WorldWideScience

Sample records for solid metal electrodes

  1. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  2. Alkali metal-refractory metal biphase electrode for AMTEC

    Science.gov (United States)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  3. A nonadhesive solid-gel electrode for a non-invasive brain–machine interface

    Directory of Open Access Journals (Sweden)

    Shigeru eToyama

    2012-07-01

    Full Text Available A non-invasive brain–machine interface (BMI or brain-computer interface (BCI is a technology for helping individuals with disabilities and utilizes neurophysiological signals from the brain to control external machines or computers without requiring surgery. However, when applying EEG methodology, users must place EEG electrodes on the scalp each time, and the development of easy-to-use electrodes for clinical use is required. In this study, we developed a conductive nonadhesive solid-gel electrode for practical non-invasive BMIs. We performed basic material testing, including examining the volume resistivity, viscoelasticity, and moisture-retention properties of the solid gel. Then, we compared the performance of the solid gel, a conventional paste, and an in-house metal pin-based electrode using impedance measurements and P300-BMI testing. The solid gel was observed to be conductive (volume resistivity 13.2 Ωcm and soft (complex modulus 105.4 kPa, and it remained wet for a prolonged period (>10 hours in a dry environment. Impedance measurements revealed that the impedance of the solid-gel-based and conventional paste-based electrodes was superior to that of the pin-based electrode. The EEG measurement suggested that the signals obtained with the solid-gel electrode were comparable to those with the conventional paste-based electrode. Moreover, the P300-BMI study suggested that systems using the solid-gel or pin-based electrodes were effective. One of the advantages of the solid gel is that it does not require cleaning after use, whereas the conventional paste adheres to the hair, which requires washing. Furthermore, the solid-gel electrode was not painful compared with a metal-pin electrode. Taken together, the results suggest that the solid-gel electrode worked well for practical BMIs and could be useful for bedridden patients such as those with amyotrophic lateral sclerosis.

  4. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  5. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  6. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  7. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  8. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  9. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  10. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  11. Arc plasma assisted rotating electrode process for preparation of metal pebbles

    International Nuclear Information System (INIS)

    Mohanty, T.; Tripathi, B.M.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Spherical beryllium pebbles of size ranging from 0.2-2 mm are required as neutron multiplying material in solid Test Blanket Module (TBM) of International Thermonuclear Experimental Reactor (ITER). Rotating electrode process (REP) has been identified as a suitable technique for preparation of beryllium pebbles. In REP, arc plasma generated between non-consumable electrode (cathode) and rotating metal electrode (anode) plays a major role for continuous consumption of metal electrode and preparation of spherical metal pebbles. This paper focuses on description of the process, selection of sub-systems for development of REP experimental set up and optimization of arc parameters, such as, cathode geometry, arc current, arc voltage, arc gap and carrier gas flow rate for preparation of required size spherical metal pebbles. Other parameters which affect the pebbles sizes are rotational speed, metal electrode diameter and physical properties of the metal. As beryllium is toxic in nature its surrogate metals such as stainless steel (SS) and Titanium (Ti) were selected to evaluate the performance of the REP equipment. Several experiments were carried out using SS and Ti electrode and process parameters have been optimized for preparation of pebbles of different sizes. (author)

  12. Direct on-chip DNA synthesis using electrochemically modified gold electrodes as solid support

    Science.gov (United States)

    Levrie, Karen; Jans, Karolien; Schepers, Guy; Vos, Rita; Van Dorpe, Pol; Lagae, Liesbet; Van Hoof, Chris; Van Aerschot, Arthur; Stakenborg, Tim

    2018-04-01

    DNA microarrays have propelled important advancements in the field of genomic research by enabling the monitoring of thousands of genes in parallel. The throughput can be increased even further by scaling down the microarray feature size. In this respect, microelectronics-based DNA arrays are promising as they can leverage semiconductor processing techniques with lithographic resolutions. We propose a method that enables the use of metal electrodes for de novo DNA synthesis without the need for an insulating support. By electrochemically functionalizing gold electrodes, these electrodes can act as solid support for phosphoramidite-based synthesis. The proposed method relies on the electrochemical reduction of diazonium salts, enabling site-specific incorporation of hydroxyl groups onto the metal electrodes. An automated DNA synthesizer was used to couple phosphoramidite moieties directly onto the OH-modified electrodes to obtain the desired oligonucleotide sequence. Characterization was done via cyclic voltammetry and fluorescence microscopy. Our results present a valuable proof-of-concept for the integration of solid-phase DNA synthesis with microelectronics.

  13. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  14. Anodic stripping voltammetry using graphite composite solid electrode

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Barek, J.; Kopanica, Miloslav

    2009-01-01

    Roč. 74, 11-12 (2009), s. 1807-1826 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400400806; GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : Graphite composite solid electrode * voltammetry * metals Subject RIV: CG - Electrochemistry Impact factor: 0.856, year: 2009

  15. Nanostructured Solid Oxide Fuel Cell Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Zvi [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  16. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  17. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  18. Hierarchically structured nanocarbon electrodes for flexible solid lithium batteries

    KAUST Repository

    Wei, Di

    2013-09-01

    The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

  19. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  20. Ni-Based Solid Oxide Cell Electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Holtappels, Peter

    2013-01-01

    This paper is a critical review of the literature on nickel-based electrodes for application in solid oxide cells at temperature from 500 to 1000 _C. The applications may be fuel cells or electrolyser cells. The reviewed literature is that of experimental results on both model electrodes...... and practical composite cermet electrodes. A substantially longer three-phase boundary (TPB) can be obtained per unit area of cell in such a composite of nickel and electrolyte material, provided that two interwoven solid networks of the two solid and one gaseous phases are obtained to provide a three...

  1. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  2. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  3. Voltammetric determination of sodium anthraquinone-2-sulfonate using silver solid amalgam electrodes

    Czech Academy of Sciences Publication Activity Database

    Skalová, Štěpánka; Navrátil, Tomáš; Barek, J.; Vyskočil, V.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 577-583 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : Anthraquinone * Drugs * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.282, year: 2016

  4. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    Science.gov (United States)

    Huang, Kevin [Export, PA; Ruka, Roswell J [Pittsburgh, PA

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  5. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.

    Science.gov (United States)

    Yang, Chunpeng; Fu, Kun; Zhang, Ying; Hitz, Emily; Hu, Liangbing

    2017-09-01

    High-energy lithium-metal batteries are among the most promising candidates for next-generation energy storage systems. With a high specific capacity and a low reduction potential, the Li-metal anode has attracted extensive interest for decades. Dendritic Li formation, uncontrolled interfacial reactions, and huge volume effect are major hurdles to the commercial application of Li-metal anodes. Recent studies have shown that the performance and safety of Li-metal anodes can be significantly improved via organic electrolyte modification, Li-metal interface protection, Li-electrode framework design, separator coating, and so on. Superior to the liquid electrolytes, solid-state electrolytes are considered able to inhibit problematic Li dendrites and build safe solid Li-metal batteries. Inspired by the bright prospects of solid Li-metal batteries, increasing efforts have been devoted to overcoming the obstacles of solid Li-metal batteries, such as low ionic conductivity of the electrolyte and Li-electrolyte interfacial problems. Here, the approaches to protect Li-metal anodes from liquid batteries to solid-state batteries are outlined and analyzed in detail. Perspectives regarding the strategies for developing Li-metal anodes are discussed to facilitate the practical application of Li-metal batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Screen-printed electrode for alkali-metal thermoelectric converter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Shibata, K.; Tsuchida, K.; Kato, A. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1992-06-01

    An alkali-metal thermoelectric converter (AMTEC) is a device for the direct conversion of thermal to electric energy. An AMTEC contains sodium as working fluid and is divided into a high-temperature region (900-1300 K) and a low-temperature region (400-800 K) by [beta]''-alumina solid electrolyte. A high-performance electrode for an AMTEC must have good electrical conductivity, make a strong physical bond with low contact resistance to [beta]''-alumina, be highly permeable to sodium vapour, resist corrosion by sodium and have a low rate of evaporation at the operating temperature of the AMTEC. We have previously investigated the interaction of nitrides and carbides of some transition-metals (groups IV, V and VI) with [beta],[beta]''-alumina or liquid sodium (about 700degC) with the objective of finding a better electrode material for an AMTEC. The results showed that TiN, TiC, NbN and NbC were good candidates for AMTEC electrodes. We also showed that porous TiN film with low resistance can be prepared by the screen-printing method. In the present work the porous NbN film was prepared by the screen-printing method and the performance as the electrode of an AMTEC was examined. For comparison, the performance of TiN and Mo electrodes prepared by the screen-printing method was also examined. (author).

  7. The Effect of 1-Pentylamine as Solid Electrolyte Interphase Precursor on Lithium Metal Anodes

    International Nuclear Information System (INIS)

    Ding, Markus S.; Koch, Stephan L.; Passerini, Stefano

    2017-01-01

    Highlights: • Manufacturing of a well-controlled artificial SEI on lithium metal electrodes. • Native SEI-free lithium electrodes. • Lithium electrodes with decreased impedance and overpotential due to artificial SEI. • Process development to remove influence of native SEI. • 1-pentylamine in n-pentane as artificial SEI precursor for lithium metal. - Abstract: In this study, the formation of an artificial primary solid electrolyte interphase on a fresh Li surface, via reaction with 1-pentylamine (PA), is reported, allowing removing the influence of the metal electrode’s prior history. Electrochemical impedance spectroscopy, galvanostatic cycling, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) are used in order to investigate the effect of PA as solid electrolyte interphase precursor on Li metal. It is shown that pretreating native SEI-free Li metal surfaces with 1 M PA in n-pentane sharply decreases the electrode impedance and overpotential with respect to the treatment with only n-pentane. The treatment with 1 M PA in n-pentane results in surface roughening, but no increase of dendrite formation upon cycling. However, the use of higher PA concentration (5 M) increases impedance and overpotential and leads to dendrite growth.

  8. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  10. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  11. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  12. Polyoxometalates@Metal-Organic Frameworks Derived Porous MoO3@CuO as Electrodes for Symmetric All-Solid-State Supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yidong; Lin, Baoping; Wang, Junchuan; Han, Pei; Xu, Tong; Sun, Ying; Zhang, Xueqin; Yang, Hong

    2016-01-01

    Highlights: • Porous MoO 3 @CuO was obtained from POMs@MOFs template. • A good charge capacity of 86.3 mAh g −1 was achieved in 1 M LiOH electrolyte. • The MoO 3 @CuO electrode was assembled into an all-solid-state device. • The introduction of MoO 3 improves the charge capacity. • The MoO 3 @CuO composite has good uniformity and porosity. - Abstract: The demand of uniformity and porosity for composite supercapacitor material has triggered tremendous research efforts for the development of doping method. Herein, we report an effective strategy for homogeneous and polyporous MoO 3 @CuO composite by heating a POMs@MOFs template (POMs = polyoxometalates, MOFs = Metal-organic frameworks), in which the Mo-POMs are incorporated into Cu-MOFs as secondary building units. The excellent doping of MoO 3 to CuO leads to an obvious improvement in specific discharge capacity (from 15.4 mAh g −1 for CuO to 86.3 mAh g −1 for MoO 3 @CuO). The layered structure of MoO 3 plays a key role in providing facilitated ion transport and electron diffusion pathways for the composite material. This electrode demonstrates excellent electrochemical performance with a specific discharge capacity of 86.3 mAh g −1 at 1 A g −1 in 1 M LiOH. When this porous MoO 3 @CuO electrode is assembled into a symmetric all-solid-state device with PVA-LiOH gel polymer, the as-fabricated device demonstrates good performance with an energy density of 7.9 W h kg −1 , power density of 8726 W kg −1 , and excellent cycle life. This work presents a new template to improve the uniformity and porosity of composite metal oxides, which can be used for high-performance supercapacitors.

  13. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  14. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  15. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  16. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  17. Self-healing liquid/solid state battery

    Science.gov (United States)

    Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.; Ning, Xiaohui; Sadoway, Donald R.

    2018-02-27

    A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrode includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.

