WorldWideScience

Sample records for solid modeling program

  1. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  2. Programming and machining of complex parts based on CATIA solid modeling

    Science.gov (United States)

    Zhu, Xiurong

    2017-09-01

    The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.

  3. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    Science.gov (United States)

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    Science.gov (United States)

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  5. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE

    International Nuclear Information System (INIS)

    Kirkeby, Janus T.; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H.

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion

  6. Implementation of a goal programming model for solid waste management: a case study of Dar es Salaam – Tanzania

    Directory of Open Access Journals (Sweden)

    Lyeme Halidi Ally

    2017-01-01

    Full Text Available In this research article, the multi-objective optimization model for solid waste management problem is solved by the goal programming method. The model has three objectives: total cost minimization, minimization of final waste disposal to the landfill, and environmental impact minimization. First, the model is solved for the higher priority goal, and then its value is never allowed to deteriorate. The model is solved for the next priority goal and so on until the problem is solved. The model was tested with real data for solid waste management system from Dar es Salaam city. The results determine the best locations for recycling plants, separating plants, composting plants, incinerating plants, landfill and waste flow allocation between them. Furthermore, the solution shows a high reduction of the amount of waste to the landfill and greenhouse gas emissions by 78% and 57.5% respectively if fully implemented compared to the current system.

  7. Solid Waste Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  8. Solid rocket motor cost model

    Science.gov (United States)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  9. Solid Waste Program technical baseline description

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  10. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  11. A fuzzy chance-constrained programming model with type 1 and type 2 fuzzy sets for solid waste management under uncertainty

    Science.gov (United States)

    Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei

    2017-06-01

    Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.

  12. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  13. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  14. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  15. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints.

    Science.gov (United States)

    He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei

    2009-01-01

    The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level.

  16. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  17. CAPRI (Computational Analysis PRogramming Interface): A Solid Modeling Based Infra-Structure for Engineering Analysis and Design Simulations

    Science.gov (United States)

    Haimes, Robert; Follen, Gregory J.

    1998-01-01

    CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.

  18. Transire, a Program for Generating Solid-State Interface Structures

    Science.gov (United States)

    2017-09-14

    ARL-TR-8134 ● SEP 2017 US Army Research Laboratory Transire, a Program for Generating Solid-State Interface Structures by...Program for Generating Solid-State Interface Structures by Caleb M Carlin and Berend C Rinderspacher Weapons and Materials Research Directorate, ARL...

  19. Land Use Management for Solid Waste Programs

    Science.gov (United States)

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  20. Solid, low-level radioactive waste certification program

    International Nuclear Information System (INIS)

    Grams, W.H.

    1991-11-01

    The Hanford Site solid waste treatment, storage, and disposal facilities accept solid, low-level radioactive waste from onsite and offsite generators. This manual defines the certification program that is used to provide assurance that the waste meets the Hanford Site waste acceptance criteria. Specifically, this program defines the participation and responsibilities of Westinghouse Hanford Company Solid Waste Engineering Support, Westinghouse Hanford Company Quality Assurance, and both onsite and offsite waste generators. It is intended that waste generators use this document to develop certification plans and quality assurance program plans. This document is also intended for use by Westinghouse Hanford Company solid waste technical staff involved in providing assurance that generators have implemented a waste certification program. This assurance involves review and approval of generator certification plans, and review of generator's quality assurance program plans to ensure that they address all applicable requirements. The document also details the Westinghouse Hanford Company Waste Management Audit and Surveillance Program. 5 refs

  1. Solid Waste Management Holistic Decision Modeling

    OpenAIRE

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  2. Harwell's atomic, molecular and solid state computer programs

    International Nuclear Information System (INIS)

    Harker, A.H.

    1976-02-01

    This document is intended to introduce the computational facilities available in the fields of atomic, molecular the solid state theory on the IBM370/165 at Harwell. The programs have all been implemented and thoroughly tested by the Theory of Solid State Materials Group. (author)

  3. Programming Models in HPC

    Energy Technology Data Exchange (ETDEWEB)

    Shipman, Galen M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-13

    These are the slides for a presentation on programming models in HPC, at the Los Alamos National Laboratory's Parallel Computing Summer School. The following topics are covered: Flynn's Taxonomy of computer architectures; single instruction single data; single instruction multiple data; multiple instruction multiple data; address space organization; definition of Trinity (Intel Xeon-Phi is a MIMD architecture); single program multiple data; multiple program multiple data; ExMatEx workflow overview; definition of a programming model, programming languages, runtime systems; programming model and environments; MPI (Message Passing Interface); OpenMP; Kokkos (Performance Portable Thread-Parallel Programming Model); Kokkos abstractions, patterns, policies, and spaces; RAJA, a systematic approach to node-level portability and tuning; overview of the Legion Programming Model; mapping tasks and data to hardware resources; interoperability: supporting task-level models; Legion S3D execution and performance details; workflow, integration of external resources into the programming model.

  4. Inference-based procedural modeling of solids

    KAUST Repository

    Biggers, Keith; Keyser, John

    2011-01-01

    As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple

  5. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  6. Modeling EERE deployment programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  7. Laying a Solid Foundation: Strategies for Effective Program Replication

    Science.gov (United States)

    Summerville, Geri

    2009-01-01

    The replication of proven social programs is a cost-effective and efficient way to achieve large-scale, positive social change. Yet there has been little guidance available about how to approach program replication and limited development of systems--at local, state or federal levels--to support replication efforts. "Laying a Solid Foundation:…

  8. Modeling EERE Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, K. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hostick, D. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Belzer, D. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Livingston, O. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-11-01

    This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.

  9. Los Alamos Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Benjamin Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-07

    This is the PDF of a powerpoint presentation from a teleconference on Los Alamos programming models. It starts by listing their assumptions for the programming models and then details a hierarchical programming model at the System Level and Node Level. Then it details how to map this to their internal nomenclature. Finally, a list is given of what they are currently doing in this regard.

  10. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  11. WATEQ3 geochemical model: thermodynamic data for several additional solids

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs

  12. Spreadsheet Modeling of Electron Distributions in Solids

    Science.gov (United States)

    Glassy, Wingfield V.

    2006-01-01

    A series of spreadsheet modeling exercises constructed as part of a new upper-level elective course on solid state materials and surface chemistry is described. The spreadsheet exercises are developed to provide students with the opportunity to interact with the conceptual framework where the role of the density of states and the Fermi-Dirac…

  13. Modeling EERE Deployment Programs

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.; Livingston, Olga V.

    2007-11-08

    The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.

  14. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  15. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  16. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  17. Introducing Program Evaluation Models

    Directory of Open Access Journals (Sweden)

    Raluca GÂRBOAN

    2008-02-01

    Full Text Available Programs and project evaluation models can be extremely useful in project planning and management. The aim is to set the right questions as soon as possible in order to see in time and deal with the unwanted program effects, as well as to encourage the positive elements of the project impact. In short, different evaluation models are used in order to minimize losses and maximize the benefits of the interventions upon small or large social groups. This article introduces some of the most recently used evaluation models.

  18. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  19. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  20. Expanding the Use of Solid Modeling throughout the Engineering Curriculum.

    Science.gov (United States)

    Baxter, Douglas H.

    2001-01-01

    Presents the initial work that Rensselaer Polytechnic Institute has done to integrate solid modeling throughout the engineering curriculum. Aims to provide students the opportunity to use their solid modeling skills in several courses and show students how solid modeling tools can be used to help solve a variety of engineering problems.…

  1. Solid mechanics theory, modeling, and problems

    CERN Document Server

    Bertram, Albrecht

    2015-01-01

    This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.

  2. Inference-based procedural modeling of solids

    KAUST Repository

    Biggers, Keith

    2011-11-01

    As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple sketch. Our algorithm uses an inference-based approach to incrementally fit patches together in a consistent fashion to define the boundary of an object. This algorithm samples and extracts surface patches from input models, and develops a Petri net structure that describes the relationship between patches along an imposed parameterization. Then, given a new parameterized line or curve, we use the Petri net to logically fit patches together in a manner consistent with the input model. This allows us to easily construct objects of varying sizes and configurations using arbitrary articulation, repetition, and interchanging of parts. The result of our process is a solid model representation of the constructed object that can be integrated into a simulation-based environment. © 2011 Elsevier Ltd. All rights reserved.

  3. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  4. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  5. Mathematical modeling of solid oxide fuel cells

    Science.gov (United States)

    Lu, Cheng-Yi; Maloney, Thomas M.

    1988-01-01

    Development of predictive techniques, with regard to cell behavior, under various operating conditions is needed to improve cell performance, increase energy density, reduce manufacturing cost, and to broaden utilization of various fuels. Such technology would be especially beneficial for the solid oxide fuel cells (SOFC) at it early demonstration stage. The development of computer models to calculate the temperature, CD, reactant distributions in the tubular and monolithic SOFCs. Results indicate that problems of nonuniform heat generation and fuel gas depletion in the tubular cell module, and of size limitions in the monolithic (MOD 0) design may be encountered during FC operation.

  6. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  7. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  8. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond

  9. Implementation of a management applied program for solid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the Post-irradiated Fuel Examination Facility, the Irradiated Material Examination Facility, the Research Reactor, and the laboratories at KAERI. A data collection of a solid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material balance and inventory study.

  10. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    Science.gov (United States)

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. RFQ modeling computer program

    International Nuclear Information System (INIS)

    Potter, J.M.

    1985-01-01

    The mathematical background for a multiport-network-solving program is described. A method for accurately numerically modeling an arbitrary, continuous, multiport transmission line is discussed. A modification to the transmission-line equations to accommodate multiple rf drives is presented. An improved model for the radio-frequency quadrupole (RFQ) accelerator that corrects previous errors is given. This model permits treating the RFQ as a true eight-port network for simplicity in interpreting the field distribution and ensures that all modes propagate at the same velocity in the high-frequency limit. The flexibility of the multiport model is illustrated by simple modifications to otherwise two-dimensional systems that permit modeling them as linear chains of multiport networks

  12. Modeling Degradation in Solid Oxide Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  13. Modeling alignment enhancement for solid polarized targets

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D. [University of Virginia, Charlottesville, VA (United States)

    2017-07-15

    A model of dynamic orientation using optimized radiofrequency (RF) irradiation produced perpendicular to the holding field is developed for the spin-1 system required for tensor-polarized fixed-target experiments. The derivation applies to RF produced close to the Larmor frequency of the nucleus and requires the electron spin-resonance linewidth to be much smaller than the nuclear magnetic resonance frequency. The rate equations are solved numerically to study a semi-saturated steady-state resulting from the two sources of irradiation: microwave from the DNP process and the additional RF used to manipulate the tensor polarization. The steady-state condition and continuous-wave NMR lineshape are found that optimize the spin-1 alignment in the polycrystalline materials used as solid polarized targets in charged-beam nuclear and particle physics experiments. (orig.)

  14. Solid waste operations complex engineering verification program plan

    International Nuclear Information System (INIS)

    Bergeson, C.L.

    1994-01-01

    This plan supersedes, but does not replace, the previous Waste Receiving and Processing/Solid Waste Engineering Development Program Plan. In doing this, it does not repeat the basic definitions of the various types or classes of development activities nor provide the rigorous written description of each facility and assign the equipment to development classes. The methodology described in the previous document is still valid and was used to determine the types of verification efforts required. This Engineering Verification Program Plan will be updated on a yearly basis. This EVPP provides programmatic definition of all engineering verification activities for the following SWOC projects: (1) Project W-026 - Waste Receiving and Processing Facility Module 1; (2) Project W-100 - Waste Receiving and Processing Facility Module 2A; (3) Project W-112 - Phase V Storage Facility; and (4) Project W-113 - Solid Waste Retrieval. No engineering verification activities are defined for Project W-112 as no verification work was identified. The Acceptance Test Procedures/Operational Test Procedures will be part of each project's Title III operation test efforts. The ATPs/OTPs are not covered by this EVPP

  15. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  16. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  17. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  18. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  19. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  20. SPATIAL MODELING OF SOLID-STATE REGULAR POLYHEDRA (SOLIDS OF PLATON IN AUTOCAD SYSTEM

    Directory of Open Access Journals (Sweden)

    P. V. Bezditko

    2009-03-01

    Full Text Available This article describes the technology of modeling regular polyhedra by graphic methods. The authors came to the conclusion that in order to create solid models of regular polyhedra the method of extrusion is best to use.

  1. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  2. A Discrete Approach to Meshless Lagrangian Solid Modeling

    Directory of Open Access Journals (Sweden)

    Matthew Marko

    2017-07-01

    Full Text Available The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with smooth particle applied mechanics by having the solid particles apply stresses expected with Hooke’s law, as opposed to using a smoothing function for neighboring solid particles. This method has been tested successfully with a bar in tension, compression, and shear, as well as a disk compressed into a flat plate, and the numerical model consistently matched the analytical Hooke’s law as well as Hertz contact theory for all examples. The solid modeling numerical method was then built into a 2-D model of a pressure vessel, which was tested with liquid water particles under pressure and simulated with smoothed particle hydrodynamics. This simulation was stable, and demonstrated the feasibility of Lagrangian specification modeling for fluid–solid interactions.

  3. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  4. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  5. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  6. Geological modeling of a stratified deposit with CAD-Based solid model automation

    Directory of Open Access Journals (Sweden)

    Ayten Eser

    Full Text Available Abstract The planning stages of mining activities require many comprehensive and detailed analyses. Determining the correct orebody model is the first stage and one of the most important. Three-dimensional solid modeling is one of the significant methods that can examine the position and shape of the ore deposit. Although there are many different types of mining software for determining a solid model, many users try to build geological models in the computer without knowing how these software packages work. As researchers on the subject, we wanted to answer the question "How would we do it". For this purpose, a system was developed for generating solid models using data obtained from boreholes. Obtaining this model in an AutoCAD environment will be important for geologists and engineers. Developed programs were first tested with virtual borehole data belonging to a virtual deposit. Then the real borehole data of a cement raw material site were successfully applied. This article allows readers not only to see a clear example of the programming approach to layered deposits but also to produce more complicated software in this context. Our study serves as a window to understanding the geological modeling process.

  7. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.

    Science.gov (United States)

    Dustan, A C; Cohen, B; Petrie, J G

    2005-05-30

    An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.

  8. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  9. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  10. 76 FR 9772 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-02-22

    ... Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Region IX is proposing to approve a modification to Arizona's municipal solid waste landfill (MSWLF... final rule amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for RD&D...

  11. Modelling Gas Adsorption in Porous Solids: Roles of Surface ...

    Indian Academy of Sciences (India)

    Modelling the adsorption of small molecule gases such as N2, CH4 and CO2 in porous solids can ... fusive properties of CO2 adsorbed in the solids have been examined using ..... exhibit a wide range of physical behavior.78,79 The intro-.

  12. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  13. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  14. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  15. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... waste landfills by approved states. On June 14, 2012, Oregon submitted an application to EPA Region 10...

  16. The CRAFT Fortran Programming Model

    Directory of Open Access Journals (Sweden)

    Douglas M. Pase

    1994-01-01

    Full Text Available Many programming models for massively parallel machines exist, and each has its advantages and disadvantages. In this article we present a programming model that combines features from other programming models that (1 can be efficiently implemented on present and future Cray Research massively parallel processor (MPP systems and (2 are useful in constructing highly parallel programs. The model supports several styles of programming: message-passing, data parallel, global address (shared data, and work-sharing. These styles may be combined within the same program. The model includes features that allow a user to define a program in terms of the behavior of the system as a whole, where the behavior of individual tasks is implicit from this systemic definition. (In general, features marked as shared are designed to support this perspective. It also supports an opposite perspective, where a program may be defined in terms of the behaviors of individual tasks, and a program is implicitly the sum of the behaviors of all tasks. (Features marked as private are designed to support this perspective. Users can exploit any combination of either set of features without ambiguity and thus are free to define a program from whatever perspective is most appropriate to the problem at hand.

  17. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  18. Modeling all-solid-state Li-ion batteries

    NARCIS (Netherlands)

    Danilov, D.; Niessen, R.A.H.; Notten, P.H.L.

    2011-01-01

    A mathematical model for all-solid-state Li-ion batteries is presented. The model includes the charge transfer kinetics at the electrode/electrolyte interface, diffusion of lithium in the intercalation electrode, and diffusion and migration of ions in the electrolyte. The model has been applied to

  19. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  20. Mathematical modeling in municipal solid waste management: case study of Tehran.

    Science.gov (United States)

    Akbarpour Shirazi, Mohsen; Samieifard, Reza; Abduli, Mohammad Ali; Omidvar, Babak

    2016-01-01

    Solid Waste Management (SWM) in metropolises with systematic methods and following environmental issues, is one of the most important subjects in the area of urban management. In this regard, it is regarded as a legal entity so that its activities are not overshadowed by other urban activities. In this paper, a linear mathematical programming model has been designed for integrated SWM. Using Lingo software and required data from Tehran, the proposed model has been applied for Tehran SWM system as a case study. To determine the optimal status of the available system for Tehran's Solid Waste Management System (SWMS), a novel linear programming model is applied. Tehran has 22 municipal regions with 11 transfer stations and 10 processing units. By running of the model, the transfer stations and processing units are decreased to 10 and 6 units, respectively. The proposed model is an alternative method for improvement the SWMS by decreasing the transfer stations and processing units.

  1. Plutonium contaminated solid waste programs at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Johson, L.J.; Jordan, H.S.

    1975-01-01

    Development of handling and storage criteria for plutonium contaminated solid waste materials is discussed. Data from corrosion and radiolytic attack studies are reviewed. Instrumentation systems developed for solid waste management applications at the 10nCi Pu/g waste material level is described and their sensitivity and operational limitations reviewed. Current programs for the environmental risk analysis of past waste disposal areas and for development of technology for the volume reduction and chemical stabilization of transuranic contaminated solid waste is outlined

  2. Dynamic programming models and applications

    CERN Document Server

    Denardo, Eric V

    2003-01-01

    Introduction to sequential decision processes covers use of dynamic programming in studying models of resource allocation, methods for approximating solutions of control problems in continuous time, production control, more. 1982 edition.

  3. A Thermodynamic Mixed-Solid Asphaltene Precipitation Model

    DEFF Research Database (Denmark)

    Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar

    1998-01-01

    A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...

  4. Geometric data transfer between CAD systems: solid models

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Palstroem, Bjarne; Trostmann, Erik

    1989-01-01

    The first phase of the ESPRIT project CAD*I resulted in a specification for the exchange of solid models as well as in some pilot implementations of processors based on this specification. The authors summarize the CAD*I approach, addressing the structure of neutral files for solids, entities......, and attributes supporting three kinds of representations: facilities for the transfer of parametric designs; referencing library components; and other general mechanisms. They also describe the current state of the specification and processor implementations and include an example of a CAD*I neutral file....... Results from cycle and intersystem solid model transfer tests are presented, showing the practicality of the CAD*I proposal. B-rep model transfer results are discussed in some detail. The relationship of this work to standardization efforts is outlined...

  5. An environmentally sustainable decision model for urban solid waste management

    International Nuclear Information System (INIS)

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R.

    2004-01-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments

  6. Mathematical modeling in municipal solid waste management: case study of Tehran

    OpenAIRE

    Akbarpour Shirazi, Mohsen; Samieifard, Reza; Abduli, Mohammad Ali; Omidvar, Babak

    2016-01-01

    Background Solid Waste Management (SWM) in metropolises with systematic methods and following environmental issues, is one of the most important subjects in the area of urban management. In this regard, it is regarded as a legal entity so that its activities are not overshadowed by other urban activities. In this paper, a linear mathematical programming model has been designed for integrated SWM. Using Lingo software and required data from Tehran, the proposed model has been applied for Tehra...

  7. A ''model'' geophysics program

    International Nuclear Information System (INIS)

    Nyquist, J.E.

    1994-01-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy's Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994

  8. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  9. Derivative Geometric Modeling of Basic Rotational Solids on CATIA

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; PAN Zi-jian; ZHU Yu-xiang; LI Jun

    2011-01-01

    Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.

  10. Transuranic Solid Waste Management Programs. Progress report, July--December 1974

    International Nuclear Information System (INIS)

    1975-10-01

    Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory by the Energy Research and Development Administration Division of Waste Management and Transportation. Under the Transuranic Waste Research and Development Program, a completed evaluation of stainless steel drums showed that although the material has superior corrosion-resistant properties, its higher cost makes a thorough investigation of other container systems mandatory. A program to investigate more economical, nonmetallic containers is proposed. Preliminary fire tests in mild steel drums have been completed with fire propagation not appearing to be a problem unless container integrity is lost. Investigation of the corrosion of mild steel drums and the evaluation of potential corrosion inhibitors, in a variety of humid environments, continues. Experimental results of both laboratory and field investigations on radiolysis of transuranic elements in hydrogenous waste are discussed. Progress in the development of instrumentation for monitoring and segregating low-level wastes is described. New plans and developments for the Transuranic-Contaminated Solid Waste Treatment Development Facility are presented. The current focus is on a comparison of all alternative waste reduction systems toward a relative Figure of Merit with universal application. Drawings, flowsheets, and building layouts are included, and the proposed incinerator device is detailed. The release mechanisms, inter- and intraregional transport mechanisms, and exhumation studies relevant to the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas Program are defined and analyzed. A detailed description is given of the formulation of the computer simulation scheme for the intraregional biological transport model

  11. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...... such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been...

  12. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  13. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    Science.gov (United States)

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions

    Directory of Open Access Journals (Sweden)

    A.P. Walters

    2013-01-01

    Full Text Available Current practices for modeling the ocean floor in underwater explosion simulations call for application of an inviscid fluid with soil properties. A method for modeling the ocean floor as a Lagrangian solid, vice an Eulerian fluid, was developed in order to determine its effects on underwater explosions in shallow water using the DYSMAS solver. The Lagrangian solid bottom model utilized transmitting boundary segments, exterior nodal forces acting as constraints, and the application of prestress to minimize any distortions into the fluid domain. For simplicity, elastic materials were used in this current effort, though multiple constitutive soil models can be applied to improve the overall accuracy of the model. Even though this method is unable to account for soil cratering effects, it does however provide the distinct advantage of modeling contoured ocean floors such as dredged channels and sloped bottoms absent in Eulerian formulations. The study conducted here showed significant differences among the initial bottom reflections for the different solid bottom contours that were modeled. The most important bottom contour effect was the distortion to the gas bubble and its associated first pulse timing. In addition to its utility in bottom modeling, implementation of the non-reflecting boundary along with realistic material models can be used to drastically reduce the size of current fluid domains.

  15. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  16. Representing the Past by Solid Modeling + Golden Ratio Analysis

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes the procedures of reconstructing ancient architecture using solid modeling with geometric analysis, especially the Golden Ratio analysis. In the past the recovery and reconstruction of ruins required bringing together fragments of evidence and vast amount of measurements from archaeological site. Although researchers and…

  17. Robust model of fresh jujube soluble solids content with near ...

    African Journals Online (AJOL)

    A robust partial least square (PLS) calibration model with high accuracy and stability was established for the measurement of soluble solids content (SSC) of fresh jujube using near-infrared (NIR) spectroscopy technique. Fresh jujube samples were collected in different areas of Taigu and Taiyuan cities, central China in ...

  18. Microstructural model for the plasticity of amorphous solids

    NARCIS (Netherlands)

    Hütter, M.; Breemen, van L.C.A.

    2012-01-01

    Based on the concept of localized shear transformation zones (STZ), a thermodynamically consistent model for the viscoplastic deformation of amorphous solids is developed. The approach consists of a dynamic description of macroscopic viscoplasticity that is enriched by the evolution of number

  19. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  20. Model Checker for Java Programs

    Science.gov (United States)

    Visser, Willem

    2007-01-01

    Java Pathfinder (JPF) is a verification and testing environment for Java that integrates model checking, program analysis, and testing. JPF consists of a custom-made Java Virtual Machine (JVM) that interprets bytecode, combined with a search interface to allow the complete behavior of a Java program to be analyzed, including interleavings of concurrent programs. JPF is implemented in Java, and its architecture is highly modular to support rapid prototyping of new features. JPF is an explicit-state model checker, because it enumerates all visited states and, therefore, suffers from the state-explosion problem inherent in analyzing large programs. It is suited to analyzing programs less than 10kLOC, but has been successfully applied to finding errors in concurrent programs up to 100kLOC. When an error is found, a trace from the initial state to the error is produced to guide the debugging. JPF works at the bytecode level, meaning that all of Java can be model-checked. By default, the software checks for all runtime errors (uncaught exceptions), assertions violations (supports Java s assert), and deadlocks. JPF uses garbage collection and symmetry reductions of the heap during model checking to reduce state-explosion, as well as dynamic partial order reductions to lower the number of interleavings analyzed. JPF is capable of symbolic execution of Java programs, including symbolic execution of complex data such as linked lists and trees. JPF is extensible as it allows for the creation of listeners that can subscribe to events during searches. The creation of dedicated code to be executed in place of regular classes is supported and allows users to easily handle native calls and to improve the efficiency of the analysis.

  1. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  2. An integration scheme for stiff solid-gas reactor models

    Directory of Open Access Journals (Sweden)

    Bjarne A. Foss

    2001-04-01

    Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.

  3. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  4. Modeling steel deformation in the semi-solid state

    CERN Document Server

    Hojny, Marcin

    2017-01-01

    This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and...

  5. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  6. Design and modeling of precision solid liner experiments on Pegasus

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Lee, H.; McLenithan, K.D.; Scannapieco, A.J.; Shanahan, W.R.

    1998-01-01

    Pulsed power driven solid liners may be used for a variety of physics experiments involving materials at high stresses. These include shock formation and propagation, material strain-rate effects, material melt, instability growth, and ejecta from shocked surfaces. We describe the design and performance of a cylindrical solid liner that can attain velocities in the several mm/μs regime, and that can be used to drive high-stress experiments. An approximate theoretical analysis of solid liner implosions is used to establish the basic parameters (mass, materials, and initial radius) of the driver. We then present one-dimensional and two-dimensional simulations of magnetically driven, liner implosions which include resistive heating and elastic endash plastic behavior. The two-dimensional models are used to study the effects of electrode glide planes on the liner close-quote s performance, to examine sources of perturbations of the liner, and to assess possible effects of instability growth during the implosion. Finally, simulations are compared with experimental data to show that the solid liner performed as predicted computationally. Experimental data indicate that the liner imploded from an initial radius of 2.4 cm to a target radius of 1.5 cm, and that it was concentric and cylindrical to better than the experimental resolution (60 μm) at the target. The results demonstrate that a precision solid liner can be produced for high-stress, pulsed power applications experiments. copyright 1998 American Institute of Physics

  7. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  8. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  9. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  10. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  11. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling

    International Nuclear Information System (INIS)

    Dyson, Brian; Chang, N.-B.

