McKenna,2 Todd Riehl,4 Igor Puzanov5 1Medical Research, Rocky Mountain Cancer Centers, Denver, CO, 2US Medical Affairs, 3Global Safety and Risk Management, 4Product Development Oncology, Genentech, Inc., South San Francisco, CA, 5Melanoma Section, Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Background: Mutations in the BRAF gene have been implicated in several human cancers. The objective of this screening study was to identify patients with solid tumors (other than metastatic melanoma or papillary thyroid cancer or multiple myeloma harboring activating BRAFV600 mutations for enrollment in a vemurafenib clinical study.Methods: Formalin-fixed, paraffin-embedded tumor samples were collected and sent to a central laboratory to identify activating BRAFV600 mutations by bidirectional direct Sanger sequencing.Results: Overall incidence of BRAFV600E mutation in evaluable patients (n=548 was 3% (95% confidence interval [CI], 1.7–4.7: 11% in colorectal tumors (n=75, 6% in biliary tract tumors (n=16, 3% in non-small cell lung cancers (n=71, 2% in other types of solid tumors (n=180, and 3% in multiple myeloma (n=31. There were no BRAFV600 mutations in this cohort of patients with ovarian tumors (n=68, breast cancer (n=86, or prostate cancer (n=21.Conclusion: This multicenter, national screening study confirms previously reported incidences of BRAFV600 mutations from single-center studies. Patients identified with BRAFV600 mutations were potentially eligible for enrollment in the VE-BASKET study. Keywords: genetic testing, proto-oncogene proteins B-raf, PLX4032

  4. Pattern of malignant solid tumors and lymphomas in children in the east delta of Egypt: A five-year study.

    Science.gov (United States)

    Hesham, Mervat; Atfy, Mervat; Hassan, Tamer; Abdo, Mohamed; Morsy, Saed; El Malky, Mohamed; Latif, Dalia Abdel

    2014-11-01

    Worldwide, the incidence and mortality rates of childhood cancers differ. The study of incidence patterns and survival rates in childhood malignancies is important in aiding in the planning of treatment centers and in obtaining further information with regard to the etiology. Few studies have investigated the survival in cases of childhood solid tumors in Egypt. The aim of the current study was to evaluate the patterns, frequency and outcome of solid tumors and lymphomas in children admitted to and followed up at the Pediatric Oncology Department of Zagazig University Hospital (Zagazig, Egypt) over a duration of 5 years (January 2004 to December 2008). A retrospective study was conducted, which included 155 children with solid tumors and lymphomas. The medical records were reviewed and the relevant data collected, in particular, those concerning demographic, clinical, histopathological, laboratory and imaging data as well as the treatment plans and outcomes. The mean age of patients was 5.6±3.04 years at diagnosis. The patients comprised 94 males and 61 females. Non-Hodgkin lymphoma (NHL) was the most common tumor type, followed by neuroblastoma (31.0 and 29.0%, respectively). When patients were stratified in terms of age (<5, ≥5 but <10, and ≥10 years), the <5-years-of-age group exhibited the greatest number of patients. Fever, pallor and pain were the most frequent initial clinical presentations among the patients and stage II was the most common stage (39.1%) followed by stage IV, III and I (35.0, 20.3 and 5.6% respectively). The overall 5-year survival rate in the study group was 66.7%. The survival rate was significantly higher in patients with Wilm's tumor and Hodgkin lymphoma, followed by NHL (92.0, 88.0 and 72.0%, respectively; P<0.001), while the mortality rate was significantly higher in patients with neuroblastoma (P<0.001). In conclusion, NHL and neuroblastoma were the most common tumors; the survival rates were higher in patients with Wilm's tumor

  5. Correlation between radiosensitivity of transplanted solid tumor and nutritive condition of host animal

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K [Showa Univ., Tokyo (Japan). School of Medicine

    1975-04-01

    Studies on radiosensitivity of the transplanted tumor were carried out and the following results were obtained: 1. Radiosensitivity of the tumor ran parallel to the growth rate. 2. Malnutrition of the host after irradiation made the tumor radiosensitive, probably because the sublethally damaged tumor cell did not recover. 3. Mitotic index correlated well with radiosensitivity, and the low mitotic index caused by starvation made the tumor cell recover poorly. 4. The DNA synthetic rate measured by means of iodine labeled IUdR did not successfully correlate with the mitotic rate, presumably because of the role of thymidine pool size in this experiment. 5. The serum protein level possibly with the tumor growth, which modified the radiosensitivity. 6. Serum oxygen was difficult to interpret, however, it might be compensated by erythrocytosis in a starved condition.

  6. Solid pseudopapillary tumor of the pancreas: Experience at a tertiary care centre of Northern India

    Directory of Open Access Journals (Sweden)

    Namita Bhutani

    2017-01-01

    Conclusion: SPT is rare, but treatable pancreatic tumor. While clinical signs and symptoms are relatively nonspecific, characteristic findings on imaging and histology separate these tumors from the more malignant pancreatic tumors. The prognosis is favorable even in the presence of distant metastasis. Although surgical resection is generally curative, a close follow-up is advised in order to diagnose a local recurrence or distant metastasis.

  7. Polyphenon-E encapsulated into chitosan nanoparticles inhibited proliferation and growth of Ehrlich solid tumor in mice

    Directory of Open Access Journals (Sweden)

    Azza I. Othman

    2018-03-01

    Full Text Available Limited bioavailability of green tea polyphenols hampered their delivery to tumor and hence therapeutic effectiveness. This study investigated the antitumor activity of polyphenon-E (PE encapsulated into chitosan nanoparticles (CSNPs in Ehrlich solid tumor in mice. CSNPs-PE, with a particle size of 53–69 nm showed 83% entrapment efficiency and a sustained release of PE in pH = 7.4 at 37 °C. The data demonstrated a higher percentage of released drug in case of less crosslinked formulations. Ehrlich ascites carcinoma (EAC cells (2.5 × 106/0.2 ml/mouse were injected subcutaneously in the back of mice. Oral administration of CSNPs-PE for 30 days produced a significant decrease in tumor volume (53% and weight (60% compared with free PE and voids CSNPs (72%. Compared with free PE and control, cell cycle revealed G0/G1 arrest associated with decrease in proliferating cell nuclear antigen (PCNA. In tumor tissue of CSNPs-PE treated mice, compared with free PE, there were; 1 induction of Bax and p53, 2 activation of caspases-3,-8 and -9, and CD95, 3 decrease in Bcl-2 expression of 4 inhibition of VEGF and CD31 expressions in tumor tissue. In conclusion, encapsulation of PE into CSNPs provided a good platform for cancer chemotherapy and raised existing application of different polyphenols for nanochemotherapy/prevention.

  8. Applications of lipid nanocarriers for solid tumors therapy: literature review; Aplicacoes das nanoparticulas lipidicas no tratamento de tumores solidos: revisao de literatura

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lidiane Correia de; Souza, Leonardo Gomes; Marreto, Ricardo Neves; Lima, Eliana Martins; Taveira, Stephania Fleury [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Fac. de Farmacia; Taveira, Eliseu Jose Fleury, E-mail: stephaniafleury@gmail.com [Hospital Erasto Gaertner, Curitiba, PR (Brazil). Oncologia Clinica

    2012-07-01

    Introduction: Lipid nanocarriers are systems used to target drugs to its site of action and have attracted attention of the scientific community because they are biocompatible and biodegradable. These systems can target drugs to solid tumors, providing sustained drug release in the site of action, thus increasing the utility of the antineoplastic chemotherapy. Objective: To review the available literature on in vivo experiments with lipid nanocarriers containing cytotoxic drugs for solid tumors treatment. Method: A search study was carried out in Pubmed{sup R} database from 2007 to 2011, with subject descriptors: liposomes, lipid nanoparticles, cancer and in vivo, with the boolean operator 'and' among them, in English. Results: 1,595 papers related to the use of liposomes and 77 related to lipid nanoparticles were found. Few studies reported in vivo experiments with lipid nanoparticles (28 papers) compared to liposomes (472 papers), since liposomes were developed two decades before lipid nanoparticles. Four liposomal medicines have already been approved and are used in the clinic while only one medicine containing lipid nanoparticles is in phase I of clinical studies. Conclusion: The number of papers related to the use of nanotechnology for cancer treatment is increasing rapidly, making important to know the different kinds of nanocarriers and, especially, those which are already used in the clinic. There are only few clinical studies on lipid nanocarriers; however, these systems present an enormous potential to improve the clinical practice in oncology. (author)

  9. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition

    International Nuclear Information System (INIS)

    Peddaboina, Chander; Smythe, W Roy; Cao, Xiaobo; Jupiter, Daniel; Fletcher, Steven; Yap, Jeremy L; Rai, Arun; Tobin, Richard P; Jiang, Weihua; Rascoe, Philip; Rogers, M Karen Newell

    2012-01-01

    It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors

  10. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  11. Laparoscopic vs open distal pancreatectomy for solid pseudopapillary tumor of the pancreas

    Science.gov (United States)

    Zhang, Ren-Chao; Yan, Jia-Fei; Xu, Xiao-Wu; Chen, Ke; Ajoodhea, Harsha; Mou, Yi-Ping

    2013-01-01

    AIM: To compare short- and long-term outcomes of laparoscopic vs open distal pancreatectomy for solid pseudopapillary tumor (SPT) of the pancreas. METHODS: This retrospective study included 28 patients who underwent distal pancreatectomy for SPT of the pancreas between 1998 and 2012. The patients were divided into two groups based on the surgical approach: the laparoscopic surgery group and the open surgery group. The patients’ demographic data, operative results, pathological reports, hospital courses, morbidity and mortality, and follow-up data were compared between the two groups. RESULTS: Fifteen patients with SPT of the pancreas underwent laparoscopic distal pancreatectomy (LDP), and 13 underwent open distal pancreatectomy (ODP). Baseline characteristics were similar between the two groups except for a female predominance in the LDP group (100.0% vs 69.2%, P = 0.035). Mortality, morbidity (33.3% vs 38.5%, P = 1.000), pancreatic fistula rates (26.7% vs 30.8%, P = 0.728), and reoperation rates (0.0% vs 7.7%, P = 0.464) were similar in the two groups. There were no significant differences in the operating time (171 min vs 178 min, P = 0.755) between the two groups. The intraoperative blood loss (149 mL vs 580 mL, P = 0.002), transfusion requirement (6.7% vs 46.2%, P = 0.029), first flatus time (1.9 d vs 3.5 d, P = 0.000), diet start time (2.3 d vs 4.9 d, P = 0.000), and postoperative hospital stay (8.1 d vs 12.8 d, P = 0.029) were significantly less in the LDP group than in the ODP group. All patients had negative surgical margins at final pathology. There were no significant differences in number of lymph nodes harvested (4.6 vs 6.4, P = 0.549) between the two groups. The median follow-up was 33 (3-100) mo for the LDP group and 45 (17-127) mo for the ODP group. All patients were alive with one recurrence. CONCLUSION: LDP for SPT has short-term benefits compared with ODP. Long-term outcomes of LDP are similar to those of ODP. PMID:24115826

  12. Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver Dysfunction

    Science.gov (United States)

    2014-02-21

    IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-cell Leukemia/Lymphoma; Stage IV Cutaneous T-cell Non-Hodgkin Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Mycosis Fungoides/Sezary Syndrome; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia

  13. Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors

    International Nuclear Information System (INIS)

    Rossi, Sabrina; Toschi, Luca; Castello, Angelo; Grizzi, Fabio; Mansi, Luigi; Lopci, Egesta