  18. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  19. Graphene as an active virtually massless top electrode for RF solidly mounted bulk acoustic wave (SMR-BAW) resonators

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Lebedev, Vadim; Cimalla, Volker; Ambacher, Oliver

    2018-03-01

    Mechanical and electrical losses induced by an electrode material greatly influence the performance of bulk acoustic wave (BAW) resonators. Graphene as a conducting and virtually massless 2D material is a suitable candidate as an alternative electrode material for BAW resonators which reduces electrode induced mechanical losses. In this publication we show that graphene acts as an active top electrode for solidly mounted BAW resonators (BAW-SMR) at 2.1 GHz resonance frequency. Due to a strong decrease of mass loading and its remarkable electronic properties, graphene demonstrates its ability as an ultrathin conductive layer. In our experiments we used an optimized graphene wet transfer on aluminum nitride-based solidly mounted resonator devices. We achieved more than a triplication of the resonator’s quality factor Q and a resonance frequency close to an ‘unloaded’ resonator without metallization. Our results reveal the direct influence of both, the graphene quality and the graphene contacting via metal structures, on the performance characteristic of a BAW resonator. These findings clearly show the potential of graphene in minimizing mechanical losses due to its virtually massless character. Moreover, they highlight the advantages of graphene and other 2D conductive materials for alternative electrodes in electroacoustic resonators for radio frequency applications.

  20. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    Fuel cells are devices for converting the combined chemical (free) energy of fuels and oxygen (air) directly to electrical energy without relying on the dynamic action of steam heated by reacting fuel-oxygen mixtures, like in steam turbines, or of the reacting gas mixtures themselves, like in gas turbines. The basic rationale for fuel cells is their high efficiencies as compared to indirect-conversion methods. Fuel cells are currently being considered for a number of applications, among them de-centralised power supply. Fuel cells come in five basic types and are usually classified according to the type of electrolyte used, which in turn to a significant degree limits the options for anode and cathode materials. The solid-oxide fuel-cell (SOFC) , with which this thesis is concerned, is thus named after its oxide electrolyte, typically the oxide-ion conducting material yttria-stabilised zirconia (YSZ). While the cathode of an SOFC is often uniform in chemical composition (or at least intended to be), various problems of delamination, cracking etc. associated with the use of metallic anode electrocatalysts led to the development of composite SOFC anodes. Porous anodes consisting of Ni and YSZ particles in roughly 50/50 wt-% mixtures are now almost standard with any SOFC-development programme. The designer of composite SOFC electrodes is faced with at least three, interrelated questions: (1) What will be the optimum microstructure and composition of the composite electrode? (2) If the structure changes during operation, as is often observed, what will be the consequences for the internal losses in the cell? (3) How do we interpret electrochemical and conductivity measurements with regard to structure and composition? It is the primary purpose of this thesis to provide a framework for modelling the electrochemical and transport properties of composite electrodes for SOFC, and to arrive at some new insights that cannot be offered by experiment alone. Emphasis is put on

  1. Development of Iridium Solid-state Reference Electrode for the Water Chemistry Status Measurement in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ku, Heekwon; Lim, Dongseok; Cho, Jaeseon

    2013-01-01

    The result of ECP measurement of piping material in nuclear power plant at low temperature using the developed iridium (SSRE) reference electrode is approximately -0.370V. Based on the various results of this study, the developed iridium (SSRE) reference electrode can be applied to the water chemistry environments of nuclear power plant. Various metallic materials used in a nuclear power plant have been exposed to a variety of water chemistry environments and the corrosion of metallic materials occurs due to the reactions between metal structures and water chemistry environments. Therefore, the management of the water chemistry factors is needed to prevent corrosion. The chemical factors affecting the corrosion are pH and Electrochemical Corrosion Potential (ECP). The world-wide studies suggest that ECP and pH are effective indicators for preventing the material damage from water chemistry condition. ECP and pH should be measured as the reference electrodes, and should show stable potential characteristics with fast responses. In this study, the iridium reference electrodes using a solid-state metal oxide electrode has been developed to measure effective indicators such as ECP and pH. The iridium (SSRE) reference electrode for the ECP measurement in water chemistry environment of nuclear power plants has been developed. A calibration for water chemistry measurement was performed by potential measurement of iridium (SSRE) reference electrode with Ag/AgCl (SSRE) reference electrode. The result exhibited a stable potential for 117 hours and a super-Nernst ian response with 63.12mV/p H. In this study, the iridium (SSRE) reference electrode shows super-Nernst ian characteristic and it may be caused by the property of electrolytically coated iridium oxide. Considering the long-term stability of the developed electrode, it is possible to apply as a reference electrode through calibration procedure

  2. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  3. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    Science.gov (United States)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  4. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  5. Analytical Applications of Solid and Paste Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.

    2009-01-01

    Roč. 39, č. 3 (2009), s. 189-203 ISSN 1040-8347 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * paste amalgam electrodes * reference amalgam electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.621, year: 2009

  6. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  7. Synthesis of carbon nanotubes bridging metal electrodes

    International Nuclear Information System (INIS)

    Kotlar, M.; Vojs, M.; Marton, M.; Vesel, M.; Redhammer, R.

    2012-01-01

    In our work we demonstrate growth of carbon nanotubes that can conductively bridge the metal electrodes. The role of different catalysts was examined. Interdigitated metal electrodes are made from copper and we are using bimetal Al/Ni as catalyst for growth of carbon nanotubes. We are using this catalyst composition for growth of the single-walled carbon nanotube network. (authors)

  8. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  9. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  10. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  11. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  12. Positive electrode for a lithium battery

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2015-04-07

    A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.

  13. The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter

    International Nuclear Information System (INIS)

    Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.; Bankston, C.P.; Thakoor, A.P.; Cole, T.

    1986-01-01

    The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/sub 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell

  14. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing; Wu, Hui; Cui, Yi

    2011-01-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  15. Metal nanogrids, nanowires, and nanofibers for transparent electrodes

    KAUST Repository

    Hu, Liangbing

    2011-10-01

    Metals possess the highest conductivity among all room-temperature materials; however, ultrathin metal films demonstrate decent optical transparency but poor sheet conductance due to electron scattering from the surface and grain boundaries. This article discusses engineered metal nanostructures in the form of nanogrids, nanowires, or continuous nanofibers as efficient transparent and conductive electrodes. Metal nanogrids are discussed, as they represent an excellent platform for understanding the fundamental science. Progress toward low-cost, nano-ink-based printed silver nanowire electrodes, including silver nanowire synthesis, film fabrication, wire-wire junction resistance, optoelectronic properties, and stability, are also discussed. Another important factor for low-cost application is to use earth-abundant materials. Copper-based nanowires and nanofibers are discussed in this context. Examples of device integrations of these materials are also given. Such metal nanostructure-based transparent electrodes are particularly attractive for solar cell applications. © 2011 Materials Research Society.

  16. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A p-nitroaniline redox-active solid-state electrolyte for battery-like electrochemical capacitive energy storage combined with an asymmetric supercapacitor based on metal oxide functionalized β-polytype porous silicon carbide electrodes.

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Jeeyoung; Kim, Jooheon

    2017-05-23

    A unique redox active flexible solid-state asymmetric supercapacitor with ultra-high capacitance and energy density was fabricated using a composite comprising MgCo 2 O 4 nanoneedles and micro and mesoporous silicon carbide flakes (SiCF) (SiCF/MgCo 2 O 4 ) as the positive electrode material. Due to the synergistic effect of the two materials, this hybrid electrode has a high specific capacitance of 516.7 F g -1 at a scan rate of 5 mV s -1 in a 1 M KOH aqueous electrolyte. To obtain a reasonable matching of positive and negative electrode pairs, a composite of Fe 3 O 4 nanoparticles and SiCF (SiCF/Fe 3 O 4 ) was synthesized for use as a negative electrode material, which shows a high capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 . Therefore, by pairing the SiCF/MgCo 2 O 4 positive electrode and the SiCF/Fe 3 O 4 negative electrode with a redox active quasi-solid-state PVA-KOH-p-nitroaniline (PVA-KOH-PNA) gel electrolyte, a novel solid-state asymmetric supercapacitor device was assembled. Because of the synergistic effect between the highly porous SiCF and the vigorous redox-reaction of metal oxides, the hybrid nanostructure electrodes exhibited outstanding charge storage and transport. In addition, the redox active PVA-KOH-PNA electrolyte adds additional pseudocapacitance, which arises from the nitro-reduction and oxidation and reduction process of the reduction product of p-phenylenediamine, resulting in an enhancement of the capacitance (a specific capacitance of 161.77 F g -1 at a scan rate of 5 mV s -1 ) and energy density (maximum energy density of 72.79 Wh kg -1 at a power density of 727.96 W kg -1 ).

  18. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    Science.gov (United States)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  19. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  20. Reference Electrodes Based on Solid Amalgams

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2004-01-01

    Roč. 16, č. 3 (2004), s. 238-241 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : solid amalgam * reference electrode * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.038, year: 2004

  1. White organic light-emitting diodes with 4 nm metal electrode

    Science.gov (United States)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  2. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  3. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  4. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  5. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes.

    Science.gov (United States)

    Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping

    2018-05-01

    Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.

  6. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    Science.gov (United States)

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  7. Flexible supercapacitor electrodes based on real metal-like cellulose papers.

    Science.gov (United States)

    Ko, Yongmin; Kwon, Minseong; Bae, Wan Ki; Lee, Byeongyong; Lee, Seung Woo; Cho, Jinhan

    2017-09-14

    The effective implantation of conductive and charge storage materials into flexible frames has been strongly demanded for the development of flexible supercapacitors. Here, we introduce metallic cellulose paper-based supercapacitor electrodes with excellent energy storage performance by minimizing the contact resistance between neighboring metal and/or metal oxide nanoparticles using an assembly approach, called ligand-mediated layer-by-layer assembly. This approach can convert the insulating paper to the highly porous metallic paper with large surface areas that can function as current collectors and nanoparticle reservoirs for supercapacitor electrodes. Moreover, we demonstrate that the alternating structure design of the metal and pseudocapacitive nanoparticles on the metallic papers can remarkably increase the areal capacitance and rate capability with a notable decrease in the internal resistance. The maximum power and energy density of the metallic paper-based supercapacitors are estimated to be 15.1 mW cm -2 and 267.3 μWh cm -2 , respectively, substantially outperforming the performance of conventional paper or textile-type supercapacitors.With ligand-mediated layer-by-layer assembly between metal nanoparticles and small organic molecules, the authors prepare metallic paper electrodes for supercapacitors with high power and energy densities. This approach could be extended to various electrodes for portable/wearable electronics.

  8. Low temperature formation of electrode having electrically conductive metal oxide surface

    Science.gov (United States)

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  9. Competing forces in liquid metal electrodes and batteries

    Science.gov (United States)

    Ashour, Rakan F.; Kelley, Douglas H.; Salas, Alejandro; Starace, Marco; Weber, Norbert; Weier, Tom

    2018-02-01

    Liquid metal batteries are proposed for low-cost grid scale energy storage. During their operation, solid intermetallic phases often form in the cathode and are known to limit the capacity of the cell. Fluid flow in the liquid electrodes can enhance mass transfer and reduce the formation of localized intermetallics, and fluid flow can be promoted by careful choice of the locations and topology of a battery's electrical connections. In this context we study four phenomena that drive flow: Rayleigh-Bénard convection, internally heated convection, electro-vortex flow, and swirl flow, in both experiment and simulation. In experiments, we use ultrasound Doppler velocimetry (UDV) to measure the flow in a eutectic PbBi electrode at 160 °C and subject to all four phenomena. In numerical simulations, we isolate the phenomena and simulate each separately using OpenFOAM. Comparing simulated velocities to experiments via a UDV beam model, we find that all four phenomena can enhance mass transfer in LMBs. We explain the flow direction, describe how the phenomena interact, and propose dimensionless numbers for estimating their mutual relevance. A brief discussion of electrical connections summarizes the engineering implications of our work.

  10. Lifetime studies of high power rhodium/tungsten and molybdenum electrodes for application to AMTEC (alkali metal thermal-to-electric converter)

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; O'Connor, D.; Ryan, M. A.; Kikkert, S.; Bankston, C. P.