    2005-01-01

    Both planning and design of municipal solid waste management systems require accurate prediction of solid waste generation. Yet achieving the anticipated prediction accuracy with regard to the generation trends facing many fast-growing regions is quite challenging. The lack of complete historical records of solid waste quantity and quality due to insufficient budget and unavailable management capacity has resulted in a situation that makes the long-term system planning and/or short-term expansion programs intangible. To effectively handle these problems based on limited data samples, a new analytical approach capable of addressing socioeconomic and environmental situations must be developed and applied for fulfilling the prediction analysis of solid waste generation with reasonable accuracy. This study presents a new approach - system dynamics modeling - for the prediction of solid waste generation in a fast-growing urban area based on a set of limited samples. To address the impact on sustainable development city wide, the practical implementation was assessed by a case study in the city of San Antonio, Texas (USA). This area is becoming one of the fastest-growing regions in North America due to the economic impact of the North American Free Trade Agreement (NAFTA). The analysis presents various trends of solid waste generation associated with five different solid waste generation models using a system dynamics simulation tool - Stella[reg]. Research findings clearly indicate that such a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties down when traditional statistical least-squares regression methods are unable to handle such issues

  12. Regional integrated solid waste management: an optimization model for northern Lebanon

    International Nuclear Information System (INIS)

    Abou Najm, M.; El Fadel, M.; El-Taha, M.; Ayoub, G.; Al-Awar

    2000-01-01

    Full text.Increased environmental concerns and the emphasis on material and energy recovery are gradually changing the orientation of municipal solid waste (MSW) management and planning. In this context, the application of optimization techniques have been introduced to design the least cost solid waste management systems, considering the variety of management processes (recycling, composting, anaerobic digestion, incineration and land filling) and the existence of uncertainties associated with the number of system components and their interrelations. This study presents a model that was developed and applied to serve as a solid socio-economic and environmental considerations. The model accounts for solid waste generation rates, composition, collection, treatment, disposal as well as potential environmental impacts of various MSW management techniques. The model follows a linear programming formulation with the framework of dynamic optimization. The model can serve as a tool to evaluate various MSW management alternatives and obtain the optimal combination of technologies for the handling, treatment and disposal of MSW in an economic and environmentally sustainable way. The sensitivity of various waste management policies is also addressed. Finally, the region of Northern Lebanon was considered as a case study with data collected for the year 2000, to demonstrate the applicability of the model

  13. Capacity building in rural Guatemala by implementing a solid waste management program

    International Nuclear Information System (INIS)

    Zarate, M.A.; Slotnick, J.; Ramos, M.

    2008-01-01

    The development and implementation of a solid waste management program served to build local capacity in San Mateo Ixtatan between 2002 and 2003 as part of a public health action plan. The program was developed and implemented in two phases: (1) the identification and education of a working team from the community; and (2) the completion of a solid waste classification and quantification study. Social capital and the water cycle were two public health approaches utilized to build a sustainable program. The activities accomplished gained support from the community and municipal authorities. A description of the tasks completed and findings of the solid waste classification and quantification performed by a local working group are presented in this paper

  14. GIGMF - A statistical model program

    International Nuclear Information System (INIS)

    Vladuca, G.; Deberth, C.

    1978-01-01

    The program GIGMF computes the differential and integrated statistical model cross sections for the reactions proceeding through a compound nuclear stage. The computational method is based on the Hauser-Feshbach-Wolfenstein theory, modified to include the modern version of Tepel et al. Although the program was written for a PDP-15 computer, with 16K high speed memory, many reaction channels can be taken into account with the following restrictions: the pro ectile spin must be less than 2, the maximum spin momenta of the compound nucleus can not be greater than 10. These restrictions are due solely to the storage allotments and may be easily relaxed. The energy of the impinging particle, the target and projectile masses, the spin and paritjes of the projectile, target, emergent and residual nuclei the maximum orbital momentum and transmission coefficients for each reaction channel are the input parameters of the program. (author)

  15. A lumped model for rotational modes in periodic solid composites

    KAUST Repository

    Peng, Pai; Asiri, Sharefa M.; Zhang, Xiujuan; Li, Yan; Wu, Ying

    2013-01-01

    We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.

  16. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  17. A lumped model for rotational modes in periodic solid composites

    KAUST Repository

    Peng, Pai

    2013-10-01

    We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.

  18. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  19. Quantum Monte Carlo programming for atoms, molecules, clusters, and solids

    CERN Document Server

    Schattke, Wolfgang

    2013-01-01

    In one source, this textbook provides quick and comprehensive access to quantitative calculations in materials science. The authors address both newcomers as well as researchers who would like to become familiar with QMC in order to apply to their research. As such, they cover the basic theory required for applying the method, and describe how to transfer this knowledge into calculation. The book includes a series of problems of increasing difficulty with associated stand-alone programs which will be available for free download.

  20. CAD-based Monte Carlo automatic modeling method based on primitive solid

    International Nuclear Information System (INIS)

    Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang

    2016-01-01

    Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.

  1. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  2. SEM Model Medical Solid Waste Hospital Management In Medan City

    Science.gov (United States)

    Simarmata, Verawaty; Pandia, Setiaty; Mawengkang, Herman

    2018-01-01

    In daily activities, hospitals, as one of the important health care unit, generate both medical solid waste and non-medical solid waste. The occurrence of medical solid waste could be from the results of treatment activities, such as, in the treatment room for a hospital inpatient, general clinic, a dental clinic, a mother and child clinic, laboratories and pharmacies. Most of the medical solid waste contains infectious and hazardous materials. Therefore it should be managed properly, otherwise it could be a source of new infectious for the community around the hospital as well as for health workers themselves. Efforts surveillance of various environmental factors need to be applied in accordance with the principles of sanitation focuses on environmental cleanliness. One of the efforts that need to be done in improving the quality of the environment is to undertake waste management activities, because with proper waste management is the most important in order to achieve an optimal degree of human health. Health development in Indonesian aims to achieve a future in which the Indonesian people live in a healthy environment, its people behave clean and healthy, able to reach quality health services, fair and equitable, so as to have optimal health status, health development paradigm anchored to the healthy. The healthy condition of the individual and society can be influenced by the environment. Poor environmental quality is a cause of various health problems. Efforts surveillance of various environmental factors need to be applied in accordance with the principles of sanitation focuses on environmental cleanliness. This paper proposes a model for managing the medical solid waste in hospitals in Medan city, in order to create healthy environment around hospitals.

  3. Extension of a simplified computer program for analysis of solid-propellant rocket motors

    Science.gov (United States)

    Sforzini, R. H.

    1973-01-01

    A research project to develop a computer program for the preliminary design and performance analysis of solid propellant rocket engines is discussed. The following capabilities are included as computer program options: (1) treatment of wagon wheel cross sectional propellant configurations alone or in combination with circular perforated grains, (2) calculation of ignition transients with the igniter treated as a small rocket engine, (3) representation of spherical circular perforated grain ends as an alternative to the conical end surface approximation used in the original program, and (4) graphical presentation of program results using a digital plotter.

  4. A computer program for processing experimental Compton profile of solids and liquids

    International Nuclear Information System (INIS)

    Das, G.P.

    1984-01-01

    A computer program COMPRO has been developed for processing experimental Compton profile data of solids and liquids generated by inelastic gamma ray scattering using a solid state detector and a multichannel analyser. It also calculates the fourier transform of the profile yielding the one electron autocorrelation function in position space. The theory behind the method of calculation is outlined and the various data processing steps needed to be applied on the raw experimental data have been discussed in detail. A flow chart of the program is given and the various subroutines of the program, method of feeding the input data and the method of presenting the final result are briefly described. The procedure is illustrated by measurement on a polycrystalline sample of manganese. The actual listing of the program along with the test run input data and the test run output data is also given. (M.G.B.)

  5. Modeling of positron states and annihilation in solids

    International Nuclear Information System (INIS)

    Puska, M.J.

    2003-01-01

    Theoretical models and computational aspects to describe positron states and to predict positron annihilation characteristics in solids are discussed. The comparison of the calculated positron lifetimes, core annihilation lineshapes, and two-dimensional angular correlation maps with experimental results are used in identifying the structure (including the chemical composition) of vacancy-type defects and their development e.g. during thermal annealing. The basis of the modeling is the two-component density-functional theory. The ensuing approximations and the state-of-the-art electronic-structure computation methods enable practical schemes with a quantitative predicting power. (author)

  6. Modeling barriers of solid waste to energy practices: An Indian perspective

    International Nuclear Information System (INIS)

    Bag, S.; Mondal, N.; Dubey, R.

    2016-01-01

    In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.

  7. Solid waste programs Fiscal Year 1995 multi-year program plan/fiscal year work plan WBS 1.2.1

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1994-09-01

    The Hanford Mission Plan, Volume 1, Site Guidance identifies the need for the Solid Waste Program to treat, store, and dispose of a wide variety of solid material types consisting of multiple radioactive and hazardous waste classes. This includes future Hanford Site activities which will generate new wastes that must be handled as cleanup activities are completed. Solid wastes are typically categorized as transuranic waste, low level waste, low level mixed waste, and hazardous waste. To meet this need the Solid Waste Program has defined its mission as the following - receive, store, treat, decontaminate, and dispose of solid radioactive and nonradioactive dangerous wastes in a safe, cost effective and environmentally compliant manner. This workbook contains the program overview, program baselines and fiscal year work plan for the Solid Waste Program

  8. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  9. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  10. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    Science.gov (United States)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  11. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  12. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  13. Curcumin-Artemisinin Coamorphous Solid: Xenograft Model Preclinical Study

    Directory of Open Access Journals (Sweden)

    M. K. Chaitanya Mannava

    2018-01-01

    Full Text Available Curcumin is a natural compound present in Indian spice turmeric. It has diverse pharmacological action but low oral solubility and bioavailability continue to limit its use as a drug. With the aim of improving the bioavailability of Curcumin (CUR, we evaluated Curcumin-Pyrogallol (CUR-PYR cocrystal and Curcumin-Artemisinin (CUR-ART coamorphous solid. Both of these solid forms exhibited superior dissolution and pharmacokinetic behavior compared to pure CUR, which is practically insoluble in water. CUR-ART coamorphous solid showed two fold higher bioavailability than CUR-PYR cocrystal (at 200 mg/kg oral dose. Moreover, in simulated gastric and intestinal fluids (SGF and SIF, CUR-ART is stable up to 3 and 12 h, respectively. In addition, CUR-PYR and CUR-ART showed no adverse effects in toxicology studies (10 times higher dose at 2000 mg/kg. CUR-ART showed higher therapeutic effect and inhibited approximately 62% of tumor growth at 100 mg/kg oral dosage of CUR in xenograft models, which is equal to the positive control drug, doxorubicin (2 mg/kg by i.v. administration.

  14. Japanese contributions to ITER testing program of solid breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Kuroda, Toshimasa; Yoshida, Hiroshi; Takatsu, Hideyuki; Maki, Koichi; Mori, Seiji; Kobayashi, Takeshi; Suzuki, Tatsushi; Hirata, Shingo; Miura, Hidenori.

    1991-04-01

    ITER Conceptual Design Activity (CDA), which has been conducted by four parties (Japan, EC, USA and USSR) since May 1988, has been finished on December 1990 with a great achievement of international design work of the integrated fusion experimental reactor. Numerous issues of physics and technology have been clarified for providing a framework of the next phase of ITER (Engineering Design Activity; EDA). Establishment of an ITER testing program, which includes technical test issues of neutronics, solid breeder blankets, liquid breeder blankets, plasma facing components, and materials, has been one of the goals of the CDA. This report describes Japanese proposal for the testing program of DEMO/power reactor blanket development. For two concepts of solid breeder blanket (helium-cooled and water-cooled), identification of technical issues, scheduling of test program, and conceptual design of test modules including required test facility such as cooling and tritium recovery systems have been carried out as the Japanese contribution to the CDA. (author)

  15. Space modeling with SolidWorks and NX

    CERN Document Server

    Duhovnik, Jože; Drešar, Primož

    2015-01-01

    Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space – a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while SolidWorks or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric, and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free fo...

  16. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  17. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The ASC Sequoia Programming Model

    Energy Technology Data Exchange (ETDEWEB)

    Seager, M

    2008-08-06

    In the late 1980's and early 1990's, Lawrence Livermore National Laboratory was deeply engrossed in determining the next generation programming model for the Integrated Design Codes (IDC) beyond vectorization for the Cray 1s series of computers. The vector model, developed in mid 1970's first for the CDC 7600 and later extended from stack based vector operation to memory to memory operations for the Cray 1s, lasted approximately 20 years (See Slide 5). The Cray vector era was deemed an extremely long lived era as it allowed vector codes to be developed over time (the Cray 1s were faster in scalar mode than the CDC 7600) with vector unit utilization increasing incrementally over time. The other attributes of the Cray vector era at LLNL were that we developed, supported and maintained the Operating System (LTSS and later NLTSS), communications protocols (LINCS), Compilers (Civic Fortran77 and Model), operating system tools (e.g., batch system, job control scripting, loaders, debuggers, editors, graphics utilities, you name it) and math and highly machine optimized libraries (e.g., SLATEC, and STACKLIB). Although LTSS was adopted by Cray for early system generations, they later developed COS and UNICOS operating systems and environment on their own. In the late 1970s and early 1980s two trends appeared that made the Cray vector programming model (described above including both the hardware and system software aspects) seem potentially dated and slated for major revision. These trends were the appearance of low cost CMOS microprocessors and their attendant, departmental and mini-computers and later workstations and personal computers. With the wide spread adoption of Unix in the early 1980s, it appeared that LLNL (and the other DOE Labs) would be left out of the mainstream of computing without a rapid transition to these 'Killer Micros' and modern OS and tools environments. The other interesting advance in the period is that systems were being

  19. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  20. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  1. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    Science.gov (United States)

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  2. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  3. Life Cycle Costing Model for Solid Waste Management

    DEFF Research Database (Denmark)

    Martinez-Sanchez, Veronica; Astrup, Thomas Fruergaard

    2014-01-01

    To ensure sustainability of solid waste management, there is a need for cost assessment models which are consistent with environmental and social assessments. However, there is a current lack of standardized terminology and methodology to evaluate economic performances and this complicates...... LCC, e.g. waste generator, waste operator and public finances and the perspective often defines the systemboundaries of the study, e.g. waste operators often focus on her/his own cost, i.e. technology based,whereas waste generators and public finances often focus on the entire waste system, i.......e. system based. Figure 1 illustrates the proposed modeling framework that distinguishes between: a) budget cost, b) externality costs and 3) transfers and defines unit costs of each technology (per ton of input waste). Unitcosts are afterwards combined with a mass balance to calculate the technology cost...

  4. Thermodynamics of a model solid with magnetoelastic coupling

    Science.gov (United States)

    Szałowski, K.; Balcerzak, T.; Jaščur, M.

    2018-01-01

    In the paper a study of a model magnetoelastic solid system is presented. The system of interest is a mean-field magnet with nearest-neighbour ferromagnetic interactions and the underlying s.c. crystalline lattice with the long-range Morse interatomic potential and the anharmonic Debye model for the lattice vibrations. The influence of the external magnetic field on the thermodynamics is investigated, with special emphasis put on the consequences of the magnetoelastic coupling, introduced by the power-law distance dependence of the magnetic exchange integral. Within the fully self-consistent, Gibbs energy-based formalism such thermodynamic quantities as the entropy, the specific heat as well as the lattice and magnetic response functions are calculated and discussed. To complete the picture, the magnetocaloric effect is characterized by analysis of the isothermal entropy change and the adiabatic temperature change in the presence of the external pressure.

  5. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  6. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Science.gov (United States)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  7. Modeling of Solid State Transformer for the FREEDM System Demonstration

    Science.gov (United States)

    Jiang, Youyuan

    The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.

  8. Applied structural and solid mechanics section: 1983 review and 1984 programs

    International Nuclear Information System (INIS)

    Chadha, J.A.

    1984-01-01

    This report reviews briefly the applied research and problem solving work carried out by the Applied Structural and Solid Mechanics Section during 1983. In 1983 there was a strong demand for services in the areas of theroretical and experimental stress analysis, heat transfer analysis, nonlinear analysis, and general structural analyses related to nuclear and thermal power plant, and transmission line components. Development of capabilities in these areas progressed well. Proposed work programs for 1984 are outlined in this report

  9. Critic: a new program for the topological analysis of solid-state electron densities

    Science.gov (United States)

    Otero-de-la-Roza, A.; Blanco, M. A.; Pendás, A. Martín; Luaña, Víctor

    2009-01-01

    In this paper we introduce CRITIC, a new program for the topological analysis of the electron densities of crystalline solids. Two different versions of the code are provided, one adapted to the LAPW (Linear Augmented Plane Wave) density calculated by the WIEN2K package and the other to the ab initio Perturbed Ion ( aiPI) density calculated with the PI7 code. Using the converged ground state densities, CRITIC can locate their critical points, determine atomic basins and integrate properties within them, and generate several graphical representations which include topological atomic basins and primary bundles, contour maps of ρ and ∇ρ, vector maps of ∇ρ, chemical graphs, etc. Program summaryProgram title: CRITIC Catalogue identifier: AECB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL, version 3 No. of lines in distributed program, including test data, etc.: 1 206 843 No. of bytes in distributed program, including test data, etc.: 12 648 065 Distribution format: tar.gz Programming language: FORTRAN 77 and 90 Computer: Any computer capable of compiling Fortran Operating system: Unix, GNU/Linux Classification: 7.3 Nature of problem: Topological analysis of the electron density in periodic solids. Solution method: The automatic localization of the electron density critical points is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed by a Newton search from significant points on each tetrahedra. Plotting of and integration on the atomic basins is currently based on a new implementation of Keith's promega algorithm. Running time: Variable, depending on the task. From seconds to a few minutes for the localization of critical points. Hours to days for the determination of the atomic basins shape and properties. Times correspond to a typical 2007 PC.

  10. The Spiral-Interactive Program Evaluation Model.

    Science.gov (United States)

    Khaleel, Ibrahim Adamu

    1988-01-01

    Describes the spiral interactive program evaluation model, which is designed to evaluate vocational-technical education programs in secondary schools in Nigeria. Program evaluation is defined; utility oriented and process oriented models for evaluation are described; and internal and external evaluative factors and variables that define each…

  11. Solid models for CT/MR image display

    International Nuclear Information System (INIS)

    ManKovich, N.J.; Yue, A.; Kioumehr, F.; Ammirati, M.; Turner, S.

    1991-01-01

    Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. The authors have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the mode with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of >99.6 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents an accuracy study and discusses ways of assessing the quality of neurosurgical plans when 3-D models re made available as planning tools

  12. A Unified Approach to Modeling and Programming

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    2010-01-01

    of this paper is to go back to the future and get inspiration from SIMULA and propose a unied approach. In addition to reintroducing the contributions of SIMULA and the Scandinavian approach to object-oriented programming, we do this by discussing a number of issues in modeling and programming and argue3 why we......SIMULA was a language for modeling and programming and provided a unied approach to modeling and programming in contrast to methodologies based on structured analysis and design. The current development seems to be going in the direction of separation of modeling and programming. The goal...

  13. Automatic paper sliceform design from 3D solid models.

    Science.gov (United States)

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  14. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  15. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  16. A Model of Solid Waste Management Based Multilateral Co-Operation in Semi-Urban Community

    Science.gov (United States)

    Kanchanabhandhu, Chanchai; Woraphong, Seree

    2016-01-01

    The purpose of this research was to construct a model of solid waste management based on multilateral cooperation in semi-urban community. Its specific objectives were to 1) study the solid waste situation and involvement of community in the solid waste management in Wangtaku Sub-district, Muang District, Nakhon Pathom Province; 2) construct a…

  17. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo

    2009-01-01

    In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java

  18. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.

    2009-01-01

    In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax

  19. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.

    2003-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  20. Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Jeffrey Bryant

    2008-01-01

    This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities

  1. Solid charged-core model of ball lightning

    Science.gov (United States)

    Muldrew, D. B.

    2010-01-01

    In this study, ball lightning (BL) is assumed to have a solid, positively-charged core. According to this underlying assumption, the core is surrounded by a thin electron layer with a charge nearly equal in magnitude to that of the core. A vacuum exists between the core and the electron layer containing an intense electromagnetic (EM) field which is reflected and guided by the electron layer. The microwave EM field applies a ponderomotive force (radiation pressure) to the electrons preventing them from falling into the core. The energetic electrons ionize the air next to the electron layer forming a neutral plasma layer. The electric-field distributions and their associated frequencies in the ball are determined by applying boundary conditions to a differential equation given by Stratton (1941). It is then shown that the electron and plasma layers are sufficiently thick and dense to completely trap and guide the EM field. This model of BL is exceptional in that it can explain all or nearly all of the peculiar characteristics of BL. The ES energy associated with the core charge can be extremely large which can explain the observations that occasionally BL contains enormous energy. The mass of the core prevents the BL from rising like a helium-filled balloon - a problem with most plasma and burning-gas models. The positively charged core keeps the negatively charged electron layer from diffusing away, i.e. it holds the ball together; other models do not have a mechanism to do this. The high electrical charges on the core and in the electron layer explains why some people have been electrocuted by BL. Experiments indicate that BL radiates microwaves upon exploding and this is consistent with the model. The fact that this novel model of BL can explain these and other observations is strong evidence that the model should be taken seriously.

  2. An inexact reverse logistics model for municipal solid waste management systems.

    Science.gov (United States)

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A model problem concerning ionic transport in microstructured solid electrolytes

    Science.gov (United States)

    Curto Sillamoni, Ignacio J.; Idiart, Martín I.

    2015-11-01

    We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.

  4. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  5. Mathematical modeling of oxygen transport in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Ann Mari

    1997-12-31

    This thesis develops mathematical models to describe the electrochemical performance of a solid oxide fuel cell cathode based on electrochemical kinetics and mass transfer. The individual effects of various coupled processes are investigated. A one-dimensional model is developed based on porous electrode theory. Two different mechanisms are investigated for the charge transfer reaction. One of these assumes that intermediately adsorbed oxygen atoms are reduced at the electrode/electrolyte interface, similar to the models proposed for metal electrodes. Simulated polarization curves exhibit limited currents due to depletion of oxygen adsorbates at high cathodic overvoltages. An empirical correlation is confirmed to exist between the limiting current an the oxygen partial pressure, however, a similar correlation often assumed to exist between the measured polarization resistance and the oxygen partial pressure could not be justified. For the other model, oxygen vacancies are assumed to be exchanged directly at the electrode/electrolyte interface. The electrochemical behaviour is improved by reducing the oxygen partial pressure, due to increased vacancy concentration of the electrode material. Simulated polarization curves exhibit Tafel-like slopes in the cathodic direction, which are due to polarization concentration, and not activation polarization in the conventional sense. Anodic limiting currents are predicted due to lack of available free sites for vacancy exchange at the cathode side. The thesis also presents a theoretical treatment of current and potential distributions in simple two-dimensional cell geometries, and a two-dimensional model for a porous electrode-electrolyte system for investigation of the effect of interfacial diffusion of adsorbates along the electrode/electrolyte interface. 172 refs., 60 figs., 11 tabs.

  6. CFD modeling of an industrial municipal solid waste combustor

    International Nuclear Information System (INIS)

    Hussain, A.; Ani, F.N.; Darus, A.N.; Mustafa, A.

    2006-01-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. Due to rapid development and lack of space for new landfills, big cities in Malaysia are now switching to incineration. However, a major public concern over this technology also is the perception of the emission of pollutants of any form. Design requirements of high performance incinerators are sometimes summarized as the achievement of 3Ts (time, temperature, and turbulence). An adequate retention time in hot environment is crucial to destroy the products of incomplete combustion and organic pollutants. Also turbulent mixing enhances uniform distributions of temperature and oxygen availability. CFD modeling is now in the development phase of becoming a useful tool for 3D modeling of the complex geometry and flow conditions in incinerators. However, CFD flow simulations enable detailed parametric variations of design variables. CFD modeling of an industrial scale MSW incinerator was done using FLUENT Ver. 6.1. The 3D modeling was based on conversation equations for mass, momentum and energy. The differential equations were discretized by the Finite Volume Method and were solved by the SIMPLE algorithm. The k-e turbulence model was employed. The meshing was done using Gambit 2. 0. The cold flow simulations were performed initially to develop the flow and velocity field. Numerical simulations of the flow field inside the primary and secondary combustion chambers provided the temperature profiles and the concentration data at the nodal points of computational grids. Parametric study was also done to minimize the NOx emissions. (author)

  7. Program Analysis as Model Checking

    DEFF Research Database (Denmark)

    Olesen, Mads Chr.

    Software programs are proliferating throughout modern life, to a point where even the simplest appliances such as lightbulbs contain software, in addition to the software embedded in cars and airplanes. The correct functioning of these programs is therefore of the utmost importance, for the quality...

  8. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  9. Cost avoidance techniques through the Fernald controlled area trash segregation program and the RIMIA solid waste reduction program

    International Nuclear Information System (INIS)

    Menche, C.E.

    1997-01-01

    The Fernald Environmental Management Project is a Department of Energy owned facility that produced high quality uranium metals for military defense. The Fernald mission has changed from one of production to remediation. Remediation is intended to clean up legacy (primary) waste from past practices. Little opportunity is available to reduce the amount of primary waste. However, there is an opportunity to reduce secondary waste generation, primarily through segregation. Two programs which accomplish this are the Controlled Area Trash Segregation Program and the RIMIA Solid Waste Reduction Program. With these two programs now in place at the FEMP, it has been estimated that a 60% reduction has been achieved in unnecessary clean waste being disposed as Low Level Waste at the Nevada Test Site. The cost savings associated with these programs (currently 79,000 cubic feet, $428,000) could easily run into the millions of dollars based on the upcoming restoration activities to be undertaken. The segregation of non-radiological waste in the radiologically Controlled Area not only establishes a firm commitment to send only low-level radioactive waste to the Nevada Test Site, but also results in substantial cost avoidance

  10. Mental Models and Programming Aptitude

    DEFF Research Database (Denmark)

    Caspersen, Michael Edelgaard; Bennedsen, Jens; Larsen, Kasper Dalgaard

    2007-01-01

    Predicting the success of students participating in introductory programming courses has been an active research area for more than 25 years. Until recently, no variables or tests have had any significant predictive power. However, Dehnadi and Bornat claim to have found a simple test for programm......Predicting the success of students participating in introductory programming courses has been an active research area for more than 25 years. Until recently, no variables or tests have had any significant predictive power. However, Dehnadi and Bornat claim to have found a simple test...... for programming aptitude to cleanly separate programming sheep from non-programming goats. We briefly present their theory and test instrument. We have repeated their test in our local context in order to verify and perhaps generalise their findings, but we could not show that the test predicts students' success...... in our introductory program-ming course. Based on this failure of the test instrument, we discuss various explanations for our differing results and suggest a research method from which it may be possible to generalise local results in this area. Furthermore, we discuss and criticize Dehnadi and Bornat...