    2017-01-01

    The rapidly evolving knowledge on tumor immunology and the continuous implementation of immunotherapy in cancer have recently led to the FDA and EMA approval of several checkpoint inhibitors as immunotherapic agents in clinical practice. Anti-CTLA-4, anti-PD-1, and anti-PDL-1 antibodies are becoming standard of care in advanced melanoma, as well as in relapsed or metastatic lung and kidney cancer, demonstrating higher and longer response compared to standard chemotherapy. These encouraging results have fostered the evaluation of these antibodies either alone or in combination with other therapies in several dozen clinical trials for the treatment of multiple tumor types. However, not all patients respond to immune checkpoint inhibitors, hence, specific biomarkers are necessary to guide and monitor therapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials, but, to date, no consensus has been reached on whether PD-L1 expression is an ideal marker for response and patient selection; approximately 20-25% of patients will respond to immunotherapy with checkpoint inhibitors despite a negative PD-L1 staining. On the other hand, major issues concern the evaluation of objective response in patients treated with immunotherapy. Pure morphological criteria as commonly used in solid tumors (i.e. RECIST) are not sufficient because change in size is not an early and reliable marker of tumor response to biological therapies. Thus, the scientific community has required a continuous adaptation of immune-related response criteria (irRC) to overcome the problem. In this context, metabolic information and antibody-based imaging with positron emission tomography (PET) have been investigated, providing a powerful approach for an optimal stratification of patients at staging and during the evaluation of the response to therapy. In the present review we provide an overview on the clinical characteristics of patient selection when using imaging

  14. Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Sabrina; Toschi, Luca [Humanitas Clinical and Research Hospital, Medical Oncology, Rozzano (Italy); Castello, Angelo [Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano (Italy); Grizzi, Fabio [Humanitas Clinical and Research Hospital, Immunology and Inflammation, Rozzano (Italy); Mansi, Luigi [Seconda Universita di Napoli, Nuclear Medicine, Naples (Italy); Lopci, Egesta [Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano (Italy); Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano, MI (Italy)

    2017-12-15

    The rapidly evolving knowledge on tumor immunology and the continuous implementation of immunotherapy in cancer have recently led to the FDA and EMA approval of several checkpoint inhibitors as immunotherapic agents in clinical practice. Anti-CTLA-4, anti-PD-1, and anti-PDL-1 antibodies are becoming standard of care in advanced melanoma, as well as in relapsed or metastatic lung and kidney cancer, demonstrating higher and longer response compared to standard chemotherapy. These encouraging results have fostered the evaluation of these antibodies either alone or in combination with other therapies in several dozen clinical trials for the treatment of multiple tumor types. However, not all patients respond to immune checkpoint inhibitors, hence, specific biomarkers are necessary to guide and monitor therapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials, but, to date, no consensus has been reached on whether PD-L1 expression is an ideal marker for response and patient selection; approximately 20-25% of patients will respond to immunotherapy with checkpoint inhibitors despite a negative PD-L1 staining. On the other hand, major issues concern the evaluation of objective response in patients treated with immunotherapy. Pure morphological criteria as commonly used in solid tumors (i.e. RECIST) are not sufficient because change in size is not an early and reliable marker of tumor response to biological therapies. Thus, the scientific community has required a continuous adaptation of immune-related response criteria (irRC) to overcome the problem. In this context, metabolic information and antibody-based imaging with positron emission tomography (PET) have been investigated, providing a powerful approach for an optimal stratification of patients at staging and during the evaluation of the response to therapy. In the present review we provide an overview on the clinical characteristics of patient selection when using imaging

  15. Evaluation of uptake and distribution of gold nanoparticles in solid tumors

    Science.gov (United States)

    England, Christopheri G.; Gobin, André M.; Frieboes, Hermann B.

    2015-11-01

    Although nanotherapeutics offer a targeted and potentially less toxic alternative to systemic chemotherapy in cancer treatment, nanotherapeutic transport is typically hindered by abnormal characteristics of tumor tissue. Once nanoparticles targeted to tumor cells arrive in the circulation of tumor vasculature, they must extravasate from irregular vessels and diffuse through the tissue to ideally reach all malignant cells in cytotoxic concentrations. The enhanced permeability and retention effect can be leveraged to promote extravasation of appropriately sized particles from tumor vasculature; however, therapeutic success remains elusive partly due to inadequate intra-tumoral transport promoting heterogeneous nanoparticle uptake and distribution. Irregular tumor vasculature not only hinders particle transport but also sustains hypoxic tissue kregions with quiescent cells, which may be unaffected by cycle-dependent chemotherapeutics released from nanoparticles and thus regrow tumor tissue following nanotherapy. Furthermore, a large proportion of systemically injected nanoparticles may become sequestered by the reticulo-endothelial system, resulting in overall diminished efficacy. We review recent work evaluating the uptake and distribution of gold nanoparticles in pre-clinical tumor models, with the goal to help improve nanotherapy outcomes. We also examine the potential role of novel layered gold nanoparticles designed to address some of these critical issues, assessing their uptake and transport in cancerous tissue.

  16. Solid pseudopapillary tumor of the pancreas (SPPT: Still an unsolved enigma Tumor sólido pseudopapilar del páncreas (TSSP: un enigma sin resolver

    Directory of Open Access Journals (Sweden)

    J. A. Cienfuegos

    2010-12-01

    Full Text Available Solid pseudo-papillary tumor (SPPT is a rare cystic tumor of the pancreas (1-3% of exocrine tumors of the pancreas which shows an "enigmatic" behavior on the clinical and molecular pattern. A retrospective analysis of the citological studies and resected specimens of pancreatic cystic tumors from May 1996 to February 2010 was carried out. Three cases of SPPT were found, which are the objective of this study. The diagnosis was established upon occasional finding in the abdominal CT, in spite of sizing between 3 and 6 cm of diameter. In the three cases the preoperative diagnosis was confirmed by citology and specific immunohistochemical staining. Cases 2 and 3 showed strong immunoreactivity for Beta-Catenina and E-Cadherina staining. Radical resection (R0 was carried out in the three cases. A young male -21 years of age (case 1- who had duodenal infiltration and two lymph nodes metastases died of hepatic and peritoneal recurrence 20 months following surgery. The other two cases are free of disease. The current review of the literature reports roughly 800 cases since the first report in 1959, and shows the enigmatic character of this tumor regarding the cellular origin, molecular pathways, prognostic factors and clinical behavior.El tumor pseudopapilar (TSPP es un tumor quístico del páncreas muy poco frecuente (1-3% de los tumores exocrinos del páncreas y que tiene un comportamiento oncológico y molecular "enigmático". Se realizó un análisis retrospectivo de las citologías de las lesiones quísticas del páncreas, así como de los tumores quísticos resecados entre mayo de 1996 y febrero de 2010, encontrándose tres tumores SSPP, motivo de este estudio. En los tres casos el diagnóstico fue ocasional en el TC abdominal a pesar de presentar unos tamaños entre 3 y 6 cm de diámetro. En los tres casos se confirmó el diagnóstico preoperatorio mediante citología e inmunohistoquímica. En los casos 2 y 3 se confirmó la positividad para Beta

  17. Neoplastic Meningitis from Solid Tumors: A Prospective Clinical Study in Lombardia and a Literature Review on Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    A. Silvani

    2013-01-01

    Full Text Available Neoplastic dissemination to the leptomeninges is an increasingly common occurrence in patients with both haematological and solid tumors arising outside the central nervous system. Both refinement of diagnostic techniques (Magnetic resonance imaging and increased survival in patients treated with targeted therapies for systemic tumors account for this increased frequency. Cerebrospinal fluid cytological analysis and MRI confirm clinical diagnosis based on multifocal central nervous system signs/symptoms in a patient with known malignancy. Overall survival in patients with leptomeningeal neoplastic dissemination from solid tumors is short, rarely exceeding 3-4 months. However, selected patients may benefit from aggressive therapies, Apart from symptomatic treatment, intrathecal chemotherapy is used, with both free (methotrexate, Thiotepa, AraC and liposomal antitumor agents (liposomal AraC. Palliative radiotherapy is indicated only in cases of symptomatic bulky disease, surgery is limited to positioning of Ommaya recervoirs or C5F shunting. We report clinical data on a cohort of 26 prospectively followed patients with neoplastic leptomeningitis followed in Lombardia, Italy, in 2011. Prognostic factors and pattern of care are reported.

  18. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins

    International Nuclear Information System (INIS)

    Mazumder, A.; Grimm, E.A.; Zhang, H.Z.; Rosenberg, S.A.

    1982-01-01

    Human peripheral blood lymphocytes (PBL), obtained from patients with a variety of cancers, were incubated in vitro with phytohemagglutinin, concanavalin A, and crude or lectin-free T-cell growth factors. The lectin-activated PBL of nine patients were capable of lysing fresh autologous tumor during a 4-hr 51Cr release assay. Multiple metastases from the same patient were equivalently lysed by these activated autologous PBL. No lysis of fresh PBL or lectin-induced lymphoblast cell targets was seen, although tumor, PBL, and lymphoblast cells were shown to be equally lysable using allosensitized cells. The activated cells could be expanded without loss of cytotoxicity in crude or lectin-free T-cell growth factors. The generation of cells lytic to fresh autologous tumor was dependent on the presence of adherent cells, although the lytic cell itself was not adherent. Proliferation was not involved in the induction of lytic cells since equal lysis was induced in irradiated and nonirradiated lymphocytes. Lectin was not required in the lytic assay, and the addition of alpha-methyl-D-mannoside to concanavalin A-activated lymphoid cells did not increase the lysis of fresh tumor cells. Activation by lectin for 3 days appears to be an efficient and convenient method for generating human cells lytic to fresh autologous tumor. These lytic cells may be of value for studies of the cell-mediated lysis of human tumor and possibly for tumor immunotherapy as well

  19. Molecular imaging using Cu-ATSM and FDG in solid canine tumors

    DEFF Research Database (Denmark)

    Hansen, Anders Elias

    . Identification of hypoxic tumor and intratumoral hypoxic regions therefore hold the potential to serve as a basis for individualized treatment protocols, including image guided radiation therapy. The current PhD project was undertaken to study tumor hypoxia in cancer bearing dogs, with the aims of 1) identifying...... glycolysis and blood perfu- sion. 3) To compare tumor uptake of 64 Cu-ATSM and [ 18 F]fluoro-D-glucose ( 18 FDG) (glycolytic activity) to pimonidazole (immunological hypoxia marker) immunohistochemistry. 4) To investigate 18 FDG PET as a diagnostic modality in canine cancer patients. The thesis contains...

  20. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study

    Science.gov (United States)

    Ju, Julia A.; Baek, Jin Hyen; Yalamanoglu, Ayla; Buehler, Paul W.; Gilkes, Daniele M.; Palmer, Andre F.

    2018-01-01

    A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage. PMID:29414985

  1. Radiation- and Photo-induced Activation of 5-Fluorouracil Prodrugs as a Strategy for the Selective Treatment of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Sei-ichi Nishimoto

    2008-10-01

    Full Text Available 5-Fluorouracil (5-FU is used widely as an anticancer drug to treat solid cancers, such as colon, breast, rectal, and pancreatic cancers, although its clinical application is limited because 5-FU has gastrointestinal and hematological toxicity. Many groups are searching for prodrugs with functions that are tumor selective in their delivery and can be activated to improve the clinical utility of 5-FU as an important cancer chemotherapeutic agent. UV and ionizing radiation can cause chemical reactions in a localized area of the body, and these have been applied in the development of site-specific drug activation and sensitization. In this review, we describe recent progress in the development of novel 5-FU prodrugs that are activated site specifically by UV light and ionizing radiation in the tumor microenvironment. We also discuss the chemical mechanisms underlying this activation.