    1990-01-01

    A detailed and fundamental model for the electrochemical behavior of AMTEC electrodes is developed which can aid in interpreting the processes which occur during prolonged operation of these electrodes. Because the sintering and grain growth of metal particles is also a well-understood phenomenon, the changes in electrode performance which accompany its morphological evolution may be anticipated and modeled. The grain growth rate observed for porous Mo AMTEC electrodes is significantly higher than that predicted from surface diffusion data obtained at higher temperatures and incorporated into the grain growth model. The grain growth observed under AMTEC conditions is also somewhat higher than that measured for Mo films on BASE (beta-alumina solid electrolyte) substrates in vacuum or at similar temperatures. Results of modeling indicate that thin Mo electrodes may show significant performance degradation for extended operation (greater than 10,000 h) at higher operating temperatures (greater than 1150 K), whereas W/Rh and W/Pt electrodes are expected to show adequate performance at 1200 K for lifetimes greater than 10,000 h. It is pointed out that current collection grids and leads must consist of refractory metals such as Mo and W which do not accelerate sintering or metal migration.

  11. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Gómez-Marín, Ana M.; Hernández-Ortíz, Juan P.

    2014-01-01

    Highlights: • Discretized model for an interface of covered electrodes. • Two limiting behaviors are capture: double-layer and conductive interfaces. • Additional phenomena are included easily: acid/base equilibrium, ion mobility. • The model provides explanations to observed phenomena that is vaguely explained in the literature. • Implications on electrodes in fuel cells are given and it opens avenues to understand and design such systems. - Abstract: A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott–Schottky or Gouy–Chapman–Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments

  12. Complaint liquid metal electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Finkenauer, Lauren R.; Majidi, Carmel

    2014-03-01

    This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.

  13. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  14. Solid Amalgam Composite Electrode as a New Sensor for the Determination of Biologically Active Compounds

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Navrátil, Tomáš; Lukina, A.; Pecková, K.; Barek, J.

    2007-01-01

    Roč. 52, č. 6 (2007), s. 897-910 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid composite electrode * solid amalgam electrodes * solid amalgam composite electrode * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  15. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  16. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  17. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  18. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode

    International Nuclear Information System (INIS)

    Li, Guang; Lyu, Xiaofeng; Wang, Zhan; Rong, Yuanzhen; Hu, Ruifen; Wang, You; Luo, Zhiyuan

    2017-01-01

    A novel disposable all-solid-state carbonate-selective electrode based on a screen-printed carbon paste electrode using poly(3-octylthiophene-2,5-diyl) (POT) as an ion-to-electron transducer has been developed. The POT was dropped onto the reaction area of the carbon paste electrode covered by the poly(vinyl chloride) (PVC) membrane, which contains N,N-Dioctyl-3 α ,12 α -bis(4-trifluoroacetylbenzoyloxy)-5 β -cholan-24-amide as a carbonate ionophore. The electrode showed a near-Nernstian slope of  −27.5 mV/decade with a detection limit of 3.6 * 10 −5 mol l −1 . Generally, the detection time was 30 s. Because these electrodes are fast, convenient and low in cost, they have the potential to be mass produced and used in on-site testing as disposable sensors. Furthermore, the repeatability, reproducibility and stability have been studied to evaluate the properties of the electrodes. Measurement of the carbonate was also conducted in a human blood solution and achieved good performance. (paper)

  19. White organic light-emitting diodes with 4 nm metal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Reineke, Sebastian [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Gather, Malte C. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2015-10-19

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  20. Potentiometric titration of molybdenum (6) with a cathode-polarized solid electrode

    International Nuclear Information System (INIS)

    Boeva, L.V.; Kimstach, V.A.; Bagdasarov, K.N.

    1980-01-01

    The possibility has been studied of using solid electrodes for potentiometric precipitation titration of molybdenum (6). A cathode-polarized electrode, electrochemically covered with a molybdenum blue layer, can be used as indicator electrode. The best results were obtained during deposition of molybdenum blue on a tungsten electrode. The mechanism of electrode work during titration has been investigated. A procedure has been developed of titration of molybdenum (6) in acid solutions using hydroxylamine N-aryl derivatives as titrants

  1. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  2. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  3. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  4. Kinetic behaviour of low-Co AB5-type metal hydride electrodes

    International Nuclear Information System (INIS)

    Tliha, M.; Boussami, S.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A.

    2010-01-01

    The kinetic behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R tc , the exchange current density I 0 and the hydrogen diffusion coefficient D H were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation α-β is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  5. Challenges and issues facing lithium metal for solid-state rechargeable batteries

    Science.gov (United States)

    Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K.

    2017-06-01

    The commercial use of lithium metal batteries was delayed because of dendrite formation on the surface of the lithium electrode, and the difficulty finding a suitable electrolyte that has both the mechanical strength and ionic conductivity required for solid electrolytes. Recently, strategies have developed to overcome these difficulties, so that these batteries are currently an option for different applications, including electric cars. In this work, we review these strategies, and discuss the different routes that are promising for progress in the near future.

  6. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    Science.gov (United States)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  7. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  8. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  9. Performance and impedance studies of thin, porous molybdenum and tungsten electrodes for the alkali metal thermoelectric converter

    Science.gov (United States)

    Wheeler, B. L.; Williams, R. M.; Jeffries-Nakamura, B.; Lamb, J. L.; Loveland, M. E.; Bankston, C. P.; Cole, T.

    1988-01-01

    Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optimum performance as alkali metal thermoelectric converter electrodes at thicknesses less than 1.0 micron when used with molybdenum or nickel current collector grids. Power densities of 0.40 W/sq cm for 0.5-micron molybdenum films at 1200 K and 0.35 W/sq cm for 0.5-micron tungsten films at 1180 K were obtained at electrode maturity after 40-90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-double-prime-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3-double-prime 0.4-micron. The ac impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness less than 2.0 microns, is not utilized efficiently unless a fairly fine (about 1 x 1 mm) current collector grid is employed.

  10. New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes.

    Science.gov (United States)

    Vanamo, Ulriika; Hupa, Elisa; Yrjänä, Ville; Bobacka, Johan

    2016-04-19

    A novel approach to signal transduction concerning solid-contact ion-selective electrodes (SC-ISE) with a conducting polymer (CP) as the solid contact is investigated. The method presented here is based on constant potential coulometry, where the potential of the SC-ISE vs the reference electrode is kept constant using a potentiostat. The change in the potential at the interface between the ion-selective membrane (ISM) and the sample solution, due to the change in the activity of the primary ion, is compensated with a corresponding but opposite change in the potential of the CP solid contact. This enforced change in the potential of the solid contact results in a transient reducing/oxidizing current flow through the SC-ISE. By measuring and integrating the current needed to transfer the CP to a new state of equilibrium, the total cumulated charge that is linearly proportional to the change of the logarithm of the primary ion activity is obtained. In this work, different thicknesses of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) were used as solid contact. Also, coated wire electrodes (CWEs) were included in the study to show the general validity of the new approach. The ISM employed was selective for K(+) ions, and the selectivity of the membrane under implementation of the presented transduction mechanism was confirmed by measurements performed with a constant background concentration of Na(+) ions. A unique feature of this signal readout principle is that it allows amplification of the analytical signal by increasing the capacitance (film thickness) of the solid contact of the SC-ISE.

  11. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    Platinum Electrodes for Metal Assisted Etching of Porous Silicon by Matthew H Ervin and Brian Isaacson Sensors and Electron Devices Directorate...SUBTITLE Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  12. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  13. Recent advances in Alkali Metal Thermoelectric Converter (AMTEC) electrode performance and modeling. [for space power systems

    Science.gov (United States)

    Bankston, C. P.; Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.

    1988-01-01

    The Alkali Metal Thermoelectric Converter (AMTEC) is a direct energy conversion device, utilizing a high sodium vapor pressure or activity ratio across a beta-double prime-alumina solid electrolyte (BASE). This paper describes progress on the remaining scientific issue which must be resolved to demonstrate AMTEC feasibility for space power systems: a stable, high power density electrode. Two electrode systems have recently been discovered at JPL that now have the potential to meet space power requirements. One of these is a very thin sputtered molybdenum film, less than 0.5 micron thick, with overlying current collection grids. This electrode has experimentally demonstrated stable performance at 0.4-0.5 W/sq cm for hundreds of hours. Recent modeling results show that at least 0.7 W/sq cm can be achieved. The model of electrode performance now includes all loss mechanisms, including charge transfer resistances at the electrode/electrolyte interface. A second electrode composition, cosputtered platinum/tungsten, has demonstrated 0.8 W/sq cm for 160 hours. Systems studies show that a stable electrode performance of 0.6 W/sq cm will enable high efficiency space power systems.

  14. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  15. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  16. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  17. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  18. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  19. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode.

    Science.gov (United States)

    Ansari, Azadeh; Liu, Che-Yu; Lin, Chien-Chung; Kuo, Hao-Chung; Ku, Pei-Cheng; Rais-Zadeh, Mina

    2015-03-17

    This work describes a novel architecture to realize high-performance gallium nitride (GaN) bulk acoustic wave (BAW) resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111) substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W)/silicon dioxide (SiO₂) forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient ( d 33 ) for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF₂) etch and therefore eliminating the need for backside lithography and etching.

  20. Transparent electrode designs based on optimal nano-patterning of metallic films

    KAUST Repository

    Catrysse, Peter B.

    2010-09-10

    Transparent conductive electrodes are critical to the operation of optoelectronic devices, such as photovoltaic cells and light emitting diodes. Effective electrodes need to combine excellent electrical and optical properties. Metal oxides, such as indium tin oxide, are commonly used. There is substantial interest in replacing them, however, motivated by practical problems and recent discoveries regarding the optics of nano-patterned metals. When designing nano-patterned metallic films for use as electrodes, one needs to account for both optical and electrical properties. In general, it is insufficient to optimize nano-structured films based upon optical properties alone, since structural variations will also affect the electrical properties. In this work, we investigate the need for simultaneous optical and electrical performance by analyzing the optical properties of a class of nano-patterned metallic electrodes that is obtained by a constant-sheet-resistance transformation. Within such a class the electrical and optical properties can be separated, i.e., the sheet resistance can be kept constant and the transmittance can be optimized independently. For simple one-dimensional periodic patterns with constant sheet-resistance, we find a transmission maximum (polarization-averaged) when the metal sections are narrow (< 40 nm, ~ 10% metal fill-factor) and tall (> 100 nm). Our design carries over to more complex two-dimensional (2D) patterns. This is significant as there are no previous reports regarding numerical studies on the optical and electrical properties of 2D nano-patterns in the context of electrode design.

  1. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  2. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  3. Critical evaluation of the stability of highly concentrated LiTFSI - Acetonitrile electrolytes vs. graphite, lithium metal and LiFePO4 electrodes

    Science.gov (United States)

    Nilsson, Viktor; Younesi, Reza; Brandell, Daniel; Edström, Kristina; Johansson, Patrik

    2018-04-01

    Highly concentrated LiTFSI - acetonitrile electrolytes have recently been shown to stabilize graphite electrodes in lithium-ion batteries (LIBs) much better than comparable more dilute systems. Here we revisit this system in order to optimise the salt concentration vs. both graphite and lithium metal electrodes with respect to electrochemical stability. However, we observe an instability regardless of concentration, making lithium metal unsuitable as a counter electrode, and this also affects evaluation of e.g. graphite electrodes. While the highly concentrated electrolytes have much improved electrochemical stabilities, their reductive decomposition below ca. 1.2 V vs. Li+/Li° still makes them less practical vs. graphite electrodes, and the oxidative reaction with Al at ca. 4.1 V vs. Li+/Li° makes them problematic for high voltage LIB cells. The former originates in an insufficiently stable solid electrolyte interphase (SEI) dissolving and continuously reforming - causing self-discharge, as observed by paused galvanostatic cycling, while the latter is likely caused by aluminium current collector corrosion. Yet, we show that medium voltage LiFePO4 positive electrodes can successfully be used as counter and reference electrodes.