  11. Program plan for the development of Solid Waste Storage Area 7 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lomenick, T.F.; Gonzales, S.; Byerly, D.W.

    1984-02-01

    The need for additional waste-burial facilities for low-level radwastes generated at Oak Ridge National Laboratory mandates development of a program to identify and evaluate an acceptable new Solid Waste Storage Area (SWSA 7). Provisions of this program include plans for identifying and evaluating SWSA 7 as well as plans for the necessary technical efforts for designing and monitoring a waste-burial facility. The development of the program plan is in accordance with general procedures issued by ORNL, and if adhered to, should meet proposed criteria and guidelines issued by such organizations as the Nuclear Regulatory Commission, the Environmental Protection Agency, the Department of Energy, and the Tennessee Department of Health. The major parts of the program include plans for (1) the acquisition of data necessary for geotechnical evaluation of a site, (2) the engineering design and construction of a facility which would be compatible with the geology and the classification and particular character of the wastes to be disposed, and (3) a monitoring system for achieving health and safety standards and environmental protection. The objective of the program, to develop SWSA 7, can only be achieved through sound management. Plans provided in this program which will ensure successful management include quality assurance, corrective measures, safety analysis, environmental impact statements, and schedule and budget

  12. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  13. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  14. SIMPSON: A general simulation program for solid-state NMR spectroscopy

    Science.gov (United States)

    Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.

    2011-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  15. Overview of management programs for plutonium-contaminated solid waste in the U.S.A

    International Nuclear Information System (INIS)

    Ramsey, R.W. Jr.; Daly, G.H.

    1975-01-01

    Programs for transuranium-contaminated solid wastes (TRU) in the U.S.A. are emphasizing a reduction in waste generation and the development of appropriate treatments to reduce the volume of wastes requiring interim storage and final disposal. Research and Development is emphasizing the establishment of sufficient information on treatment, hazards and storage to adopt a standardized procedure for handling wastes during an interim retrievable period and for final disposal. Federal responsibility for TRU waste is being proposed except for minimum amounts acceptable for commercial burial

  16. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  17. Modelling biogas production of solid waste: application of the BGP model to a synthetic landfill

    Science.gov (United States)

    Rodrigo-Ilarri, Javier; Segura-Sobrino, Francisco

    2013-04-01

    Production of biogas as a result of the decomposition of organic matter included on solid waste landfills is still an issue to be understood. Reports on this matter are rarely included on the engineering construction projects of solid waste landfills despite it can be an issue of critical importance while operating the landfill and after its closure. This paper presents an application of BGP (Bio-Gas-Production) model to a synthetic landfill. The evolution in time of the concentrations of the different chemical compounds of biogas is studied. Results obtained show the impact on the air quality of different management alternatives which are usually performed in real landfills.

  18. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model.

    Science.gov (United States)

    Pishali Bejestani, Elham; Cartellieri, Marc; Bergmann, Ralf; Ehninger, Armin; Loff, Simon; Kramer, Michael; Spehr, Johannes; Dietrich, Antje; Feldmann, Anja; Albert, Susann; Wermke, Martin; Baumann, Michael; Krause, Mechthild; Bornhäuser, Martin; Ehninger, Gerhard; Bachmann, Michael; von Bonin, Malte

    2017-01-01

    The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.

  19. Model of the discrete destruction process of a solid body

    Science.gov (United States)

    Glagolev, V. V.; Markin, A. A.

    2018-03-01

    Destruction is considered as a discrete thermomechanical process, in which the deformation of a solid body is achieved by changing the boundary stresses acting on the part of the volume being destroyed with the external load unchanged. On the basis of the proposed concept, a model for adhesive stratification of a composite material is constructed. When adhesive stratification is used, the stress state of one or two boundaries of the adhesive layer changes to zero if the bonds with the joined body are broken. As a result of the stratification, the interaction between the part of the composite, which may include an adhesive layer and the rest of the body stops. When solving the elastoplastic problem of cohesive stratification, the region in which the destruction criterion is achieved is identified. With the help of a repeated solution of the problem of subcritical deformation with the known law of motion of the boundary of the region, the distribution of the load (nodal forces) acting from the region to the body is located. The next step considers the change in the stress–strain state of the body in the process of destruction of the selected area. The elastoplastic problem is solved with a simple unloading of the formed surface of the body and preservation of the external load corresponding to the beginning of the process of destruction.

  20. Model Checking JAVA Programs Using Java Pathfinder

    Science.gov (United States)

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  1. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  2. Modelling elasticity in solids using active cubes - application to simulated operations

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1995-01-01

    The paper describes an approach to elastic modelling of human tissue based on the use of 3D solid active models-active cubes (M. Bro-Nielsen, 1994)-and a shape description based on the metric tensor in a solid. Active cubes are used because they provide a natural parameterization of the surface a...

  3. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  4. Transuranic solid waste management programs. Progress report, July--December 1975

    International Nuclear Information System (INIS)

    1976-09-01

    Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming no change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites

  5. Transuranic solid waste management programs. Progress report, July--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming no change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.

  6. Investigation of binary solid phases by calorimetry and kinetic modelling

    OpenAIRE

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid. For a proper description of the crystallization process the equilibrium approach is insufficient and a kinetic approach is actually required. In this work, we show that during slow crystallizatio...

  7. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  8. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  9. Requirements Modeling with Agent Programming

    Science.gov (United States)

    Dasgupta, Aniruddha; Krishna, Aneesh; Ghose, Aditya K.

    Agent-oriented conceptual modeling notations are highly effective in representing requirements from an intentional stance and answering questions such as what goals exist, how key actors depend on each other, and what alternatives must be considered. In this chapter, we review an approach to executing i* models by translating these into set of interacting agents implemented in the CASO language and suggest how we can perform reasoning with requirements modeled (both functional and non-functional) using i* models. In this chapter we particularly incorporate deliberation into the agent design. This allows us to benefit from the complementary representational capabilities of the two frameworks.

  10. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  11. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  12. Measurement control program at model facility

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1984-01-01

    A measurement control program for the model plant is described. The discussion includes the technical basis for such a program, the application of measurement control principles to each measurement, and the use of special experiments to estimate measurement error parameters for difficult-to-measure materials. The discussion also describes the statistical aspects of the program, and the documentation procedures used to record, maintain, and process the basic data

  13. Modeling of urban solid waste management system: The case of Dhaka city

    International Nuclear Information System (INIS)

    Sufian, M.A.; Bala, B.K.

    2007-01-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis

  14. Modeling of urban solid waste management system: the case of Dhaka city

    International Nuclear Information System (INIS)

    Sufian, M.A.; Bala, B.K.

    2005-01-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city Dhaka Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are increasing with time for Dhaka city. Simulated results also show that increasing the budge for collection capacity alone does not improve the environmental quality rather increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a compute laboratory for urban solid waste management (USWM) policy analysis. (author)

  15. Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

    OpenAIRE

    T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee

    2010-01-01

    In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...

  16. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  17. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  18. The need for the solid modelling of structure in the archaeology of buildings

    Directory of Open Access Journals (Sweden)

    Robert Daniels

    1997-03-01

    Full Text Available Three-dimensional modelling is an attempt to represent the world in three dimensions, simplifying through deliberate assumptions. In archaeology, this has developed as an extension of the traditional use of three-dimensional drawings to help present and record data. The debate in the archaeological literature over whether surface or solid modellers should be used is one based on the premise that the purpose of three-dimensional modelling is data visualisation. This concentration on perception modelling has been at the expense of research on the modelling of structure. Surface and Solid Modellers are introduced and defined. I argue that developments in modelling software mean that there is no longer a clear distinction between the two types of software along application lines. We should think of models in terms of their applications rather than the software which generates them. Although data visualisation (including virtual reality is an important part of three-dimensional modelling, I argue that it should be explicitly divorced from the related field of photo-realism at a research level. Perception modelling can be performed by surface or solid modellers. Modelling structure is better performed with a solid modeller, if we wish to be as explicit as possible in our modelling. A structural model can be used as a spatial database. If we wish to ask questions about the physical properties of a structure, then we must use solid modellers. In addition to the engineering properties of structures, solid modellers can also be used to answer questions about the economics of construction. For historical reasons, the construction industry has preferred to use surface modellers, but I argue for the advantages of solid modelling in the archaeological study of construction.

  19. Programming model for distributed intelligent systems

    Science.gov (United States)

    Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.

    1988-01-01

    A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.

  20. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  1. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  2. Complex of GRAD programs for analytical calculation of radiation defects generation in solids

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Zabolotnyj, V.T.; Babaev, V.P.

    1989-01-01

    Complex of programms for analytical calculation of generation of radiation defects (GRAD) in solids, and also of their recombination during cascade area relaxation and postradiation annealing, of mass removing by atomic collisions in volume (mixing) and through the surface (sputtering), of structure - phase state and property changes is suggested. The complex volume is less than 10 KBytes and it may be realized by computer of any type. Satisfactional agreement with more wide range of experimental data in comparison with tradition models is obtained. 27 refs.; 2 figs

  3. Site study plan for utilities and solid waste, Deaf Smith County Site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    This site plan describes utilities and solid waste studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. After utilities and solid waste information needs derived from Federal, State, and local statutes and regulations and the project specifications are briefly described, the site study plan describes the study design and rationale, the field data collection procedures and equipment, and data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs to characterize electrical power, natural gas, communication, water, wastewater sludge, nonradiological solid waste, nonradiological hazardous waste, and low-level radiological waste. These programs include details for the collection of project needs, identification of utilities and solid waste disposal contractor capabilities, and verification of the obtained data. Utilities and solid waste field activities will begin approximately at the time of site access. Utilities and solid waste characterization will be completed within the first year of activity. 29 refs., 6 figs., 2 tabs

  4. Solid-state fermentation : modelling fungal growth and activity

    NARCIS (Netherlands)

    Smits, J.P.

    1998-01-01

    In solid-state fermentation (SSF) research, it is not possible to separate biomass quantitatively from the substrate. The evolution of biomass dry weight in time can therefore not be measured. Of the aiternatives to dry weight available, glucosamine content is most

  5. Investigation of binary solid phases by calorimetry and kinetic modelling

    NARCIS (Netherlands)

    Matovic, M.

    2007-01-01

    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the

  6. Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Washington

    International Nuclear Information System (INIS)

    2003-01-01

    This ''Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement'' (HSW EIS) covers three primary aspects of waste management at Hanford--waste treatment, storage, and disposal. It also addresses four kinds of solid waste--low-level waste (LLW), mixed (radioactive and chemically hazardous) low-level waste (MLLW), transuranic (TRU) waste, and immobilized low-activity waste (ILAW). It fundamentally asks the question: how should we manage the waste we have now and will have in the future? This EIS analyzes the impacts of the LLW, MLLW, TRU waste, and ILAW we currently have in storage, will generate, or expect to receive at Hanford. The HSW EIS is intended to help us determine what specific facilities we will continue to use, modify, or construct to treat, store, and dispose of these wastes (Figure S.1). Because radioactive and chemically hazardous waste management is a complex, technical, and difficult subject, we have made every effort to minimize the use of acronyms (making an exception for our four waste types listed above), use more commonly understood words, and provide the ''big picture'' in this summary. An acronym list, glossary of terms, and conversions for units of measure are provided in a readers guide in Volume 1 of this EIS

  7. MHD diffuser model test program

    Energy Technology Data Exchange (ETDEWEB)

    Idzorek, J J

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.

  8. MHD diffuser model test program

    International Nuclear Information System (INIS)

    Idzorek, J.J.

    1976-07-01

    Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment

  9. An Analysis of High School Students' Mental Models of Solid Friction in Physics

    Science.gov (United States)

    Kurnaz, Mehmet Altan; Eksi, Cigdem

    2015-01-01

    Students often have difficulties understanding abstract physics concepts, such as solid friction. This study examines high school students' mental models of solid friction through a case study of 215 high school students in the ninth through twelfth grades. An achievement test with three open-ended questions was created, with questions limited to…

  10. Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer

    NARCIS (Netherlands)

    Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2006-01-01

    In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The

  11. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  12. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  13. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    Science.gov (United States)

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  14. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  15. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Elmira Shamshiry

    2011-01-01

    Full Text Available The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  16. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  17. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  18. Modelling of interactions between variable mass and density solid particles and swirling gas stream

    International Nuclear Information System (INIS)

    Wardach-Święcicka, I; Kardaś, D; Pozorski, J

    2011-01-01

    The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.

  19. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    International Nuclear Information System (INIS)

    Kalibjian, J.R.

    1985-01-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes

  20. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    Science.gov (United States)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  1. O "Programa Alfabetização Solidária": terceirização no contexto da reforma do Estado "Programa Alfabetização Solidária" literacy program and State reform in Brazil

    Directory of Open Access Journals (Sweden)

    Gladys Beatriz Barreyro

    2010-12-01

    Full Text Available O presente trabalho busca analisar o Programa Alfabetização Solidária a partir de um modelo de Estado proposto pelo governo do presidente Fernando Henrique Cardoso (1997-2002. Considera-se que a proposta de Reforma do Estado ali desenvolvida, a partir do conceito de publicização, teve sua derivação na área social-assistencial do governo na Comunidade Solidária, um ensaio de terceirização na área das políticas sociais. O Alfabetização Solidária, subprograma deste, foi a versão para a área de educação. De modo que algumas características desse Programa específico devem ser discutidas e contextualizadas à luz de um marco mais amplo, analisando conceitos como terceirização, filantropia, empregabilidade temporária, participação social e direito à educação.This article analyses the "Programa de Afabetização Solidária" Literacy Program as a product of the model of State proposed during the two presidential terms of Fernando Henrique Cardoso (1997-2002, in Brazil. I analysed the proposal of State Reform based on publicization and its counterpart in the social-assistance area of the government: the creation of the Solidarity Community ("Comunidade Solidária". This was a test of outsourcing in the social policy area and the "Programa de Afabetização Solidária"Solidarity in Literacy Program, which arose as a subproject of that one, was a laboratory that developed that State model in the educational area. For this reason, some characteristics of this Program are discussed within that frame and concepts like outsourcing, philanthropy, use of cheap and temporary labor force, participation and right to education are analyzed.

  2. An interactive program for pharmacokinetic modeling.

    Science.gov (United States)

    Lu, D R; Mao, F

    1993-05-01

    A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.

  3. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon ...

  4. Modeling and Analysis of a Three-Phase Solid-State Var ...

    African Journals Online (AJOL)

    Modeling and Analysis of a Three-Phase Solid-State Var Compensator (SSVC) ... Nigerian Journal of Technology. Journal Home ... The problems associated with the flow of reactive power in transmission and distribution lines are well known.

  5. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  6. Cell-model prediction of the melting of a Lennard-Jones solid

    International Nuclear Information System (INIS)

    Holian, B.L.

    1980-01-01

    The classical free energy of the Lennard-Jones 6-12 solid is computed from a single-particle anharmonic cell model with a correction to the entropy given by the classical correlational entropy of quasiharmonic lattice dynamics. The free energy of the fluid is obtained from the Hansen-Ree analytic fit to Monte Carlo equation-of-state calculations. The resulting predictions of the solid-fluid coexistence curves by this corrected cell model of the solid are in excellent agreement with the computer experiments

  7. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  8. Evolution of a minimal parallel programming model

    International Nuclear Information System (INIS)

    Lusk, Ewing; Butler, Ralph; Pieper, Steven C.

    2017-01-01

    Here, we take a historical approach to our presentation of self-scheduled task parallelism, a programming model with its origins in early irregular and nondeterministic computations encountered in automated theorem proving and logic programming. We show how an extremely simple task model has evolved into a system, asynchronous dynamic load balancing (ADLB), and a scalable implementation capable of supporting sophisticated applications on today’s (and tomorrow’s) largest supercomputers; and we illustrate the use of ADLB with a Green’s function Monte Carlo application, a modern, mature nuclear physics code in production use. Our lesson is that by surrendering a certain amount of generality and thus applicability, a minimal programming model (in terms of its basic concepts and the size of its application programmer interface) can achieve extreme scalability without introducing complexity.

  9. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  10. Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model

    International Nuclear Information System (INIS)

    Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif

    2013-01-01

    Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy

  11. Aspects of modelling classical or synchronous modelling with Solid Edge ST 9

    Directory of Open Access Journals (Sweden)

    Goanta Adrian Mihai

    2017-01-01

    Full Text Available The current situation of the design activity is dependent on both the level of training of the human resources and the financial resources of companies required purchasing the design software packages and complex calculation equipment. Consequently, the situation is very diverse in the sense that there are design cases using only drawing software but also classical 3D or synchronous modelling situations, simple or integrated into software packages that meet the Product Lifecycle Management (PLM principles. The natural tendency in modelling and design is primarily to the high computing power integrated software or somewhat simplified versions that, however, allow at least FEA modelling, simulation and the related 2D documentation. The paper presents some aspects of modernity in synchronous modelling as compared to the classic one, made with 2016 version of Solid Edge software from SIEMENS. Basically there were studied and analysed aspects of modelling ease, speed of changes and also optimization of commands in the modelling process of the same piece in the two versions mentioned: classic and synchronous. It is also presented the alternative path from one method to another within the same process of piece modelling, depending on the advantages provided by each method. In other words, the work is based on a case study of modelling a piece under the two modelling versions of which some aspects were highlighted and conclusions were drawn.

  12. Invert 1.0: A program for solving the nonlinear inverse heat conduction problem for one-dimensional solids

    International Nuclear Information System (INIS)

    Snider, D.M.

    1981-02-01

    INVERT 1.0 is a digital computer program written in FORTRAN IV which calculates the surface heat flux of a one-dimensional solid using an interior-measured temperature and a physical description of the solid. By using two interior-measured temperatures, INVERT 1.0 can provide a solution for the heat flux at two surfaces, the heat flux at a boundary and the time dependent power, or the heat flux at a boundary and the time varying thermal conductivity of a material composing the solid. The analytical solution to inversion problem is described for the one-dimensional cylinder, sphere, or rectangular slab. The program structure, input instructions, and sample problems demonstrating the accuracy of the solution technique are included

  13. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  14. Making interdisciplinary solid Earth modeling and analysis tools accessible in a diverse undergraduate and graduate classroom

    Science.gov (United States)

    Becker, T. W.

    2011-12-01

    I present results from ongoing, NSF-CAREER funded educational and research efforts that center around making numerical tools in seismology and geodynamics more accessible to a broader audience. The goal is not only to train students in quantitative, interdisciplinary research, but also to make methods more easily accessible to practitioners across disciplines. I describe the two main efforts that were funded, the Solid Earth Research and Teaching Environment (SEATREE, geosys.usc.edu/projects/seatree/), and a new Numerical Methods class. SEATREE is a modular and user-friendly software framework to facilitate using solid Earth research tools in the undergraduate and graduate classroom and for interdisciplinary, scientific collaboration. We use only open-source software, and most programming is done in the Python computer language. We strive to make use of modern software design and development concepts while remaining compatible with traditional scientific coding and existing, legacy software. Our goals are to provide a fully contained, yet transparent package that lets users operate in an easy, graphically supported "black box" mode, while also allowing to look under the hood, for example to conduct numerous forward models to explore parameter space. SEATREE currently has several implemented modules, including on global mantle flow, 2D phase velocity tomography, and 2D mantle convection and was used at the University of Southern California, Los Angeles, and at a 2010 CIDER summer school tutorial. SEATREE was developed in collaboration with engineering and computer science undergraduate students, some of which have gone on to work in Earth Science projects. In the long run, we envision SEATREE to contribute to new ways of sharing scientific research, and making (numerical) experiments truly reproducible again. The other project is a set of lecture notes and Matlab exercises on Numerical Methods in solid Earth, focusing on finite difference and element methods. The

  15. Reusable Solid Rocket Motor - V(RSRMV)Nozzle Forward Nose Ring Thermo-Structural Modeling

    Science.gov (United States)

    Clayton, J. Louie

    2012-01-01

    During the developmental static fire program for NASAs Reusable Solid Rocket Motor-V (RSRMV), an anomalous erosion condition appeared on the nozzle Carbon Cloth Phenolic nose ring that had not been observed in the space shuttle RSRM program. There were regions of augmented erosion located on the bottom of the forward nose ring (FNR) that measured nine tenths of an inch deeper than the surrounding material. Estimates of heating conditions for the RSRMV nozzle based on limited char and erosion data indicate that the total heat loading into the FNR, for the new five segment motor, is about 40-50% higher than the baseline shuttle RSRM nozzle FNR. Fault tree analysis of the augmented erosion condition has lead to a focus on a thermomechanical response of the material that is outside the existing experience base of shuttle CCP materials for this application. This paper provides a sensitivity study of the CCP material thermo-structural response subject to the design constraints and heating conditions unique to the RSRMV Forward Nose Ring application. Modeling techniques are based on 1-D thermal and porous media calculations where in-depth interlaminar loading conditions are calculated and compared to known capabilities at elevated temperatures. Parameters such as heat rate, in-depth pressures and temperature, degree of char, associated with initiation of the mechanical removal process are quantified and compared to a baseline thermo-chemical material removal mode. Conclusions regarding postulated material loss mechanisms are offered.

  16. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    Science.gov (United States)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  17. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    Science.gov (United States)

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the

  18. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  19. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  20. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  1. Models for solid oxide fuel cell systems exploitation of models hierarchy for industrial design of control and diagnosis strategies

    CERN Document Server

    Marra, Dario; Polverino, Pierpaolo; Sorrentino, Marco

    2016-01-01

    This book presents methodologies for optimal design of control and diagnosis strategies for Solid Oxide Fuel Cell systems. A key feature of the methodologies presented is the exploitation of modelling tools that balance accuracy and computational burden.

  2. Description of mathematical models and computer programs

    International Nuclear Information System (INIS)

    1977-01-01

    The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

  3. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  4. Modeling of an Adjustable Beam Solid State Light

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax OpticStudio ®. The...

  5. Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.

    Science.gov (United States)

    Kutzner, R; Brombach, H; Geiger, W F

    2007-01-01

    Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!

  6. Contribution to the modelling of gas-solid reactions and reactors

    International Nuclear Information System (INIS)

    Patisson, F.

    2005-09-01

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  7. A mathematical model for the municipal solid waste location-routing problem with intermediate transfer stations

    Directory of Open Access Journals (Sweden)

    Hossein Asefi

    2015-09-01

    Full Text Available Municipal solid waste management is one of the challenging issues in mega cities due to various interrelated factors such as operational costs and environmental concerns. Cost as one of the most significant constraints of municipal solid waste management can be effectively economized by efficient planning approaches. Considering diverse waste types in an integrated municipal solid waste system, a mathematical model of the location-routing problem is formulated and solved in this study in order to minimize the total cost of transportation and facility establishment.

  8. Quantum Monte-Carlo programming for atoms, molecules, clusters, and solids

    International Nuclear Information System (INIS)

    Schattke, Wolfgang; Diez Muino, Ricardo

    2013-01-01

    This is a book that initiates the reader into the basic concepts and practical applications of Quantum Monte Carlo. Because of the simplicity of its theoretical concept, the authors focus on the variational Quantum Monte Carlo scheme. The reader is enabled to proceed from simple examples as the hydrogen atom to advanced ones as the Lithium solid. In between, several intermediate steps are introduced, including the Hydrogen molecule (2 electrons), the Lithium atom (3 electrons) and expanding to an arbitrary number of electrons to finally treat the three-dimensional periodic array of Lithium atoms in a crystal. The book is unique, because it provides both theory and numerical programs. It pedagogically explains how to transfer into computational tools what is usually described in a theoretical textbook. It also includes the detailed physical understanding of methodology that cannot be found in a code manual. The combination of both aspects allows the reader to assimilate the fundamentals of Quantum Monte Carlo not only by reading but also by practice.

  9. Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program

    Science.gov (United States)

    Clayton, Louie

    2011-01-01

    This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.

  10. Symmetry-adapted configurational modelling of fractional site occupancy in solids

    Energy Technology Data Exchange (ETDEWEB)

    Grau-Crespo, R [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Hamad, S [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Catlow, C R A [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Leeuw, N H de [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2007-06-27

    A methodology is presented, which reduces the number of site-occupancy configurations to be calculated when modelling site disorder in solids, by taking advantage of the crystal symmetry of the lattice. Within this approach, two configurations are considered equivalent when they are related by an isometric operation; a trial list of possible isometric transformations is provided by the group of symmetry operators in the parent structure, which is used to generate all configurations via atomic substitutions. We have adapted the equations for configurational statistics to operate in the reduced configurational space of the independent configurations. Each configuration in this space is characterized by its reduced energy, which includes not only its energy but also a contribution from its degeneracy in the complete configurational space, via an entropic term. The new computer program SOD (site-occupancy disorder) is presented, which performs this analysis in systems with arbitrary symmetry and any size of supercell. As a case study we use the distribution of cations in iron antimony oxide FeSbO{sub 4}, where we also introduce some general considerations for the modelling of site-occupancy disorder in paramagnetic systems.

  11. Using a 3-d model system to screen for drugs effective on solid tumors

    OpenAIRE

    Fayad, Walid

    2011-01-01

    There is a large medical need for the development of effective anticancer agents with minimal side effects. The present thesis represents an attempt to identify potent drugs for treatment of solid tumors. We used a strategy where 3-D multicellular tumor spheroids (cancer cells grown in three dimensional culture) were utilized as in vitro models for solid tumors. Drug libraries were screened using spheroids as targets and using apoptosis induction and loss of cell viability as endpoints. The h...

  12. PDDP, A Data Parallel Programming Model

    Directory of Open Access Journals (Sweden)

    Karen H. Warren

    1996-01-01

    Full Text Available PDDP, the parallel data distribution preprocessor, is a data parallel programming model for distributed memory parallel computers. PDDP implements high-performance Fortran-compatible data distribution directives and parallelism expressed by the use of Fortran 90 array syntax, the FORALL statement, and the WHERE construct. Distributed data objects belong to a global name space; other data objects are treated as local and replicated on each processor. PDDP allows the user to program in a shared memory style and generates codes that are portable to a variety of parallel machines. For interprocessor communication, PDDP uses the fastest communication primitives on each platform.

  13. Solid-state-drives (SSDs) modeling simulation tools & strategies

    CERN Document Server

    2017-01-01

    This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, fr...