  2. Diagnosis and treatment of solid pseudopapillary tumor of the pancreas: experience of one single institution from Turkey

    Science.gov (United States)

    2013-01-01

    Background Solid pseudopapillary neoplasia (SPN) of the pancreas is an extremely rare epithelial tumor of low malignant potential. SPN accounts for less than 1% to 2% of exocrine pancreatic tumors. The aim of this study is to report our experience with SPN of the pancreas. It includes a summary of the current literature to provide a reference for the management of this rare clinical entity. Methods A retrospective analysis was performed of all patients diagnosed and treated for SPN in our hospital over the past 15 years (1998 to 2013). A database of the characteristics of these patients was developed, including age, gender, tumor location and size, treatment, and histopathological and immunohistochemical features. Results During this time period, 255 patients with pancreatic malignancy (which does not include ampulla vateri, distal choledocal and duodenal tumor) were admitted to our department, only 10 of whom were diagnosed as having SPN (2.5%). Nine patients were women (90%) and one patient was a man (10%). Their median age was 38.8 years (range 18 to 71). The most common symptoms were abdominal pain and dullness. Seven patients (70%) presented with abdominal pain or abdominal dullness and three patient (30%) were asymptomatic with the diagnosis made by an incidental finding on routine examination. Abdominal computed tomography and/or magnetic resonance imaging showed the typical features of solid pseudopapillary neoplasm in six (60%) of the patients. Four patients underwent distal pancreatectomy with splenectomy, one patient underwent a total mass excision, and one patient underwent total pancreatic resection. Two required extended distal pancreatectomy with splenectomy. Two underwent spleen-preserving distal pancreatectomy. Conclusions SPN is a rare neoplasm that primarily affects young women. The prognosis is favorable even in the presence of distant metastasis. Although surgical resection is generally curative, a close follow-up is advised in order to

  3. Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors.

    Science.gov (United States)

    Herbst, Roy S; Hong, David; Chap, Linnea; Kurzrock, Razelle; Jackson, Edward; Silverman, Jeffrey M; Rasmussen, Erik; Sun, Yu-Nien; Zhong, Don; Hwang, Yuying C; Evelhoch, Jeffrey L; Oliner, Jonathan D; Le, Ngocdiep; Rosen, Lee S

    2009-07-20

    PURPOSE AMG 386 is an investigational peptide-Fc fusion protein (ie, peptibody) that inhibits angiogenesis by preventing the interaction of angiopoietin-1 and angiopoietin-2 with their receptor, Tie2. This first-in-human study evaluated the safety, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of AMG 386 in adults with advanced solid tumors. PATIENTS AND METHODS Patients in sequential cohorts received weekly intravenous AMG 386 doses of 0.3, 1, 3, 10, or 30 mg/kg. Results Thirty-two patients were enrolled on the study and received AMG 386. One occurrence of dose-limiting toxicity was seen at 30 mg/kg: respiratory arrest, which likely was caused by tumor burden that was possibly related to AMG 386. The most common toxicities were fatigue and peripheral edema. Proteinuria (n = 11) was observed without clinical sequelae. Only four patients (12%) experienced treatment-related toxicities greater than grade 1. A maximum-tolerated dose was not reached. PK was dose-linear and the mean terminal-phase elimination half-life values ranged from 3.1 to 6.3 days. Serum AMG 386 levels appeared to reach steady-state after four weekly doses, and there was minimal accumulation. No anti-AMG 386 neutralizing antibodies were detected. Reductions in volume transfer constant (K(trans); measured by dynamic contrast-enhanced magnetic resonance imaging) were observed in 10 patients (13 lesions) 48 hours to 8 weeks after treatment. One patient with refractory ovarian cancer achieved a confirmed partial response (ie, 32.5% reduction by Response Evaluation Criteria in Solid Tumors) and withdrew from the study with a partial response after 156 weeks of treatment; four patients experienced stable disease for at least 16 weeks. CONCLUSION Weekly AMG 386 appeared well tolerated, and its safety profile appeared distinct from that of vascular endothelial growth factor-axis inhibitors. AMG 386 also appeared to impact tumor vascularity and showed antitumor activity in this patient

  4. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy

    Directory of Open Access Journals (Sweden)

    Han LQ

    2016-11-01

    Full Text Available Leiqiang Han, Tianqi Wang, Jingliang Wu, Xiaolan Yin, Hao Fang, Na Zhang School of Pharmaceutical Science, Shandong University, Ji’nan, Shandong, People’s Republic of China Abstract: Small molecule-based nanodrugs with nanoparticles (NPs that are mainly composed of small molecules, have been considered as a promising candidate for a next-generation nanodrug, owing to their unique properties. Vorinostat (SAHA is a canonical US Food and Drug Administration-approved histone deacetylase (HDAC inhibitor for the treatment of cutaneous T-cell lymphoma. However, the lack of efficacy against solid tumors hinders its progress in clinical use. Herein, a novel nanodrug of SAHA was developed based on disulfide-linked prodrug SAHA-S-S-VE. SAHA-S-S-VE could self-assemble into 148 nm NPs by disulfide-induced mechanisms, which were validated by molecular dynamics simulations. Under reduced conditions, the redox-responsive behavior of SAHA-S-S-VE was investigated, and the HDAC inhibition results verified the efficient release of free SAHA. With a biocompatible d-a-tocopheryl polyethylene glycol succinate (TPGS functionalization, the SAHA-S-S-VE/TPGS NPs exhibited low critical aggregation concentration of 4.5 µM and outstanding stability in vitro with drug-loading capacity of 24%. In vitro biological assessment indicated that SAHA-S-S-VE/TPGS NPs had significant anticancer activity against HepG2. Further in vivo evaluation demonstrated that the resulting NPs could be accumulated in the tumor region and inhibit the tumor growth effectively. This approach, which turned SAHA into a self-assembled redox-responsive nanodrug, provided a new channel for the use of HDAC inhibitor in solid tumor therapy. Keywords: SAHA, HDAC, small molecule, nanoparticles, self-assemble, disulfide bond

  5. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  6. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  7. Enhancement of anticancer effect of interferon-γ gene transfer against interferon-γ-resistant tumor by depletion of tumor-associated macrophages.

    Science.gov (United States)

    Kiyota, Tsuyoshi; Takahashi, Yuki; Watcharanurak, Kanitta; Nishikawa, Makiya; Ohara, Saori; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2014-05-05

    Tumor-associated macrophages (TAMs) negatively affect the therapeutic effects of anticancer agents. To examine the role of TAMs in interferon (IFN)-γ gene therapy, we selected two types of solid tumors, which varied in the number of TAMs, and investigated the effects of IFN-γ gene transfer on tumor growth. Many TAMs were detected in the solid tumors of murine adenocarcinoma colon-26 cells, whereas few TAMs were detected in murine melanoma B16-BL6 cells. IFN-γ gene transfer hardly suppressed the growth of colon-26 tumors, whereas it was effective in suppressing the growth of B16-BL6 tumors. The antiproliferative effects of IFN-γ on cultured colon-26 cells were similar to those on cultured B16-BL6 cells. To evaluate the role of TAMs, we injected clodronate liposomes (CLs) modified with poly(ethylene glycol) (PEG) to functionally deplete TAMs in tumor-bearing mice. Repeated injections of PEG-CLs significantly retarded the growth of colon-26 tumors and combination with IFN-γ gene transfer further inhibited the growth. In contrast, PEG-CLs hardly retarded the growth of B16-BL6 tumors. These results clearly indicate that TAM depletion is effective in enhancing the therapeutic effect of IFN-γ in TAM-repleted and IFN-γ-resistant tumors.

  8. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors.

    Science.gov (United States)

    Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L

    2017-06-13

    Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.

  9. Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors12

    Science.gov (United States)

    Hovelson, Daniel H.; McDaniel, Andrew S.; Cani, Andi K.; Johnson, Bryan; Rhodes, Kate; Williams, Paul D.; Bandla, Santhoshi; Bien, Geoffrey; Choppa, Paul; Hyland, Fiona; Gottimukkala, Rajesh; Liu, Guoying; Manivannan, Manimozhi; Schageman, Jeoffrey; Ballesteros-Villagrana, Efren; Grasso, Catherine S.; Quist, Michael J.; Yadati, Venkata; Amin, Anmol; Siddiqui, Javed; Betz, Bryan L.; Knudsen, Karen E.; Cooney, Kathleen A.; Feng, Felix Y.; Roh, Michael H.; Nelson, Peter S.; Liu, Chia-Jen; Beer, David G.; Wyngaard, Peter; Chinnaiyan, Arul M.; Sadis, Seth; Rhodes, Daniel R.; Tomlins, Scott A.

    2015-01-01

    Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes. To address these challenges, we predefined the catalog of relevant solid tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics analysis of >700,000 samples. To detect these variants, we developed the Oncomine Comprehensive Panel (OCP), an integrative NGS-based assay [compatible with 95% accuracy for KRAS, epidermal growth factor receptor, and BRAF mutation detection as well as for ALK and TMPRSS2:ERG gene fusions. Associating positive variants with potential targeted treatments demonstrated that 6% to 42% of profiled samples (depending on cancer type) harbored alterations beyond routine molecular testing that were associated with approved or guideline-referenced therapies. As a translational research tool, OCP identified adaptive CTNNB1 amplifications/mutations in treated prostate cancers. Through predefining somatic variants in solid tumors and compiling associated potential treatment strategies, OCP represents a simplified, broadly applicable targeted NGS system with the potential to advance precision oncology efforts. PMID:25925381

  10. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  11. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    International Nuclear Information System (INIS)

    Adams, Gregory P.

    2004-01-01

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies

  12. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    International Nuclear Information System (INIS)

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance

  13. Two-dose-level confirmatory study of the pharmacokinetics and tolerability of everolimus in Chinese patients with advanced solid tumors

    Directory of Open Access Journals (Sweden)

    Jappe Annette

    2011-01-01

    Full Text Available Abstract Background This phase I, randomized, multicenter, open-label study investigated the pharmacokinetics, safety, and efficacy of the oral mammalian target of rapamycin inhibitor everolimus in Chinese patients with advanced solid tumors. Methods A total of 24 patients with advanced breast cancer (n = 6, gastric cancer (n = 6, non-small cell lung cancer (n = 6, or renal cell carcinoma (n = 6 who were refractory to/unsuitable for standard therapy were randomized 1:1 to oral everolimus 5 or 10 mg/day. Primary end points were pharmacokinetic parameters and safety and tolerability. Pharmacokinetic 24-h profiles were measured on day 15; trough level was measured on days 2, 8, 15, 16, and 22. Tolerability was assessed continuously. This final analysis was performed after all patients had received 6 months of study drug or had discontinued. Results Everolimus was absorbed rapidly; median Tmax was 3 h (range, 1-4 and 2 h (range, 0.9-6 in the 5 and 10 mg/day groups, respectively. Pharmacokinetic parameters increased dose proportionally from the 5 and 10 mg/day doses. Steady-state levels were achieved by day 8 or earlier. The most common adverse events suspected to be related to everolimus therapy were increased blood glucose (16.7% and 41.7% and fatigue (16.7% and 33.3% in the everolimus 5 and 10 mg/day dose cohorts, respectively. Best tumor response was stable disease in 10 (83% and 6 (50% patients in the 5 and 10 mg/day groups, respectively. Conclusions Everolimus 5 or 10 mg/day was well tolerated in Chinese patients with advanced solid tumors. The observed safety and pharmacokinetic profile of everolimus from this study were consistent with previous studies. Trial registration Chinese Health Authorities 2008L09346

  14. Solid renal tumor severity in von Hippel Lindau disease is related to germline deletion length and location.

    Science.gov (United States)

    Maranchie, Jodi K; Afonso, Anoushka; Albert, Paul S; Kalyandrug, Sivaram; Phillips, John L; Zhou, Shubo; Peterson, James; Ghadimi, Bijan M; Hurley, Katheen; Riss, Joseph; Vasselli, James R; Ried, Thomas; Zbar, Berton; Choyke, Peter; Walther, McClellan M; Klausner, Richard D; Linehan, W Marston

    2004-01-01

    von Hippel Lindau disease (VHL) is an autosomal dominant familial cancer syndrome linked to alteration of the VHL tumor suppressor gene. Affected patients are predisposed to develop pheochromocytomas and cystic and solid tumors of the kidney, CNS, pancreas, retina, and epididymis. However, organ involvement varies considerably among families and has been shown to correlate with the underlying germline alteration. Clinically, we observed a paradoxically lower prevalence of renal cell carcinoma (RCC) in patients with complete germline deletion of VHL. To determine if a relationship existed between the type of VHL deletion and disease, we retrospectively evaluated 123 patients from 55 families with large germline VHL deletions, including 42 intragenic partial deletions and 13 complete VHL deletions, by history and radiographic imaging. Each individual and family was scored for cystic or solid involvement of CNS, pancreas, and kidney, and for pheochromocytoma. Germline deletions were mapped using a combination of fluorescent in situ hybridization (FISH) and quantitative Southern and Southern blot analysis. An age-adjusted comparison demonstrated a higher prevalence of RCC in patients with partial germline VHL deletions relative to complete deletions (48.9 vs. 22.6%, p=0.007). This striking phenotypic dichotomy was not seen for cystic renal lesions or for CNS (p=0.22), pancreas (p=0.72), or pheochromocytoma (p=0.34). Deletion mapping revealed that development of RCC had an even greater correlation with retention of HSPC300 (C3orf10), located within the 30-kb region of chromosome 3p, immediately telomeric to VHL (52.3 vs. 18.9%, p <0.001), suggesting the presence of a neighboring gene or genes critical to the development and maintenance of RCC. Careful correlation of genotypic data with objective phenotypic measures will provide further insight into the mechanisms of tumor formation. Copyright 2003 Wiley-Liss, Inc.