  4. Lability criteria for metal complexes in micro-electrode voltammetry

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Pinheiro, J.P.

    1999-01-01

    Theoretical expressions are derived for the voltammetric lability criteria of metal complexes in the micro-electrode regime. The treatment includes three limiting situations: (i) the macro-electrode limit, where both the diffusion layer and the dissociation reaction layer are linear; (ii) an

  5. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  6. Thin metal electrodes for semitransparent organic photovoltaics

    KAUST Repository

    Lee, Kyusung

    2013-08-01

    We demonstrate semitransparent organic photovoltaics (OPVs) based on thin metal electrodes and polymer photoactive layers consisting of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester. The power conversion efficiency of a semitransparent OPV device comprising a 15-nm silver (Ag) rear electrode is 1.98% under AM 1.5-G illumination through the indium-tin-oxide side of the front anode at 100 mW/cm2 with 15.6% average transmittance of the entire cell in the visible wavelength range. As its thickness increases, a thin Ag electrode mainly influences the enhancement of the short circuit current density and fill factor. Its relatively low absorption intensity makes a Ag thin film a viable option for semitransparent electrodes compatible with organic layers. © 2013 ETRI.

  7. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  8. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    Science.gov (United States)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  9. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  10. Development of a Flexible Non-Metal Electrode for Cell Stimulation and Recording

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2016-09-01

    Full Text Available This study presents a method of producing flexible electrodes for potentially simultaneously stimulating and measuring cellular signals in retinal cells. Currently, most multi-electrode applications rely primarily on etching, but the metals involved have a certain degree of brittleness, leaving them prone to cracking under prolonged pressure. This study proposes using silver chloride ink as a conductive metal, and polydimethysiloxane (PDMS as the substrate to provide electrodes with an increased degree of flexibility to allow them to bend. This structure is divided into the electrode layer made of PDMS and silver chloride ink, and a PDMS film coating layer. PDMS can be mixed in different proportions to modify the degree of rigidity. The proposed method involved three steps. The first segment entailed the manufacturing of the electrode, using silver chloride ink as the conductive material, and using computer software to define the electrode size and micro-engraving mechanisms to produce the electrode pattern. The resulting uniform PDMS pattern was then baked onto the model, and the flow channel was filled with the conductive material before air drying to produce the required electrode. In the second stage, we tested the electrode, using an impedance analyzer to measure electrode cyclic voltammetry and impedance. In the third phase, mechanical and biocompatibility tests were conducted to determine electrode properties. This study aims to produce a flexible, non-metallic sensing electrode which fits snugly for use in a range of measurement applications.

  11. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  12. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  13. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  14. Determination of Iodates using Silver Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 14, 15/16 (2002), s. 1138-1142 ISSN 1040-0397 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver solid amalgam electrodes * voltammetry * table salt Subject RIV: CG - Electrochemistry Impact factor: 1.783, year: 2002

  15. Verification of Applicability of Mercury Meniscus Modified Silver Solid Amalgam Electrode for Determination of Heavy Metals in Plant matrices

    Czech Academy of Sciences Publication Activity Database

    Čížková, P.; Navrátil, Tomáš; Šestáková, Ivana; Josypčuk, Bohdan

    2007-01-01

    Roč. 19, 2-3 (2007), s. 161-171 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA521/06/0496 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * biological materials * solid amalgam electrode * atomic absorption spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.949, year: 2007

  16. Voltammetric Determination of Nitrophenols at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Fischer, J.; Vaňourková, L.; Daňhel, A.; Vyskočil, V.; Čížek, K.; Barek, J.; Pecková, K.; Josypčuk, Bohdan; Navrátil, Tomáš

    2007-01-01

    Roč. 2, - (2007), s. 226-134 ISSN 1452-3981 R&D Projects: GA MŠk(CZ) LC06063; GA ČR GA203/07/1195; GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * nitrophenols * growth stimulators * solid phase extraction (SPE) Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  18. Electrodeposition of uranium and transuranic metals (Pu) on solid cathode

    International Nuclear Information System (INIS)

    Laplace, A. F.; Lacquement, J.; Willitt, J. L.; Finch, R. A.; Fletcher, G. A.; Williamson, M. A.

    2008-01-01

    The results from a study of U and Pu metal electrodeposition from molten eutectic LiCl-KCl on a solid inert cathode are presented. This study has been conducted using ∼ to 50 g of U-Pu together with rare earths (mostly Nd) and 1.5 kg of salt. The introduction of a three-electrode probe with an Ag/AgCl reference electrode has allowed voltammetric measurement during electrolysis and control of the cathode potential versus the reference. Cyclic and square-wave voltammetric measurements proved to be very useful tools for monitoring the electrolysis as well as selecting the cathode versus reference potential to maximize the separation between actinides and rare earths. The voltammetric data also highlighted the occurrence of back reactions between the cathode deposit and oxidizing equivalents formed at the anode that remained in the molten salt electrolyte. Any further electrolysis test needs to be conducted continuously and followed by immediate removal of the cathode to minimize those back reactions. (authors)

  19. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  20. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  1. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the

  2. "Imaging" LEIS of micro-patterned solid oxide fuel cell electrodes

    Science.gov (United States)

    Druce, John; Simrick, Neil; Ishihara, Tatsumi; Kilner, John

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  3. Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, T; Kim, H; Ning, XH; Sadoway, DR

    2014-08-08

    The performance of a calcium-antimony (Ca-Sb) alloy serving as the positive electrode in a Ca vertical bar vertical bar Sb liquid metal battery was investigated in an electrochemical cell, Ca(in Bi) vertical bar LiCl-NaCl-CaCl2 vertical bar Ca(in Sb). The equilibrium potential of the Ca-Sb electrode was found to lie on the interval, 1.2-0.95 V versus Ca, in good agreement with electromotive force (emf) measurements in the literature. During both alloying and dealloying of Ca at the Sb electrode, the charge transfer and mass transport at the interface are facile enough that the electrode potential varies linearly from 0.95 to 0.75 V vs Ca(s) as current density varies from 50 to 500 mA cm(-2). The discharge capacity of the Ca vertical bar vertical bar Sb cells increases as the operating temperature increases due to the higher solubility and diffusivity of Ca in Sb. The cell was successfully cycled with high coulombic efficiency (similar to 100%) and small fade rate (<0.01% cycle(-1)). These data combined with the favorable costs of these metals and salts make the Ca vertical bar vertical bar Sb liquid metal battery attractive for grid-scale energy storage. (C) The Author(s) 2014. Published by ECS. All rights reserved.

  4. Studies on metal hydride electrodes containing no binder additives

    Energy Technology Data Exchange (ETDEWEB)

    Rogulski, Z.; Dlubak, J. [Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw (Poland); Karwowska, M.; Gumkowska, A.; Czerwinski, A. [Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw (Poland); Krebs, M.; Pytlik, E.; Schmalz, M. [VARTA Microbattery GmbH, Daimlerstrasse 1, 73479 Ellwangen (Germany)

    2010-11-15

    Electrochemical properties of hydrogen storage alloys (AB{sub 5} type: LaMm-Ni{sub 4.1}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.45}) were studied in 6 M KOHaq using Limited Volume Electrode (LVE) method. Working electrodes were prepared by pressing alloy powder (without binding and conducting additives) into a metal net wire serving as a support and as a current collector. Cyclic voltammetry curves reveal well defined hydrogen sorption and desorption peaks which are separated from other faradic processes, such as surface oxidation. Voltammograms of LVE resemble the curves obtained by various authors for single particle metal alloy electrodes. Hydrogen diffusion coefficient calculated at room temperature for LV electrodes and for 100% state of charge reaches a constant value of ca. 3.3 x 10{sup -9} and 2.1 x 10{sup -10} cm{sup 2} s{sup -1}, for chronoamperometric and chronopotentiometric measurements, respectively. A comparison of the electrodes with average alloy particle sizes of ca. 50 and 4 {mu}m allows us to conclude that at room temperature hydrogen storage capability of AB{sub 5} alloy studied is independent on the alloy particle size. On the other hand, reduction of the particle size increases alloy capacity at temperatures below -10 C and reduces time of electrochemical activation of the electrode. (author)

  5. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  6. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microfabrication process for patterning metallic lithium encapsulated electrodes

    International Nuclear Information System (INIS)

    Oukassi, Sami; Dunoyer, Nicolas; Salot, Raphael; Martin, Steve

    2009-01-01

    This work presents recent achievements concerning thin film encapsulation of metallic lithium negative electrode. In the context of this study, the encapsulation stack includes polymer and dielectric layers combined in such way to optimize barrier performances of the whole structure towards oxygen and water vapor permeation. The first part of this work is dedicated to the description of the barrier stack architecture and properties. A second part presents the application of a microfabrication process to the metallic lithium negative electrode and barrier stack so as to have very small features (100 μm x 100 μm patterns). The microfabrication process includes several steps of photolithography and etching (dry and wet) blocks, which allows us to reach the target critical dimensions. These results show a method of patterning functional metallic lithium. It demonstrates the feasibility of energy sources miniaturization which is an important issue in the field of autonomous and wireless sensor networks.

  8. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  10. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    Science.gov (United States)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g-1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  11. Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface: steady-state polarization of fuel-cell electrodes

    International Nuclear Information System (INIS)

    Murygin, I.V.; Chebotin, V.N.

    1979-01-01

    The polarization of fuel-cell electrodes (mixtures CO + CO 2 and H 2 + H 2 O) in systems with solid oxide electrolytes is discussed. The theory is based upon a process model where the electrode reaction zone can spread along the line of three-phase contact by diffusion of reaction partners and products across the electrolyte/electrode and electrolyte/gas interface

  12. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  13. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  14. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  15. In situ57Fe Moessbauer Investigation of Solid-State Redox Reactions of Lithium Insertion Electrodes for Advanced Batteries

    International Nuclear Information System (INIS)

    Sakai, Yoichi; Ariyoshi, Kingo; Ohzuku, Tsutomu

    2002-01-01

    A novel in situ electrochemical cell for 57 Fe Moessbauer measurements was developed in order to clarify the mechanisms of solid-state redox reactions in lithium insertion materials containing iron. Our in situ Moessbauer technique was successfully applied to the determination as to which transition metal ion was a redox center in the insertion electrodes, such as LiFe 0.5 Mn 1.5 O 4 , LiFeTiO 4 , or LiFe 0.25 Ni 0.75 O 2 , for the lithium-ion batteries.

  16. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2012-12-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  17. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    Science.gov (United States)

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-07

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors.

  18. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  19. Recovery Of Electrodic Powder From Spent Nickel-Metal Hydride Batteries (NiMH

    Directory of Open Access Journals (Sweden)

    Shin S.M.

    2015-06-01

    Full Text Available This study was focused on recycling process newly proposed to recover electrodic powder enriched in nickel (Ni and rare earth elements (La and Ce from spent nickel-metal hydride batteries (NiMH. In addition, this new process was designed to prevent explosion of batteries during thermal treatment under inert atmosphere. Spent nickel metal hydride batteries were heated over range of 300°C to 600°C for 2 hours and each component was completely separated inside reactor after experiment. Electrodic powder was successfully recovered from bulk components containing several pieces of metals through sieving operation. The electrodic powder obtained was examined by X-ray diffraction (XRD and energy dispersive X-ray spectroscopy (EDX and image of the powder was taken by scanning electron microscopy (SEM. It was finally found that nickel and rare earth elements were mainly recovered to about 45 wt.% and 12 wt.% in electrodic powder, respectively.

  20. Adsorption of heavy metals by road deposited solids.

    Science.gov (United States)

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  1. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2016-02-15

    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  2. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides......In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...