  14. A study of solid wall models for weakly compressible SPH

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, Alireza, E-mail: alireza.valizadeh@monash.edu [Department of Mechanical and Aerospace Engineering, Monash University, Clayton VIC 3800 (Australia); Monaghan, Joseph J., E-mail: joe.monaghan@monash.edu [School of Mathematical Sciences, Monash University, Clayton VIC 3800 (Australia)

    2015-11-01

    This paper is concerned with a comparison of two methods of treating solid wall boundaries in the weakly compressible (SPH) method. They have been chosen because of their wide use in simulations. These methods are the boundary force particles of Monaghan and Kajtar [24] and the use of layers of fixed boundary particles. The latter was first introduced by Morris et al. [26] but has since been improved by Adami et al. [1] whose algorithm involves interpolating the pressure and velocity from the actual fluid to the boundary particles. For each method, we study the effect of the density diffusive terms proposed by Molteni and Colagrossi [19] and modified by Antuono et al. [3]. We test the methods by a series of simulations commencing with the time-dependent spin-down of fluid within a cylinder and the behaviour of fluid in a box subjected to constant acceleration at an angle to the walls of the box, and concluding with a dam break over a triangular obstacle. In the first two cases the results from the two methods can be compared to analytical solutions while, in the latter case, they can be compared with experiments and other methods. These results show that the method of Adami et al. together with density diffusion is in very satisfactory agreement with the experimental results and is, overall, the best of the methods discussed here.

  15. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using Solid-by-Solid model: Application to via and trench filling

    International Nuclear Information System (INIS)

    Kaneko, Yutaka; Hiwatari, Yasuaki; Ohara, Katsuhiko; Asa, Fujio

    2013-01-01

    In this paper we present the Kinetic Monte Carlo simulation system for the simulation of three-dimensional shape evolution with void formation as a model for electrodeposition. The basic system is the Solid-by-Solid model which is an extension of the conventional Solid-on-Solid model for crystal growth to include void formation. The advantage of the Solid-by-Solid model is that complex three-dimensional shape evolution accompanying void formation (from point defects to macro voids) can be simulated without the difficulty of treating moving boundaries. This model has been extended to include the solution part in which the migration of ions is simulated by the coarse-grained random walk. A multi-scale method is employed to generate the concentration gradient in the diffusion layer. The extended model is applied to the simulation of via and trench fillings by copper electrodeposition. Three kinds of additives are included: suppressors, accelerators and chloride ions. The mechanism of void formation, effects of additives and their influence on the bottom-up filling are discussed within the framework of this model

  16. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  17. A novel approach to model the transient behavior of solid-oxide fuel cell stacks

    Science.gov (United States)

    Menon, Vikram; Janardhanan, Vinod M.; Tischer, Steffen; Deutschmann, Olaf

    2012-09-01

    This paper presents a novel approach to model the transient behavior of solid-oxide fuel cell (SOFC) stacks in two and three dimensions. A hierarchical model is developed by decoupling the temperature of the solid phase from the fluid phase. The solution of the temperature field is considered as an elliptic problem, while each channel within the stack is modeled as a marching problem. This paper presents the numerical model and cluster algorithm for coupling between the solid phase and fluid phase. For demonstration purposes, results are presented for a stack operated on pre-reformed hydrocarbon fuel. Transient response to load changes is studied by introducing step changes in cell potential and current. Furthermore, the effect of boundary conditions and stack materials on response time and internal temperature distribution is investigated.

  18. RSW-MCFP: A Resource-Oriented Solid Waste Management System for a Mixed Rural-Urban Area through Monte Carlo Simulation-Based Fuzzy Programming

    Directory of Open Access Journals (Sweden)

    P. Li

    2013-01-01

    Full Text Available The growth of global population and economy continually increases the waste volumes and consequently creates challenges to handle and dispose solid wastes. It becomes more challenging in mixed rural-urban areas (i.e., areas of mixed land use for rural and urban purposes where both agricultural waste (e.g., manure and municipal solid waste are generated. The efficiency and confidence of decisions in current management practices significantly rely on the accurate information and subjective judgments, which are usually compromised by uncertainties. This study proposed a resource-oriented solid waste management system for mixed rural-urban areas. The system is featured by a novel Monte Carlo simulation-based fuzzy programming approach. The developed system was tested by a real-world case with consideration of various resource-oriented treatment technologies and the associated uncertainties. The modeling results indicated that the community-based bio-coal and household-based CH4 facilities were necessary and would become predominant in the waste management system. The 95% confidence intervals of waste loadings to the CH4 and bio-coal facilities were 387, 450 and 178, 215 tonne/day (mixed flow, respectively. In general, the developed system has high capability in supporting solid waste management for mixed rural-urban areas in a cost-efficient and sustainable manner under uncertainty.

  19. Transnational nursing programs: models, advantages and challenges.

    Science.gov (United States)

    Wilson, Michael

    2002-07-01

    Conducting transnational programs can be a very rewarding activity for a School, Faculty or University. Apart from increasing the profile of the university, the conduct of transnational programs can also provide the university with openings for business opportunities, consultative activities, and collaborative research. It can also be a costly exercise placing an enormous strain on limited resources with little reward for the provider. Transnational ventures can become nonviable entities in a very short period of time due to unanticipated global economic trends. Transnational courses offered by Faculties of Business and Computing are commonplace, however, there is a growing number of health science programs, particularly nursing that are being offered transnational. This paper plans an overview of several models employed for the delivery of transnational nursing courses and discusses several key issues pertaining to conducting courses outside the host university's country.

  20. Database structure for plasma modeling programs

    International Nuclear Information System (INIS)

    Dufresne, M.; Silvester, P.P.

    1993-01-01

    Continuum plasma models often use a finite element (FE) formulation. Another approach is simulation models based on particle-in-cell (PIC) formulation. The model equations generally include four nonlinear differential equations specifying the plasma parameters. In simulation a large number of equations must be integrated iteratively to determine the plasma evolution from an initial state. The complexity of the resulting programs is a combination of the physics involved and the numerical method used. The data structure requirements of plasma programs are stated by defining suitable abstract data types. These abstractions are then reduced to data structures and a group of associated algorithms. These are implemented in an object oriented language (C++) as object classes. Base classes encapsulate data management into a group of common functions such as input-output management, instance variable updating and selection of objects by Boolean operations on their instance variables. Operations are thereby isolated from specific element types and uniformity of treatment is guaranteed. Creation of the data structures and associated functions for a particular plasma model is reduced merely to defining the finite element matrices for each equation, or the equations of motion for PIC models. Changes in numerical method or equation alterations are readily accommodated through the mechanism of inheritance, without modification of the data management software. The central data type is an n-relation implemented as a tuple of variable internal structure. Any finite element program may be described in terms of five relational tables: nodes, boundary conditions, sources, material/particle descriptions, and elements. Equivalently, plasma simulation programs may be described using four relational tables: cells, boundary conditions, sources, and particle descriptions

  1. A stochastic pocket model for aluminum agglomeration in solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Gallier, Stany [SNPE Materiaux Energetiques, Vert le Petit (France)

    2009-04-15

    A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well-known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  3. Development of odorous gas model using municipal solid waste emission

    International Nuclear Information System (INIS)

    Mohd Nahar bin Othman; Muhd Noor Muhd Yunus; Ku Halim Ku Hamid

    2010-01-01

    The impact of ambient odour in the vicinity of the Semenyih MSW processing plant, commonly known as RDF plant, can be very negative to the nearby population, causing public restlessness and consequently affecting the business operation and sustainability of the plant. The precise source of the odour, types, emission level and the meteorological conditions are needed to predict and established the ambient odour level at the perimeter fence of the plant and address it with respect to the ambient standards. To develop the odour gas model for the purpose of treatment is very compulsory because in MSW odour it contain many component of chemical that contribute the smell. Upon modelling using an established package as well as site measurements, the odour level at the perimeter fence of the plant was deduced and found to be marginally high, above the normal ambient level. Based on this issue, a study was made to model odour using Ausplume Model. This paper will address and discuss the measurement of ambient gas odour, the dispersion modelling to establish the critical ambient emission level, as well as experimental validation using a simulated odour. The focus will be made on exploring the use of Ausplume modelling to develop the pattern of odour concentrations for various condition and times, as well as adapting the model for MSW odour controls. (author)

  4. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  5. Tribological properties of rice starch in liquid and semi-solid food model systems

    NARCIS (Netherlands)

    Liu, K.; Stieger, M.A.; Linden, van der E.; Velde, van de Fred

    2016-01-01

    This study investigated the tribological and rheological properties of liquid and semi-solid food model systems containing micro-granular rice starch. Native (uncooked) and gelatinized rice starch dispersions, o/w emulsions and emulsion-filled gelatin gels were studied as food model systems. Native

  6. Modelling of fluid-solid interaction using two stand-alone codes

    CSIR Research Space (South Africa)

    Grobler, Jan H

    2010-01-01

    Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...

  7. A local mixing model for deuterium replacement in solids

    International Nuclear Information System (INIS)

    Doyle, B.L.; Brice, D.K.; Wampler, W.R.

    1980-01-01

    A new model for hydrogen isotope exchange by ion implantation has been developed. The basic difference between the present approach and previous work is that the depth distribution of the implanted species is included. The outstanding feature of this local mixing model is that the only adjustable parameter is the saturation hydrogen concentration which is specific to the target material and dependent only on temperature. The model is shown to give excellent agreement both with new data on H/D exchange in the low Z coating materials VB 2 , TiC, TiB 2 , and B reported here and with previously reported data on stainless steel. The saturation hydrogen concentrations used to fit these data were 0.15, 0.25, 0.15, 0.45, and 1.00 times atomic density respectively. This model should be useful in predicting the recycling behavior of hydrogen isotopes in tokamak limiter and wall materials. (author)

  8. Model for behavior observation training programs

    International Nuclear Information System (INIS)

    Berghausen, P.E. Jr.

    1987-01-01

    Continued behavior observation is mandated by ANSI/ANS 3.3. This paper presents a model for behavior observation training that is in accordance with this standard and the recommendations contained in US NRC publications. The model includes seventeen major topics or activities. Ten of these are discussed: Pretesting of supervisor's knowledge of behavior observation requirements, explanation of the goals of behavior observation programs, why behavior observation training programs are needed (legal and psychological issues), early indicators of emotional instability, use of videotaped interviews to demonstrate significant psychopathology, practice recording behaviors, what to do when unusual behaviors are observed, supervisor rationalizations for noncompliance, when to be especially vigilant, and prevention of emotional instability

  9. Validation of a Solid Rocket Motor Internal Environment Model

    Science.gov (United States)

    Martin, Heath T.

    2017-01-01

    In a prior effort, a thermal/fluid model of the interior of Penn State University's laboratory-scale Insulation Test Motor (ITM) was constructed to predict both the convective and radiative heat transfer to the interior walls of the ITM with a minimum of empiricism. These predictions were then compared to values of total and radiative heat flux measured in a previous series of ITM test firings to assess the capabilities and shortcomings of the chosen modeling approach. Though the calculated fluxes reasonably agreed with those measured during testing, this exercise revealed means of improving the fidelity of the model to, in the case of the thermal radiation, enable direct comparison of the measured and calculated fluxes and, for the total heat flux, compute a value indicative of the average measured condition. By replacing the P1-Approximation with the discrete ordinates (DO) model for the solution of the gray radiative transfer equation, the radiation intensity field in the optically thin region near the radiometer is accurately estimated, allowing the thermal radiation flux to be calculated on the heat-flux sensor itself, which was then compared directly to the measured values. Though the fully coupling the wall thermal response with the flow model was not attempted due to the excessive computational time required, a separate wall thermal response model was used to better estimate the average temperature of the graphite surfaces upstream of the heat flux gauges and improve the accuracy of both the total and radiative heat flux computations. The success of this modeling approach increases confidence in the ability of state-of-the-art thermal and fluid modeling to accurately predict SRM internal environments, offers corrections to older methods, and supplies a tool for further studies of the dynamics of SRM interiors.

  10. Global analyses of historical masonry buildings: Equivalent frame vs. 3D solid models

    Science.gov (United States)

    Clementi, Francesco; Mezzapelle, Pardo Antonio; Cocchi, Gianmichele; Lenci, Stefano

    2017-07-01

    The paper analyses the seismic vulnerability of two different masonry buildings. It provides both an advanced 3D modelling with solid elements and an equivalent frame modelling. The global structural behaviour and the dynamic properties of the compound have been evaluated using the Finite Element Modelling (FEM) technique, where the nonlinear behaviour of masonry has been taken into account by proper constitutive assumptions. A sensitivity analysis is done to evaluate the effect of the choice of the structural models.

  11. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  12. New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modelling in Monte Carlo detector simulations. We plan to replace and unify current geometrical primitive classes in the CERN software projects Geant4 and ROOT with this library. Each solid is represented by a C++ class with methods suited for measuring distances of particles from the surface of a solid and for determination as to whether the particles are located inside, outside or on the surface of the solid. We use numerical tolerance for determining whether the particles are located on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for validation of the shape codes. These include also special performance and numerical value comparison tests for help with analysis of possible candidates of class methods as well as to verify that our new implementation proposals were designed and implemented properly. Currently, bridge classes are u...

  13. Model of sustainable utilization of organic solids waste in Cundinamarca, Colombia

    Directory of Open Access Journals (Sweden)

    Solanyi Castañeda Torres

    2017-05-01

    Full Text Available Introduction: This article considers a proposal of a model of use of organic solids waste for the department of Cundinamarca, which responds to the need for a tool to support decision-making for the planning and management of organic solids waste. Objective: To perform an approximation of a conceptual technical and mathematician optimization model to support decision-making in order to minimize environmental impacts. Materials and methods: A descriptive study was applied due to the fact that some fundamental characteristics of the studied homogeneous phenomenon are presented and it is also considered to be quasi experimental. The calculation of the model for plants of the department is based on three axes (environmental, economic and social, that are present in the general equation of optimization. Results: A model of harnessing organic solids waste in the techniques of biological treatment of composting aerobic and worm cultivation is obtained, optimizing the system with the emissions savings of greenhouse gases spread into the atmosphere, and in the reduction of the overall cost of final disposal of organic solids waste in sanitary landfill. Based on the economic principle of utility that determines the environmental feasibility and sustainability in the plants of harnessing organic solids waste to the department, organic fertilizers such as compost and humus capture carbon and nitrogen that reduce the tons of CO2.

  14. Contribution to the modelling of solid state sintering

    International Nuclear Information System (INIS)

    Martin, Sylvain

    2014-01-01

    This thesis deals with the simulation of the sintering of nuclear fuel on a pellet scale. The goal is to develop numerical tools which can contribute to a better understanding of the physical phenomena involved in the sintering process. Hence, a multi scale approach is proposed. First of all, a Discrete Element model is introduced. It aims at modeling the motion of particles on a Representative Elementary Volume scale using an original Discrete Element Method. The latter is a Non Smooth Method called Contact Dynamics. Recently, there have been numerous papers about the simulation of sintering using Discrete Element Method. As far as we know, all these papers use smooth methods. Different studies show that the results match well experimental data. However, some limits come from the fact that smooth methods use an explicit scheme which needs very small time steps. In order to obtain an acceptable time step, the mass of particles have to be dramatically increased. The Non Smooth Contact Dynamics uses an implicit scheme, thus time steps can be much larger without scaling up the mass of particles. The comparison between smooth and non smooth approaches shows that our method leads to a more realistic representation of rearrangement. An experimental validation using synchrotron X-Ray microtomography is then presented, followed by a parametric study on the sintering of bimodal powders that aims at showing the capacity of this model. The second part presents a mechanical model on the sub-Granular scale, using a Finite Element method. This targets a better understanding of the behavior of two grains in contact. The model is currently being developed but the first results already show that some parameters like the shape of the surface of the neck are very sensitive. In the future, the Non smooth Contact Dynamics model of sintering may be improved using the results obtained by the sub-Granular scale mechanical model. (author) [fr

  15. Materials modeling by design: applications to amorphous solids

    International Nuclear Information System (INIS)

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai Bin; Drabold, D A

    2009-01-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe 1.5 . We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  16. A Comparison of Flame Spread Characteristics over Solids in Concurrent Flow Using Two Different Pyrolysis Models

    Directory of Open Access Journals (Sweden)

    Ya-Ting Tseng

    2011-01-01

    Full Text Available Two solid pyrolysis models are employed in a concurrent-flow flame spread model to compare the flame structure and spreading characteristics. The first is a zeroth-order surface pyrolysis, and the second is a first-order in-depth pyrolysis. Comparisons are made for samples when the spread rate reaches a steady value and the flame reaches a constant length. The computed results show (1 the mass burning rate distributions at the solid surface are qualitatively different near the flame (pyrolysis base region, (2 the first-order pyrolysis model shows that the propagating flame leaves unburnt solid fuel, and (3 the flame length and spread rate dependence on sample thickness are different for the two cases.

  17. Technical procedures for utilities and solid waste: Environmental Field Program, Deaf Smith County site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    The evaluation of environmental issues and concerns and the addressing of statutory requirements are fundamental parts in the characterization of the site in Deaf Smith County, Texas for the US Department of Energy's Salt Repository Project (SRP). To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Utilities and Solid Waste considerations. This technical procedure (TP) has been developed to implement the field program described in the Utilities and Solid Waste Site Study Plan. The purpose and scope of the Utilities and Solid Waste Technical Procedure is to develop and implement a data collection procedure to fulfill the data base needs of the Utilities and Solid Waste SSP. The procedure describes a method of obtaining, assessing and verifying the capabilities of the regional service utilities and disposal contractors. This data base can be used to identify a preferred service source for the engineering contractor. The technical procedure was produced under the guidelines established in Technical Administrative Procedure No. 1.0, Preparation, Review and Approval of Technical Procedures

  18. Stellar Atmospheric Modelling for the ACCESS Program

    Science.gov (United States)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  19. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  20. Modeling solid thermal explosion containment on reactor HNIW and HMX

    International Nuclear Information System (INIS)

    Lin, Chun-Ping; Chang, Chang-Ping; Chou, Yu-Chuan; Chu, Yung-Chuan; Shu, Chi-Min

    2010-01-01

    2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (HNIW), also known as CL-20 and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are highly energetic materials which have been popular in national defense industries for years. This study established the models of thermal decomposition and thermal explosion hazard for HNIW and HMX. Differential scanning calorimetry (DSC) data were used for parameters determination of the thermokinetic models, and then these models were employed for simulation of thermal explosion in a 437 L barrel reactor and a 24 kg cubic box package. Experimental results indicating the best storage conditions to avoid any violent runaway reaction of HNIW and HMX were also discovered. This study also developed an efficient procedure regarding creation of thermokinetics and assessment of thermal hazards of HNIW and HMX that could be applied to ensure safe storage conditions.

  1. Gauge-independent decoherence models for solids in external fields

    Science.gov (United States)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  2. Transuranic solid waste management research programs. Progress report, January--June 1975

    International Nuclear Information System (INIS)

    1976-03-01

    Tests continued to evaluate less costly fiber drums as alternate storage containers for low-level wastes. Tests completed to date indicated that the factory-applied fire retardants were not satisfactory; however, investigations of more promising coatings have been undertaken. The fiber drums were more satisfactory in other aspects. Expanded laboratory and field radiolysis experiments were performed. These were accompanied by investigations of H 2 diffusion through common waste packaging materials and through Los Alamos soil. Radiolysis studies were also initiated on wastes typical of Mound Laboratory. All results to date show that while H 2 is being slowly generated, the quantities are not excessive and should diffuse rapidly away. Construction of the TDF facility began and was 14 percent complete at the end of this reporting period. The incinerator was received, installed and checked out, and is operational. Additional specifications were developed and equipment procurement continued. Progress is reported on development of a system for evaluating radioactively contaminated solid waste burial sites. Source term data are summarized for some Los Alamos areas along with waste composition and configuration considerations. Physical and biotic transport pathways are discussed and development of modeling methods for projecting the environmental fate of transuranic materials is detailed

  3. Transuranic solid waste management research programs. Progress report, January--June 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    Tests continued to evaluate less costly fiber drums as alternate storage containers for low-level wastes. Tests completed to date indicated that the factory-applied fire retardants were not satisfactory; however, investigations of more promising coatings have been undertaken. The fiber drums were more satisfactory in other aspects. Expanded laboratory and field radiolysis experiments were performed. These were accompanied by investigations of H/sub 2/ diffusion through common waste packaging materials and through Los Alamos soil. Radiolysis studies were also initiated on wastes typical of Mound Laboratory. All results to date show that while H/sub 2/ is being slowly generated, the quantities are not excessive and should diffuse rapidly away. Construction of the TDF facility began and was 14 percent complete at the end of this reporting period. The incinerator was received, installed and checked out, and is operational. Additional specifications were developed and equipment procurement continued. Progress is reported on development of a system for evaluating radioactively contaminated solid waste burial sites. Source term data are summarized for some Los Alamos areas along with waste composition and configuration considerations. Physical and biotic transport pathways are discussed and development of modeling methods for projecting the environmental fate of transuranic materials is detailed.

  4. Electrochemical Impedance Modeling of a Solid Oxide Fuel Cell Anode

    DEFF Research Database (Denmark)

    Mohammadi, R.; Søgaard, Martin; Ramos, Tania

    2014-01-01

    (TLM), which is suitably modified to account for the electrode microstructural details, is used for modeling the impedance arising from the electrochemical reactions. In order to solve the system of nonlinear equations, an in-house code based on the finite difference method was developed. Some...

  5. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  6. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  7. Decision support models for solid waste management: Review and game-theoretic approaches

    International Nuclear Information System (INIS)

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-01-01

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed

  8. Decision support models for solid waste management: Review and game-theoretic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece); Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence (Greece); Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece)

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  9. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2017-01-01

    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (rp) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural...

  10. Computational multiscale modeling of fluids and solids theory and applications

    CERN Document Server

    Steinhauser, Martin Oliver

    2017-01-01

    The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the basic physical principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and a...

  11. Health risk reduction behaviors model for scavengers exposed to solid waste in municipal dump sites in Nakhon Ratchasima Province, Thailand

    Directory of Open Access Journals (Sweden)

    Thirarattanasunthon P

    2012-08-01

    Full Text Available Phiman Thirarattanasunthon,1 Wattasit Siriwong,1,2 Mark Robson,2–4 Marija Borjan3 1College of Public Health Sciences, Chulalongkorn University, 2Thai Fogarty ITREOH Center, Chulalongkorn University, Bangkok, Thailand; 3School of Environmental and Biological Sciences, Rutgers University, New Brunswick, 4UMDNJ-School of Public Health, Piscataway, NJ, USAAbstract: The aim of this study was to evaluate the effect of comprehensive health risk protection behaviors, knowledge, attitudes, and practices among scavengers in open dump sites. A control group of 44 scavengers and an intervention group of 44 scavengers participated in this study. Interventions included the use of personal protective equipment, health protection training, and other measures. The analysis showed significant differences before and after the intervention program and also between the control and intervention groups. These observations suggest that further action should be taken to reduce adverse exposure during waste collection. To reduce health hazards to workers, dump site scavenging should be incorporated into the formal sector program. Solid waste and the management of municipal solid waste has become a human and environmental health issue and future research should look at constructing a sustainable model to help protect the health of scavengers and drive authorities to adopt safer management techniques.Keywords: scavenger, health risk reduction behaviors model (HRRBM, personal protective equipment (PPE, knowledge, attitude, and practice (KAP, waste health coordinator (WHC

  12. MININR: a geochemical computer program for inclusion in water flow models - an application study

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, A.R.; Reisenauer, A.E.; Zachara, J.M.; Gee, G.W.

    1984-02-01

    MININR is a reduced form of the computer program MINTEQ which calculates equilibrium precipitation/dissolution of solid phases, aqueous speciation, adsorption, and gas phase equilibrium. The user-oriented features in MINTEQ were removed to reduce the size and increase the computational speed. MININR closely resembles the MINEQL computer program developed by Westall (1976). The main differences between MININR and MINEQL involve modifications to accept an initial starting mass of solid and necessary changes for linking with a water flow model. MININR in combination with a simple water flow model which considers only dilution was applied to a laboratory column packed with retorted oil shale and percolated with distilled water. Experimental and preliminary model simulation results are presented for the constituents K/sup +/, Na/sup +/, SO/sub 4//sup 2 -/, Mg/sup 2 +/, Ca/sup 2 +/, CO/sub 3//sup 2 -/ and pH.

  13. Modeling and experimental validation of CO heterogeneous chemistry and electrochemistry in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yurkiv, Vitaly

    2010-12-17

    In the present work experimental and numerical modeling studies of the heterogeneously catalyzed and electrochemical oxidation of CO at Nickel/yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) anode systems were performed to evaluate elementary charge-transfer reaction mechanisms taking place at the three-phase boundary of CO/CO{sub 2} gas-phase, Ni electrode, and YSZ electrolyte. Temperature-programmed desorption and reaction experiments along with density functional theory calculations were performed to determine adsorption/desorption and surface diffusion kinetics as well as thermodynamic data for the CO/CO{sub 2}/Ni and CO/CO{sub 2}/YSZ systems. Based on these data elementary reaction based models with four different charge transfer mechanisms for the electrochemical CO oxidation were developed and applied in numerical simulations of literature experimental electrochemical data such as polarization curves and impedance spectra. Comparison between simulation and experiment demonstrated that only one of the four charge transfer mechanisms can consistently reproduce the electrochemical data over a wide range of operating temperatures and CO/CO{sub 2} gas compositions. (orig.) [German] In der vorliegenden Arbeit wurden experimentelle und numerische Untersuchungen zur heterogen katalysierten und elektrochemischen Oxidation von CO an Anodensystemen (bestehend aus Nickel und yttriumdotiertem Zirkoniumdioxid, YSZ) von Festoxidbrennstoffzellen (engl. Solid Oxide Fuel Cells, SOFCs) ausgefuehrt, um den mikroskopischen Mechanismus der an der CO/CO{sub 2}-Gasphase/Ni-Elektrode/YSZ-Elektrolyt- Dreiphasen-Grenzflaeche ablaufenden Ladungsuebertragungsreaktion aufzuklaeren. Temperaturprogrammierte Desorptionsmessungen (TPD) und Temperaturprogrammierte Reaktionsmessungen (TPR) sowie Dichtefunktionaltheorierechnungen wurden ausgefuehrt, um adsorptions-, desorptions- und reaktionskinetische sowie thermodynamische Daten fuer die CO/CO{sub 2}/Ni- und CO/CO{sub 2}/YSZ

  14. Local yield stress statistics in model amorphous solids

    Science.gov (United States)

    Barbot, Armand; Lerbinger, Matthias; Hernandez-Garcia, Anier; García-García, Reinaldo; Falk, Michael L.; Vandembroucq, Damien; Patinet, Sylvain

    2018-03-01

    We develop and extend a method presented by Patinet, Vandembroucq, and Falk [Phys. Rev. Lett. 117, 045501 (2016), 10.1103/PhysRevLett.117.045501] to compute the local yield stresses at the atomic scale in model two-dimensional Lennard-Jones glasses produced via differing quench protocols. This technique allows us to sample the plastic rearrangements in a nonperturbative manner for different loading directions on a well-controlled length scale. Plastic activity upon shearing correlates strongly with the locations of low yield stresses in the quenched states. This correlation is higher in more structurally relaxed systems. The distribution of local yield stresses is also shown to strongly depend on the quench protocol: the more relaxed the glass, the higher the local plastic thresholds. Analysis of the magnitude of local plastic relaxations reveals that stress drops follow exponential distributions, justifying the hypothesis of an average characteristic amplitude often conjectured in mesoscopic or continuum models. The amplitude of the local plastic rearrangements increases on average with the yield stress, regardless of the system preparation. The local yield stress varies with the shear orientation tested and strongly correlates with the plastic rearrangement locations when the system is sheared correspondingly. It is thus argued that plastic rearrangements are the consequence of shear transformation zones encoded in the glass structure that possess weak slip planes along different orientations. Finally, we justify the length scale employed in this work and extract the yield threshold statistics as a function of the size of the probing zones. This method makes it possible to derive physically grounded models of plasticity for amorphous materials by directly revealing the relevant details of the shear transformation zones that mediate this process.