  15. Development of novel murine mammary imaging windows to examine wound healing effects on leukocyte trafficking in mammary tumors with intravital imaging.

    Science.gov (United States)

    Sobolik, Tammy; Su, Ying-Jun; Ashby, Will; Schaffer, David K; Wells, Sam; Wikswo, John P; Zijlstra, Andries; Richmond, Ann

    2016-01-01

    We developed mammary imaging windows (MIWs) to evaluate leukocyte infiltration and cancer cell dissemination in mouse mammary tumors imaged by confocal microscopy. Previous techniques relied on surgical resection of a skin flap to image the tumor microenvironment restricting imaging time to a few hours. Utilization of mammary imaging windows offers extension of intravital imaging of the tumor microenvironment. We have characterized strengths and identified some previously undescribed potential weaknesses of MIW techniques. Through iterative enhancements of a transdermal portal we defined conditions for improved quality and extended confocal imaging time for imaging key cell-cell interactions in the tumor microenvironment.

  16. Carbogen Breathing Differentially Enhances Blood Plasma Volume and 5-Fluorouracil Uptake in Two Murine Colon Tumor Models with a Distinct Vascular Structure

    Directory of Open Access Journals (Sweden)

    Hanneke W.M. van Laarhoven

    2006-06-01

    Full Text Available For the systemic treatment of colorectal cancer, 5-fluorouracil (FU-based chemotherapy is the standard. However, only a subset of patients responds to chemotherapy. Breathing of carbogen (95% O2 and 5% CO2 may increase the uptake of FU through changes in tumor physiology. This study aims to monitor in animal models in vivo the effects of carbogen breathing on tumor blood plasma volume, pH, and energy status, and on FU uptake and metabolism in two colon tumor models C38 and C26a, which differ in their vascular structure and hypoxic status. Phosphorus-31 magnetic resonance spectroscopy (MRS was used to assess tumor pH and energy status, and fluorine-19 MRS was used to follow FU uptake and metabolism. Advanced magnetic resonance imaging methods using ultrasmall particles of iron oxide were performed to assess blood plasma volume. The results showed that carbogen breathing significantly decreased extracellular pH and increased tumor blood plasma volume and FU uptake in tumors. These effects were most significant in the C38 tumor line, which has the largest relative vascular area. In the C26a tumor line, carbogen breathing increased tumor growth delay by FU. In this study, carbogen breathing also enhanced systemic toxicity by FU.

  17. Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model

    DEFF Research Database (Denmark)

    Sørensen, Maria Rathmann; Holst, Peter J; Steffensen, Maria Abildgaard

    2010-01-01

    that the delay in tumor growth can be converted to complete regression and long-term survival in 30-40% of the mice by a booster vaccination plus combinational treatment with agonistic anti-CD40 monoclonal antibodies (mAb) and anti-CTLA-4 mAb. Regarding the mechanism underlying the improved clinical effect......, analysis of the tumor-specific response revealed a significantly prolonged tumor-specific CD8 T cell response in spleens of the mice receiving the combinational treatment compared with mice receiving either treatment individually. Matching this, CD8 T cell depletion completely prevented tumor control...

  18. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors.

    Science.gov (United States)

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Kumagai, Michiaki; Nomoto, Takahiro; Aoki, Ichio; Terada, Yasuko; Kishimura, Akihiro; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2014-01-28

    Organic-inorganic hybrid nanoparticles with calcium phosphate (CaP) core and PEGylated shell were developed to incorporate magnetic resonance imaging (MRI) contrast agent diethylenetriaminepentaacetic acid gadolinium (III) (Gd-DTPA) for noninvasive diagnosis of solid tumors. A two-step preparation method was applied to elaborate hybrid nanoparticles with a z-average hydrodynamic diameter about 80nm, neutral surface ξ-potential and high colloidal stability in physiological environments by self-assembly of poly(ethylene glycol)-b-poly(aspartic acid) block copolymer, Gd-DTPA, and CaP in aqueous solution, followed with hydrothermal treatment. Incorporation into the hybrid nanoparticles allowed Gd-DTPA to show significant enhanced retention ratio in blood circulation, leading to high accumulation in tumor positions due to enhanced permeability and retention (EPR) effect. Moreover, Gd-DTPA revealed above 6 times increase of relaxivity in the nanoparticle system compared to free form, and eventually, selective and elevated contrast enhancements in the tumor positions were observed. These results indicate the high potential of Gd-DTPA-loaded PEGylated CaP nanoparticles as a novel contrast agent for noninvasive cancer diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: evidence from 16 cohort studies.

    Science.gov (United States)

    Wu, Jiayuan; Hu, Liren; Chen, Manyu; Cao, Wenjun; Chen, Haicong; He, Taiping

    2016-01-01

    The expression of pyruvate kinase M2 (PKM2) has been linked to tumor formation and invasion. Specifically, the relationship between high PKM2 expression and prognosis has been evaluated in solid tumors of digestive system. However, the prognostic value of PKM2 remains controversial. A literature search of PubMed, Embase, and Cochrane databases was conducted until October 2015. The end point focused on overall survival (OS). The pooled hazard ratio (HR) or odds ratio and the 95% confidence intervals were calculated to correlate PKM2 overexpression with OS and clinicopathological characteristics by employing fixed- or random-effects models, depending on the heterogeneity of the included studies. We identified 18 cohorts in 16 studies involving 2,812 patients for this meta-analysis. Overall, the combined HR for OS in all tumor types was 1.74 (1.44-2.11; Pdigestive system, thereby suggesting that PKM2 might be an indicator of poor prognosis in digestive system cancers.

  20. Two-photon excited fluorescence imaging of the pancreatic solid pseudopapillary tumor without hematoxylin and eosin stains.

    Science.gov (United States)

    Xu, Yahao; Liao, Chenxi; Chen, Jing; Chen, Youting; Zhu, Xiaoqin; Chen, Jianxin

    2016-05-01

    Solid pseudopapillary tumor (SPT) of the pancreas is an epithelial tumor with low-grade malignant potential and present more common in females. At present, the gold standard for accurate diagnosis of pancreatic tumor was mostly depending on the pathological and/or cytological evaluation. In this work, TPEF microscopy was applied to obtain the images of human normal pancreas and SPT of the pancreas without hematoxylin and eosin (H&E) staining, for the purpose of identifying the organization structural, cell morphological, and cytoplasm changing, which were then compared to their corresponding H&E stained histopathological results. Our results showed that high-resolution TPEF imaging of the pancreatic SPT can clearly distinguish the pathological features from normal pancreas in unstained histological sections, and the results are consistent with the histological results. Moreover, we measured the nuclear-cytoplasmic ratios of the pancreatic SPT and normal pancreas to characterize their difference in the cytomorphological feature. It indicated that this technique can achieve the consistent information of pathological diagnosis, and has the potential to substantially improve the optical diagnosis and treatment of the pancreatic SPT without H&E staining in the future. SCANNING 38:245-250, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  1. Hepatomegaly as the first symptom of malignant solid tumors in children

    Directory of Open Access Journals (Sweden)

    Karolina Widłak

    2018-05-01

    Full Text Available Introduction: Hepatomegaly is a physical symptom that may suggest primary liver disease, or it may be present as a component of the generalized disorder. One of uncommon reasons of hepatomegaly, which occur in children of all ages, but most common in infants and toodlers, are primary and metastatic neoplasms, such as hepatoblastoma (HB and neuroblastoma (NB. The aim of this work is to prove how significant implementation of appropriate diagnostics after detecting hepatomegaly in a child is by presenting an example of two patients’ medical history. Cases report: A 3-month-old girl and a 2-year-old boy were admitted to the Department of Pediatric Hematooncology because of the tumors, which were detected in abdominal ultasound examinations. The examinations were performed in order to find the causes of growing abdominal circumferences observed by the parents and significant hepatomegaly, which were shown in physical examination of both children. A tumor of the right adrenal gland with numerous metastatic changes in the liver was detected in the girl and a single tumor coming out most likely from the liver was revealed in the boy. Laboratory tests have shown a significant increase in the levels of tumor markers: NSE in the girl (51 μg/l and AFP (327 830 U/ml in the boy. On the basis of the performed tests’ results, the girl was suspected to have NB with liver metastases and the boy appeared to have HB with lung metastases, inferior vena cava and right hepatic vein invasion. Conclusions: Attention should be paid to palpation and percussion examination of the abdomen in order to detect hepatomegaly at the earliest possible stage. It is important to implement appropriate diagnostics after detecting the enlargement of the liver in a child, because this symptom may be a sign of developing dangerous tumor process.

  2. Selective changes in expression of HLA class I polymorphic determinants in human solid tumors

    International Nuclear Information System (INIS)

    Natali, P.G.; Nicotra, M.R.; Bigotti, A.; Venturo, I.; Giacomini, P.; Marcenaro, L.; Russo, C.

    1989-01-01

    Analysis of surgical biopsies with monoclonal antibodies (mAbs) to framework determinants of major histocompatibility complex class I antigens has shown that malignant transformation is frequently associated with a marked loss of these cell surface molecules. The present study sought to determine whether more selective losses of major histocompatibility complex class I expression occur. Multiple specimens from 13 different types of primary and metastatic tumors were tested utilizing mAb BB7.2, which recognizes a polymorphic HLA-A2 epitope. In each case, expression of HLA-A,B,C molecules was determined by testing with mAb W6/32 directed to a framework HLA class I determinant. The authors have found that in HLA-A2-positive patients, HLA-A2 products are not detectable or are reduced in their expression in 70-80% of endometrial, colorectal, mammary, and renal tumors; in 40-60% of soft-tissue, skin, ovary, urinary bladder, prostate, and stomach tumors; and in 25-30% of melanomas and lung carcinomas tested. All tumors expressed the framework HLA-A,B.C determinant. The HLA-A2 epitope recognized by mAb BB7.2 is located in a portion of the HLA-A2 molecule postulated to react with the T-cell receptor. The selective loss of an HLA class I polymorphic epitope shown in this study may explain the mechanism by which tumor cells escape both T-cell recognition and natural killer cell surveillance

  3. Original communication: Basal metabolic rate in children with a solid tumor

    NARCIS (Netherlands)

    Broeder, den E.; Oeseburg, B.; Lippens, R.J.J.; Staveren, van W.A.; Sengers, R.C.A.; Hof, van 't M.A.; Tolboom, J.J.M.