  3. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  4. An all-solid-state screen-printed carbon paste reference electrode based on poly(3,4-ethylenedioxythiophene) as solid contact transducer

    International Nuclear Information System (INIS)

    Xu, Hui; Pan, Yiwen; Chen, Ying; Ye, Ying; Wang, You; Li, Guang

    2012-01-01

    The paper presents the design of an all-solid-state portable reference electrode based on a screen-printed carbon paste electrode suitable for rapid human serum testing. The electrode was covered by electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) as an internal solid contact layer and polyvinyl chloride (PVC) membrane containing lipophilic anion and cation additives. The electrochemical properties of PEDOT(PSS) and PEDOT(PSS)/PVC film on a carbon paste electrode were studied by electrochemical impedance spectroscopy and cyclic voltammetry methods. The reference electrode exhibited good potential stability (for H + , Na + , K + , Ca 2+ , Cl − and CO 2− 3 /HCO − 3 ), good reproducibility and long-term stability. The structure is applied as reference electrodes in human serum pH analysis with pH ion selective planar electrodes, forming a serum pH sensor. The response time of such a pH sensor was 15 s and the sensitivity was −52.2 ± 1.0 mV per decade. Other properties, such as repeatability, reproducibility and stability, were also evaluated. Clinical trials were carried out and compared with the results obtained from the routine hospital electrolyte analyzer, which demonstrated that their analytical performance was closely matched. (paper)

  5. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  6. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  7. Solid state electrolyte composites based on complex hydrides and metal doped fullerenes/fulleranes for batteries and electrochemical applications

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Jr., Joseph A.; Colon-Mercado, Hector R.; Greenway, Scott D.

    2018-05-01

    A LiBH4--C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.

  8. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  9. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  10. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  11. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  12. Manufacture and application of RuO2 solid-state metal-oxide pH sensor to common beverages.

    Science.gov (United States)

    Lonsdale, W; Wajrak, M; Alameh, K

    2018-04-01

    A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO 2 on Al 2 O 3 substrate, modified with thin layers of sputter-deposited Ta 2 O 5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO 2 . The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. “Imaging” LEIS of micro-patterned solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, John, E-mail: john.druce@i2cner.kyushu-u.ac.jp [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Simrick, Neil [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Ishihara, Tatsumi [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Kilner, John [International Institute for Carbon Neutral Energy Research (wpi-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Department of Materials, Imperial College London, London SW7 2BP (United Kingdom)

    2014-08-01

    Understanding the kinetics of oxygen exchange between the gas phase and a ceramic electrode is key to optimising the performance of electrochemical energy conversion devices such as Solid Oxide Fuel Cells. Clearly the surface chemistry of these materials is important, and surface sensitive techniques such as Low Energy Ion Scattering (LEIS) can provide important compositional information key to unravelling electrode kinetics. In this work, we use high lateral resolution LEIS to perform local analyses of a micropatterned electrode structure, of the type often used for studies of the geometrical dependences of electrode performance. We find that the results are comparable to those for bulk materials, but detect evidence of cation interdiffusion from the electrode to the electrolyte. Finally, we note that this preliminary study could open the prospect of in situ measurements of cells near operating conditions.

  14. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  15. Electrochemical characterization of calcium cobaltite based porous electrodes

    International Nuclear Information System (INIS)

    Fulgencio, E.B.G.A.; Vasconcelos, K.; Silva, R.M.; Melo, P.; Caetano, A.A.; Campos, L.F.A.; Dutra, R.P.S.; Macedo, D.A.

    2016-01-01

    Materials based on alkali metal oxides and alkaline earth metal have shown high technological interest in recent years. Among these materials, calcium and cobalt oxide composition Ca_3Co_4O_9 (C349) has emerged as thermoelectric material and, more recently, as cathode for solid oxide fuel cell (SOFC). In this study, C349 powder was obtained by solid state reaction of a mixture containing cobalt oxide and calcium carbonate from shellfish shells (CaCO_3 ∼ 98%), previously calcined at 550° C. Symmetrical cells (cathode / substrate / cathode) were prepared by screen printing of C349 electrodes in gadolinium-doped ceria substrates. The characterization by electrochemical impedance spectroscopy revealed that the C349 obtained in this work has an area specific resistance compatible with electrodes obtained by chemical routes (from literature). (author)

  16. Detecting DNA damage with a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Kuchaříková, Kateřina; Novotný, Ladislav; Josypčuk, Bohdan; Fojta, Miroslav

    2004-01-01

    Roč. 16, č. 5 (2004), s. 410-414 ISSN 1040-0397 R&D Projects: GA AV ČR IAA4004108; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA damage * silver solid amalgam electrode * HMDE Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  17. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  18. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Tsang, R.W.

    1981-10-01

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  19. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  20. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  1. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available BACKGROUND: Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs. METHODS: Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. RESULTS: With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs were lit and emitted colorful lights. CONCLUSIONS: The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and

  2. Carbon Powder Based Films on Traditional Solid Electrodes as an Alternative to Disposable Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Barek, J.; Fojta, Miroslav

    2006-01-01

    Roč. 18, č. 11 (2006), s. 1126-1130 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid electrodes * ink film * disposable sensor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  3. Modification of titanium electrodes by a noble metal deposit

    Energy Technology Data Exchange (ETDEWEB)

    Devilliers, D.; Mahe, E. [Pierre et Marie Curie Univ., Paris (France). Laboratoire LI2C, UMR CNRS

    2008-07-01

    Titanium is commonly used as a substrate for dimensionally stable anodes (DSAs) because it is corrosion-resistant in acid media and because a passive titanium oxide (TiO2) film can be formed on the surface. This paper reported on a study in which titanium substrates were first covered by anodization with a TiO2 layer. The electrochemical properties of the Ti/TiO2 electrodes were investigated. The modification of the substrates by cathodic electrodeposition of a noble metal was described. The reactivity of the Ti/TiO2/Pt structures were illustrated by impedance spectroscopy experiments. The impedance studies performed with Ti/ TiO2 electrodes in the presence of a redox couple in solution (Fe3+/Fe2+ system in sulphuric acid) showed that the electronic transfer is very slow. It was concluded that the deposition of a noble metal coating on Ti/TiO2 substrates leads to modified titanium electrodes that exhibit electrocatalytic behaviour versus specific electrochemical reactions. 1 ref., 3 figs.

  4. Silver Solid Amalgam Electrodes as Sensors for Chemical Carcinogens

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan

    2006-01-01

    Roč. 6, č. 4 (2006), s. 445-452 ISSN 1424-8220 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/03/0182 Institutional research plan: CEZ:AV0Z40400503 Keywords : solid amalgam electrodes * voltammetry * carcirogens * 3-nitrofluoranthene * Ostazine Orange Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.373, year: 2006

  5. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    Science.gov (United States)

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  6. Experimental observation of electrochemical rate limitations affecting sodium ion-electron recombination at electrodes of the alkali metal thermoelectric converter at T about 1200 K

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Loveland, M. E.; Underwood, M. L.; Bankston, C. P.

    1988-01-01

    This paper considers a model of the internal impedances of thin porous Mo and W alkali metal thermoelectric converter (AMTEC), in which the kinetic parameters associated with the reaction of the beta-double-prime alumina solid electrolite (BASE)/porous metal/gas three-phase boundary can be evaluated. Impedance data in the frequency range 0.01-100,000 Hz were collected over a range of AMTEC cell operating voltages for small-area thin porous Mo and W electrodes, yielding apparent charge transfer resistances at a series of cell potentials/currents. The ohmic resistance in the AMTEC cell could be broken down and characterized with three parameters: the BASE ionic resistance, the electrode film sheet resistance, and the contact/lead resistance, all of which could be calculated or measured independently and used to calculate power curves in good agreement with observed power curves. It is shown that these calculations can be used to predict the properties of electrodes with optimized parameters or to detect enhanced transport modes.

  7. Magneto-electrochemical recovery of diluted metals using three-dimensionally structured electrodes

    Science.gov (United States)

    Fernández, Dámaris; Romeral, Luis; Lyons, Michael E. G.

    2015-04-01

    In a typical metal recovery process, where highly purified metals are obtained from a concentrated electrolyte, usually the cathodic electrodes are planar and can be described mainly as bi-dimensional. This leads to a low space-time yield and low normalized space velocity with an impact on production rates. New requirements of low-energy consumption yet intensive production factories impose the need to adequate electrodes in order to comply. Furthermore, a reduction in the number of steps required to achieve a product would be ideal. This suggests that direct electro-precipitation of metals contained in diluted electrolytes would be in principle a desirable technique to implement. However, the less concentrated the solution, the higher the IR drop becomes, making the process more energy-consuming and current efficiency strongly decays. Good potential alternatives arise from three-dimensionally designed electrodes in the form of mesh, porous or fluidized beds, for instance, and several examples are well known in literature. Nevertheless, current efficiency can still be a problem in the more diluted electrolytes. Furthermore, the anodic electrode, where the counter reaction takes place, plays also an important role in determining the current efficiency of the overall process. In this case, the liquid-to-gas phase transition implies that the electrodes get a strong gas shield that increases the IR drop. Whereas shifting from bi-dimensional to three-dimensional electrodes could provide an alternative for achieving better performances, it is still far from the expected targets. Therefore alternative or complementary techniques to improve efficiency are required. It is well known that magnetic fields coupled with electric fields enhance mass transport via de Lorentz and other forces. In this work, the applications and properties of three-dimensional arrays subject to magnetic field interactions are examined and compared with the traditional bi-dimensional electrodes

  8. All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for Determination of Donepezil Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Khamees, Nesreen; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad; Aziz, Azza

    2017-09-01

    All-solid-state, polyvinyl chloride (PVC) membrane, and carbon paste potentiometric ion-selective electrodes (ISEs) were proposed for the determination of donepezil hydrochloride (DON) in the drug substance and a pharmaceutical formulation. The potentiometric response toward DON was based on the existence of donepezil-tetraphenyl borate (DON-TPB) in a PVC membrane or a carbon paste in the presence of dioctylphthalate. In contrast, the solid-state electrode was prepared by direct incorporation of DON-TPB into a commercial nail varnish without external additives. The electrodes exhibited Nernstian slopes of 55.0, 57.0, and 53.0 mV/decade over the concentration ranges of 1 × 10-5 to 1 × 10-3, 1 × 10-4 to 10-2, and 1 × 10-4 to 5 × 10-3 for the solid-state, PVC membrane, and carbon paste electrodes, respectively. The response of the electrodes is independent of pH in the range of 2-≤8. The electrodes showed good selectivity for DON with respect to a number of inorganic cations and amino acids. The electrodes were used for the determination of DON in pure solution and in pharmaceutical tablets with high accuracy (±2%) and precision (RSD ≤2%). The solid-state electrode is simple, economical, and rapid when compared to the PVC membrane and carbon paste electrodes.

  9. High capacity V-based metal hydride electrodes for rechargeable batteries

    OpenAIRE

    Yang, Heng; Weadock, Nicholas J.; Tan, Hongjin; Fultz, Brent

    2017-01-01

    We report the successful development of Ti_(29)V_(62−x)Ni_9Cr_x (x = 0, 6, 12) body centered cubic metal hydride (MH) electrodes by addressing vanadium corrosion and dissolution in KOH solutions. By identifying oxygen as the primary source of corrosion and eliminating oxygen with an Ar-purged cell, the Cr-free Ti_(29)V_(62)Ni_9 alloy electrode achieved a maximum capacity of 594 mAh g^(-1), double the capacity of commercial AB_5 MH electrodes. With coin cells designed to minimize oxygen evolut...

  10. Determining the baking isotherm temperature of Söderberg electrodes and associated structural changes

    OpenAIRE

    Shoko, L.; Beukes, J.P.; Strydom, C.A.

    2013-01-01

    One of the most commonly employed electrode systems in industrial metal smelting applications is continuous self-baking electrodes, i.e. the Söderberg electrode system. In this system, the temperature at which transition from a liquid/soft paste to a solid carbonaceous electrode takes place is termed the baking isotherm temperature. This temperature is extremely important within the context of electrode management. In this paper, thermo mechanical analysis (TMA) was used to measure the dimens...

  11. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  12. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  13. Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes

    OpenAIRE

    Yamada, Hirotsohi; Oga, Yusuke; Saruwatari, Isamu; Moriguchi, Isamu

    2012-01-01

    All solid state batteries are attracting interests as next generation energy storage devices. However, little is known on interfaces between active materials and solid electrolytes, which may affect performance of the devices. In this study, interfacial phenomena between electrodes and solid electrolytes of all solid state batteries were investigated by using nano-composites of Li 2SiO 3-TiO 2, Li 2SiO 3-LiTiO 2, and Li 2SiO 3-FePO 4. Studies on ionic conductivity of these composites revealed...