  15. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  16. Hydrodynamic and thermal modeling of solid particles in a multi-phase, multi-component flow

    International Nuclear Information System (INIS)

    Tentner, A.M.; Wider, H.U.

    1984-01-01

    This paper presents the new thermal hydraulic models describing the hydrodynamics of the solid fuel/steel chunks during an LMFBR hypothetical core disruptive accident. These models, which account for two-way coupling between the solid and fluid phases, describe the mass, momentum and energy exchanges which occur when the chunks are present at any axial location. They have been incorporated in LEVITATE, a code for the analysis of fuel and cladding dynamics under Loss-of-Flow (LOF) conditions. Their influence on fuel motion is presented in the context of the L6 TREAT experiment analysis. It is shown that the overall hydrodynamic behavior of the molten fuel and solid fuel chunks is dependent on both the size of the chunks and the power level. At low and intermediate power levels the fuel motion is more dispersive when small chunks, rather than large ones, are present. At high power levels the situation is reversed

  17. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  18. A multiscale model of distributed fracture and permeability in solids in all-round compression

    Science.gov (United States)

    De Bellis, Maria Laura; Della Vecchia, Gabriele; Ortiz, Michael; Pandolfi, Anna

    2017-07-01

    We present a microstructural model of permeability in fractured solids, where the fractures are described in terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of tensile or shear strength in the undamaged material. Secondary faults may form in a hierarchical organization, creating a complex network of connected fractures that modify the permeability of the solid. The undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the damaged material. The model is the finite kinematics version of a recently proposed porous material model, applied with success to the simulation of laboratory tests and excavation problems [De Bellis, M. L., Della Vecchia, G., Ortiz, M., Pandolfi, A., 2016. A linearized porous brittle damage material model with distributed frictional-cohesive faults. Engineering Geology 215, 10-24. Cited By 0. 10.1016/j.enggeo.2016.10.010]. The extension adds over and above the linearized kinematics version for problems characterized by large deformations localized in narrow zones, while the remainder of the solid undergoes small deformations, as typically observed in soil and rock mechanics problems. The approach is particularly appealing as a means of modeling a wide scope of engineering problems, ranging from the prevention of water or gas outburst into underground mines, to the prediction of the integrity of reservoirs for CO2 sequestration or hazardous waste storage, to hydraulic fracturing processes.

  19. Experimental Characterisation and Modelling of Homogeneous Solid Suspension in an Industrial Stirred Tank

    Directory of Open Access Journals (Sweden)

    Sébastien Calvo

    2013-01-01

    Full Text Available In this work, we study the conditions needed to reach homogeneous distribution of aluminium salts particles in water inside a torispherical bottom shaped stirred tank of 70 L equipped with a Pfaudler RCI type impeller and three equispaced vertical baffles. The aim of the present study is to develop a CFD model describing the quality of particle distribution in industrial scale tanks. This model, validated with experimental data, is used afterwards to develop scale-up and scale-down correlations to predict the minimum impeller speed needed to reach homogeneous solid distribution Nhs. The commercial CFD software Fluent 14 is used to model the fluid flow and the solid particle distribution in the tank. Sliding Mesh approach is used to take the impeller motion into account. Assuming that the discrete solid phase has no influence on the continuous liquid phase behaviour, the fluid flow dynamics is simulated independently using the well-known k-∊ turbulence model. The liquid-solid mixture behaviour is then described by implementing the Eulerian Mixture model. Computed liquid velocity fields are validated by comparison with PIV measurements. Computed Nhs were found to be in good agreement with experimental measurements. Results from different scales allowed correlating Nhs values to the volumetric power consumption.

  20. 3DXRD characterization and modeling of solid-state transformation processes

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Offerman, S.E.; Sietsma, J.

    2008-01-01

    of metallic microstructures with much more detail than hitherto possible. Among these modeling activities are three-dimensional (3D) geometric modeling, 3D molecular dynamics modeling, 3D phase-field modeling, two-dimensional (2D) cellular automata, and 2D Monte Carlo simulations....... data valuable for validation of various models of microstructural evolution is discussed, Examples of 3DXRD measurements related to recrystallization and to solid-state phase transformations in metals are described. 3DXRD measurements have led to new modeling activity predicting the evolution...

  1. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    Science.gov (United States)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  2. Modeling and Structural Optimization of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Panagakos, Grigorios

    energy basket of solutions. In this project, consulting role was also undertaken by researchers at National Center for Sustainable Energy, Risø and more specifically by Dr. Martin Søgaard, Dr. Henrik Frandsen and Dr. Peter Vang Hendriksen (team leader). The other approach is based on attacking......, such as the tortuosity and the porosity of the material, for preselected micro-structures. Furthermore, we apply optimization techniques to lead this ASR to minimization. This work has been the fruit of collaboration with Professor Sossina Haile at the California Institute of Technology (Caltech) and with assistant...... Professor Francesco Ciucci at the Hong Kong University of Science and Technology (HKUST). As a complementary in this modeling work, we have also developed other activities, leading to either already accepted, submitted or soon to be submitted publications. These additional to the main focus directions, have...

  3. Dynamic density functional theory of solid tumor growth: Preliminary models

    Directory of Open Access Journals (Sweden)

    Arnaud Chauviere

    2012-03-01

    Full Text Available Cancer is a disease that can be seen as a complex system whose dynamics and growth result from nonlinear processes coupled across wide ranges of spatio-temporal scales. The current mathematical modeling literature addresses issues at various scales but the development of theoretical methodologies capable of bridging gaps across scales needs further study. We present a new theoretical framework based on Dynamic Density Functional Theory (DDFT extended, for the first time, to the dynamics of living tissues by accounting for cell density correlations, different cell types, phenotypes and cell birth/death processes, in order to provide a biophysically consistent description of processes across the scales. We present an application of this approach to tumor growth.

  4. Mass transfer inside oblate spheroidal solids: modelling and simulation

    Directory of Open Access Journals (Sweden)

    J. E. F. Carmo

    2008-03-01

    Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.

  5. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  6. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  7. Cluster model calculations of the solid state materials electron structure

    International Nuclear Information System (INIS)

    Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.

    1997-01-01

    Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs

  8. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  9. Waste Reduction Model (WARM) Resources for State and Local Government/Solid Waste Planners

    Science.gov (United States)

    This page provides a brief overview of how EPA’s Waste Reduction Model (WARM) can be used by state and local government/solid waste planners. The page includes a brief summary of uses of WARM for the audience and links to other resources.

  10. Solid Waste and Water Quality Management Models for Sagarmatha National Park and Buffer Zone, Nepal.

    NARCIS (Netherlands)

    Manfredi, Emanuela Chiara; Flury, Bastian; Viviano, Gaetano; Thakuri, Sudeep; Khanal, Sanjay Nath; Jha, Pramod Kumar; Maskey, Ramesh Kumar; Kayastha, Rijan Bhakta; Kafle, Kumud Raj; Bhochhibhoya, Silu; Ghimire, Narayan Prasad; Shrestha, Bharat Babu; Chaudhary, Gyanendra; Giannino, Francesco; Carteni, Fabrizio; Mazzoleni, Stefano; Salerno, Franco

    2010-01-01

    The problem of supporting decision- and policy-makers in managing issues related to solid waste and water quality was addressed within the context of a participatory modeling framework in the Sagarmatha National Park and Buffer Zone in Nepal. We present the main findings of management-oriented

  11. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  12. Modelling solid-convective flash pyrolysis of straw and wood in the Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Bech, Niels; Larsen, Morten Boberg; Jensen, Peter Arendt

    2009-01-01

    in the Pyrolysis Centrifuge Reactor, a novel solid-convective flash pyrolysis reactor. The model relies on the original concept for ablative pyrolysis of particles being pyrolysed through the formation of an intermediate liquid compound which is further degraded to form liquid organics, char, and gas. To describe...

  13. Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M.

    2008-01-01

    Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of

  14. Numerical simulation of dense gas-solid fluidized beds : a multiscale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.

    2008-01-01

    Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of

  15. Growth and lipid production of Umbelopsis isabellina on a solid substrate - Mechanistic modeling and validation

    NARCIS (Netherlands)

    Meeuwse, P.; Klok, A.J.; Haemers, S.; Tramper, J.; Rinzema, A.

    2012-01-01

    Microbial lipids are an interesting feedstock for biodiesel. Their production from agricultural waste streams by fungi cultivated in solid-state fermentation may be attractive, but the yield of this process is still quite low. In this article, a mechanistic model is presented that describes growth,

  16. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.

    2014-01-01

    Roč. 70, MAY (2014), s. 92-104 ISSN 1359-6454 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014

  17. Modelling and simulation of an energy transport phenomenon in a solid-fluid mixture

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1989-08-01

    In the present work a model for a local description of the energy transfer phenomenon in a binary (solid-fluid) saturated mixture is proposed. The heat transfer in a saturated flow (through a porous medium) between two parallel plates is simulated by using the Finite Volumes Method. (author) [pt

  18. DOD low energy model installation program

    International Nuclear Information System (INIS)

    Fournier, D.F. Jr.

    1993-01-01

    The Model Low Energy Installation Program is a demonstration of an installation-wide, comprehensive energy conservation program that meets the Department of Defense (DoD) energy management goals of reducing energy usage and costs by at least 20%. It employs the required strategies for meeting these goals, quantifies the environmental compliance benefits resulting from energy conservation and serves as a prototype for DoD wide application. This project will develop both analysis tools and implementation procedures as well as demonstrate the effectiveness of a comprehensive, coordinated energy conservation program based on state-of-the-art technologies. A military installation is in reality a small to medium sized city. It generally has a complete utilities infrastructure including water supply and distribution, sewage collection and treatment, electrical supply and distribution, central heating and cooling plants with thermal distribution, and a natural gas distribution system. These utilities are quite extensive and actually consume about 10-15% of the energy on the facility not counting the energy going into the central plants

  19. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  20. A GIS based transportation model for solid waste disposal - A case study on Asansol municipality

    International Nuclear Information System (INIS)

    Ghose, M.K.; Dikshit, A.K.; Sharma, S.K.

    2006-01-01

    Uncontrolled growth of the urban population in developing countries in recent years has made solid waste management an important issue. Very often, a substantial amount of total expenditures is spent on the collection of solid waste by city authorities. Optimization of the routing system for collection and transport of solid waste thus constitutes an important component of an effective solid waste management system. This paper describes an attempt to design and develop an appropriate storage, collection and disposal plan for the Asansol Municipality Corporation (AMC) of West Bengal State (India). A GIS optimal routing model is proposed to determine the minimum cost/distance efficient collection paths for transporting the solid wastes to the landfill. The model uses information on population density, waste generation capacity, road network and the types of road, storage bins and collection vehicles, etc. The proposed model can be used as a decision support tool by municipal authorities for efficient management of the daily operations for transporting solid wastes, load balancing within vehicles, managing fuel consumption and generating work schedules for the workers and vehicles. The total cost of the proposed collection systems is estimated to be around 80 million rupees for the fixed cost of storage bins, collection vehicles and a sanitary landfill and around 8.4 million rupees for the annual operating cost of crews, vehicles and landfill maintenance. A substantial amount (25 million rupees/yr) is currently being spent by AMC on waste collection alone without any proper storage/collection system and sanitary landfill. Over a projected period of 15 yr, the overall savings is thus very significant

  1. International Nuclear Model. Volume 3. Program description

    International Nuclear Information System (INIS)

    Andress, D.

    1985-01-01

    This is Volume 3 of three volumes of documentation of the International Nuclear Model (INM). This volume presents the Program Description of the International Nuclear Model, which was developed for the Nuclear and Alternate Fuels Division (NAFD), Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The International Nuclear Model (INM) is a comprehensive model of the commercial nuclear power industry. It simulates economic decisions for reactor deployment and fuel management decision based on an input set of technical economic and scenario parameters. The technical parameters include reactor operating characteristics, fuel cycle timing and mass loss factors, and enrichment tails assays. Economic parameters include fuel cycle costs, financial data, and tax alternatives. INM has a broad range of scenario options covering, for example, process constraints, interregional activities, reprocessing, and fuel management selection. INM reports reactor deployment schedules, electricity generation, and fuel cycle requirements and costs. It also has specialized reports for extended burnup and permanent disposal. Companion volumes to Volume 3 are: Volume 1 - Model Overview, and Volume 2 - Data Base Relationships

  2. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  3. Can Household Benefit from Stochastic Programming Models?

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Madsen, Claus A.; Poulsen, Rolf

    2014-01-01

    The Danish mortgage market is large and sophisticated. However, most Danish mortgage banks advise private home-owners based on simple, if sensible, rules of thumb. In recent years a number of papers (from Nielsen and Poulsen in J Econ Dyn Control 28:1267–1289, 2004 over Rasmussen and Zenios in J...... Risk 10:1–18, 2007 to Pedersen et al. in Ann Oper Res, 2013) have suggested a model-based, stochastic programming approach to mortgage choice. This paper gives an empirical comparison of performance over the period 2000–2010 of the rules of thumb to the model-based strategies. While the rules of thumb.......3–0.9 %-points (depending on the borrower’s level of conservatism) compared to the rules of thumb without increasing the risk. The answer to the question in the title is thus affirmative....

  4. An open-source library for the numerical modeling of mass-transfer in solid oxide fuel cells

    Science.gov (United States)

    Novaresio, Valerio; García-Camprubí, María; Izquierdo, Salvador; Asinari, Pietro; Fueyo, Norberto

    2012-01-01

    The generation of direct current electricity using solid oxide fuel cells (SOFCs) involves several interplaying transport phenomena. Their simulation is crucial for the design and optimization of reliable and competitive equipment, and for the eventual market deployment of this technology. An open-source library for the computational modeling of mass-transport phenomena in SOFCs is presented in this article. It includes several multicomponent mass-transport models ( i.e. Fickian, Stefan-Maxwell and Dusty Gas Model), which can be applied both within porous media and in porosity-free domains, and several diffusivity models for gases. The library has been developed for its use with OpenFOAM ®, a widespread open-source code for fluid and continuum mechanics. The library can be used to model any fluid flow configuration involving multicomponent transport phenomena and it is validated in this paper against the analytical solution of one-dimensional test cases. In addition, it is applied for the simulation of a real SOFC and further validated using experimental data. Program summaryProgram title: multiSpeciesTransportModels Catalogue identifier: AEKB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 140 No. of bytes in distributed program, including test data, etc.: 64 285 Distribution format: tar.gz Programming language:: C++ Computer: Any x86 (the instructions reported in the paper consider only the 64 bit case for the sake of simplicity) Operating system: Generic Linux (the instructions reported in the paper consider only the open-source Ubuntu distribution for the sake of simplicity) Classification: 12 External routines: OpenFOAM® (version 1.6-ext) ( http://www.extend-project.de) Nature of problem: This software provides a library of models for

  5. Construction of a kinetics model for liquid-solid transitions built from atomistic simulations

    Science.gov (United States)

    Benedict, Lorin; Zepeda-Ruiz, Luis; Haxhimali, Tomorr; Hamel, Sebastien; Sadigh, Babak; Chernov, Alexander; Belof, Jonathan

    We discuss work in progress towards a kinetics model for dynamically-driven liquid-solid transitions built from MD simulations. The growth of solid particles within a liquid is studied for a range of conditions, and careful attention is paid to the construction of an accurate multi-phase (equilibrium) equation of state for the system under consideration, in order to provide a framework upon which the non-equilibrium physics is based. His work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  6. Reconstruction of the solid transport of the river Tiber by a stochastic model

    International Nuclear Information System (INIS)

    Grimaldi, S.; Magnaldi, S.; Margaritora, G.

    1999-01-01

    The chronological series of cumulative suspended solids transport observed at Ripetta station in river Tiber (Rome, Italy) is reconstructed on the base of the correlation with the chronological series of liquid discharge, using a TFN (Transfer Function Noise) stochastic model with SARIMA noise. The results are compared with those similar reconstructions based on linear correlation that can be found in literature. Finally, the importance of floods intensity and frequency decrease observed after 1950 at Ripetta station is shown as not negligible aggravation for the decrease solid transport in river Tiber [it

  7. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  8. A discrete element model for the investigation of the geometrically nonlinear behaviour of solids

    Science.gov (United States)

    Ockelmann, Felix; Dinkler, Dieter

    2018-07-01

    A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.

  9. A stochastic model of solid state thin film deposition: Application to chalcopyrite growth

    Directory of Open Access Journals (Sweden)

    Robert J. Lovelett

    2016-04-01

    Full Text Available Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstrate the modeling approach with the example of chalcopyrite Cu(InGa(SeS2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa(SeS2 thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.

  10. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2013-01-01

    -chemical processes are divided in two successive sections: drying and conversion (which includes pyrolysis, gasification and combustion). The second model is an empirical 1D approach. The two models need input data such as composition, temperature and feeding rate of biomass and primary air. Temperature, species...... to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo...... concentrations and velocity of the producer gas leaving the fuel bed provided by the two models are compared. A sensitivity analysis with respect to mass flow rate of the primary air is also performed, as well as a further comparison regarding the dependence of the producer gas properties on the initial moisture...

  11. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    Science.gov (United States)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  12. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  13. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  14. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  15. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  16. Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids

    Science.gov (United States)

    Hadjiconstantinou, Nicolas; Wang, Gerald

    2017-11-01

    Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.

  17. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  18. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  19. Community Learning Process: A Model of Solid Waste Reduction and Separation

    Directory of Open Access Journals (Sweden)

    Jittree Pothimamaka

    2008-07-01

    Full Text Available The main purpose of this research was to study and develop an appropriate model of waste reduction and separation in the community under the community learning process. This is a research and development (R&D study with mixed methodology consisting of four steps. Step One: Research was conducted to obtain information on solid waste disposal in Bang Sue District, Bangkok Metropolis, Thailand, employing group discussions with community members and data collection from the field. Step Two: The activities for development of the model consisted of group discussions, workshops, and development of a test of knowledge and behaviors concerning solid waste disposal using the 1A3R practice concept. Step Three : Experimentation with the model consisting of pre testing and post testing of knowledge and behaviors concerning solid waste disposal ; door to door imparting of appropriate knowledge and behaviors concerning solid waste disposal ; and collecting of data on the rate and amount of generated waste, and waste separation. Step Four: Evaluation of the developed model consisting of assessments based on physical indicators of the waste, opinions of experts, and impacts on participating communities. The findings revealed that (1 the post experiment knowledge and behavior mean scores of community members in the sample significantly increased over their pre experiment counterparts; and (2 the rate of waste generation decreased while waste separation increased. The proposed model of solid waste reduction and separation was accepted, and has four main components:(1 Community Practice: solid waste should be separated in the household into three types: food waste, marketable waste and non marketable waste must be clearly separated from household waste.(2 Knowledge sharing: door to door imparting of knowledge and behaviors on solid waste reduction and separation based on the 1A3R practice concept should be promoted.(3 Community mastery: the community organization

  20. A multi-objective programming model for assessment the GHG emissions in MSW management

    International Nuclear Information System (INIS)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-01-01

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH 4 generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application

  1. A multi-objective programming model for assessment the GHG emissions in MSW management

    Energy Technology Data Exchange (ETDEWEB)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr [National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens, 15780 (Greece); Skoulaxinou, Sotiria [EPEM SA, 141 B Acharnon Str., Athens, 10446 (Greece); Gakis, Nikos [FACETS SA, Agiou Isidorou Str., Athens, 11471 (Greece); Katsouros, Vassilis [Athena Research and Innovation Center, Artemidos 6 and Epidavrou Str., Maroussi, 15125 (Greece); Georgopoulou, Elena [National Observatory of Athens, Thisio, Athens, 11810 (Greece)

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  2. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  3. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement Richland, Washington

    International Nuclear Information System (INIS)

    Collins, M.S.; Borgstrom, C.M.

    2004-01-01

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) provides environmental and technical information concerning U.S. Department of Energy (DOE) proposed waste management practices at the Hanford Site. The HSW EIS updates analyses of environmental consequences from previous documents and provides evaluations for activities that may be implemented consistent with the Waste Management Programmatic Environmental Impact Statement (WM PEIS) Records of Decision (RODs). Waste types considered in the HSW EIS include operational low-level radioactive waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and transuranic (TRU) waste (including TRU mixed waste). MLLW contains chemically hazardous components in addition to radionuclides. Alternatives for management of these wastes at the Hanford Site, including the alternative of No Action, are analyzed in detail. The LLW, MLLW, and TRU waste alternatives are evaluated for a range of waste volumes, representing quantities of waste that could be managed at the Hanford Site. A single maximum forecast volume is evaluated for ILAW. The No Action Alternative considers continuation of ongoing waste management practices at the Hanford Site and ceasing some operations when the limits of existing capabilities are reached. The No Action Alternative provides for continued storage of some waste types. The other alternatives evaluate expanded waste management practices including treatment and disposal of most wastes. The potential environmental consequences of the alternatives are generally similar. The major differences occur with respect to the consequences of disposal versus continued storage and with respect to the range of waste volumes managed under the alternatives. DOE's preferred alternative is to dispose of LLW, MLLW, and ILAW in a single, modular, lined facility near PUREX on Hanford's Central Plateau; to treat MLLW using a combination of onsite and

  4. A mathematical model of the solid-polymer-electrolyte fuel cell

    International Nuclear Information System (INIS)

    Bernardi, D.M.; Verbrugge, M.W.

    1992-01-01

    This paper presents a mathematical model of the solid-polymer-electrolyte fuel cell and apply it to (i) investigate factors that limit cell performance and (ii) elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell. Calculations of cell polarization behavior compare favorably with existing experimental data. For most practical electrode thicknesses, model results indicate that the volume fraction of the cathode available for gas transport must exceed 20% in order to avoid unacceptably low cell-limiting current densities. It is shown that membrane dehydration can also pose limitations on operating current density; circumvention of this problem by appropriate membrane and electrode design and efficient water-management schemes is discussed. The authors' model results indicate that for a broad range of practical current densities there are no external water requirements because the water produced at the cathode is enough to satisfy the water requirement of the membrane

  5. Recoil chemistry and solid state exchange in cobalt complexes : a new model

    International Nuclear Information System (INIS)

    Ramshesh, V.

    1981-01-01

    During the last thirty years considerable work has been done on various aspects of recoil chemistry and solid state exchange in cobalt complexes. Several interesting features such as 'oxygen effect', 'water of hydration effect', 'dilution with isomorphous materials', etc., have been observed. These data led workers to reject the older hypothesis based on 'fragmentation' and 'recombination' and suggest models based on exciton or electron induced exchange. However some recent data show that perhaps both the processes viz., thermal annealing in n-irradiated systems and solid state exchange are not bulk processes. This has led the author to propose a new model. In this model greater emphasis is placed on dissociation reactions followed by recombination and/or exchange reactions. (author)

  6. Co-digestion of solid waste: Towards a simple model to predict methane production.

    Science.gov (United States)

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Developing a Sustainability Assessment Model to Analyze China’s Municipal Solid Waste Management Enhancement Strategy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2015-01-01

    Full Text Available This study develops a sustainability assessment model for analysis and decision-making of the impact of China’s municipal solid waste management enhancement strategy options based on three waste treatment scenarios: landfill disposal, waste-to-energy incineration, and a combination of a material recovery facility and composting. The model employs life cycle assessment, health risk assessment, and full cost accounting to evaluate the treatment scenarios regarding safeguarding public health, protecting the environment and conserving resources, and economic feasibility. The model then uses an analytic hierarchy process for an overall appraisal of sustainability. Results suggest that a combination of material recovery and composting is the most efficient option. The study results clarify sustainable attributes, suitable predications, evaluation modeling, and stakeholder involvement issues in solid waste management. The demonstration of the use of sustainability assessment model (SAM provides flexibility by allowing assessment for a municipal solid waste management (MSWM strategy on a case-by-case basis, taking into account site-specific factors, therefore it has the potential for flexible applications in different communities/regions.

  8. 1/3-scale model testing program

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Attaway, S.W.; Bronowski, D.R.; Uncapher, W.L.; Huerta, M.; Abbott, D.G.

    1989-01-01

    This paper describes the drop testing of a one-third scale model transport cask system. Two casks were supplied by Transnuclear, Inc. (TN) to demonstrate dual purpose shipping/storage casks. These casks will be used to ship spent fuel from DOEs West Valley demonstration project in New York to the Idaho National Engineering Laboratory (INEL) for long term spent fuel dry storage demonstration. As part of the certification process, one-third scale model tests were performed to obtain experimental data. Two 9-m (30-ft) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood filled impact limiters. In the first test, the cask system was tested in an end-on configuration. In the second test, the system was tested in a slap-down configuration where the axis of the cask was oriented at a 10 degree angle with the horizontal. Slap-down occurs for shallow angle drops where the primary impact at one end of the cask is followed by a secondary impact at the other end. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. This paper describes both test results in terms of measured deceleration, post test deformation measurements, and the general structural response of the system

  9. Human factors engineering program review model

    International Nuclear Information System (INIS)

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element

  10. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  11. Compact extended model for doppler broadening of neutron absorption resonances in solids

    International Nuclear Information System (INIS)

    Villanueva, A. J; Granada, J.R

    2009-01-01

    We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es

  12. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    Science.gov (United States)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the

  13. Approximate deconvolution model for the simulation of turbulent gas-solid flows: An a priori analysis

    Science.gov (United States)

    Schneiderbauer, Simon; Saeedipour, Mahdi

    2018-02-01

    Highly resolved two-fluid model (TFM) simulations of gas-solid flows in vertical periodic channels have been performed to study closures for the filtered drag force and the Reynolds-stress-like contribution stemming from the convective terms. An approximate deconvolution model (ADM) for the large-eddy simulation of turbulent gas-solid suspensions is detailed and subsequently used to reconstruct those unresolved contributions in an a priori manner. With such an approach, an approximation of the unfiltered solution is obtained by repeated filtering allowing the determination of the unclosed terms of the filtered equations directly. A priori filtering shows that predictions of the ADM model yield fairly good agreement with the fine grid TFM simulations for various filter sizes and different particle sizes. In particular, strong positive correlation (ρ > 0.98) is observed at intermediate filter sizes for all sub-grid terms. Additionally, our study reveals that the ADM results moderately depend on the choice of the filters, such as box and Gaussian filter, as well as the deconvolution order. The a priori test finally reveals that ADM is superior compared to isotropic functional closures proposed recently [S. Schneiderbauer, "A spatially-averaged two-fluid model for dense large-scale gas-solid flows," AIChE J. 63, 3544-3562 (2017)].