    2001-01-01

    Objective: To study the level of and changes in basal metabolic rate (BMR) in children with a solid tumour at diagnosis and during treatment in order to provide a more accurate estimate of energy requirements for nutritional support. Design: An observational study. Setting: Tertiary care at the

  4. The utility of fecal corticosterone metabolites and animal welfare assessment protocols as predictive parameters of tumor development and animal welfare in a murine xenograft model

    DEFF Research Database (Denmark)

    Jacobsen, Kirsten Rosenmaj; Jørgensen, Pernille Schønning; Pipper, Christian Bressen

    2013-01-01

    consumption, and an animal welfare assessment (AWA) protocol revealed marked differences between control and cancer lines as the size of the tumor increased. However, only the AWA protocol was effective in predicting the tumor size and the level of fecal corticosterone metabolites (FCM). FCM levels were...

  5. Poor prognosis of hexokinase 2 overexpression in solid tumors of digestive system: a meta-analysis.

    Science.gov (United States)

    Wu, Jiayuan; Hu, Liren; Wu, Fenping; Zou, Lei; He, Taiping

    2017-05-09

    Several previous studies have reported the prognostic value of hexokinase 2 (HK2) in digestive system tumors. However, these studies were limited by the small sample sizes and the results were inconsistent among them. Therefore, we conducted a meta-analysis based on 15 studies with 1932 patients to assess the relationship between HK2 overexpression and overall survival (OS) of digestive system malignancies. The relationship of HK2 and clinicopathological features was also evaluated. Hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect size. Positive HK2 expression showed poor OS in all tumor types (HR = 1.75 [1.41-2.18], P digestive system cancers.

  6. A 3D Cellular Automaton for Cell Differentiation in a Solid Tumor with Plasticity

    Science.gov (United States)

    Margarit, David H.; Romanelli, Lilia; Fendrik, Alejandro J.

    A model with spherical symmetry is proposed. We analyze the appropriate parameters of cell differentiation for different kinds of cells (Cancer Stem Cells (CSC) and Differentiated Cells (DC)). The plasticity (capacity to return from a DC to its previous state of CSC) is taken into account. Following this hypothesis, the dissemination of CSCs to another organ is analyzed. The location of the cells in the tumor and the plasticity range for possible metastasis is discussed.

  7. Overcoming the hurdles of multi-step targeting (MST) for effective radioimmunotherapy of solid tumors

    International Nuclear Information System (INIS)

    Larson, Steven M.; Cheung, Nai-Kong

    2009-01-01

    The 4 specific aims of this project are: (1) Optimization of MST to increase tumor uptake; (2) Antigen heterogeneity; (3) Characterization and reduction of renal uptake; and (4) Validation in vivo of optimized MST targeted therapy. This proposal focussed upon optimizing multistep immune targeting strategies for the treatment of cancer. Two multi-step targeting constructs were explored during this funding period: (1) anti-Tag-72 and (2) anti-GD2.

  8. Dynamic interaction of 111indium-labeled monoclonal antibodies with surface antigens of solid tumors visualized in vivo by external scintigraphy

    International Nuclear Information System (INIS)

    Hwang, K.M.; Keenan, A.M.; Frincke, J.; David, G.; Pearson, J.; Oldham, R.K.; Morgan, A.C. Jr.

    1986-01-01

    Two 111 indium-labeled murine monoclonal antibodies (MoAb), D3 and 9.2.27, directed to tumor antigens of L-10 hepatocarcinoma and human melanoma, respectively, selectively localized antigen-positive target cells in guinea pigs and nude mice. The fate of MoAb differed in the two antigen-antibody systems after reacting with their corresponding tumor antigens in vivo as reflected by patterns of distribution and turnover in vivo. The 9.2.27 localized in melanoma xenograft in nude mice after intravenous administration with slow loss from tumor but more rapid loss from normal tissues and thus demonstrated optimal imaging of small tumors (approximately equal to 5 mm) between 3 and 6 days after injection of the radiolabeled antibody. In contrast, D3 demonstrated a biphasic localization in guinea pig L-10 hepatocarcinoma with a maximal activity on the 2d day after administration and showed rapid loss from both tumor and normal tissues. Nonspecific localization of antibodies in liver and in kidney was found both in syngeneic (nude mice) and xenogeneic (guinea pig) hosts but was more pronounced in the xenogeneic species. These results indicate that the nature of the antigen-antibody interaction may be of importance in selecting MoAb for both diagnosis and therapy of malignant diseases

  9. A phase I pharmacokinetic study of ursolic acid nanoliposomes in healthy volunteers and patients with advanced solid tumors

    Directory of Open Access Journals (Sweden)

    Ying G

    2013-01-01

    Full Text Available Zhongling Zhu,1,4 Zhengzi Qian,2,4 Zhao Yan,1,4 Cuicui Zhao,2,4 Huaqing Wang,2,4 Guoguang Ying3,41Department of Clinical Pharmacology, 2Department of Lymphoma, 3Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China; 4Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of ChinaBackground: Ursolic acid is a promising anticancer agent. The current study aims to evaluate the single- and multiple-dose pharmacokinetics (PK as well as the safety of ursolic acid nanoliposomes (UANL in healthy volunteers and in patients with advanced solid tumors.Methods: Twenty-four healthy volunteers in the single-dose PK study were divided into three different groups, which received 37, 74, and 98 mg/m2 of UANL. Eight patients in the multiple-dose PK study were administered with 74 mg/m2 of UANL daily for 14 days. The UA plasma concentrations were determined using ultra-performance liquid chromatograph-tandem mass spectrometry.Results: The plasma concentration profiles of all subjects were characterized by a biexponential decline after infusion. The mean peak plasma concentration (Cmax increased linearly as a function of the dose (r = 0.999. The mean area under the plasma concentration-time curve (AUC from 0 to 16 hours also increased proportionally with dose escalation (r = 0.998. However, the clearance was constant over the specific dose interval. In the multiple-dose PK study, the trough and average concentrations remained low. The mean AUC, half-life, Cmax, time to Cmax, and the volume of distribution on the first day were similar to those on the last day. All subjects tolerated the treatments well. Most UANL-associated adverse events varied from mild to moderate.Conclusions: UANL exhibits relatively linear PK behavior with dose levels from 37 mg/m2 to 98 mg/m2. No drug accumulation was observed with repeated doses of UANL. The intravenous infusion of UANL was well

  10. The occurrence of recruitment supported from the finding of an increase in radiosensitivity of quiescent cells in solid tumors after fractionated irradiation with X-rays

    International Nuclear Information System (INIS)

    Masunaga, Shinichiro; Ono, Koji; Kinashi, Yuko; Suzuki, Minoru; Akaboshi, Mitsuhiko

    1998-01-01

    We examined the behavior of quiescent cells in solid tumors irradiated twice at various intervals with X-rays, using our recently developed method for selectively detecting the response of quiescent cells in solid tumors. To determine the labeling indices of tumors at the second irradiation, each mouse group included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted before the first irradiation. Radiosensitivity of total tumor cells at the second irradiation decreased in proportion to the increase in interval time. However, radiosensitivity of quiescent cells was raised with increase in the interval time. In addition, the labeling index at the second irradiation was higher than that at the first irradiation. These findings supported the occurrence of recruitment from quiescent to proliferating state during fractionated irradiation. (author)

  11. Pulsed Radiation Therapy With Concurrent Cisplatin Results in Superior Tumor Growth Delay in a Head and Neck Squamous Cell Carcinoma Murine Model

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kurt; Krueger, Sarah A.; Kane, Jonathan L.; Wilson, Thomas G.; Hanna, Alaa; Dabjan, Mohamad; Hege, Katie M.; Wilson, George D.; Grills, Inga; Marples, Brian, E-mail: brian.marples@beaumont.edu

    2016-09-01

    Purpose: To assess the efficacy of 3-week schedules of low-dose pulsed radiation treatment (PRT) and standard radiation therapy (SRT), with concurrent cisplatin (CDDP) in a head and neck squamous cell carcinoma xenograft model. Methods and Materials: Subcutaneous UT-SCC-14 tumors were established in athymic NIH III HO female mice. A total of 30 Gy was administered as 2 Gy/d, 5 d/wk for 3 weeks, either by PRT (10 × 0.2 Gy/d, with a 3-minute break between each 0.2-Gy dose) or SRT (2 Gy/d, uninterrupted delivery) in combination with concurrent 2 mg/kg CDDP 3 times per week in the final 2 weeks of radiation therapy. Treatment-induced growth delays were defined from twice-weekly tumor volume measurements. Tumor hypoxia was assessed by {sup 18}F-fluoromisonidazole positron emission tomography imaging, and calculated maximum standardized uptake values compared with tumor histology. Tumor vessel density and hypoxia were measured by quantitative immunohistochemistry. Normal tissues effects were evaluated in gut and skin. Results: Untreated tumors grew to 1000 mm{sup 3} in 25.4 days (±1.2), compared with delays of 62.3 days (±3.5) for SRT + CDDP and 80.2 days (±5.0) for PRT + CDDP. Time to reach 2× pretreatment volume ranged from 8.2 days (±1.8) for untreated tumors to 67.1 days (±4.7) after PRT + CDDP. Significant differences in tumor growth delay were observed for SRT versus SRT + CDDP (P=.04), PRT versus PRT + CDDP (P=.035), and SRT + CDDP versus PRT + CDDP (P=.033), and for survival between PRT versus PRT + CDDP (P=.017) and SRT + CDDP versus PRT + CDDP (P=.008). Differences in tumor hypoxia were evident by {sup 18}F-fluoromisonidazole positron emission tomography imaging between SRT and PRT (P=.025), although not with concurrent CDDP. Tumor vessel density differed between SRT + CDDP and PRT + CDDP (P=.011). No differences in normal tissue parameters were seen. Conclusions: Concurrent CDDP was more effective in combination PRT than SRT at

  12. Some implications of Scale Relativity theory in avascular stages of growth of solid tumors in the presence of an immune system response.

    Science.gov (United States)

    Buzea, C Gh; Agop, M; Moraru, Evelina; Stana, Bogdan A; Gîrţu, Manuela; Iancu, D

    2011-08-07

    We present a traveling-wave analysis of a reduced mathematical model describing the growth of a solid tumor in the presence of an immune system response in the framework of Scale Relativity theory. Attention is focused upon the attack of tumor cells by tumor-infiltrating cytotoxic lymphocytes (TICLs), in a small multicellular tumor, without necrosis and at some stage prior to (tumor-induced) angiogenesis. For a particular choice of parameters, the underlying system of partial differential equations is able to simulate the well-documented phenomenon of cancer dormancy and propagation of a perturbation in the tumor cell concentration by cnoidal modes, by depicting spatially heterogeneous tumor cell distributions that are characterized by a relatively small total number of tumor cells. This behavior is consistent with several immunomorphological investigations. Moreover, the alteration of certain parameters of the model is enough to induce soliton like modes and soliton packets into the system, which in turn result in tumor invasion in the form of a standard traveling wave. In the same framework of Scale Relativity theory, a very important feature of malignant tumors also results, that even in avascular stages they might propagate and invade healthy tissues, by means of a diffusion on a Newtonian fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy.

    Science.gov (United States)

    Ross, Jeffrey S; Wang, Kai; Chmielecki, Juliann; Gay, Laurie; Johnson, Adrienne; Chudnovsky, Jacob; Yelensky, Roman; Lipson, Doron; Ali, Siraj M; Elvin, Julia A; Vergilio, Jo-Anne; Roels, Steven; Miller, Vincent A; Nakamura, Brooke N; Gray, Adam; Wong, Michael K; Stephens, Philip J

    2016-02-15

    Although the BRAF V600E base substitution is an approved target for the BRAF inhibitors in melanoma, BRAF gene fusions have not been investigated as anticancer drug targets. In our study, a wide variety of tumors underwent comprehensive genomic profiling for hundreds of known cancer genes using the FoundationOne™ or FoundationOne Heme™ comprehensive genomic profiling assays. BRAF fusions involving the intact in-frame BRAF kinase domain were observed in 55 (0.3%) of 20,573 tumors, across 12 distinct tumor types, including 20 novel BRAF fusions. These comprised 29 unique 5' fusion partners, of which 31% (9) were known and 69% (20) were novel. BRAF fusions included 3% (14/531) of melanomas; 2% (15/701) of gliomas; 1.0% (3/294) of thyroid cancers; 0.3% (3/1,062) pancreatic carcinomas; 0.2% (8/4,013) nonsmall-cell lung cancers and 0.2% (4/2,154) of colorectal cancers, and were enriched in pilocytic (30%) vs. nonpilocytic gliomas (1%; p < 0.0001), Spitzoid (75%) vs. nonSpitzoid melanomas (1%; p = 0.0001), acinar (67%) vs. nonacinar pancreatic cancers (<1%; p < 0.0001) and papillary (3%) vs. nonpapillary thyroid cancers (0%; p < 0.03). Clinical responses to trametinib and sorafenib are presented. In conclusion, BRAF fusions are rare driver alterations in a wide variety of malignant neoplasms, but enriched in Spitzoid melanoma, pilocytic astrocytomas, pancreatic acinar and papillary thyroid cancers. © 2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of UICC.