  14. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  15. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  16. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  17. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    Science.gov (United States)

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.

  18. Graphene nanocomposites for electrochemical cell electrodes

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  19. Voltammetric Determination of Azidothymidine Using Silver Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Pecková, K.; Navrátil, Tomáš; Josypčuk, Bohdan; Moreira, J. C.; Leandro, K. Ch.; Barek, J.

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1750-1757 ISSN 1040-0397 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503 Keywords : azidothymidine * Zidovudine * Silver solid amalgam electrode * Differential pulse voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  20. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  1. Manufacture and evaluation of integrated metal-oxide electrode prototype for corrosion monitoring in high temperature water

    International Nuclear Information System (INIS)

    Hashimoto, Yoshinori; Tani, Jun-ichi

    2014-01-01

    We have developed an integrated metal-oxide (M/O) electrode based on an yttria-stabilized-zirconia-(YSZ)-membrane M/O electrode, which was used as a reference electrode for corrosion monitoring in high temperature water. The YSZ-membrane M/O electrode can operate at high temperatures because of the conductivity of YSZ membrane tube. We cannot utilize it for long term monitoring at a wide range of temperatures. It also has a braze juncture between the YSZ membrane and metal tubes, which may corrode in high-temperature water. This corrosion should be prevented to improve the performance of the M/O electrode. An integrated M/O electrode was developed (i.e., integrated metal-oxide electrode, IMOE) to eliminate the braze juncture and increase the conductivity of YSZ. These issues should be overcome to improve the performance of M/O electrode. So we have developed two type of IMOE prototype with sputter - deposition or thermal oxidation. In this paper we will present and discuss the performance of our IMOEs in buffer solution at room temperature. (author)

  2. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  3. Voltammetry of metallic powder suspensions on mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2006-01-01

    Roč. 18, č. 4 (2006), s. 423-426 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallic particles * oxide layers * suspensions * mercury electrodes * particulate electrolysis Subject RIV: CG - Electrochemistry Impact factor: 2.444, year: 2006

  4. Carbon and Redox Tolerant Infiltrated Oxide Fuel-Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Sudireddy, Bhaskar Reddy; Blennow, P.

    2016-01-01

    To solve issues of coking and redox instability related to the presence of nickel in typical fuel electrodes in solid oxide cells,Gd-doped CeO2 (CGO) electrodes were studied using symmetriccells. These electrodes showed high electro-catalytic activity, butlow electronic conductivity. When...... infiltrated with Sr0.99Fe0.75Mo0.25O3-δ (SFM), the electronic conductivity wasenhanced. However, polarization resistance of the cells increased,suggesting that the infiltrated material is less electro-catalyticallyactive and was partly blocking the CGO surface reaction sites. Theactivity could be regained...... by infiltrating nano-sized CGO orNiCGO on top of SFM, while still sustaining the high electronicconductivity. Ohmic resistance of the electrodes was thuspractically eliminated and performance comparable to, or betterthan, state-of-the-art fuel electrodes was achieved. The Nicontaining cells were damaged by carbon...

  5. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  6. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  7. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  8. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  9. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  10. Method of preparing an electrode material of lithium-aluminum alloy

    Science.gov (United States)

    Settle, Jack L.; Myles, Kevin M.; Battles, James E.

    1976-01-01

    A solid compact having a uniform alloy composition of lithium and aluminum is prepared as a negative electrode for an electrochemical cell. Lithium losses during preparation are minimized by dissolving aluminum within a lithium-rich melt at temperatures near the liquidus temperatures. The desired alloy composition is then solidified and fragmented. The fragments are homogenized to a uniform composition by annealing at a temperature near the solidus temperature. After comminuting to fine particles, the alloy material can be blended with powdered electrolyte and pressed into a solid compact having the desired electrode shape. In the preparation of some electrodes, an electrically conductive metal mesh is embedded into the compact as a current collector.

  11. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    Science.gov (United States)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  12. Modified electrode voltammetric sensors for trace metals in environmental samples

    Directory of Open Access Journals (Sweden)

    Brett Christopher M.A.

    2000-01-01

    Full Text Available Nafion-modified mercury thin film electrodes have been investigated for the analysis of trace metals in environmental samples of waters and effluent by batch injection analysis with square wave anodic stripping voltammetry. The method, involving injection over the detector electrode of untreated samples of volume of the order of 50 microlitres has fast response, blocking and fouling of the electrode is minimum as shown by studies with surface-active components. Comparison is made between glassy carbon substrate electrodes and carbon fibre microelectrode array substrates, the latter leading to a small sensitivity enhancement. Application to analysis of river water and industrial effluent for labile zinc, cadmium, lead and copper ions is demonstrated in collected samples and after acid digestion.

  13. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gorte, Raymond J.; Vohs, John M.

    2014-03-26

    Solid oxide fuel cells (SOFC) and electrolyzers (SOE) offer an attractive means for converting between electrical and chemical energy. Because they operate at high temperatures and are usually based on electrolytes that are oxygen-ion conducting ceramics, such as yttria-stabilized zirconia (YSZ), they are equally capable of converting between CO and CO2 as between H2 and H2O. When operated in the SOFC mode, they are able to operate on hydrocarbon fuels so long as there are no materials within the anode that can catalyze carbon formation. Compared to other types of electrolyzers, SOE can exhibit the highest efficiencies because the theoretical Nernst potential is lower at high temperatures and because the electrode overpotentials in SOE tend to be much lower. Finally, pure H2 can be produced without an external electrical source by electrolysis of steam at one electrode and oxidation of any fuel at the other electrode through a process known as Natural-Gas Assisted Steam Electrolysis. This final report describes results from studies of novel electrodes for SOE and SOFC prepared by infiltration methods.

  15. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    Directory of Open Access Journals (Sweden)

    Anastasios Economou

    2018-03-01

    Full Text Available This work reviews the field of screen-printed electrodes (SPEs modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  16. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  17. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    Science.gov (United States)

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-05

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sensitive voltammetric method for determination of herbicide triasulfuron using silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.

    2013-01-01

    Roč. 113, DEC 2013 (2013), s. 1-8 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GAP208/12/1645 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/30.0021 Institutional support: RVO:61388955 Keywords : Triasulfuron * Hanging mercury drop electrode * Mercury meniscus modified silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  19. Silver Solid Amalgam Electrode as a Tool for Monitoring the Electrochemical Reduction of Hydroxocobalamin

    Czech Academy of Sciences Publication Activity Database

    Bandžuchová, L.; Šelešovská, R.; Navrátil, Tomáš; Chýlková, J.

    2013-01-01

    Roč. 25, č. 1 (2013), s. 213-222 ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : cobalamin * hanging mercury drop electrode * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.502, year: 2013

  20. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    Science.gov (United States)

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  1. Employment of a metal microgrid as a front electrode in a sandwich-structured photodetector.

    Science.gov (United States)

    Zhang, Junying; Cai, Chao; Pan, Feng; Hao, Weichang; Zhang, Weiwei; Wang, Tianmin

    2009-07-01

    A highly UV-transparent metal microgrid was prepared and employed as the front electrode in a sandwich-structured ultraviolet (UV) photodetector using TiO(2) thin film as the semiconductor layer. The photo-generated charger carriers travel a shorter distance before reaching the electrodes in comparison with a photodetector using large-spaced interdigitated metal electrodes (where distance between fingers is several to tens of micrometers) on the surface of the semiconductor film. This photodetector responds to UV light irradiation, and the photocurrent intensity increases linearly with the irradiation intensity below 0.2 mW/cm(2).

  2. Nanothorn electrodes for ionic polymer-metal composite artificial muscles.

    Science.gov (United States)

    Palmre, Viljar; Pugal, David; Kim, Kwang J; Leang, Kam K; Asaka, Kinji; Aabloo, Alvo

    2014-08-22

    Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1-3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process.

  3. Application of silver solid amalgam electrode for determination of formamidine amitraz

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Hrdlička, V.; Navrátil, Tomáš; Harvila, M.; Zima, J.; Barek, J.

    2016-01-01

    Roč. 147, č. 1 (2016), s. 181-189 ISSN 0026-9247 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : amitraz * pesticide * silver solid amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.282, year: 2016

  4. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  5. Soil-modified carbon paste electrode: a useful tool in environmental assessment of heavy metal ion binding interactions.

    Science.gov (United States)

    Svegl, I G; Ogorevc, B

    2000-08-01

    Carbon paste electrodes (CPEs) modified with different soils in their native form were prepared to create a soil-like solid phase suitable for application in studies of heavy metal ion uptake and binding interactions. The preparation of CPEs modified with five different soils was examined and their heavy metal ion uptake behavior investigated using a model Cu(II) aqueous solution. Metal ions were accumulated under open circuit conditions and were determined after a medium exchange using differential pulse anodic stripping voltammetry, applying preelectrolysis at -0.7 V. The soil-modified CPE accumulation behavior, including the linearity of the current response versus Cu(II) concentration, the influence of the pH on the solution, and the uptake kinetics, was thoroughly investigated. The correlation between the soil-modified CPE uptake capability and the standard soil parameters, such as ion exchange capacity, soil pH, organic matter and clay content, were evaluated for all five examined soils. The influence of selected endogenous cations (K(I), Ca(II), Fe(III)) on the transfer of Cu(II) ions from a solution to the simulated soil solid phase was examined and is discussed. Preliminary examinations of the soil-modified CPE uptake behavior with some exogenous heavy metal ions of strong environmental interest (Pb(II), Hg(II), Cd(II) and Ag(I)) are also presented. This work demonstrates some attractive possibilities for the application of a soil-modified CPE in studying soil-heavy metal ion binding interactions, with a further potential use as a new environmental sensor appropriate for fist on-site testing of polluted soils.

  6. Electrode Kinetics and Gas Conversion in Solid Oxide Cells

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude

    The solid oxide fuel cell (SOFC) converts hydrogen, carbon monoxide and hydrocarbon fuels (directly) into electricity with very high efficiencies and has demonstrated almost comparable performance when operated in reverse mode as a solid oxide electrolysis cell (SOEC). In this case electrical (and...... thermal) energy is stored as chemical energy of reaction products. To this end, the cells are fed with steam (H2O electrolysis), carbon dioxide (CO2 electrolysis) or a mixture of both (H2O/CO2 co-electrolysis) and of course electrical (ΔG) and thermal (TΔS) energies for the splitting of reactant compounds...... of the solid oxide cell (SOC) and independent of polarization mode (fuel cell mode or electrolysis mode), the current flowing through the cell is limited by processes such as adsorption and desorption of reactants or products, diffusion through the porous electrodes, activation or charge transfer...

  7. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Development of high-flexible triboelectric generators using plastic metal as electrodes

    Science.gov (United States)

    Yang, Sen-Yeu; Shih, Jian-Fu; Chang, Chih-Chieh; Yang, Chii-Rong

    2017-02-01

    A triboelectric generator is a device that harvests energy through the conversion of mechanical energy into electrical energy. In this work, two polymer materials (PDMS and PET) were selected as triboelectric layers in conjunction with plastic metal (PM) films as conductive layers to produce an electrode with high flexibility. The PDMS film was fabricated with a microstructural array to enhance friction. The proposed PM material was prepared by mixing gallium-indium liquid metal and a glaze powder with excellent coating ability, extensibility, and conductivity. Results demonstrate the superior characteristics of the PM flexible electrodes, including large bending angle (≥180°), small curvature radius (≤1 mm), and stable conductivity. This PM-based triboelectric generator can achieve average output voltage of 80 V and current of 37.2 μA. The proposed flexible electrode with a PM conductive layer could be expected to make a notable contribution to the development of wearable devices.