  14. The Use of Molecular Modeling Programs in Medicinal Chemistry Instruction.

    Science.gov (United States)

    Harrold, Marc W.

    1992-01-01

    This paper describes and evaluates the use of a molecular modeling computer program (Alchemy II) in a pharmaceutical education program. Provided are the hardware requirements and basic program features as well as several examples of how this program and its features have been applied in the classroom. (GLR)

  15. Preliminary diagnosis, the basis for the construction of a Program Solid Waste Management at the University of San Buenaventura, Cartagena

    International Nuclear Information System (INIS)

    Rios Montes, Karina Andrea; Echeverri Jaramillo, Gustavo Eugenio

    2012-01-01

    Solid waste can generate negative impacts on environment and human being, because of inadequate management. Universities should consider handling the stages of generation, collection and disposal, including its assessment. We performed a cross-sectional study, which was made a preliminary diagnosis on the management of solid waste, including perception, knowledge and recommendations given by the community of the university, to support a solid waste program at the institution. An instrument was applied to a probability sample. The population was formed by students (84%), teachers (8.8%), and administrative staff (7.1%). The results indicate that 59.9% knows management about SW, and only 29.8% recycled. The mass media with 49.8% is the main channel to hear these. 72.1% of people recycle in a conscious way because they feel committed with the environment. Paper/cardboard (23.5%) and plastic (22.6%) are the most recycled material. 42.1% of people recommend environmental education activities, 40.1% labeling of containers, and the responsibility of its management should include the entire university community, being the student teachers (82.8%) and administrative staff (57,6%) the pioneers in leading this process.

  16. Model Program Pemberdayaan Masyarakat Desa Berbasis Komunitas

    Directory of Open Access Journals (Sweden)

    Yusuf Adam Hilman

    2018-01-01

    Full Text Available This study examines the issue of community empowerment, which is considered to be a solution problem of poverty, which is more interesting when the community of "Janda" becomes an important object. This research focuses on the study of community-based community empowerment model in Janda village. Purpose is able to measure the effectiveness and also the ideal form of community empowerment program model in the village of Janda, Dadapan Village, Balong District, Ponorogo Regency. The research are method qualitative descriptive approach, with object in research is the people members, especially mothers who berrstatus "widow" in the Dadapan Village, Balong District, Ponorogo Regency.. Activities include 1. Training of processed food from the existing agricultural potential, 2. Make a kitchen granary from the land around the community. 3. Train the art activities of mothers who are "Janda". From concluded this research is community empowerment activities in Dadapan Village, Balong District, Ponorogo Regency, which have been done are very focused on "Janda", so that the activity is expected to contribute, to the life of those who is distressed or increase the independence of the family, with this activity, economical but psychologically they will be motivated to become a powerful individual.

  17. Rate dependent inelastic behavior of polycrystalline solids using a dislocation model

    International Nuclear Information System (INIS)

    Werne, R.W.; Kelly, J.M.

    1980-01-01

    A rate dependent theory of polycrystalline plasticity is presented in which the solid is modeled as an isotropic continuum with internal variables. The rate of plastic deformation is shown to be a function of the deviatoric portion of the Cauchy stress tensor as well as two scalar internal variables. The scalar internal variables, which are the dislocation density and mobile fraction, are governed by rate equations which reflect the evolution of microstructural processes. The model has been incorporated into a two dimensional finite element code and several example multidimensional problems are presented which exhibit the rate dependence of the material model

  18. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    Science.gov (United States)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  19. Computer-aided design model for anaerobic-phased-solids digester system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Zhang, R. [University of California, Davis, CA (United States); Tiangco, V. [California Energy Commission, Sacramento, CA (United States)

    1999-07-01

    The anaerobic-phased-solids (APS) digester system is a newly developed anaerobic digestion system for converting solid wastes, such as crop residues and food wastes, into biogas for power and heat generation. A computer-aided engineering design model has been developed to design the APS-digester system and study the heat transfer from the reactors and energy production of the system. Simulation results of a case study are presented by using the model to predict the heating energy requirement and biogas energy production for anaerobic digestion of garlic waste. The important factors, such as environmental conditions, insulation properties, and characteristics of the wastes, on net energy production are also investigated. (author)

  20. Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu

    The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...

  1. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  2. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

    Directory of Open Access Journals (Sweden)

    C. Alkin

    2005-01-01

    Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed. 

  3. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0solid solutions and the gaseous oxygen by thermal gravimetric analysis at 600 degrees Celsius has shown that these solutions have not a ideal behaviour. A thermodynamic model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  4. Revisiting low-fidelity two-fluid models for gas–solids transport

    Energy Technology Data Exchange (ETDEWEB)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    2016-08-15

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  5. Revisiting low-fidelity two-fluid models for gas–solids transport

    International Nuclear Information System (INIS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-01-01

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  6. Revisiting low-fidelity two-fluid models for gas-solids transport

    Science.gov (United States)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  7. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    International Nuclear Information System (INIS)

    Christensen, E.J.; Gordon, D.E.

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines

  8. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg, Chhattisgarh-491001 (India); Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati, University, Jabalpur, Madhya Pradesh-482001 (India); Jha, Piyush [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati, University, Jabalpur, Madhya Pradesh-482001 (India)

    2013-06-15

    consist of either only the solid state luminescence spectra or the combination of solid state luminescence spectra and discharge spectra of the adsorbed molecules of surrounding gases. Till now the elastico ML and plastico ML have been studied only in a limited number of solids, and therefore, they need further investigation. The study of the elastico ML and plastico ML of rubbers and polymers may be very interesting. The understanding of the mechanisms of intrinsic and extrinsic elastico ML and plastico ML may be useful in preparing suitable elastico and plastico mechanoluminescent materials and it may be helpful in designing the devices based on elastico ML and plastico ML. Theorists need the models or mechanisms of the phenomena to propose and develop their theories and experimentalists also need the models and mechanisms of the phenomena for improving their materials and devices. In this regard, the present study may also be useful and important. -- Highlights: ► The mechanisms of elastico-mechanoluminescence and plastico-mechanoluminescence are explored in detail. ► The electron bombardment and electron trapping mechanisms are able to explain the EML and PML of a large number of solids. ► The study may be useful in designing the ML-based devices. ► The models for EML and PML may be helpful for the related theoretical studies.

  9. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids

    International Nuclear Information System (INIS)

    Chandra, V.K.; Chandra, B.P.; Jha, Piyush

    2013-01-01

    consist of either only the solid state luminescence spectra or the combination of solid state luminescence spectra and discharge spectra of the adsorbed molecules of surrounding gases. Till now the elastico ML and plastico ML have been studied only in a limited number of solids, and therefore, they need further investigation. The study of the elastico ML and plastico ML of rubbers and polymers may be very interesting. The understanding of the mechanisms of intrinsic and extrinsic elastico ML and plastico ML may be useful in preparing suitable elastico and plastico mechanoluminescent materials and it may be helpful in designing the devices based on elastico ML and plastico ML. Theorists need the models or mechanisms of the phenomena to propose and develop their theories and experimentalists also need the models and mechanisms of the phenomena for improving their materials and devices. In this regard, the present study may also be useful and important. -- Highlights: ► The mechanisms of elastico-mechanoluminescence and plastico-mechanoluminescence are explored in detail. ► The electron bombardment and electron trapping mechanisms are able to explain the EML and PML of a large number of solids. ► The study may be useful in designing the ML-based devices. ► The models for EML and PML may be helpful for the related theoretical studies

  10. A Solid Foundation: Key Capacities of Construction Pre-Apprenticeship Programs

    Science.gov (United States)

    Helmer, Matt; Blair, Amy; Gerber, Allison

    2012-01-01

    This publication shares research from site visits conducted to construction pre-apprenticeship programs in Baltimore, Hartford, Milwaukee and Portland (OR). Findings from the site visits, which included interviews and focus groups with pre-apprenticeship program staff, public officials, philanthropic leaders, construction industry leaders and…

  11. Edge detection of solid motor' CT image based on gravitation model

    International Nuclear Information System (INIS)

    Yu Guanghui; Lu Hongyi; Zhu Min; Liu Xudong; Hou Zhiqiang

    2012-01-01

    In order to detect the edge of solid motor' CT image much better, a new edge detection operator base on gravitation model was put forward. The edge of CT image is got by the new operator. The superiority turned out by comparing the edge got by ordinary operator. The comparison among operators with different size shows that higher quality CT images need smaller size operator while the lower need the larger. (authors)

  12. Design and performance analysis of solid-propellant rocket motors using a simplified computer program

    Science.gov (United States)

    Sforzini, R. H.

    1972-01-01

    An analysis and a computer program are presented which represent a compromise between the more sophisticated programs using precise burning geometric relations and the textbook type of solutions. The program requires approximately 900 computer cards including a set of 20 input data cards required for a typical problem. The computer operating time for a single configuration is approximately 1 minute and 30 seconds on the IBM 360 computer. About l minute and l5 seconds of the time is compilation time so that additional configurations input at the same time require approximately 15 seconds each. The program uses approximately 11,000 words on the IBM 360. The program is written in FORTRAN 4 and is readily adaptable for use on a number of different computers: IBM 7044, IBM 7094, and Univac 1108.

  13. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  14. Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2016-04-01

    Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.

  15. Artificial Neural Network Modelling of the Energy Content of Municipal Solid Wastes in Northern Nigeria

    Directory of Open Access Journals (Sweden)

    M. B. Oumarou

    2017-12-01

    Full Text Available The study presents an application of the artificial neural network model using the back propagation learning algorithm to predict the actual calorific value of the municipal solid waste in major cities of the northern part of Nigeria, with high population densities and intense industrial activities. These cities are: Kano, Damaturu, Dutse, Bauchi, Birnin Kebbi, Gusau, Maiduguri, Katsina and Sokoto. Experimental data of the energy content and the physical characterization of the municipal solid waste serve as the input parameter in nature of wood, grass, metal, plastic, food remnants, leaves, glass and paper. Comparative studies were made by using the developed model, the experimental results and a correlation which was earlier developed by the authors to predict the energy content. While predicting the actual calorific value, the maximum error was 0.94% for the artificial neural network model and 5.20% by the statistical correlation. The network with eight neurons and an R2 = 0.96881 in the hidden layer results in a stable and optimum network. This study showed that the artificial neural network approach could successfully be used for energy content predictions from the municipal solid wastes in Northern Nigeria and other areas of similar waste stream and composition.

  16. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  17. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    Science.gov (United States)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  18. Game Theory and its Relationship with Linear Programming Models ...

    African Journals Online (AJOL)

    Game Theory and its Relationship with Linear Programming Models. ... This paper shows that game theory and linear programming problem are closely related subjects since any computing method devised for ... AJOL African Journals Online.

  19. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Directory of Open Access Journals (Sweden)

    R. Ots

    2018-04-01

    Full Text Available Evidence is accumulating that emissions of primary particulate matter (PM from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012, as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source. The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist – all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than

  20. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Science.gov (United States)

    Ots, Riinu; Heal, Mathew R.; Young, Dominique E.; Williams, Leah R.; Allan, James D.; Nemitz, Eiko; Di Marco, Chiara; Detournay, Anais; Xu, Lu; Ng, Nga L.; Coe, Hugh; Herndon, Scott C.; Mackenzie, Ian A.; Green, David C.; Kuenen, Jeroen J. P.; Reis, Stefan; Vieno, Massimo

    2018-04-01

    Evidence is accumulating that emissions of primary particulate matter (PM) from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal) burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012), as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source). The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA) component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist - all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC) concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than inventory

  1. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    Science.gov (United States)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  2. Optimization Research of Generation Investment Based on Linear Programming Model

    Science.gov (United States)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  3. CLUST-applied program package for solution of radiation problems in solid-state physics

    International Nuclear Information System (INIS)

    Sidorenko, A.D.

    1983-01-01

    A general structure is outlined of the CLUST applied program package for a system of equations describing nucleation and growth of dislocation loops and vacancies in metal exposed to a fast particle flux. The CLUST package represents a set of programs for solving the systems of ordinary differential equations of special type with entering the count results into the file. The count process is controlled by a special monitor, which essentially facilitates the user program checkout and increases the efficiency of using computer time. The output of the results and scanning of the file can be realized through the analog-digital printing device or the terminal. The package structure enables the programs to be easily rearranged for solving other problems with the total number of variables 500. Operation with the package in the BEhSM-6 computer is described and principles of package rearrangement are presented

  4. Programming for the Public Good: Ensuring Public Value Through the Cooperative Extension Program Development Model

    Directory of Open Access Journals (Sweden)

    Nancy Franz

    2015-06-01

    Full Text Available Effective Cooperative Extension programs produce important private and public value for individuals, families, businesses, and communities. However, the public value of Extension programming often goes unmeasured and unarticulated. Extension needs to reclaim its role as a key provider of public value for Land-Grant Universities through strong educational programs driven by infusing public value into all elements of the Extension Program Development Model. This article describes Extension’s public value movement including organizational, professional, program, and scholarship development efforts to enhance public good effectiveness articulation. Lessons learned, implications, and next steps for Extension’s public value success through a strong program development model are also shared.

  5. Modeling and measurements of XRD spectra of extended solids under high pressure

    Science.gov (United States)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  6. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  7. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  8. Hydrodynamic Modelling of Municipal Solid Waste Residues in a Pilot Scale Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    João Cardoso

    2017-11-01

    Full Text Available The present study investigates the hydrodynamics and heat transfer behavior of municipal solid waste (MSW gasification in a pilot scale bubbling fluidized bed reactor. A multiphase 2-D numerical model following an Eulerian-Eulerian approach within the FLUENT framework was implemented. User defined functions (UDFs were coupled to improve hydrodynamics and heat transfer phenomena, and to minimize deviations between the experimental and numerical results. A grid independence study was accomplished through comparison of the bed volume fraction profiles and by reasoning the grid accuracy and computational cost. The standard deviation concept was used to determine the mixing quality indexes. Simulated results showed that UDFs improvements increased the accuracy of the mathematical model. Smaller size ratio of the MSW-dolomite mixture revealed a more uniform mixing, and larger ratios enhanced segregation. Also, increased superficial gas velocity promoted the solid particles mixing. Heat transfer within the fluidized bed showed strong dependence on the MSW solid particles sizes, with smaller particles revealing a more effective process.

  9. Second Order Kinetic Modeling of Headspace Solid Phase Microextraction of Flavors Released from Selected Food Model Systems

    Directory of Open Access Journals (Sweden)

    Jiyuan Zhang

    2014-09-01

    Full Text Available The application of headspace-solid phase microextraction (HS-SPME has been widely used in various fields as a simple and versatile method, yet challenging in quantification. In order to improve the reproducibility in quantification, a mathematical model with its root in psychological modeling and chemical reactor modeling was developed, describing the kinetic behavior of aroma active compounds extracted by SPME from two different food model systems, i.e., a semi-solid food and a liquid food. The model accounted for both adsorption and release of the analytes from SPME fiber, which occurred simultaneously but were counter-directed. The model had four parameters and their estimated values were found to be more reproducible than the direct measurement of the compounds themselves by instrumental analysis. With the relative standard deviations (RSD of each parameter less than 5% and root mean square error (RMSE less than 0.15, the model was proved to be a robust one in estimating the release of a wide range of low molecular weight acetates at three environmental temperatures i.e., 30, 40 and 60 °C. More insights of SPME behavior regarding the small molecule analytes were also obtained through the kinetic parameters and the model itself.

  10. Role of different types of solid models in hydrodynamic modeling and their effects on groundwater protection processes

    Science.gov (United States)

    Bódi, Erika; Buday, Tamás; McIntosh, Richard William

    2013-04-01

    Defining extraction-modified flow patterns with hydrodynamic models is a pivotal question in preserving groundwater resources regarding both quality and quantity. Modeling is the first step in groundwater protection the main result of which is the determination of the protective area depending on the amount of extracted water. Solid models have significant effects on hydrodynamic models as they are based on the solid models. Due to the legislative regulations, on protection areas certain restrictions must be applied which has firm consequences on economic activities. In Hungarian regulations there are no clear instructions for the establishment of either geological or hydrodynamic modeling, however, modeling itself is an obligation. Choosing the modeling method is a key consideration for further numerical calculations and it is decisive regarding the shape and size of the groundwater protection area. The geometry of hydrodynamic model layers is derived from the solid model. There are different geological approaches including lithological and sequence stratigraphic classifications furthermore in the case of regional models, formation-based hydrostratigraphic units are also applicable. Lithological classification is based on assigning and mapping of lithotypes. When the geometry (e.g. tectonic characteristics) of the research area is not known, horizontal bedding is assumed the probability of which can not be assessed based on only lithology. If the geological correlation is based on sequence stratigraphic studies, the cyclicity of sediment deposition is also considered. This method is more integrated thus numerous parameters (e.g. electrofacies) are taken into consideration studying the geological conditions ensuring more reliable modeling. Layers of sequence stratigraphic models can be either lithologically homogeneous or they may include greater cycles of sediments containing therefore several lithological units. The advantage of this is that the modeling can

  11. Programming models for energy-aware systems

    Science.gov (United States)

    Zhu, Haitao

    Energy efficiency is an important goal of modern computing, with direct impact on system operational cost, reliability, usability and environmental sustainability. This dissertation describes the design and implementation of two innovative programming languages for constructing energy-aware systems. First, it introduces ET, a strongly typed programming language to promote and facilitate energy-aware programming, with a novel type system design called Energy Types. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. Energy Types is designed to reason about energy phases and energy modes, bringing programmers into the optimization of energy management. Second, the dissertation develops Eco, an energy-aware programming language centering around sustainability. A sustainable program built from Eco is able to adaptively adjusts its own behaviors to stay on a given energy budget, avoiding both deficit that would lead to battery drain or CPU overheating, and surplus that could have been used to improve the quality of the program output. Sustainability is viewed as a form of supply and demand matching, and a sustainable program consistently maintains the equilibrium between supply and demand. ET is implemented as a prototyped compiler for smartphone programming on Android, and Eco is implemented as a minimal extension to Java. Programming practices and benchmarking experiments in these two new languages showed that ET can lead to significant energy savings for Android Apps and Eco can efficiently promote battery awareness and temperature awareness in real

  12. Engineering bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2014-01-01

    of the syngas predicted by the two models is equal to about 7%. The application to different types of biomass shows that the difference in the predictions increases as the carbon content grows. The phenomenological model, in fact, generally considers higher conversion rates of this element to volatiles......A comparison between two numerical models describing the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. Both models consider the incoming biomass as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed...... is treated as a 0D system, where the thermo-chemical processes are divided in two successive sections: drying and conversion. Phenomenological laws are written to characterize the syngas release as a function of the main governing parameters. The second model is an empirical 1D approach. Temperature, species...

  13. An overview of biosphere modelling for the assessment of solid waste disposal

    International Nuclear Information System (INIS)

    Smith, G.M.

    1990-01-01

    The purpose of this paper is to discuss the role of biosphere modelling in relation to the overall assessment of disposal of solid radioactive waste. Model structure and data requirements are strongly influenced by a number of basic factors. Firstly, the alternative forms of safety criteria and regulatory requirements imply different end-points for biosphere models. Secondly, alternative disposal concepts can influence the significance of the biosphere as a barrier or diluting/concentrating feature affecting exposure of man. Thirdly, the range of different possibilities for release to the biosphere, including releases following intrusion, is very extensive. The requirements and state of development of biosphere models are discussed in relation to these factors along with methods being adopted to provide some expression of confidence in model results. 37 refs

  14. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    International Nuclear Information System (INIS)

    Zhu Yinhai; Li Yanzhong; Cai Wenjian

    2011-01-01

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  15. Solid waste projection model: Database user's guide (Version 1.0)

    International Nuclear Information System (INIS)

    Carr, F.; Stiles, D.

    1991-01-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions, and does not provide instructions in the use of Paradox, the database management system in which the SWPM database is established. 3 figs., 1 tab

  16. Solid Waste Projection Model: Database user's guide (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for preparing to use Version 1.3 of the SWPM database, for entering and maintaining data, and for performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  17. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide

    DEFF Research Database (Denmark)

    Svagan, Anna Justina; Müllertz, Anette; Löbmann, Korbinian

    2017-01-01

    OBJECTIVES: This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS: Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension...... followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS: Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide...... form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared...

  18. Automation of program model developing for complex structure control objects

    International Nuclear Information System (INIS)

    Ivanov, A.P.; Sizova, T.B.; Mikhejkina, N.D.; Sankovskij, G.A.; Tyufyagin, A.N.

    1991-01-01

    A brief description of software for automated developing the models of integrating modular programming system, program module generator and program module library providing thermal-hydraulic calcualtion of process dynamics in power unit equipment components and on-line control system operation simulation is given. Technical recommendations for model development are based on experience in creation of concrete models of NPP power units. 8 refs., 1 tab., 4 figs

  19. Army Solid State Laser Program: Design, Operation, and Mission Analysis for a Heat-Capacity Laser

    International Nuclear Information System (INIS)

    Dane, C B; Flath, L; Rotter, M; Fochs, S; Brase, J; Bretney, K

    2001-01-01

    Solid-state lasers have held great promise for the generation of high-average-power, high-quality output beams for a number of decades. However, the inherent difficulty of scaling the active solid-state gain media while continuing to provide efficient cooling has limited demonstrated powers to 10X the diffraction limit. Challenges posed by optical distortions and depolarization arising from internal temperature gradients in the gain medium of a continuously cooled system are only increased for laser designs that would attempt to deliver the high average power in the form of high energy pulses (>25J) from a single coherent optical aperture. Although demonstrated phase-locking of multiple laser apertures may hold significant promise for the future scaling of solid-state laser systems,1 the continuing need for additional technical development and innovation coupled with the anticipated complexity of these systems effectively limits this approach for near-term multi-kW laser operation outside of a laboratory setting. We have developed and demonstrated a new operational mode for solid-state laser systems in which the cooling of the gain medium is separated in time from the lasing cycle. In ''heat-capacity'' operation, no cooling takes place during lasing. The gain medium is pumped very uniformly and the waste heat from the excitation process is stored in the solid-state gain medium. By depositing the heat on time scales that are short compared to thermal diffusion across the optical aperture, very high average power operation is possible while maintaining low optical distortions. After a lasing cycle, aggressive cooling can then take place in the absence of lasing, limited only by the fracture limit of the solid-state medium. This mode of operation is ideally suited for applications that require 1-30s engagements at very high average power. If necessary, multiple laser apertures can provide continuous operation. Land Combat mission analysis of a stressing air defense

  20. Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) is a dynamic, spatially-resolved, differential mass balance fate and transport modeling framework. WASP is used to develop models to simulate concentrations of environmental contaminants in surface waters and sediments. As a mo...

  1. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    , such as straightforward calibration, a high sample throughput, sufficient precision, suitable limits of detection, appropriate for monitoring studies concentration range and reduced risk of analyte loss and contamination. This approach allows comparatively simple and reliable evaluation of uncertainty of the results and the basic validation parameters and in a natural way provides traceability of the obtained results. A comparison between the proposed fast programs with solid standard calibration and the conventional ones with liquid standard calibration demonstrates advantages of the new methodology. It provides faster, accurate and unbiased results typically with significantly lower uncertainties. The potential of the HR CS AAS technique is demonstrated by direct analysis of marine sediments form the Caribbean region and various sediment CRMs within the frame of monitoring program for this region. - Highlights: • Analytical method based on solid sampling HR CS AAS for trace elements in marine sediments is presented. • Full validation process for “fit-for-purpose” analytical procedure is described. • Number of important validation parameters was systematically assessed. • Modeling and single laboratory validation approaches for measurement uncertainty are presented. • Demonstration of traceability of measurement results is also provided.

  2. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  3. Model for UV induced formation of gold nanoparticles in solid polymeric matrices

    Science.gov (United States)

    Sapogova, N.; Bityurin, N.

    2009-09-01

    UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.

  4. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste.

    Science.gov (United States)

    Soria, J; Gauthier, D; Falcoz, Q; Flamant, G; Mazza, G

    2013-03-15

    The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles' combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  6. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  7. Visual Teaching Model for Introducing Programming Languages

    Science.gov (United States)

    Shehane, Ronald; Sherman, Steven

    2014-01-01

    This study examines detailed usage of online training videos that were designed to address specific course problems that were encountered in an online computer programming course. The study presents the specifics of a programming course where training videos were used to provide students with a quick start path to learning a new programming…

  8. A Model Program for International Commerce Education.

    Science.gov (United States)

    Funston, Richard

    To address the economy's growing reliance on international business, San Diego State University has recently introduced a program in international commerce. The program was developed by packaging coursework in three existing areas: business administration, language training, and area studies. Although still in its infancy, the international…

  9. Communication Arts Curriculum: A Model Program. Revised.

    Science.gov (United States)

    Tamaqua Area School District, PA.

    This publication describes, in three sections, a high school Communication Arts Curriculum (CAC) program designed to further students' communication skills as they participate in student-centered learning activities in the fine arts, the practical arts, and the performing arts. "Program Operation" includes a course outline and inventories for…

  10. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    Zhang, W.; Croiset, E.; Douglas, P.L.; Fowler, M.W.; Entchev, E.

    2005-01-01

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlus TM , can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlus TM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlus TM functions and existing unit operation modules. The developed ''AspenPlus TM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (U f ), current density (I c ) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  11. Outdoor Program Models: Placing Cooperative Adventure and Adventure Education Models on the Continuum.

    Science.gov (United States)

    Guthrie, Steven P.

    In two articles on outdoor programming models, Watters distinguished four models on a continuum ranging from the common adventure model, with minimal organizational structure and leadership control, to the guide service model, in which leaders are autocratic and trips are highly structured. Club programs and instructional programs were in between,…

  12. Modelling a suitable location for Urban Solid Waste Management using AHP method and GIS -A geospatial approach and MCDM Model

    Science.gov (United States)

    Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.

    2016-12-01

    Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for

  13. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part II: scheme analysis and mechanism revelation.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong

    2017-03-01

    As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management

  14. Symbolic Game Semantics for Model Checking Program Families

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar

    2016-01-01

    represent program families with infinite integers as so-called (finite-state) featured symbolic automata. Specifically designed model checking algorithms are then employed to verify safety of all programs from a family at once and pinpoint those programs that are unsafe (respectively, safe). We present...... a prototype tool implementing this approach, and we illustrate it with several examples....