  14. Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Maura McGrail

    2011-04-01

    Full Text Available Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.

  15. Isolated tumor endothelial cells maintain specific character during long-term culture

    International Nuclear Information System (INIS)

    Matsuda, Kohei; Ohga, Noritaka; Hida, Yasuhiro; Muraki, Chikara; Tsuchiya, Kunihiko; Kurosu, Takuro; Akino, Tomoshige; Shih, Shou-Ching

    2010-01-01

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  16. The effect of phosphoethanolamine intake on mortality and macrophage activity in mice with solid ehrlich tumors

    Directory of Open Access Journals (Sweden)

    Maria Sueli Parreira de Arruda

    2011-12-01

    Full Text Available The aim of the present study was to examine the effect of a diet rich in synthetic PEtn on the metabolism macrophages of tumor-bearing mice. The results demonstrated that PEtn increased the animals' survival time. In addition, the treated animals released smaller amounts of hydrogen peroxide (H2O2 and nitric oxide (NO than the non-treated animals, particularly after day 14. From the results it could be concluded that H2O2 and NO were important in the modulation of neoplastic growth, and pointed to a promising role of PEtn in the control of human neoplasms.

  17. PET/CT evaluation of response to chemotherapy in non-small cell lung cancer: PET response criteria in solid tumors (PERCIST) versus response evaluation criteria in solid tumors (RECIST).

    Science.gov (United States)

    Ding, Qiyong; Cheng, Xu; Yang, Lu; Zhang, Qingbo; Chen, Jianwei; Li, Tiannv; Shi, Haibin

    2014-06-01

    (18)F-FDG PET/CT is increasingly used in evaluation of treatment response for patients with non-small cell lung cancer (NSCLC). There is a need for an accurate criterion to evaluate the effect and predict the prognosis. The aim of this study is to evaluate therapeutic response in NSCLC with comparing PET response criteria in solid tumors (PERCIST) to response evaluation criteria in solid tumors (RECIST) criteria on PET/CT. Forty-four NSCLC patients who received chemotherapy but no surgery were studied. Chemotherapeutic responses were evaluated using (18)F-FDG PET and CT according to the RECIST and PERCIST methodologies. PET/CT scans were obtained before chemotherapy and after 2 or 4-6 cycles' chemotherapy. The percentage changes of tumor longest diameters and standardized uptake value (SUV) (corrected for lean body mass, SUL) before and after treatment were compared using paired t-test. The response was categorized into 4 levels according to RECIST and PERCIST: CR (CMR) =1, PR (PMR) =2, SD (SMD) =3, PD (PMD) =4. Pearson chi-square test was used to compare the proportion of four levels in RECIST and PERCIST. Finally the relationship between progression-free survival (PFS) and clinicopathologic parameters (such as TNM staging, percentage changes in diameters and SUL, RECIST and PERCIST results etc.) were evaluated using univariate and multivariate Cox proportional hazards regression method. The difference of percentage changes between diameters and SUL was not significant using paired t-test (t=-1.69, P=0.098). However the difference was statistically significant in the 40 cases without increasing SUL (t=-3.31, P=0.002). The difference of evaluation results between RECIST and PERCIST was not significant by chi-square test (χ(2)=5.008, P=0.171). If RECIST evaluation excluded the new lesions which could not be found or identified on CT images the difference between RECIST and PERCIST was significant (χ(2)=11.759, P=0.007). Reduction rate of SULpeak (%), RECIST and

  18. Role of denosumab in the management of skeletal complications in patients with bone metastases from solid tumors

    Directory of Open Access Journals (Sweden)

    Stopeck AT

    2012-04-01

    Full Text Available Ursa Brown-Glaberman, Alison T StopeckUniversity of Arizona Cancer Center, Tucson, AZ, USAAbstract: Skeletal-related events (SREs including pain, fractures, and hypercalcemia are a major source of morbidity for cancer patients with bone metastases. The receptor activator of NF-κB ligand (RANKL is a key mediator of osteoclast formation and activity in normal bone physiology as well as cancer-induced bone resorption. The first commercially available drug that specifically targets and inhibits the RANKL pathway is denosumab, a fully human monoclonal antibody that binds and neutralizes RANKL, thereby inhibiting osteoclast function. In this review, we summarize the major studies leading to the US Food and Drug Administration-approval of denosumab for the prevention of SREs in patients with bone metastases from solid tumors. Further, we discuss the role of denosumab in the prevention and treatment of SREs and bone loss in cancer patients. As a monoclonal antibody, denosumab has several advantages over bisphosphonates, including improved efficacy, better tolerability, and the convenience of administration by subcutaneous injection. In addition, as denosumab has no known renal toxicity, it may be the preferred choice over bisphosphonates in patients with baseline renal insufficiency or receiving nephrotoxic therapies. However, other toxicities, including osteonecrosis of the jaw and hypocalcemia, appear to be class effects of agents that potently inhibit osteoclast activity and are associated with both denosumab and bisphosphonate use. The data presented highlight the differences associated with intravenous bisphosphonate and denosumab use as well as confirm the essential role bone-modifying agents play in maintaining the quality of life for patients with bone metastases.Keywords: denosumab, bone metastases, solid tumor, breast cancer, prostate cancer, skeletal related events, skeletal complications 

  19. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  20. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    International Nuclear Information System (INIS)

    Wulff, A.M.; Fabel, M.; Freitag-Wolf, S.; Tepper, M.; Knabe, H.M.; Schäfer, J.P.; Jansen, O.; Bolte, H.

    2013-01-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future

  1. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  2. A fluid biopsy as investigating technology for the fluid phase of solid tumors

    Science.gov (United States)

    Kuhn, Peter; Bethel, Kelly

    2012-02-01

    Reliable measurement of internal bodily substances and structures is one of the cornerstones of modern medicine. Progress in cancer medicine, like that in many medical fields, must encompass and take advantage of progress in the physical sciences. Historically, the development and refinement of physical sciences-based detection of biological entities precedes periods of great advancements in therapies. To treat broken limbs and arthritis, we are indebted to Conrad Roentgen's discovery of x-rays by which we can evaluate the bones; to apply gamma knife therapy for cancer, we are indebted to Marie Curie's discoveries about radioactivity by which we can eradicate tumors; to manage the complications of diabetes, we are indebted to Tom Clemens, Ames Pharmaceuticals and Dick Bernstein's refinement of direct blood glucose measurement technology by which we can count, hour-to-hour, the waxing and waning of blood sugar levels; to understand anything at all on the cellular level, we are indebted to Antonie van Leeuwenhoek's microscope, by which we can see our cells. The application of physical sciences perspectives to biological and medical problems has a long and productive history. As of late, however, the increasing compartmentalization of science and exponential increases of knowledge in both arenas has resulted in a rift between the two. The NCI has initiated a research network establishing multiple centers of investigation, the Physical Sciences in Oncology Centers (http://physics.cancer.gov), which seek to mend the rift. Each headed by a pair of investigators, one in the physical sciences and one in the biological sciences, the centers seek to bring the advances and breakthroughs of the physical sciences world to bear on the question of cancer. This issue of physical biology contains a series of articles exploring the utility and applicability of a new method for measuring cancer as it spreads, developed at the Scripps Physical Oncology Center. Although some progress

  3. Phase I clinical, pharmacokinetic, and pharmacodynamic study of KOS-862 (Epothilone D) in patients with advanced solid tumors and lymphoma.

    Science.gov (United States)

    Konner, Jason; Grisham, Rachel N; Park, Jae; O'Connor, Owen A; Cropp, Gillian; Johnson, Robert; Hannah, Alison L; Hensley, Martee L; Sabbatini, Paul; Mironov, Svetlana; Miranov, Svetlana; Danishefsky, Samuel; Hyman, David; Spriggs, David R; Dupont, Jakob; Aghajanian, Carol

    2012-12-01

    To determine the maximum tolerated dose and safety of the epothilone, KOS-862, in patients with advanced solid tumors or lymphoma. Patients were treated weekly for 3 out of 4 weeks (Schedule A) or 2 out of 3 weeks (Schedule B) with KOS-862 (16-120 mg/m(2)). Pharmacokinetic (PK) sampling was performed during cycles 1 and 2; pharmacodynamic (PD) assessment for microtubule bundle formation (MTBF) was performed after the 1st dose, only at or above 100 mg/m(2). Thirty-two patients were enrolled, and twenty-nine completed ≥1 cycle of therapy. Dose limiting toxicity [DLT] was observed at 120 mg/m(2). PK data were linear from 16 to 100 mg/m(2), with proportional increases in mean C(max) and AUC(tot) as a function of dose. Full PK analysis (mean ± SD) at 100 mg/m(2) revealed the following: half-life (t (½)) = 9.1 ± 2.2 h; volume of distribution (V(z)) = 119 ± 41 L/m(2); clearance (CL) = 9.3 ± 3.2 L/h/m(2). MTBF (n = 9) was seen in 40% of PBMCs within 1 h and in 15% of PBMC at 24-hours post infusion at 100 mg/m(2). Tumor shrinkage (n = 2, lymphoma), stable disease >3 months (n = 5, renal, prostate, oropharynx, cholangiocarcinoma, and Hodgkin lymphoma), and tumor marker reductions (n = 1, colorectal cancer/CEA) were observed. KOS-862 was well tolerated with manageable toxicity, favorable PK profile, and the suggestion of clinical activity. The maximum tolerated dose was determined to be 100 mg/m(2) weekly 3-on/1-off. MTBF can be demonstrated in PBMCs of patients exposed to KOS-862.

  4. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  5. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors - systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Smets, A.M.; Deurloo, E.E.; Slager, T.J.E.; Stoker, J.; Bipat, S. [Academic Medical Center (AMC), Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands)

    2018-02-15

    Many solid neoplasms have a propensity for osteomedullary metastases of which detection is important for staging and subsequent treatment. Whole-body magnetic resonance imaging (WB-MRI) has been shown to accurately detect osteomedullary metastases in adults, but these findings cannot be unconditionally extrapolated to staging of children with malignant solid tumors. To conduct a literature review on the sensitivity of WB-MRI for detecting skeletal metastases in children with solid tumors. Searches in MEDLINE and EMBASE databases up to 15 May 2017 were performed to identify studies on the diagnostic value of WB-MRI. Inclusion criteria were children and adolescents (age <21 years) with a primary solid tumor who were evaluated for skeletal metastases by WB-MRI and compared to any type of reference standard. The number of included patients had to be at least five and data on true positives, true negatives, false-positives and false-negatives had to be extractable. Five studies including 132 patients (96 patients with solid tumors) were eligible. Patient groups and used reference tests were heterogeneous, producing unclear or high risk of bias. Sensitivity of WB-MRI ranged between 82% and 100%. The positive predictive value of WB-MRI was variable among the studies and influenced by the used reference standard. Although WB-MRI may seem a promising radiation-free technique for the detection of skeletal metastases in children with solid tumors, published studies are small and too heterogeneous to provide conclusive evidence that WB-MRI can be an alternative to currently used imaging techniques. (orig.)