  9. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore

    Science.gov (United States)

    Zhang, Jianxin; Guo, Yixuan; Li, Shangjin; Xu, Hui

    2016-10-01

    The solid-state pH electrode has the potential possibility to be used in many extreme situations with satisfactory accuracy and low cost. But its performance is affected by the solid electrolyte, preparation process, and the structure of the sensitive membrane, etc. In this work, the relationships between these factors and the characteristic of the prepared electrode were verified by controlling the preparation conditions with a variety of electrochemical methods. Firstly, the solid electrolyte poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) was electrochemically deposited on the screen-printed carbon electrode (SPCE) substrate by a potentiostatic method in an aqueous solution containing 0.01 M 3,4-ethylenedioxythiophene (EDOT) and 0.1 M polystyrene sulfonic (PSS) acid as the supporting electrolyte. The PEDOT films were then characterized by cyclic voltammetry (CV) in the 0.1 M NaNO3 aqueous solution in order to obtain the optimized polymerization potential and charges where the PEDOT film would have a higher redox capacitance. Finally, the pH electrode was prepared by coating the SPCE/PEDOT(PSS) with a plasticized polyvinyl chloride (PVC) membrane containing tridodecylamine as hydrogen ionophore manually, and experiments were carried out to study the effect of the usage of PVC per square millimeter on the response time and stability of the electrode to optimize the PVC film thickness. The potentiometric response of the pH electrode was studied in the buffer solutions with pH ranging from 5.00 to 10.81 by the open-circuit potential (OCP) method. Experimental results show that the sensitivity of the electrode is  -55.7  ±  0.5 mV pH-1 (r 2  >  0.9980) at room temperature (24  ±  1 °C) with pH ranging from 2.00-10.50, approximating to the theoretical nernstian slope (-59.16 mV pH-1),and the response time was less than 10 s. Moreover, it has low impedance, high accuracy and potential stability as well as some

  10. A solid-contact pH-selective electrode based on tridodecylamine as hydrogen neutral ionophore

    International Nuclear Information System (INIS)

    Zhang, Jianxin; Guo, Yixuan; Li, Shangjin; Xu, Hui

    2016-01-01

    The solid-state pH electrode has the potential possibility to be used in many extreme situations with satisfactory accuracy and low cost. But its performance is affected by the solid electrolyte, preparation process, and the structure of the sensitive membrane, etc. In this work, the relationships between these factors and the characteristic of the prepared electrode were verified by controlling the preparation conditions with a variety of electrochemical methods. Firstly, the solid electrolyte poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) was electrochemically deposited on the screen-printed carbon electrode (SPCE) substrate by a potentiostatic method in an aqueous solution containing 0.01 M 3,4-ethylenedioxythiophene (EDOT) and 0.1 M polystyrene sulfonic (PSS) acid as the supporting electrolyte. The PEDOT films were then characterized by cyclic voltammetry (CV) in the 0.1 M NaNO3 aqueous solution in order to obtain the optimized polymerization potential and charges where the PEDOT film would have a higher redox capacitance. Finally, the pH electrode was prepared by coating the SPCE/PEDOT(PSS) with a plasticized polyvinyl chloride (PVC) membrane containing tridodecylamine as hydrogen ionophore manually, and experiments were carried out to study the effect of the usage of PVC per square millimeter on the response time and stability of the electrode to optimize the PVC film thickness. The potentiometric response of the pH electrode was studied in the buffer solutions with pH ranging from 5.00 to 10.81 by the open-circuit potential (OCP) method. Experimental results show that the sensitivity of the electrode is  −55.7  ±  0.5 mV pH −1 ( r 2   >  0.9980) at room temperature (24  ±  1 °C) with pH ranging from 2.00–10.50, approximating to the theoretical nernstian slope (−59.16 mV pH −1 ),and the response time was less than 10 s. Moreover, it has low impedance, high accuracy and potential stability

  11. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  12. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  13. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    International Nuclear Information System (INIS)

    Abbaspour, Ali; Luo Jingli; Nandakumar, K.

    2010-01-01

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  14. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    Science.gov (United States)

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  15. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  16. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Rute F., E-mail: rdomingos@ipgp.fr [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Carreira, Sara [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Galceran, Josep [Department of Chemistry, University of Lleida and Agrotecnio, Rovira Roure 191, 25198 Lleida (Spain); Salaün, Pascal [School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L693 GP (United Kingdom); Pinheiro, José P. [LIEC/ENSG, UMR 7360 CNRS – Université de Lorraine, 15 Avenue du Charmois, 54500 Vandoeuvre-les-Nancy (France)

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu{sup 2+}) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. - Highlights: • AGNES principles are valid at the vibrating gold microwire electrode (VGME). • VGME was successfully employed to quantify free Cu concentrations by using AGNES. • Stability constants of labile systems were in good agreement with predictions.

  17. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  18. Application of Copper Solid Amalgam Electrode for Determination of Fungicide Tebuconazole

    Czech Academy of Sciences Publication Activity Database

    Nováková, Kateřina; Navrátil, Tomáš; Jaklová Dytrtová, Jana; Chýlková, J.

    2013-01-01

    Roč. 8, č. 1 (2013), s. 1-16 ISSN 1452-3981 R&D Projects: GA ČR GAP206/11/1638; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 ; RVO:61388963 Keywords : tebuconazole * fungicide * copper solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  19. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    Science.gov (United States)

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A.; Brown, Gilbert M.

    2017-04-11

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions include microspheres with an average diameter between about 200 nanometers and about 10 micrometers and mesopores on the surface and interior of the microspheres. The methods of making include forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least annealing in a reducing atmosphere, doping with an aliovalent element, and coating with a coating composition.

  20. Control of the electrode metal transfer by means of the welding current pulse generator

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  1. Voltammetric Determination of 4-Nitrophenol and 5-Nitrobenzimidazole Using Different Types of Silver Solid Amalgam Electrodes - A Comparative Study

    Czech Academy of Sciences Publication Activity Database

    Deýlová, D.; Josypčuk, Bohdan; Vyskočil, V.; Barek, J.

    2011-01-01

    Roč. 23, č. 7 (2011), s. 1548-1555 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * polished silver solid amalgam electrode * Mercury meniscus modified silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.872, year: 2011

  2. Separation of lanthanum from samarium on solid aluminum electrode in LiCl-KCl eutectic melts

    International Nuclear Information System (INIS)

    De-Bin Ji; Mi-Lin Zhang; Xing Li; Xiao-Yan Jing; Wei Han; Yong-De Yan; Yun Xue; Zhi-Jian Zhang; Harbin Engineering University, Harbin

    2015-01-01

    This paper presents an electrochemical study on the separation of lanthanum from samarium on aluminum electrode at 773 K. The results from different electrochemical methods showed that Sm(III) and La(III) formed Al-Sm and Al-La intermetallic compounds on an aluminum electrode at electrode potential around -1.67 and -1.46 V, respectively. The electrochemical separation of lanthanum was carried out in LiCl-KCl-LaCl 3 -SmCl 3 melts on solid aluminum electrodes at 773 K by potentiostatic electrolysis at -1.45 V for 40 h and the separation efficiency was 99.1 %. (author)

  3. Method of making a cermet fuel electrode containing an inert additive

    Science.gov (United States)

    Jensen, Russel R.

    1992-01-01

    An electrode is attached to a solid electrolyte material by: (1) mixing a metallic nickel component and 1 wt% to 10 wt% of yttria stabilized zirconia having particle diameters up to 3 micrometers with an organic binder solution to form a slurry, (2) applying the slurry to a solid zirconia electrolyte material, (3) heating the slurry to drive off the organic binder and form a porous layer of metallic nickel substantially surrounded and separated by the zirconia particles, and (4) electro-chemical vapor depositing a skeletal structure between and around the metallic nickel and the zirconia particles where the metallic nickel components do not substantially sinter to each other, yet the layer remains porous.

  4. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  5. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hang; Tang, Zhiyong; Zhang, Kang; Wang, Lei; Shi, Huimin; Zhang, Guanhua; Duan, Huigao

    2017-01-01

    Ternary transition metal oxides have received intense research interest as electrode materials for lithium ion batteries, due to their high specific capacity originating from the synergic effects of multiple metal active sites. Reducing the size of metal oxides nanoparticles and dispersing these nanoparticles in carbon matrix are considering effective strategies to improve the electrochemical performance of transition metal oxides. Ternary CuCo 2 O 4 nanoclusters ultra-uniformly dispersed in carbon nanofiber matrix forming a pseudo-solid-solution structure are successfully synthesized by a facile electrospinning method followed by an appropriate annealing process. As the anodic electrode for lithium ion batteries, the pseudo-solid-solution CuCo 2 O 4 /C electrode exhibits a high reversible specific capacity, improved rate capacity and excellent cycling stability. A discharge capacity of 865 mAh g −1 is obtained at the current density of 200 mA g −1 after 400 cycles. Surprisingly, the electrode still retains about 610 mAh g −1 after 800 cycles even at the current density of 600 mA g −1 . The superior lithium storage performance of the pseudo-solid-solution CuCo 2 O 4 /C composites is mainly attributed to the unique amorphous structure. The ultrafine CuCo 2 O 4 nanoclusters uniformly dispersed in carbon matrix can buffer the volume change and improve the conductivity of the metal oxide based electrode, guaranteeing the structure stability and fast electron transfer.

  6. Role of electrode metallization in the performance of bulk semi-insulating InP radiation detectors

    International Nuclear Information System (INIS)

    Zatko, B.; Dubecky, F.; Prochazkova, O.; Necas, V.

    2007-01-01

    This work deals with the study of three different electrode metallizations with the aim to form a Schottky barrier contact. Electrode geometry corresponds to the requirements of digital radiography systems. As substrates bulk Liquid Encapsulated Czochralski (LEC) SI InP wafers doped with Fe and Fe+Zn are used. Results of this study show that no one of the used metallization performs as a blocking contact. However, detectors with Ti/Pt/Au metallization attained a relatively good energy resolution of 7.0 keV in full-width at half-maximum (FWHM) and the charge collection efficiency (CCE) higher than 83% for 122 keV γ-photons at 255 K. The development of SI InP radiation detectors and in particular their electrode technology is discussed in the light of observed results

  7. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  8. Development of a new all solid contact Cs"+ ion selective electrode

    International Nuclear Information System (INIS)

    Ramanjaneyulu, P.S.; Abha Naveen Kumar; Sharma, M.K.

    2017-01-01

    Studies were carried out to develop all solid contact cesium ion selective electrode with 25,27-bis(1-octyloxy)calix[4]arene-crown-6 as an ionophore. Polyaniline (PANI), deposited on Pt electrode by electrochemical method, was used as a transducer. Three different types of electrodes were made with variation in thickness of PANI film and gold nanoparticles doped PANI as transducers. The best response was observed with ISE having Au nanoparticles doped PANI as a transducer. The optimised ISE gave Nernstian response in the range 10"-"7 to 10"-"2 M with the slope of 55.0 ± 0.6 mV/decade of Cs"+. The response of ISE for Cs"+ is fairly constant above the pH 4. The developed ISE was successfully employed to determine Cs"+ in simulated high level nuclear waste solutions and CsCl spiked tap water samples. (author)

  9. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; R. C. O' Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  10. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  11. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Science.gov (United States)

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of

  12. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries

    Science.gov (United States)

    Tsukasaki, Hirofumi; Otoyama, Misae; Mori, Yota; Mori, Shigeo; Morimoto, Hideyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2017-11-01

    Sulfide-based all-solid-state batteries using a non-flammable inorganic solid electrolyte are promising candidates as a next-generation power source owing to their safety and excellent charge-discharge cycle characteristics. In this study, we thus focus on the positive electrode and investigated structural stabilities of the interface between the positive electrode active material LiNi1/3Mn1/3Co1/3O2 (NMC) and the 75Li2S·25P2S5 (LPS) glass electrolyte after charge-discharge cycles via transmission electron microscopy (TEM). To evaluate the thermal stability of the fabricated all-solid-state cell, in-situ TEM observations for the positive electrode during heating are conducted. As a result, structural and morphological changes are detected in the LPS glasses. Thus, exothermal reaction present in the NMC-LPS composite positive electrode after the initial charging is attributable to the crystallization of LPS glasses. On the basis of a comparison with crystallization behavior in single LPS glasses, the origin of exothermal reaction in the NMC-LPS composites is discussed.