  15. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig

    2016-01-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...

  16. A new model for predicting moisture uptake by packaged solid pharmaceuticals.

    Science.gov (United States)

    Chen, Y; Li, Y

    2003-04-14

    A novel mathematical model has been developed for predicting moisture uptake by packaged solid pharmaceutical products during storage. High density polyethylene (HDPE) bottles containing the tablet products of two new chemical entities and desiccants are investigated. Permeability of the bottles is determined at different temperatures using steady-state data. Moisture sorption isotherms of the two model drug products and desiccants at the same temperatures are determined and expressed in polynomial equations. The isotherms are used for modeling the time-humidity profile in the container, which enables the prediction of the moisture content of individual component during storage. Predicted moisture contents agree well with real time stability data. The current model could serve as a guide during packaging selection for moisture protection, so as to reduce the cost and cycle time of screening study.

  17. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  18. Stochastic modeling of total suspended solids (TSS) in urban areas during rain events.

    Science.gov (United States)

    Rossi, Luca; Krejci, Vladimir; Rauch, Wolfgang; Kreikenbaum, Simon; Fankhauser, Rolf; Gujer, Willi

    2005-10-01

    The load of total suspended solids (TSS) is one of the most important parameters for evaluating wet-weather pollution in urban sanitation systems. In fact, pollutants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs), phosphorous and organic compounds are adsorbed onto these particles so that a high TSS load indicates the potential impact on the receiving waters. In this paper, a stochastic model is proposed to estimate the TSS load and its dynamics during rain events. Information on the various simulated processes was extracted from different studies of TSS in urban areas. The model thus predicts the probability of TSS loads arising from combined sewer overflows (CSOs) in combined sewer systems as well as from stormwater in separate sewer systems in addition to the amount of TSS retained in treatment devices in both sewer systems. The results of this TSS model illustrate the potential of the stochastic modeling approach for assessing environmental problems.

  19. Modelling of a combustion process for the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Rohyiza Ba'an Sivapalan Kathiravale Mohamad Puad Abu Muhd Noor Muhd Yunus

    2005-01-01

    Municipal Solid Waste (MSW) in Malaysia is increasing rapidly with increase in the population and economic growth. Landfill capacity required to accommodate the generated waste is anticipated to exceed 20,000 tons per day by year 2020. The current management system of solely depending on landfill disposal is inadequate and calls for a more environmentally friendly management system, which include the prospects of an eco park. To understand the combustion process, the development of mathematical model based on waste characteristic is required. Hence this paper will present the mathematical model developed to predict the mass and heat balance for MSW combustion process. This results of this mathematical model will be compared against the actual combustion of MSW in Thermal Oxidation Plant, so that the accuracy of the developed model can be determined accordingly. (Author)

  20. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Ni, Meng

    2013-01-01

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH 4 reforming by CO 2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO 2 and CH 4 mixture. The electrochemical oxidations of both CO and H 2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH 4 /CO 2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO 2 /CH 4 mixture is comparable to SOFC running on CH 4 /H 2 O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH 4 /CO 2 mixtures

  1. Analysis of National Solid Waste Recycling Programs and Development of Solid Waste Recycling Cost Functions: A Summary of the Literature (1999)

    Science.gov (United States)

    Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control

  2. 76 FR 68011 - Medicare Program; Advanced Payment Model

    Science.gov (United States)

    2011-11-02

    ...This notice announces the testing of the Advance Payment Model for certain accountable care organizations participating in the Medicare Shared Savings Program scheduled to begin in 2012, and provides information about the model and application process.

  3. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  4. Modeling Customer Behavior in Loyalty Programs

    OpenAIRE

    Taylor, Wayne

    2017-01-01

    Loyalty programs have exploded in popularity in recent decades. In the United States alone, membership has reached 1.3 billion (Ferguson and Hlavinka, 2007). In spite of their continued popularity, the effectiveness of these programs has been long debated in the literature, with mostly mixed results. Verhoef (2003) finds that the effects are positive but very small, DeWulf et al. (2001) finds no support for positive effects of direct mail, Shugan (2005) finds that firms gain short term revenu...

  5. Development and implementation of a construction environmental protection program at a solid radioactive waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Wong, T.S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Bishop, T. [Atomic Energy of Canada Limited, Saint John, New Brunswick (Canada); Hickman, C.N. [Point Lepreau Generating Station, Saint John, New Brunswick (Canada)

    2007-07-01

    Refurbishment of ageing nuclear stations has great economic and environmental benefits, including reduced greenhouse gas emissions. The Government of New Brunswick (NB) decided in 2005 to refurbish the Point Lepreau Generating Station with Atomic Energy of Canada Limited (AECL) as the general contractor. The project includes construction of additional radioactive waste management facilities. AECL developed, for the construction project, an environmental protection program to comply with commitments made during the environmental assessment process, and regulatory requirements. The program covers detailed environmental plans, training courses, and engagement of consultants to provide training and conduct monitoring of the construction activities. Construction related environmental effects have been successfully mitigated and the monitoring results indicate compliance with all environmental requirements. (author)

  6. Study of liquid phase formation kinetics due to solid/solid chemical interaction and its model. Application to the Zircaloy/Inconel

    International Nuclear Information System (INIS)

    Garcia, E.A.; Denis, A.

    1990-01-01

    A description is made of the chemical interaction between Inconel spacing grids and the Zircaloy of the sheaths. Experiments performed at 1000, 1100 and 1200 deg C with base Zircaloy and with a previously formed layer of ZrO 2 , show that the kinetics is parabolic. The difference between both types of experiments is that the oxide layer delays the initiation of the Inconel-Zry interaction. A model is presented, for the description of the solid/solid interaction, which leads to the formation of eutectic that is liquid at the experiment temperature. Also a model, which represents the oxide layer dissolution and predicts the instant in which it disappears completely, is presented. (Author) [es

  7. LEARNING CREATIVE WRITING MODEL BASED ON NEUROLINGUISTIC PROGRAMMING

    OpenAIRE

    Rustan, Edhy

    2017-01-01

    The objectives of the study are to determine: (1) condition on learning creative writing at high school students in Makassar, (2) requirement of learning model in creative writing, (3) program planning and design model in ideal creative writing, (4) feasibility of model study based on creative writing in neurolinguistic programming, and (5) the effectiveness of the learning model based on creative writing in neurolinguisticprogramming.The method of this research uses research development of L...

  8. Developing robotic behavior using a genetic programming model

    International Nuclear Information System (INIS)

    Pryor, R.J.

    1998-01-01

    This report describes the methodology for using a genetic programming model to develop tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles for surveillance and detection operations has become increasingly important in defense and humanitarian applications. Through an evolutionary process similar to that found in nature, the genetic programming model generates a computer program that when downloaded onto a robotic vehicle's on-board computer will guide the robot to successfully accomplish its task. Simulations of multiple robots engaged in problem-solving tasks have demonstrated cooperative behaviors. This report also discusses the behavior model produced by genetic programming and presents some results achieved during the study

  9. The ACR-program for automatic finite element model generation for part through cracks

    International Nuclear Information System (INIS)

    Leinonen, M.S.; Mikkola, T.P.J.

    1989-01-01

    The ACR-program (Automatic Finite Element Model Generation for Part Through Cracks) has been developed at the Technical Research Centre of Finland (VTT) for automatic finite element model generation for surface flaws using three dimensional solid elements. Circumferential or axial cracks can be generated on the inner or outer surface of a cylindrical or toroidal geometry. Several crack forms are available including the standard semi-elliptical surface crack. The program can be used in the development of automated systems for fracture mechanical analyses of structures. The tests for the accuracy of the FE-mesh have been started with two-dimensional models. The results indicate that the accuracy of the standard mesh is sufficient for practical analyses. Refinement of the standard mesh is needed in analyses with high load levels well over the limit load of the structure

  10. Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Soria, J. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina); Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Gauthier, D., E-mail: Daniel.Gauthier@promes.cnrs.fr [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Falcoz, Q.; Flamant, G. [Laboratoire Procédés, Matériaux et Energie Solaire (CNRS-PROMES), 7 Rue du Four Solaire, Odeillo, 66120 Font-Romeu (France); Mazza, G. [Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA, CONICET-UNCo) y Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén (Argentina)

    2013-03-15

    Highlights: ► A 2-D local CFD model for simulating the Cd vaporization process is presented. ► It includes a kinetic expression of Cd vaporization into the incineration process. ► Pyrolysis, volatiles’ combustion and residual carbon combustion are also taken into account. ► It fits very well the experimental results obtained on a lab-scale fluidized bed reported in literature. ► It also compares favorably with a model developed previously by the group. -- Abstract: The emissions of heavy metals during incineration of Municipal Solid Waste (MSW) are a major issue to health and the environment. It is then necessary to well quantify these emissions in order to accomplish an adequate control and prevent the heavy metals from leaving the stacks. In this study the kinetic behavior of Cadmium during Fluidized Bed Incineration (FBI) of artificial MSW pellets, for bed temperatures ranging from 923 to 1073 K, was modeled. FLUENT 12.1.4 was used as the modeling framework for the simulations and implemented together with a complete set of user-defined functions (UDFs). The CFD model combines the combustion of a single solid waste particle with heavy metal (HM) vaporization from the burning particle, and it takes also into account both pyrolysis and volatiles’ combustion. A kinetic rate law for the Cd release, derived from the CFD thermal analysis of the combusting particle, is proposed. The simulation results are compared with experimental data obtained in a lab-scale fluidized bed incinerator reported in literature, and with the predicted values from a particulate non-isothermal model, formerly developed by the authors. The comparison shows that the proposed CFD model represents very well the evolution of the HM release for the considered range of bed temperature.

  11. MINIMUM SOLID AREA MODELS FOR THE EFFECTIVE PROPERTIES OF POROUS MATERIALS - A REFUTATION

    Directory of Open Access Journals (Sweden)

    Willi Pabst

    2015-09-01

    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  12. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  13. Front tracking based modeling of the solid grain growth on the adaptive control volume grid

    Science.gov (United States)

    Seredyński, Mirosław; Łapka, Piotr

    2017-07-01

    The paper presents the micro-scale model of unconstrained solidification of the grain immersed in under-cooled liquid, based on the front tracking approach. For this length scale, the interface tracked through the domain is meant as the solid-liquid boundary. To prevent generation of huge meshes the energy transport equation is discretized on the adaptive control volume (c.v.) mesh. The coupling of dynamically changing mesh and moving front position is addressed. Preliminary results of simulation of a test case, the growth of single grain, are presented and discussed.

  14. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    Science.gov (United States)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  15. New Model to describe the interaction of slow neutrons with solid deuterium

    International Nuclear Information System (INIS)

    Granada, J.R

    2009-01-01

    A new scattering kernel to describe the interaction of slow neutrons with solid Deuterium was developed. The main characteristics of that system are contained in the formalism, including the lattice s density of states, the Young-Koppel quantum treatment of the rotations, and the internal molecular vibrations. The elastic processes involving coherent and incoherent contributions are fully described, as well as the spin-correlation effects. The results from the new model are compared with the best available experimental data, showing very good agreement. [es

  16. Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids

    Science.gov (United States)

    Faghihi, Niloufar; Provatas, Nikolas; Elder, K. R.; Grant, Martin; Karttunen, Mikko

    2013-09-01

    An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization. Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic limit.

  17. Letter: Modeling reactive shock waves in heterogeneous solids at the continuum level with stochastic differential equations

    Science.gov (United States)

    Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.

    2018-05-01

    A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.

  18. A Leadership Model for University Geology Department Teacher Inservice Programs.

    Science.gov (United States)

    Sheldon, Daniel S.; And Others

    1983-01-01

    Provides geology departments and science educators with a leadership model for developing earth science inservice programs. Model emphasizes cooperation/coordination among departments, science educators, and curriculum specialists at local/intermediate/state levels. Includes rationale for inservice programs and geology department involvement in…

  19. Process of a cyclotron modeling with SNOP program

    International Nuclear Information System (INIS)

    Smirnov, V.L.

    2015-01-01

    The description of the SNOP program developed in JINR and intended for numerical modeling of a beam dynamics in accelerating setups of cyclotron type is presented. The main methods of work with program components, and also stages of numerical modeling of a cyclotron, the analysis of the main characteristics of the accelerated bunch by means of the SNOP are given. The explanation of some algorithms and procedures used in the program is given. [ru

  20. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    Science.gov (United States)

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    Science.gov (United States)

    Rest, J.

    1989-12-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solids depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism.

  2. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    International Nuclear Information System (INIS)

    Rest, J.

    1989-01-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solid depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism. (orig.)

  3. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  4. AN INTEGER PROGRAMMING MODEL FOR HIERARCHICAL WORKFORCE

    Directory of Open Access Journals (Sweden)

    BANU SUNGUR

    2013-06-01

    Full Text Available The model presented in this paper is based on the model developed by Billionnet for the hierarchical workforce problem. In Billionnet’s Model, while determining the workers’ weekly costs, weekly working hours of workers are not taken into consideration. In our model, the weekly costs per worker are reduced in proportion to the working hours per week. Our model is illustrated on the Billionnet’s Example. The models in question are compared and evaluated on the basis of the results obtained from the example problem. A reduction is achieved in the total cost by the proposed model.

  5. Solid waste management based on cost-benefit analysis using the WAMED model

    Energy Technology Data Exchange (ETDEWEB)

    Mutavchi, Viacheslav

    2012-11-01

    Efficient waste management enables the protection of human health, reducing environmental pollution, saving of natural resources, and achieving sustainable and profitable management of energy. In many countries, the general guidelines for waste management are set by national or local waste management plans. Various models provide local authorities with decision-making tools in planning long-term waste management scenarios. This study aims at providing a special model framework for the evaluation of ecological-economic efficiency (ECO-EE) of waste management. This will serve as an information support tool for decision making by actors of a solid waste management (SWM) scheme, primarily at the municipal and regional levels. The objective of this study is to apply the waste management's efficient decision (WAMED) model along with the company statistical business tool for environmental recovery indicator (COSTBUSTER) model to SWM and municipal solid waste (MSW) schemes in general in order to evaluate and improve their ECO-EE. COSTBUSTER is a mathematical indicator for the size and extent of implementation costs of a certain SWM scheme, compared with the total size of the average financial budget of a SWM actor of a certain kind. In particular, WAMED is proposed for evaluating the suitability to invest in baling technology. Baling of solid waste is an emerging technology which is extensively used worldwide to temporarily store waste for either incineration or recovery of raw materials. The model for efficient use of resources for optimal production economy (the EUROPE model) is for the first time applied to emissions from baling facilities. It has been analysed how cost-benefit analysis (CBA) and full cost accounting (FCA) can facilitate environmental optimisation of SWM schemes. The effort in this work represents a continuation of such ambitions as an enlargement of the research area of CBAbased modelling within SWM. In the thesis, certain theoretical and economic

  6. Strategic Factors of Household Solid Waste Segregation at Source Program, Awareness and Participation of Citizens of the 3 Municipality District of Tehran

    Directory of Open Access Journals (Sweden)

    Qasem Ghanbari

    2016-03-01

    Full Text Available Background and Objective: Solving the problems caused by household solid waste and its management without the continuous cooperation of the citizens as the main producers of household solid waste is impossible. The aims of this study were to define strategic factors of Household Solid Waste Segregation at Source Program and the level of awareness and participation of citizens in the program.Materials and Methods: In this cross-sectional study we interviewed 640 citizens of the 3 Municipality District of Tehran. Internal Factor Evaluation and External Factor Evaluation matrices were used to assess the strategic factors of the program.Results: Of 640 participants, 517 (80.8% were aware of the program, and 383 (59.9% participated in the program. Among participants 628 (98.1% were well-informed about the correlation between implementation of the program and environmental health promotion. People between 35 to 45 years showed the most participation rate.Conclusion: This study showed that citizens showed acceptable awareness of the program and evaluation of internal and external factors indicated high potential to increase public participation in the program.

  7. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Science.gov (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  8. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  9. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo

    2009-01-01

    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  10. Kinematic Modelling and Simulation of a 2-R Robot Using SolidWorks and Verification by MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Mahmoud Gouasmi

    2012-12-01

    Full Text Available The simulation of robot systems is becoming very popular, especially with the lowering of the cost of computers, and it can be used for layout evaluation, feasibility studies, presentations with animation and off-line programming. The trajectory planning of redundant manipulators is a very active area since many tasks require special characteristics to be satisfied. The importance of redundant manipulators has increased over the last two decades because of the possibility of avoiding singularities as well as obstacles within the course of motion. The angle that the last link of a 2 DOF manipulator makes with the x-axis is required in order to find the solution for the inverse kinematics problem. This angle could be optimized with respect to a given specified key factor (time, velocity, torques while the end-effector performs a chosen trajectory (i.e., avoiding an obstacle in the task space. Modeling and simulation of robots could be achieved using either of the following models: the geometrical model (positions, postures, the kinematic model and the dynamic model. To do so, the modelization of a 2-R robot type is implemented. Our main tasks are comparing two robot postures with the same trajectory (path and for the same length of time, and establishing a computing code to obtain the kinematic and dynamic parameters. SolidWorks and MATLAB/Simulink softwares are used to check the theory and the robot motion simulation. This could be easily generalized to a 3-R robot and possibly therefore to any serial robot (Scara, Puma, etc.. The verification of the obtained results by both softwares allows us to qualitatively evaluate and underline the validityof the chosen model and obtain the right conclusions. The results of the simulations are discussed and an agreement between the two softwares is certainly obtained.

  11. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    Science.gov (United States)

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  12. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department ' ' Radiation Protection and Health' ' , Oberschleissheim (Germany); University of Zurich, Medical Physics Group, Institute of Physics, Zurich (Switzerland); Zhang, Wei [Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford (United Kingdom)

    2016-03-15

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and

  13. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    International Nuclear Information System (INIS)

    Walsh, Linda; Zhang, Wei

    2016-01-01

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model

  14. Strategic environmental assessment policy integration model for solid waste management in Malaysia

    International Nuclear Information System (INIS)

    Victor, Dennis; Agamuthu, P.

    2013-01-01

    Highlights: • We identified policy drivers of SEA in solid waste policy planning. • The SEA primary policy drivers are benefits, barriers and enablers need. • The SEA sub-drivers are environmental attitude and environmental awareness. • Optimal SEA policy integration requires public participation and capacity building. • SEA integration should be a long-term sustainable policy strategy for SWM. -- Abstract: This paper examines the strategic environmental assessment (SEA) systemic policy drivers for solid waste management (SWM) policies, plans and programmes (PPP) in Malaysia. Solid waste generation in Malaysia has been increasing drastically from 9.0 million tonnes in 2000 to an expected 15.6 million tonnes in 2020. This projected rate of solid waste generation is expected to burden the country's environmental and water quality resources. The key problem the study frames is the lack of environmental integration in the SWM process which is only conducted during the environmental impact assessments (EIA) stage of SWM facilities. The purpose of this study is to expand the SEA subject knowledge by validating a behaviour based theoretical framework and identifying key policy drivers that influence the integration of SEA in SWM policy planning. The study methodology utilized a confirmatory covariance based structural equation modelling approach to validate the proposed theoretical model based on the policy makers/implementers interview questionnaire data collection. The study findings indicate five latent SEA policy drivers which were named policy knowledge, environmental attitude, perceived benefits, perceived barriers and perceived enablers. The study has conceptualized and tested a SEA policy model which indicates that SEA integration behaviour is influenced directly by three main drivers (perception of benefits, perception of barriers and perception of enablers) and influenced indirectly by two sub-drivers environmental attitude and environmental knowledge

  15. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  16. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods.

    Science.gov (United States)

    Fleming, Erin E; Ziegler, Gregory R; Hayes, John E

    2016-09-01

    Salivary protein difference value (SP D-value) is a quantitative measure of salivary protein replenishment, which reportedly relates to individual differences in perceived astringency. This in vitro measure is calculated as the difference in total salivary protein before (S1) and after (S2) stimulation with tannic acid, with a greater absolute value (S2-S1) indicating less protein replenishment. Others report that this measure predicts perceived astringency and liking of liquid model systems and beverages containing added polyphenols. Whether this relationship generalizes to astringent compounds other than polyphenols, or to solid foods is unknown. Here, the associations between SP D-values and perceived astringency and overall liking/disliking for alum and tannic acid (experiment 1) as well as solid chocolate-flavored compound coating with added tannic acid or grape seed extract (GSE) (experiment 2) were examined. In both experiments, participants (n=84 and 81, respectively) indicated perceived intensity of astringency, bitterness, sweetness, and sourness, and degree of liking of either aqueous solutions, or solid chocolate-flavored compound coating with added astringents. Data were analyzed via linear regression, and as discrete groups for comparison to prior work. Three discrete groups were formed based on first and third quartile splits of the SP D-value distribution: low (LR), medium (MR), and high responding (HR) individuals. In experiment 1, significantly higher mean astringency ratings were observed for the HR as compared to the LR/MR groups for alum and tannic acid, confirming and extending prior work. In experiment 2, significantly higher mean astringency ratings were also observed for HR as compared to LR groups in solid chocolate-flavored compound containing added tannic acid or GSE. Significant differences in liking were found between HR and LR groups for alum and tannic acid in water, but no significant differences in liking were observed for

  17. Application of mathematical modelling when determining the parameters effect of biomass densification process on solid biofuels quality

    Directory of Open Access Journals (Sweden)

    Križan Peter

    2018-01-01

    Full Text Available The main aim of this paper is to present the design of experiment (DOE and evaluation methodology for this experimental plan in order to determine the parameters effect of biomass densification process on final solid biofuels quality. One of the recovery possibilities for waste biomass raw materials is production of solid biofuels. Using a variety combination of influencing variables can be improve the final quality of solid biofuels. Raw biomass material variables influence, especially (type of raw material, particle size, moisture content, compression pressure and compression temperature can be recognized during the production of solid biofuels. Their effect can be seen through the quality indicators; especially mentioned variables significantly influence the mechanical quality indicators of solid biofuels. In this experimental research authors would like to investigate properties and behaviour of wood raw waste biomass during densification. This contribution discusses the analysis and design of experimental process, its individual steps and their subsequent DOE leading to the development of a mathematical model that will describe this process. This paper also presents the research findings regarding the effect of influencing variables on final density of solid biofuels during densification. Aim of the experimental process is to determine the mutual interaction between solid biofuels density and influencing variables during densification. Effect of compression pressure, compression temperature, moisture content and particle size on solid biofuels density from wood sawdust was determined.

  18. Building Program Models Incrementally from Informal Descriptions.

    Science.gov (United States)

    1979-10-01

    specified at each step. Since the user controls the interaction, the user may determine the order in which information flows into PMB. Information is received...until only ten years ago the term aautomatic programming" referred to the development of the assemblers, macro expanders, and compilers for these

  19. Recent upgrading of the modelling program COMFORT

    International Nuclear Information System (INIS)

    Hawkes, C.; Lee, M.

    1986-01-01

    The computer code COMFORT, developed for the online control of machine functions at the SLC, has recently undergone several modifications to overcome some of its limitations. This note describes the reasons for these changes, the methods employed, some test results and the applications of the new version of the program

  20. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  1. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes

    International Nuclear Information System (INIS)

    Ionescu, Gabriela; Rada, Elena Cristina; Ragazzi, Marco; Mărculescu, Cosmin; Badea, Adrian; Apostol, Tiberiu

    2013-01-01

    Highlights: • Appropriate solution for MSW management in new and future EU countries. • Decrease of landfill disposal applying an Integrated MSW approach. • Technological impediments and environmental assessment. - Abstract: In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities

  2. Modelling and optimization of semi-solid processing of 7075 Al alloy

    Science.gov (United States)

    Binesh, B.; Aghaie-Khafri, M.

    2017-09-01

    The new modified strain-induced melt activation (SIMA) process presented by Binesh and Aghaie-Khafri was optimized using a response surface methodology to improve the thixotropic characteristics of semi-solid 7075 alloy. The responses, namely the average grain size and the shape factor, were considered as functions of three independent input variables: effective strain, isothermal holding temperature and time. Mathematical models for the responses were developed using the regression analysis technique, and the adequacy of the models was validated by the analysis of variance method. The calculated results correlated fairly well with the experiments. It was found that all the first- and second-order terms of the independent parameters and the interactive terms of the effective strain and holding time were statistically significant for the responses. In order to simultaneously optimize the responses, the desirable values for the effective strain, holding temperature and time were predicted to be 5.1, 609 °C and 14 min, respectively, when employing the desirability function approach. Based on the optimization results, a significant improvement in the average grain size and shape factor of the semi-solid slurry prepared by the new modified SIMA process was observed.

  3. Modeling Replenishment of Ultrathin Liquid Perfluoro polyether Z Films on Solid Surfaces Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Mayeed, M.S.; Kato, T.

    2014-01-01

    Applying the reptation algorithm to a simplified perfluoro polyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nano scale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights) between two films of perfluoro polyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999), with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.

  4. Kinetic modeling of solid-state partitioning phase transformation with simultaneous misfit accommodation

    International Nuclear Information System (INIS)

    Song, Shaojie; Liu, Feng

    2016-01-01

    Considering a spherical misfitting precipitate growing into a finite elastic-perfectly plastic supersaturated matrix, a kinetic modeling for such solid-state partitioning phase transformation is presented, where the interactions of interface migration, solute diffusion and misfit accommodation are analyzed. The linkage between interface migration and solute diffusion proceeds through interfacial composition and interface velocity; their effects on misfit accommodation are mainly manifested in an effective transformation strain, which depends on instantaneous composition field and precipitate size. Taking γ to α transformation of a binary Fe-0.5 at.% C alloy under both isothermal and continuous cooling conditions as examples, the effects of misfit accommodation on the coupling interface migration and solute diffusion are well evaluated and discussed. For the isothermal transformation, a counterbalancing influence between mechanical and chemical driving forces is found so that the mixed-mode transformation kinetics is not sensitive with respect to the elastic–plastic accommodation of the effective misfit strain. Different from the isothermal process, during the continuous cooling condition, the effects of misfit accommodation on the kinetics of solid-state partitioning phase transformation are mainly manifested in the great decrease of the transformation starting temperature and the thermodynamic equilibrium composition. The present kinetic modeling was applied to predict the experimentally measured γ/α transformation of Fe-0.47 at.% C alloy conducted with a cooling rate of 10 K min −1 and a good agreement was achieved.

  5. A novel sustainable decision making model for municipal solid waste management

    International Nuclear Information System (INIS)

    Hung, M.-L.; Ma Hwongwen; Yang, W.-F.