  6. Whole-body magnetic resonance imaging for detection of skeletal metastases in children and young people with primary solid tumors - systematic review

    International Nuclear Information System (INIS)

    Smets, A.M.; Deurloo, E.E.; Slager, T.J.E.; Stoker, J.; Bipat, S.

    2018-01-01

    Many solid neoplasms have a propensity for osteomedullary metastases of which detection is important for staging and subsequent treatment. Whole-body magnetic resonance imaging (WB-MRI) has been shown to accurately detect osteomedullary metastases in adults, but these findings cannot be unconditionally extrapolated to staging of children with malignant solid tumors. To conduct a literature review on the sensitivity of WB-MRI for detecting skeletal metastases in children with solid tumors. Searches in MEDLINE and EMBASE databases up to 15 May 2017 were performed to identify studies on the diagnostic value of WB-MRI. Inclusion criteria were children and adolescents (age <21 years) with a primary solid tumor who were evaluated for skeletal metastases by WB-MRI and compared to any type of reference standard. The number of included patients had to be at least five and data on true positives, true negatives, false-positives and false-negatives had to be extractable. Five studies including 132 patients (96 patients with solid tumors) were eligible. Patient groups and used reference tests were heterogeneous, producing unclear or high risk of bias. Sensitivity of WB-MRI ranged between 82% and 100%. The positive predictive value of WB-MRI was variable among the studies and influenced by the used reference standard. Although WB-MRI may seem a promising radiation-free technique for the detection of skeletal metastases in children with solid tumors, published studies are small and too heterogeneous to provide conclusive evidence that WB-MRI can be an alternative to currently used imaging techniques. (orig.)

  7. Not All Next Generation Sequencing Diagnostics are Created Equal: Understanding the Nuances of Solid Tumor Assay Design for Somatic Mutation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Phillip N., E-mail: pgray@ambrygen.com; Dunlop, Charles L.M.; Elliott, Aaron M. [Ambry Genetics, 15 Argonaut, Aliso Viejo, CA 92656 (United States)

    2015-07-17

    The molecular characterization of tumors using next generation sequencing (NGS) is an emerging diagnostic tool that is quickly becoming an integral part of clinical decision making. Cancer genomic profiling involves significant challenges including DNA quality and quantity, tumor heterogeneity, and the need to detect a wide variety of complex genetic mutations. Most available comprehensive diagnostic tests rely on primer based amplification or probe based capture methods coupled with NGS to detect hotspot mutation sites or whole regions implicated in disease. These tumor panels utilize highly customized bioinformatics pipelines to perform the difficult task of accurately calling cancer relevant alterations such as single nucleotide variations, small indels or large genomic alterations from the NGS data. In this review, we will discuss the challenges of solid tumor assay design/analysis and report a case study that highlights the need to include complementary technologies (i.e., arrays) and germline analysis in tumor testing to reliably identify copy number alterations and actionable variants.

  8. Spectrum of lesions derived from branchial arches occurring in the thyroid: from solid cell nests to tumors.

    Science.gov (United States)

    Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej

    2017-09-01

    There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.

  9. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  10. Defining Survivorship Trajectories Across Patients With Solid Tumors: An Evidence-Based Approach.

    Science.gov (United States)

    Dood, Robert L; Zhao, Yang; Armbruster, Shannon D; Coleman, Robert L; Tworoger, Shelley; Sood, Anil K; Baggerly, Keith A

    2018-06-02

    Survivorship involves a multidisciplinary approach to surveillance and management of comorbidities and secondary cancers, overseen by oncologists, surgeons, and primary care physicians. Optimal timing and coordination of care, however, is unclear and often based on arbitrary 5-year cutoffs. To determine high- and low-risk periods for all tumor types that could define when survivorship care might best be overseen by oncologists and when to transition to primary care physicians. In this pan-cancer, longitudinal, observational study, excess mortality hazard, calculated as an annualized mortality risk above a baseline population, was plotted over time. The time this hazard took to stabilize defined a high-risk period. The percent morality elevation above age- and sex-matched controls in the latter low-risk period was reported as a mortality gap. The US population-based Surveillance, Epidemiology, and End Results database defined the cancer population, and the US Census life tables defined controls. Incident cases of patients with cancer were separated into tumor types based on International Classification of Diseases for Oncology definitions. Population-level data on incident cancer cases was compared with the general US population. Overall mortality and cause of death were reported on observed cancer cases. A total of 2 317 185 patients (median age, 63 years; 49.8% female) with 66 primary tumor types were evaluated. High-risk surveillance period durations ranged from less than 1 year (breast, prostate, lip, ocular, and parathyroid cancers) up to 19 years (unspecified gastrointestinal cancers). The annualized mortality gap, representing the excess mortality in the stable period, ranged from a median 0.26% to 9.33% excess annual mortality (thyroid and hypopharyngeal cancer populations, respectively). Cluster analysis produced 6 risk cluster groups: group 1, with median survival of 16.2 (5th to 95th percentile range [PR], 10.7-40.2) years and median high-risk period

  11. The role of chemotherapy in the treatment of patients with brain metastases from solid tumors

    International Nuclear Information System (INIS)

    Walbert, T.; Gilbert, M.R.

    2009-01-01

    Brain metastases are the most frequent cancer in the central nervous system, being ten times more common than primary brain tumors. Patients generally have a poor outcome with a median survival of 4 months after diagnosis of the metastases. Therapeutic options include surgery, stereotactic, radiosurgery, whole-brain radiotherapy (WBRT), and chemotherapy. Patients with a limited number of brain metastases and well-controlled systemic cancer benefit from brain metastases-specific therapies, including surgery, radiosurgery, and conventional radiation. The role of chemotherapy for brain metastases remains limited. There is concern about drug delivery because of the blood-brain barrier. However, higher response rates are noted with initial therapies, suggesting that part of the poor response rate may be related to the late onset of brain metastases and the use of second- and third-line regimens. Recent studies have demonstrated objective responses with systemic therapy in a variety of cancer types, especially when combined with WBRT. Individual therapeutic strategies for central nervous system metastases must be chosen based on performance status, the extent of intracranial disease, and the chemosensitivity of the underlying tumor, as well as the control of the systemic cancer. In this article we review important prognostic factors and challenges in using chemotherapy. We specifically review recent advances in the treatment of brain metastases from breast and lung cancer as well as melanoma. Future treatment advances will require a multidisciplinary approach integrating surgical, radiation, and chemotherapeutic options to improve neurological function and quality of life, rather than just focusing on survival endpoints. (author)

  12. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  13. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients With Advanced Solid Tumors

    DEFF Research Database (Denmark)

    Abdul Razak, Albiruni R; Mau-Sørensen, Morten; Gabrail, Nashat Y

    2016-01-01

    PURPOSE: This trial evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of selinexor (KPT-330), a novel, oral small-molecule inhibitor of exportin 1 (XPO1/CRM1), and determined the recommended phase II dose. PATIENTS AND METHODS: In total, 189 patients with advanced solid tumors...

  14. FLAG-tagged CD19-specific CAR-T cells eliminate CD19-bearing solid tumor cells in vitro and in vivo.

    Science.gov (United States)

    Berahovich, Robert; Xu, Shirley; Zhou, Hua; Harto, Hizkia; Xu, Qumiao; Garcia, Andres; Liu, Fenyong; Golubovskaya, Vita M; Wu, Lijun

    2017-06-01

    Autologous T cells expressing chimeric antigen receptors (CARs) specific for CD19 have demonstrated remarkable efficacy as therapeutics for B cell malignancies. In the present study, we generated FLAG-tagged CD19-specific CAR-T cells (CD19-FLAG) and compared them to their non-tagged counterparts for their effects on solid and hematological cancer cells in vitro and in vivo . For solid tumors, we used HeLa cervical carcinoma cells engineered to overexpress CD19 (HeLa-CD19), and for hematological cancer we used Raji Burkitt's lymphoma cells, which endogenously express CD19. Like non-tagged CD19 CAR-T cells, CD19-FLAG CAR-T cells expanded in culture >100-fold and exhibited potent cytolytic activity against both HeLa-CD19 and Raji cells in vitro . CD19-FLAG CAR-T cells also secreted significantly more IFN-gamma and IL-2 than the control T cells. In vivo , CD19-FLAG CAR-T cells significantly blocked the growth of HeLa-CD19 solid tumors, increased tumor cleaved caspase-3 levels, and expanded systemically. CD19-FLAG CAR-T cells also significantly reduced Raji tumor burden and extended mouse survival. These results demonstrate the strong efficacy of FLAG-tagged CD19 CAR-T cells in solid and hematological cancer models.

  15. Investigations on dendrimer space reveal solid and liquid tumor growth-inhibition by original phosphorus-based dendrimers and the corresponding monomers and dendrons with ethacrynic acid motifs.

    Science.gov (United States)

    El Brahmi, Nabil; Mignani, Serge M; Caron, Joachim; El Kazzouli, Saïd; Bousmina, Mosto M; Caminade, Anne-Marie; Cresteil, Thierry; Majoral, Jean-Pierre

    2015-03-07

    The well-known reactive diuretic ethacrynic acid (EA, Edecrin), with low antiproliferative activities, was chemically modified and grafted onto phosphorus dendrimers and the corresponding simple branched phosphorus dendron-like derivatives affording novel nanodevices showing moderate to strong antiproliferative activities against liquid and solid tumor cell lines, respectively.

  16. Effect of veliparib (ABT-888) on cardiac repolarization in patients with advanced solid tumors : a randomized, placebo-controlled crossover study

    NARCIS (Netherlands)

    Munasinghe, Wijith; Stodtmann, Sven; Tolcher, Anthony; Calvo, Emiliano; Gordon, Michael; Jalving, Mathilde; de Vos-Geelen, Judith; Medina, Diane; Bergau, Dennis; Nuthalapati, Silpa; Hoffman, David; Shepherd, Stacie; Xiong, Hao

    2016-01-01

    Veliparib (ABT-888) is an orally bioavailable potent inhibitor of poly(ADP-ribose) polymerase (PARP)-1 and PARP-2. This phase 1 study evaluated the effect of veliparib on corrected QT interval using Fridericia's formula (QTcF). Eligible patients with advanced solid tumors received single-dose oral

  17. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  18. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qingwen [Shanghai Chest Hospital, Shanghai 200433 (China); State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Jiang, Songmin [State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433 (China); Han, Baohui [Shanghai Chest Hospital, Shanghai 200433 (China); Sun, Tongwen [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China); Li, Zhengnan; Zhao, Lina; Gao, Qiang [College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Sun, Jialin, E-mail: jialin_sun@126.com [Wuhan Junyu Innovation Pharmaceuticals, Inc., Wuhan 430079 (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  19. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor–superantigen conjugate

    International Nuclear Information System (INIS)

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-01-01

    Highlights: ► We construct and purify a fusion protein VEGF–SEA. ► VEGF–SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. ► T cells driven by VEGF–SEA were accumulated around tumor cells bearing VEGFR by mice image model. ► VEGF–SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. ► The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF–SEA treated with 15 μg, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4 + and CD8 + T cells driven by VEGF–SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF–SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  20. Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials.

    Science.gov (United States)

    Kelly, Karen; Infante, Jeffrey R; Taylor, Matthew H; Patel, Manish R; Wong, Deborah J; Iannotti, Nicholas; Mehnert, Janice M; Loos, Anja H; Koch, Helga; Speit, Isabell; Gulley, James L

    2018-05-01

    Antibodies targeting the programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) checkpoint may cause adverse events (AEs) that are linked to the mechanism of action of this therapeutic class and unique from those observed with conventional chemotherapy. Patients with advanced solid tumors who were enrolled in the phase 1 JAVELIN Solid Tumor (1650 patients) and phase 2 JAVELIN Merkel 200 (88 patients) trials received avelumab, a human anti-PD-L1 IgG1 antibody at a dose of 10 mg/kg every 2 weeks. Treatment-related AEs (TRAEs) were graded using the National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.0). In post hoc analyses, immune-related AEs (irAEs) were identified via an expanded AE list and medical review, and infusion-related reactions (IRRs) occurring ≤2 days after infusion and symptoms occurring ≤1 day after infusion and resolving ≤2 days after onset were identified based on prespecified Medical Dictionary for Regulatory Activities (MedDRA) terms. Of the 1738 patients analyzed, grade ≥3 TRAEs occurred in 177 (10.2%); the most common were fatigue (17 patients; 1.0%) and IRR (10 patients; 0.6%). TRAEs led to discontinuation in 107 patients (6.2%) and death in 4 patients (0.2%). Grade ≥3 irAEs occurred in 39 patients (2.2%) and led to discontinuation in 34 patients (2.0%). IRRs or related symptoms occurred in 439 patients (25.3%; grade 3 in 0.5% [9 patients] and grade 4 in 0.2% [3 patients]). An IRR occurred at the time of first infusion in 79.5% of 439 patients who had an IRR, within the first 4 doses in 98.6% of 439 patients who had an IRR, and led to discontinuation in 35 patients (2.0%). Avelumab generally was found to be well tolerated and to have a manageable safety profile. A minority of patients experienced grade ≥3 TRAEs or irAEs, and discontinuation was uncommon. IRRs occurred mainly at the time of first infusion, and repeated events were infrequent. Cancer 2018;124:2010-7. © 2018 The Authors

  1. A Comparative Evaluation of EPR and OxyLite Oximetry Using a Random Sampling of pO2 in a Murine Tumor

    Science.gov (United States)

    Vikram, Deepti S.; Bratasz, Anna; Ahmad, Rizwan; Kuppusamy, Periannan

    2015-01-01

    Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO2 measurements were taken from random locations at a depth of ~3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness. PMID:17705635

  2. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    Science.gov (United States)

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  3. Treatment of a solid tumor using engineered drug-resistant immunocompetent cells and cytotoxic chemotherapy.

    Science.gov (United States)

    Dasgupta, Anindya; Shields, Jordan E; Spencer, H Trent

    2012-07-01

    Multimodal therapy approaches, such as combining chemotherapy agents with cellular immunotherapy, suffers from potential drug-mediated toxicity to immune effector cells. Overcoming such toxic effects of anticancer cellular products is a potential critical barrier to the development of combined therapeutic approaches. We are evaluating an anticancer strategy that focuses on overcoming such a barrier by genetically engineering drug-resistant variants of immunocompetent cells, thereby allowing for the coadministration of cellular therapy with cytotoxic chemotherapy, a method we refer to as drug-resistant immunotherapy (DRI). The strategy relies on the use of cDNA sequences that confer drug resistance and recombinant lentiviral vectors to transfer nucleic acid sequences into immunocompetent cells. In the present study, we evaluated a DRI-based strategy that incorporates the immunocompetent cell line NK-92, which has intrinsic antitumor properties, genetically engineered to be resistant to both temozolomide and trimetrexate. These immune effector cells efficiently lysed neuroblastoma cell lines, which we show are also sensitive to both chemotherapy agents. The antitumor efficacy of the DRI strategy was demonstrated in vivo, whereby neuroblastoma-bearing NOD/SCID/γ-chain knockout (NSG) mice treated with dual drug-resistant NK-92 cell therapy followed by dual cytotoxic chemotherapy showed tumor regression and significantly enhanced survival compared with animals receiving either nonengineered cell-based therapy and chemotherapy, immunotherapy alone, or chemotherapy alone. These data show there is a benefit to using drug-resistant cellular therapy when combined with cytotoxic chemotherapy approaches.

  4. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  5. The cellular ratio of immune tolerance (immunoCRIT) is a definite marker for aggressiveness of solid tumors and may explain tumor dissemination patterns

    NARCIS (Netherlands)

    I. Türbachova (Ivana); T. Schwachula (Tim); I. Vasconcelos (Ines); A. Mustea (Alexander); T. Baldinger (Tina); K.A. Jones (Katherine); H. Bujard (Hermann); A. Olek (Alexander); A. Olek (Alexander); K. Gellhaus (Katharina); I. Braicu (Ioana); D. Könsgen (Dominique); C. Fryer (Christy); E. Ravot (Elisabetta); A. Hellwag (Alexander); N. Westerfeld (Nicole); O.J. Gruss (Oliver); M. Meissner (Markus); M. Hasan (Mazahir); M. Weber (Michael); U. Hoffmüller (Ulrich); S. Zimmermann (Sven); C. Loddenkemper (Christoph); S. Mahner (Sven); N. Babel (Nina); P.M.J.J. Berns (Els); R. Adams (Rod); R. Zeilinger (Robert); U. Baron (Udo); I. Vergote (Ignace); T. Maughan (Tim); F. Marme (Federick); T. Dickhaus (Thorsten); J. Sehouli (Jalid); A. Olek (Alexander)

    2013-01-01

    textabstractThe adaptive immune system is involved in tumor establishment and aggressiveness. Tumors of the ovaries, an immune-privileged organ, spread via transceolomic routes and rarely to distant organs. This is contrary to tumors of non-immune privileged organs, which often disseminate

  6. Epidemiology and Outcomes of Bloodstream Infections in Patients With Solid Tumors in a Central American Population at Mexico Hospital, San Jose, Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Calvo-Lon

    2017-12-01

    Full Text Available Purpose: Bloodstream infections (BSIs are an important cause of mortality in patients with solid tumors. We conducted a retrospective study to evaluate the epidemiologic profile and mortality of patients with solid tumors who have BSIs and were admitted to Mexico Hospital. This is the first study in Costa Rica and Central America describing the current epidemiologic situation. Methods: We analyzed the infectious disease database for BSIs in patients with solid tumors admitted to Mexico Hospital from January 2012 to December 2014. Epidemiology and mortality were obtained according to microorganism, antibiotic sensitivity, tumor type, and presence of central venous catheter (CVC. Descriptive statistics were used. Results: A total of 164 BSIs were recorded, the median age was 58 years, 103 patients (63% were males, and 128 cases of infection (78% were the result of gram-negative bacilli (GNB. Klebsiella pneumoniae (21%, Escherichia coli (21%, and Pseudomonas aeruginosa (15% were the most common microorganisms isolated. Gram-positive cocci (GPC were found in 36 patients, with the most frequent microorganisms being Staphylococcus aureus (10% and Staphyloccocus epidermidis (6%. With respect to tumor type, BSIs were more frequent in the GI tract (57% followed by head and neck (9% and genitourinary tract (8%. Regarding antibiotic susceptibility, only 17% (GNB expressed extended-spectrum beta-lactamase and 12% (GPC had methicillin resistance. Patients with CVCs (n = 59 were colonized mainly by GNB (78%. Overall the mortality rate at 30 days was about 30%. Conclusion: GNB are the most frequent cause of BSIs in solid tumors and in patients with CVCs. GI cancers had more BSIs than other sites. Mortality and antibiotic sensitivity remained stable and acceptable during this observational period in this Latin American population.

  7. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    Directory of Open Access Journals (Sweden)

    Thamm Reinhard

    2006-06-01

    Full Text Available Abstract Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical

  8. Integration of chemotherapy into current treatment strategies for brain metastases from solid tumors

    International Nuclear Information System (INIS)

    Nieder, Carsten; Grosu, Anca L; Astner, Sabrina; Thamm, Reinhard; Molls, Michael

    2006-01-01

    Patients with brain metastases represent a heterogeneous group where selection of the most appropriate treatment depends on many patient- and disease-related factors. Eventually, a considerable proportion of patients are treated with palliative approaches such as whole-brain radiotherapy. Whole-brain radiotherapy in combination with chemotherapy has recently gained increasing attention and is hoped to augment the palliative effect of whole-brain radiotherapy alone and to extend survival in certain subsets of patients with controlled extracranial disease and good performance status. The randomized trials of whole-brain radiotherapy vs. whole-brain radiotherapy plus chemotherapy suggest that this concept deserves further study, although they failed to improve survival. However, survival might not be the most relevant endpoint in a condition, where most patients die from extracranial progression. Sometimes, the question arises whether patients with newly detected brain metastases and the indication for systemic treatment of extracranial disease can undergo standard systemic chemotherapy with the option of deferred rather than immediate radiotherapy to the brain. The literature contains numerous small reports on this issue, mainly in malignant melanoma, breast cancer, lung cancer and ovarian cancer, but very few sufficiently powered randomized trials. With chemotherapy alone, response rates were mostly in the order of 20–40%. The choice of chemotherapy regimen is often complicated by previous systemic treatment and takes into account the activity of the drugs in extracranial metastatic disease. Because the blood-brain barrier is partially disrupted in most macroscopic metastases, systemically administered agents can gain access to such tumor sites. Our systematic literature review suggests that both chemotherapy and radiochemotherapy for newly diagnosed brain metastases need further critical evaluation before standard clinical implementation. A potential chemotherapy

  9. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus-Driven Production of a Bispecific T-cell Engager.

    Science.gov (United States)

    Wing, Anna; Fajardo, Carlos Alberto; Posey, Avery D; Shaw, Carolyn; Da, Tong; Young, Regina M; Alemany, Ramon; June, Carl H; Guedan, Sonia

    2018-05-01

    T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials. Cancer Immunol Res; 6(5); 605-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma.

    Science.gov (United States)

    Rangwala, Reshma; Chang, Yunyoung C; Hu, Janice; Algazy, Kenneth M; Evans, Tracey L; Fecher, Leslie A; Schuchter, Lynn M; Torigian, Drew A; Panosian, Jeffrey T; Troxel, Andrea B; Tan, Kay-See; Heitjan, Daniel F; DeMichele, Angela M; Vaughn, David J; Redlinger, Maryann; Alavi, Abass; Kaiser, Jonathon; Pontiggia, Laura; Davis, Lisa E; O'Dwyer, Peter J; Amaravadi, Ravi K

    2014-08-01

    The combination of temsirolimus (TEM), an MTOR inhibitor, and hydroxychloroquine (HCQ), an autophagy inhibitor, augments cell death in preclinical models. This phase 1 dose-escalation study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with TEM in cancer patients. In the dose escalation portion, 27 patients with advanced solid malignancies were enrolled, followed by a cohort expansion at the top dose level in 12 patients with metastatic melanoma. The combination of HCQ and TEM was well tolerated, and grade 3 or 4 toxicity was limited to anorexia (7%), fatigue (7%), and nausea (7%). An MTD was not reached for HCQ, and the recommended phase II dose was HCQ 600 mg twice daily in combination with TEM 25 mg weekly. Other common grade 1 or 2 toxicities included fatigue, anorexia, nausea, stomatitis, rash, and weight loss. No responses were observed; however, 14/21 (67%) patients in the dose escalation and 14/19 (74%) patients with melanoma achieved stable disease. The median progression-free survival in 13 melanoma patients treated with HCQ 1200mg/d in combination with TEM was 3.5 mo. Novel 18-fluorodeoxyglucose positron emission tomography (FDG-PET) measurements predicted clinical outcome and provided further evidence that the addition of HCQ to TEM produced metabolic stress on tumors in patients that experienced clinical benefit. Pharmacodynamic evidence of autophagy inhibition was evident in serial PBMC and tumor biopsies only in patients treated with 1200 mg daily HCQ. This study indicates that TEM and HCQ is safe and tolerable, modulates autophagy in patients, and has significant antitumor activity. Further studies combining MTOR and autophagy inhibitors in cancer patients are warranted.

  11. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    International Nuclear Information System (INIS)

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  12. Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

    Science.gov (United States)

    2018-05-15

    Advanced Malignant Solid Neoplasm; RB1 Positive; Recurrent Childhood Ependymoma; Recurrent Ewing Sarcoma; Recurrent Glioma; Recurrent Hepatoblastoma; Recurrent Kidney Wilms Tumor;