    2007-01-01

    This paper reviews several models developed to support decision making in municipal solid waste management (MSWM). The concepts underlying sustainable MSWM models can be divided into two categories: one incorporates social factors into decision making methods, and the other includes public participation in the decision-making process. The public is only apprised or takes part in discussion, and has little effect on decision making in most research efforts. Few studies have considered public participation in the decision-making process, and the methods have sought to strike a compromise between concerned criteria, not between stakeholders. However, the source of the conflict arises from the stakeholders' complex web of value. Such conflict affects the feasibility of implementing any decision. The purpose of this study is to develop a sustainable decision making model for MSWM to overcome these shortcomings. The proposed model combines multicriteria decision making (MCDM) and a consensus analysis model (CAM). The CAM is built up to aid in decision-making when MCDM methods are utilized and, subsequently, a novel sustainable decision making model for MSWM is developed. The main feature of CAM is the assessment of the degree of consensus between stakeholders for particular alternatives. A case study for food waste management in Taiwan is presented to demonstrate the practicality of this model

  6. Mathematical micro-model of a solid oxide fuel cell composite cathode

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2004-01-01

    In a solid oxide fuel cell (SOFC), the cathode processes account for a majority of the overall electrochemical losses. A composite cathode comprising a mixture of ion-conducting electrolyte and electron-conducting electro-catalyst can help minimize cathode losses provided microstructural parameters such as particle-size, composition, and porosity are optimized. The cost of composite cathode research can be greatly reduced by incorporating mathematical models into the development cycle. Incorporated with reliable experimental data, it is possible to conduct a parametric study using a model and the predicted results can be used as guides for component design. Many electrode models treat the cathode process simplistically by considering only the charge-transfer reaction for low overpotentials or the gas-diffusion at high overpotentials. Further, in these models an average property of the cathode internal microstructure is assumed. This paper will outline the development of a 1-dimensional SOFC composite cathode micro-model and the experimental procedures for obtaining accurate parameter estimates. The micro-model considers the details of the cathode microstructure such as porosity, composition and particle-size of the ionic and electronic phases, and their interrelationship to the charge-transfer reaction and mass transport processes. The micro-model will be validated against experimental data to determine its usefulness for performance prediction. (author)

  7. An incentive-based source separation model for sustainable municipal solid waste management in China.

    Science.gov (United States)

    Xu, Wanying; Zhou, Chuanbin; Lan, Yajun; Jin, Jiasheng; Cao, Aixin

    2015-05-01

    Municipal solid waste (MSW) management (MSWM) is most important and challenging in large urban communities. Sound community-based waste management systems normally include waste reduction and material recycling elements, often entailing the separation of recyclable materials by the residents. To increase the efficiency of source separation and recycling, an incentive-based source separation model was designed and this model was tested in 76 households in Guiyang, a city of almost three million people in southwest China. This model embraced the concepts of rewarding households for sorting organic waste, government funds for waste reduction, and introducing small recycling enterprises for promoting source separation. Results show that after one year of operation, the waste reduction rate was 87.3%, and the comprehensive net benefit under the incentive-based source separation model increased by 18.3 CNY tonne(-1) (2.4 Euros tonne(-1)), compared to that under the normal model. The stakeholder analysis (SA) shows that the centralized MSW disposal enterprises had minimum interest and may oppose the start-up of a new recycling system, while small recycling enterprises had a primary interest in promoting the incentive-based source separation model, but they had the least ability to make any change to the current recycling system. The strategies for promoting this incentive-based source separation model are also discussed in this study. © The Author(s) 2015.

  8. Statistical and Machine Learning Models to Predict Programming Performance

    OpenAIRE

    Bergin, Susan

    2006-01-01

    This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...

  9. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  10. Development and Implementation of a Program Management Maturity Model

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Laura; Smith, Matt

    2008-12-15

    In 2006, Honeywell Federal Manufacturing & Technologies (FM&T) announced an updatedvision statement for the organization. The vision is “To be the most admired team within the NNSA [National Nuclear Security Administration] for our relentless drive to convert ideas into the highest quality products and services for National Security by applying the right technology, outstanding program management and best commercial practices.” The challenge to provide outstanding program management was taken up by the Program Management division and the Program Integration Office (PIO) of the company. This article describes how Honeywell developed and deployed a program management maturity model to drive toward excellence.

  11. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON M5S 3G8 (Canada)

    2008-01-21

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes. (author)

  12. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    Science.gov (United States)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  13. Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2014-01-01

    An analytical, 1-dimensional impedance model for a composite solid oxide fuel cell cathode is derived. It includes geometrical parameters of the cathode, e.g., the internal surface area and the electrode thickness, and also material parameters, e.g., the surface reaction rate and the vacancy...... diffusion coefficient. The model is successfully applied to a total of 42 impedance spectra, obtained in the temperature range 555°C–852°C and in the oxygen partial pressure range 0.028 atm–1.00 atm for a cathode consisting of a 50/50 wt% mixture of (La0.6Sr0.4)0.99CoO3 − δ and Ce0.9Gd0.1O1.95 − δ...... and providing both qualitative and quantitative information on the evolution of the impedance spectra of cathodes with changing parameters....

  14. Model of a liquid droplet impinging on a high-temperature solid surface

    International Nuclear Information System (INIS)

    Gulikov, A.V.; Berlin, I.I.; Karpyshev, A.V.

    2004-01-01

    The model of the collision of the liquid droplet, vertically falling on the heated solid surface, is presented. The wall temperature is predeterminated so that the droplet interaction with the wall proceeds through the gas interlayer (T≥400 Deg C). The droplet liquid is incompressible, nonviscous. The droplet surface is assigned as free one. The pressure is composed of two components. The first component is the surface tension. The record component is the steam pressure between the droplet and the wall. The liquid motion inside the droplet is assumed to be potential, axisymmetric. The calculation of the droplet collision are carried out with application of the above model. The obtained results are compared with the data of other authors [ru

  15. Models of municipal solid waste generation and collection costs applicable to all municipalities in Thailand

    Directory of Open Access Journals (Sweden)

    Chira Bureecam

    2015-08-01

    Full Text Available The aim of this paper is to identify and measure the variables which influence municipal solid waste (MSW generation and collection costs in Thai municipality. The empirical analysis is based on the information derived from a survey conducted in a sample size of 570 municipalities across the country. The results from the MSW generation model indicate that the population density, the household size and the size of municipality are the significant determinant of waste generation. Meanwhile, with regards to the MSW collection cost model, the results showed some existence of positive in the volume of MSW collected, population density, the distance between the center of municipality to the disposal site the hazardous sorting and the size of municipality whereas, there were no evidence of the frequency of collection and the ratio of recycled material to waste generation on cost.

  16. Modeling of solid oxide fuel cells with particle size and porosity grading in anode electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Flesner, R.; Kim, G.Y.; Chandra, A. [Department of Mechanical Engineering, Iowa State University, Ames, Iowa (United States)

    2012-02-15

    Solid oxide fuel cells (SOFCs) have the potential to meet the critical energy needs of our modern civilization and minimize the adverse environmental impacts from excessive energy consumption. They are highly efficient, clean, and can run on variety of fuel gases. However, little investigative focus has been put on optimal power output based on electrode microstructure. In this work, a complete electrode polarization model of SOFCs has been developed and utilized to analyze the performance of functionally graded anode with different particle size and porosity profiles. The model helps to understand the implications of varying the electrode microstructure from the polarization standpoint. The work identified conditions when grading can improve the cell performance and showed that grading is not always beneficial or necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  18. Numerical modeling of normal turbulent plane jet impingement on solid wall

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.Y.; Maxwell, W.H.C.

    1984-10-01

    Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.

  19. Activities at the Institute of Materials and Solid State Research of the Karlsruhe Nuclear Research Centre in the field of fuel pin modelling

    International Nuclear Information System (INIS)

    Elbel, H.

    1979-01-01

    Fuel pin modelling has been pursued at the Institute of Materials and Solid State Research (IMF) of the Karlsruhe Nuclear Research Centre (KfK) with the main objective to provide a detailed quantitative analysis of the fuel pin behaviour in a LMFBR under normal and off-normal operation conditions. The computer programs and models developed at the IMF serve the purpose to aid effectively in the development of an optimized fuel pin concept for a LMFBR. What extent of clad deformation can be tolerated without running into clad failure? What is the influence of neutron dose, temperature, corrosion attack, arid cyclic forces on the state of the clad? What may be the reasons for clad failure? In answering these questions computer programs can play an important role. The activities at the IMF in the field of fuel pin modelling cover the following topics: development of computer programs and models; validation of these programs and models, application to the design of fuel pins for irradiation experiments; assistance in the evaluation of operation data and post- irradiation results, and parametric studies on the influence of design parameters, operation conditions and certain material phenomena on the in-pile behaviour of the fuel pin

  20. Implementation of inpatient models of pharmacogenetics programs.

    Science.gov (United States)

    Cavallari, Larisa H; Lee, Craig R; Duarte, Julio D; Nutescu, Edith A; Weitzel, Kristin W; Stouffer, George A; Johnson, Julie A

    2016-12-01

    The operational elements essential for establishing an inpatient pharmacogenetic service are reviewed, and the role of the pharmacist in the provision of genotype-guided drug therapy in pharmacogenetics programs at three institutions is highlighted. Pharmacists are well positioned to assume important roles in facilitating the clinical use of genetic information to optimize drug therapy given their expertise in clinical pharmacology and therapeutics. Pharmacists have assumed important roles in implementing inpatient pharmacogenetics programs. This includes programs designed to incorporate genetic test results to optimize antiplatelet drug selection after percutaneous coronary intervention and personalize warfarin dosing. Pharmacist involvement occurs on many levels, including championing and leading pharmacogenetics implementation efforts, establishing clinical processes to support genotype-guided therapy, assisting the clinical staff with interpreting genetic test results and applying them to prescribing decisions, and educating other healthcare providers and patients on genomic medicine. The three inpatient pharmacogenetics programs described use reactive versus preemptive genotyping, the most feasible approach under the current third-party payment structure. All three sites also follow Clinical Pharmacogenetics Implementation Consortium guidelines for drug therapy recommendations based on genetic test results. With the clinical emergence of pharmacogenetics into the inpatient setting, it is important that pharmacists caring for hospitalized patients are well prepared to serve as experts in interpreting and applying genetic test results to guide drug therapy decisions. Since genetic test results may not be available until after patient discharge, pharmacists practicing in the ambulatory care setting should also be prepared to assist with genotype-guided drug therapy as part of transitions in care. Copyright © 2016 by the American Society of Health

  1. Service systems concepts, modeling, and programming

    CERN Document Server

    Cardoso, Jorge; Poels, Geert

    2014-01-01

    This SpringerBrief explores the internal workings of service systems. The authors propose a lightweight semantic model for an effective representation to capture the essence of service systems. Key topics include modeling frameworks, service descriptions and linked data, creating service instances, tool support, and applications in enterprises.Previous books on service system modeling and various streams of scientific developments used an external perspective to describe how systems can be integrated. This brief introduces the concept of white-box service system modeling as an approach to mo

  2. Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash.

    Science.gov (United States)

    Wang, Lei; Chen, Qi; Jamro, Imtiaz Ali; Li, Rundong; Li, Yanlong; Li, Shaobai; Luan, Jingde

    2016-06-01

    Municipal solid waste incinerator (MSWI) fly ashes are characterized by high calcium oxide (CaO) content. Carbon dioxide (CO2) adsorption by MSWI fly ash was discussed based on thermogravimetry (TG)/differential thermal analysis (DTA), minerology analysis, and adapting the Stenoir equation. TG/DTA analysis showed that the weight gain of the fly ash below 440 °C was as high as 5.70 %. An adapted Stenoir equation for MSWI fly ash was discussed. The chloride in MSWI fly ash has a major impact on CO2 adsorption by MSWI fly ash or air pollution control (APC) residues. Geochemical modeling of the critical trace elements copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), and antimony (Sb) before and after carbonation was performed using a thermodynamic equilibrium model for solubility and a surface complexation model for metal sorption. Leaching of critical trace elements was generally found to be strongly dependent on the degree of carbonation attained, and their solubility appeared to be controlled by several minerals. Adsorption on ferrum (Fe) and aluminum (Al) colloids was also responsible for removal of the trace elements Cd, Pb, and Sb. We used Hakanson's potential ecological risk index (HPERI) to evaluate the risk of trace element leaching in general. The results demonstrate that the ecological risk showed a V-shaped dependency on pH; the optimum pH of the carbonated fly ash was found to be 10.3-11, resulting from the optimum carbonation (liquid-to-solid (L/S) ratio = 0.25, carbonation duration = ∼30-48 h). The dataset and modeling results presented here provide a contribution to assessing the leaching behavior of MSWI fly ash under a wide range of conditions.

  3. Modification of an environmental surveillance program to monitor PCDD/Fs and metals around a municipal solid waste incinerator.

    Science.gov (United States)

    Vilavert, Lolita; Nadal, Martí; Mari, Montse; Schuhmacher, Marta; Domingo, José L

    2009-11-01

    Since the mid-90s, an environmental surveillance program has been on-going to provide information on the levels of PCDD/Fs and various metals in soil and vegetation samples collected in the vicinity of a municipal solid waste incinerator (MSWI) in Tarragona (Catalonia, Spain). However, the presence of other potential sources of pollution in the zone, such as traffic, forest fires, local industries, etc., makes hard to determine the impact concerning the MSWI. Therefore, in 2007 a change in the monitoring program was implemented by collecting additional ambient air samples through active and passive sampling devices. Mean PCDD/F levels in herbage and soil were 0.10 ng I-TEQ/kg dry weight (range: 0.05-0.17 ng I-TEQ/kg dw) and 0.64 ng I-TEQ/kg dw (range: 0.13-2.41 ng I-TEQ/kg dw), respectively. A significant reduction of the PCDD/F concentration in both monitors was observed with respect to our previous surveys. Air mean concentrations of PCDD/Fs were 12.04 and 15.21 fg WHO-TEQ/m(3) in 2007 and 2008, respectively, meaning a non-significant increase of 26%. In addition, a generalized increase of environmental metal levels with respect to our baseline study was not observed. The current concentrations of PCDD/Fs and metals in the vicinity of the MSWI of Tarragona are relatively low in comparison with other areas under the influence of emissions from waste incinerators. This indicates that the environmental impact of the MSWI of Tarragona is not significant. Moreover, the modification of the surveillance program has proven to be successful.

  4. Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems.

    Science.gov (United States)

    Sugai-Guérios, Maura Harumi; Balmant, Wellington; Furigo, Agenor; Krieger, Nadia; Mitchell, David Alexander

    2015-01-01

    Solid-state fermentation (SSF) with filamentous fungi is a promising technique for the production of a range of biotechnological products and has the potential to play an important role in future biorefineries. The performance of such processes is intimately linked with the mycelial mode of growth of these fungi: Not only is the production of extracellular enzymes related to morphological characteristics, but also the mycelium can affect bed properties and, consequently, the efficiency of heat and mass transfer within the bed. A mathematical model that describes the development of the fungal mycelium in SSF systems at the particle scale would be a useful tool for investigating these phenomena, but, as yet, a sufficiently complete model has not been proposed. This review presents the biological and mass transfer phenomena that should be included in such a model and then evaluates how these phenomena have been modeled previously in the SSF and related literature. We conclude that a discrete lattice-based model that uses differential equations to describe the mass balances of the components within the system would be most appropriate and that mathematical expressions for describing the individual phenomena are available in the literature. It remains for these phenomena to be integrated into a complete model describing the development of fungal mycelia in SSF systems.

  5. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  6. Application of dispersion and dose assessment models to the solid and liquid wastes facilities of Ezeiza radioactive waste management area

    International Nuclear Information System (INIS)

    Amado, Valeria A.; Lopez, Fabio O.

    2007-01-01

    This paper provides a dose assessment of the critic group from the near surface facility for solid and liquid waste, located at Ezeiza Atomic Center in Argentina (Ezeiza Radioactive Waste Management Area-AGE). The calculations were made using several approaches about source term. The activities for each radionuclide and facility were taken from the National Atomic Energy Commission's Inventory that corresponds to the first trimester of 2005. The radioactive decay of each radionuclide was considered. The work was performed in two steps. In the first step, using the Nuclide Dispersion in Phreatic Aquifer Model (DRAF), the dispersion of the contaminants into the phreatic aquifer until the discharge point at a superficial water course was considered. In the second step, the Consequences of Releases to the Environment Assessment Methodology Program (PC CREAM) was used for the study of radionuclides dispersion in superficial water course and dose calculations. The results from this paper show that, for every studied radionuclide, the doses involved are significantly lower than the values established by current regulations. On the other hand, those results put in evidence the utility of simple models in estimating the order of magnitude of expected concentrations and doses. It is important to highlight that the obtained results can be used only in the context of the suppositions that were made. (author) [es

  7. Modeling the performance of the anaerobic phased solids digester system for biogas energy production

    International Nuclear Information System (INIS)

    Rapport, Joshua L.; Zhang, Ruihong; Jenkins, Bryan M.; Hartsough, Bruce R.; Tomich, Thomas P.

    2011-01-01

    A process model was developed to predict the mass and energy balance for a full-scale (115 t d -1 ) high-solids anaerobic digester using research data from lab and pilot scale (1-3000 kg d -1 wet waste) systems. Costs and revenues were estimated in consultation with industry partners and the 20-year project cash flow, net present worth (NPW), simple payback, internal rate of return, and revenue requirements were calculated. The NPW was used to compare scenarios in order to determine the financial viability of using a generator for heat and electricity or a pressure swing adsorption unit for converting biogas to compressed natural gas (CNG). The full-scale digester consisted of five 786 m 3 reactors (one biogasification reactor and four hydrolysis reactors) treating a 50:50 mix (volatile solids basis) of food and green waste, of which 17% became biogas, 32% residual solids, and 51% wastewater. The NPW of the projects were similar whether producing electricity or CNG, as long as the parasitic energy demand was satisfied with the biogas produced. When producing electricity only, the power output was 1.2 MW, 7% of which was consumed parasitically. When producing CNG, the system produced 2 hm 3 y -1 natural gas after converting 22% of the biogas to heat and electricity which supplied the parasitic energy demand. The digester system was financially viable whether producing electricity or CNG for discount rates of up to 13% y -1 without considering debt (all capital was considered equity), heat sales, feed-in tariffs or tax credits.

  8. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    Science.gov (United States)

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  9. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, V.

    2007-07-01

    This dissertation layes out detailed descriptions for heterogeneous chemistry, electrochemistry, and porous media transport models to simulate solid oxide fuel cells (SOFCs). An elementary like heterogeneous reaction mechanism for the steam reforming of CH4 developed in our research group is used throughout this work. Based on assumption of hydrogen oxidation as the only electrochemical reaction and single step electron transfer reaction as rate limiting, a modified Butler-Volmer equation is used to model the electrochemistry. The pertinence of various porous media transport models such as Modified Fick Model (MFM), Dusty Gas Model (DGM), Mean Transport Pore Model, Modified Maxwell Stefan Model, and Generalized Maxwell Stefan Model under reaction conditions are studied. In general MFM and DGM predictions are in good agreement with experimental data. Physically realistic electrochemical model parameters are very important for fuel cell modeling. Button cell simulations are carried out to deduce the electrochemical model parameters, and those parameters are further used in the modeling of planar cells. Button cell simulations are carried out using the commercial CFD code FLUENT coupled with DETCHEM. For all temperature ranges the model works well in predicting the experimental observations in the high current density region. However, the model predicts much higher open circuit potentials than that observed in the experiments, mainly due to the absence of coking model in the elementary heterogeneous mechanism leading to nonequilibrium compositions. Furthermore, the study presented here employs Nernst equation for the calculation of reversible potential which is strictly valid only for electrochemical equilibrium. It is assumed that the electrochemical charge transfer reaction involving H2 is fast enough to be in equilibrium. However, the comparison of model prediction with thermodynamic equilibrium reveals that this assumption is violated under very low current

  10. 1995 Baseline solid waste management system description

    International Nuclear Information System (INIS)

    Anderson, G.S.; Konynenbelt, H.S.

    1995-09-01

    This provides a detailed solid waste system description that documents the treatment, storage, and disposal (TSD) strategy for managing Hanford's solid low-level waste, low-level mixed waste, transuranic and transuranic mixed waste, and greater-than-Class III waste. This system description is intended for use by managers of the solid waste program, facility and system planners, as well as system modelers. The system description identifies the TSD facilities that constitute the solid waste system and defines these facilities' interfaces, schedules, and capacities. It also provides the strategy for treating each of the waste streams generated or received by the Hanford Site from generation or receipt through final destination

  11. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Construction of Fluid - solid Coupling Model with Improved Richards - BP & Its Engineering Application

    Science.gov (United States)

    Xie, Chengyu; Jia, Nan; Shi, Dongping; Lu, Hao

    2017-10-01

    In order to study the slurry diffusion law during grouting, Richards unsaturated-saturated model was introduced, the definition of the grouting model is clear, the Richards model control equation was established, And the BP neural network was introduced, the improved fluid-solid coupling model was constructed, Through the use of saturated - unsaturated seepage flow model, As well as the overflow boundary iterative solution of the mixed boundary conditions, the free surface is calculated. Engineering practice for an example, with the aid of multi - field coupling analysis software, the diffusion law of slurry was simulated numerically. The results show that the slurry diffusion rule is affected by grouting material, initial pressure and other factors. When the slurry starts, it flows in the cracks along the upper side of the grouting hole, when the pressure gradient is reduced to the critical pressure, that is, to the lower side of the flow, when the slurry diffusion stability, and ultimately its shape like an 8. The slurry is spread evenly from the overall point of view, from the grouting mouth toward the surrounding evenly spread, it gradually reaches saturation by non-saturation, and it is not a purely saturated flow, when the slurry spread and reach a saturated state, the diffusion time is the engineering grouting time.

  13. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  14. A model surveillance program based on regulatory experience

    International Nuclear Information System (INIS)

    Conte, R.J.

    1980-01-01

    A model surveillance program is presented based on regulatory experience. The program consists of three phases: Program Delineation, Data Acquistion and Data Analysis. Each phase is described in terms of key quality assurance elements and some current philosophies is the United States Licensing Program. Other topics include the application of these ideas to test equipment used in the surveillance progam and audits of the established program. Program Delineation discusses the establishment of administrative controls for organization and the description of responsibilities using the 'Program Coordinator' concept, with assistance from Data Acquisition and Analysis Teams. Ideas regarding frequency of surveillance testing are also presented. The Data Acquisition Phase discusses various methods for acquiring data including operator observations, test procedures, operator logs, and computer output, for trending equipment performance. The Data Analysis Phase discusses the process for drawing conclusions regarding component/equipment service life, proper application, and generic problems through the use of trend analysis and failure rate data. (orig.)

  15. Modeling of anaerobic degradation of solid slaughterhouse waste: inhibition effects of long-chain fatty acids or ammonia.

    Science.gov (United States)

    Lokshina, L Y; Vavilin, V A; Salminen, E; Rintala, J

    2003-01-01

    The anaerobic bioconversion of solid poultry slaughterhouse wastes was kinetically investigated. The modified version of simulation model was applied for description of experimental data in mesophilic laboratory digester and assays. Additionally, stages of formation and consumption of long chain fatty acids (LCFA) were included in the model. Batch data on volatile solids, ammonium, acetate, butyrate, propionate, LCFA concentrations, pH level, cumulative volume, and methane partial pressure were used for model calibration. As a reference, the model was used to describe digestion of solid sorted household waste. Simulation results showed that an inhibition of polymer hydrolysis by volatile fatty acids and acetogenesis by NH3 or LCFA could be responsible for the complex system dynamics during degradation of lipid- and protein-rich wastes.

  16. Strategic municipal solid waste management: A quantitative model for Italian regions

    International Nuclear Information System (INIS)

    Cucchiella, Federica; D’Adamo, Idiano; Gastaldi, Massimo

    2014-01-01

    Highlights: • Definition of new plan waste management based on incineration. • Profitability of waste facilities based on economic and financial indicators. • The amount of wastes generated are considered not annually constant and with a regional detail. • A sensitivity analysis is used to test some of the initial assumptions. • Regional strategies are proposed for optimize benefits from correct waste management. - Abstract: Current economic crisis brought to light the structural deficiencies of European economy. This paper aims to improve the performances of a policy on sustainable municipal solid waste management strategies. Specifically, the attention is focused on Italian country that reports a high rate of landfilling. Waste to Energy plant is an attractive technological option in municipal solid waste, but it is a subject of intense debate. Incinerators require effective and efficient controls to avoid emissions of harmful pollutants into the air, land and water, which may influence human health and environment. To address waste management situation, this study uses a multi-objective mathematical programming. A new plan is presented to evaluate and quantify the effects of initiatives for diversion of current waste from landfill. In an attempt to better simulate realistic waste management scenarios, the amount of waste generated is not annually constant and changes are accounted in waste diversion rates. Moreover, due to the geographical characteristics of Italy, the realization of new facilities is replicated with a regional detail. In this paper economic and financial indicators are used to define the profitability of waste facilities. Moreover, a sensitivity analysis is used to test some of the initial assumptions. Once identified the efficient Waste to Energy plant, regional strategies of waste management are proposed to optimize financial and environmental benefits of the sector. The proposed waste management framework provides a concrete scheme

  17. High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis

    Science.gov (United States)

    Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.

    2018-02-01

    Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.

  18. Optimum workforce-size model using dynamic programming approach

    African Journals Online (AJOL)

    This paper presents an optimum workforce-size model which determines the minimum number of excess workers (overstaffing) as well as the minimum total recruitment cost during a specified planning horizon. The model is an extension of other existing dynamic programming models for manpower planning in the sense ...

  19. Clinical Application of Solid Model Based on Trabecular Tibia Bone CT Images Created by 3D Printer.

    Science.gov (United States)

    Cho, Jaemo; Park, Chan-Soo; Kim, Yeoun-Jae; Kim, Kwang Gi

    2015-07-01

    The aim of this work is to use a 3D solid model to predict the mechanical loads of human bone fracture risk associated with bone disease conditions according to biomechanical engineering parameters. We used special image processing tools for image segmentation and three-dimensional (3D) reconstruction to generate meshes, which are necessary for the production of a solid model with a 3D printer from computed tomography (CT) images of the human tibia's trabecular and cortical bones. We examined the defects of the mechanism for the tibia's trabecular bones. Image processing tools and segmentation techniques were used to analyze bone structures and produce a solid model with a 3D printer. These days, bio-imaging (CT and magnetic resonance imaging) devices are able to display and reconstruct 3D anatomical details, and diagnostics are becoming increasingly vital to the quality of patient treatment planning and clinical treatment. Furthermore, radiographic images are being used to study biomechanical systems with several aims, namely, to describe and simulate the mechanical behavior of certain anatomical systems, to analyze pathological bone conditions, to study tissues structure and properties, and to create a solid model using a 3D printer to support surgical planning and reduce experimental costs. These days, research using image processing tools and segmentation techniques to analyze bone structures to produce a solid model with a 3D printer is rapidly becoming very important.

  20. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    Science.gov (United States)

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of