  13. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’ as, Eman H.

    2015-01-01

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures

  14. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  15. Impedance study of tea with added taste compounds using conducting polymer and metal electrodes.

    Science.gov (United States)

    Dhiman, Mopsy; Kapur, Pawan; Ganguli, Abhijit; Singla, Madan Lal

    2012-09-01

    In this study the sensing capabilities of a combination of metals and conducting polymer sensing/working electrodes for tea liquor prepared by addition of different compounds using an impedance mode in frequency range 1 Hz-100 KHz at 0.1 V potential has been carried out. Classification of six different tea liquor samples made by dissolving various compounds (black tea liquor + raw milk from milkman), (black tea liquor + sweetened clove syrup), (black tea liquor + sweetened ginger syrup), (black tea liquor + sweetened cardamom syrup), (black tea liquor + sweet chocolate syrup) and (black tea liquor + vanilla flavoured milk without sugar) using six different working electrodes in a multi electrode setup has been studied using impedance and further its PCA has been carried out. Working electrodes of Platinum (Pt), Gold (Au), Silver (Ag), Glassy Carbon (GC) and conducting polymer electrodes of Polyaniline (PANI) and Polypyrrole (PPY) grown on an ITO surface potentiostatically have been deployed in a three electrode set up. The impedance response of these tea liquor samples using number of working electrodes shows a decrease in the real and imaginary impedance values presented on nyquist plots depending upon the nature of the electrode and amount of dissolved salts present in compounds added to tea liquor/solution. The different sensing surfaces allowed a high cross-selectivity in response to the same analyte. From Principal Component Analysis (PCA) plots it was possible to classify tea liquor in 3-4 classes using conducting polymer electrodes; however tea liquors were well separated from the PCA plots employing the impedance data of both conducting polymer and metal electrodes.

  16. Stability and Performance of Oxygen Electrodes for Reversible Solid Oxide Cells

    Science.gov (United States)

    Railsback, Justin Gary

    Worldwide, governments are beginning to take action to reduce anthropogenic CO2 emissions in order to mitigate the extent of global climate change. The largest fraction of global CO2 emission comes from electrical power generation, which is rapidly being converted to wind and solar installations. The intermittent nature of renewable resources requires that large scale energy storage be implemented to ensure grid stability. Pumped hydro storage is currently the only technology available for large scale energy storage; however, pumped hydro remains geographically confined and susceptible to seasonal fluctuations and offers limited discharge hours. Recent system level models predict that reversible solid oxide cells may be a competitive solution, but two key advancements are required to realize the technology: low cell resistance (cell resistance, and when a cell is operated in electrolysis the oxygen electrode is known to degrade quickly. This work focuses on both aspects of the oxygen electrode. A Pr2NiO4 based electrode is developed that has improved phase stability and good polarization resistance ( 0.1 O•cm2 at 650 °C). The electrode is prepared by wet chemical impregnation (infiltration) of Pr2NiO4 precursors into a La0.9Sr 0.1Ga0.8Mg0.2O3 scaffold. Electrochemical data for a number cells is presented and the number of infiltrations is optimized. Preliminary life tests and x-ray data are presented. Pressurization of the oxygen electrode is predicted to decrease its polarization resistance and pressurization of the reversible solid oxide cell system is desirable to achieve high round-trip efficiency. The electrochemical performance of mixed electronic-ionic conducting electrodes has not been reported above 1 atm. Four candidate electrodes are examined under pressurization up to 10 atm: Pr2NiO4 infiltrated La0.9Sr0.1 Ga0.8Mg0.2O3, Sm0.5Sr 0.5CoO3 infiltrated Ce0.9Gd0.1O 2, single phase La0.6Sr0.4Co0.2Fe 0.8O3, and single phase Nd2NiO4. The role of the ion

  17. Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films

    DEFF Research Database (Denmark)

    Linnet, Jes; Runge Walther, Anders; Wolff, Christian

    2018-01-01

    grid, and nano-wire thin-films. The indium and carbon films do not match the chemical stability nor the electrical performance of the noble metals, and many metal films are not uniform in material distribution leading to significant surface roughness and randomized transmission haze. We demonstrate...... solution-processed masks for physical vapor-deposited metal electrodes consisting of hexagonally ordered aperture arrays with scalable aperture-size and spacing in an otherwise homogeneous noble metal thin-film that may exhibit better electrical performance than carbon nanotube-based thin-films...... for equivalent optical transparency. The fabricated electrodes are characterized optically and electrically by measuring transmittance and sheet resistance. The presented methods yield large-scale reproducible results. Experimentally realized thin-films with very low sheet resistance, Rsh = 2.01 ± 0.14 Ω...

  18. All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes

    Science.gov (United States)

    Li, Jiantong; Mishukova, Viktoriia; Östling, Mikael

    2016-09-01

    The all-solid-state graphene-based in-plane micro-supercapacitors are fabricated simply through reliable inkjet printing of pristine graphene in interdigitated structure on silicon wafers to serve as both electrodes and current collectors, and a following drop casting of polymer electrolytes (polyvinyl alcohol/H3PO4). Benefiting from the printing processing, an attractive porous electrode microstructure with a large number of vertically orientated graphene flakes is observed. The devices exhibit commendable areal capacitance over 0.1 mF/cm2 and a long cycle life of over 1000 times. The simple and scalable fabrication technique for efficient micro-supercapacitors is promising for on-chip energy storage applications in emerging electronics.

  19. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  20. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  1. Cathodic Stripping Voltammetry of Cysteine Using Silver and Copper Solid Amalgam Electrodes

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Novotný, Ladislav

    2002-01-01

    Roč. 56, č. 5 (2002), s. 971-976 ISSN 0039-9140 R&D Projects: GA ČR GV204/97/K084 Institutional research plan: CEZ:AV0Z4040901 Keywords : silver or copper solid amalgam electrode * cysteine * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 2.054, year: 2002

  2. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  3. Semi solid metal processing: The fraction solid dilemma

    International Nuclear Information System (INIS)

    Nafisi, S.; Emadi, D.; Ghomashchi, R.

    2009-01-01

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process

  4. Semi solid metal processing: The fraction solid dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Nafisi, S. [EVRAZ Inc. NA 100 Armour Road, Regina, SK, S4P 3C7 (Canada)], E-mail: Shahrooz.Nafisi@evrazincna.com; Emadi, D. [CEPG, CanmetENERGY, Natural Resources Canada, Ottawa, ON, K1A 1M1 (Canada); Ghomashchi, R. [Advanced Materials and Processing Research Institute, Suite 122, A7-1390 Major MacKenzie, ON, L4S 0A1 (Canada)

    2009-05-15

    One of the most challenging aspects in semi solid metal (SSM) processing is to determine the actual volume fraction of the solid at the processing temperature. The fraction has great impact on the SSM slurry viscosity and the subsequent filling of the mold in the casting stage. Three methods, namely quantitative metallography, thermodynamic calculation, and thermal analysis are employed to investigate and clarify the contradictory open literature reports about the real value of the volume fraction of primary particles. It is reported that the discrepancies between the results obtained by different methods are caused mainly by variations in cooling rates and by coarsening of the primaries during the quenching process.

  5. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  6. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration

    Science.gov (United States)

    Skafte, Theis Løye; Hjelm, Johan; Blennow, Peter; Graves, Christopher

    2018-02-01

    The solid oxide cell (SOC) could play a vital role in energy storage when the share of intermittent electricity production is high. However, large-scale commercialization of the technology is still hindered by the limited lifetime. Here, we address this issue by examining the potential for repairing various failure and degradation mechanisms occurring in the fuel electrode, thereby extending the potential lifetime of a SOC system. We successfully infiltrated the nickel and yttria-stabilized zirconia cermet electrode in commercial cells with Gd-doped ceria after operation. By this method we fully reactivated the fuel electrode after simulated reactant starvation and after carbon formation. Furthermore, by infiltrating after 900 h of operation, the degradation of the fuel electrode was reduced by a factor of two over the course of 2300 h. Lastly, the scalability of the concept is demonstrated by reactivating an 8-cell stack based on a commercial design.

  7. Direct Observation of Virtual Electrode Formation Through a Novel Electrolyte-to-Electrode Transition

    Science.gov (United States)

    Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin

    2014-03-01

    Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.

  8. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  9. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  10. Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells

    Science.gov (United States)

    Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl

    2017-12-01

    For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.

  11. Isolation and dispersion of reduced metal particles using the surface dipole moment of F-terminated diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.; Tanaka, Y.; Furuta, M. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, T. [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Fujishima, A. [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takastu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, K. [Department of Chemistry and Earth Sciences, School of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)], E-mail: khonda@yamaguchi-u.ac.jp

    2009-04-30

    Cu particles that have been reductively generated at the oxidized surface of a boron-doped diamond electrode (O-BDD) can be removed from the electrode's surface by the repulsive electrostatic force of the surface dipole moment during a potential cycle of a solution of Cu{sup 2+} ions. The objective of this study was to isolate various metal particles other than Cu by use of a fluorine-terminated BDD surface (F-BDD) with a stronger surface dipole moment than O-BDD, and to clarify the mechanism of the metal particles' separation from the electrode. During the potential cycle treatment of Cu{sup 2+} ions using F-BDD, the reionization of the reduced Cu could be suppressed in the presence of dissolved oxygen, and the Cu particles were separated from the electrode surface as CuO. A similar result was seen with O-BDD. The degree of separation of the Cu particles could be drastically enhanced by raising the upper potential limit in the potential cycle from +0.2 to +0.8 V. By setting the upper potential to a potential greater than the metal-metal oxide equilibrium line in the potential-pH equilibrium diagram of the Cu-water system (Pourbaix Diagram), oxidation of the reduced metal surface by reaction with dissolved oxygen could be accelerated and the surface of metal particles could be insulated. The Cu particles were forced from the BDD surface by the electrostatic repulsion from the surface dipole moment of F-BDD. Also, it turned out that the physical adsorption of chloride ions (Cl{sup -}) on the electrode surface intensified the electrostatic repulsive force between the F- or O-BDD surface and the metal particles, and thus increased the degree of the metal particles' separation. For Zn with a metal-metal oxide equilibrium potential of approximately -0.8 V at pH 7, complete separation of the Zn particles was achieved with F-BDD by setting the upper potential limit to +0.8 V (vs. Ag/AgCl), decreasing the Zn{sup 2+} concentration (1/10 that of Cu{sup 2

  12. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  13. The fabrication and characterization of an ex situ plated lead film electrode prepared with the use of a reversibly deposited mediator metal

    International Nuclear Information System (INIS)

    Tyszczuk, Katarzyna

    2011-01-01

    Research highlights: → The lead film electrode prepared with use of the mediator metal was elaborated. → The lead-based sensors were characterized by optical and voltammetric methods. → The adsorptive system of folic acid was employed to investigate a new electrode. → The application of the mediator metal improved properties of a lead film electrode. - Abstract: In this paper an ex situ plated lead film electrode prepared with use of the mediator metal (Zn) was elaborated. The electrochemical method for lead film formation is based on a co-deposition of a metal of interest (Pb) with a reversibly deposited mediator metal (Zn) and then on an oxidation of zinc and further deposition of lead by the appropriate potential. This serves to increase the density of islands of lead atoms, promoting lead film growth. The lead-based sensors were characterized by optical method (atomic force microscopy (AFM)) and as well as cyclic, linear sweep and square wave voltammetry. The adsorptive system of folic acid was employed to investigate the electrochemical characteristics a novel type of lead film electrode. Well-formed stripping peaks and a linear dependence of the stripping current on the folic acid concentration were observed on the lead film electrode prepared with use of the mediator metal while comparative measurements attempted with the lead film electrode prepared without use of the mediator metal were unsuccessful.

  14. Supercapacitors based on two dimensional VO2 nanosheet electrodes in organic gel electrolyte

    KAUST Repository

    Rakhi, R.B.

    2016-10-16

    VO2 is a low band-gap semiconductor with relatively high conductivity among transition metal oxides, which makes it an interesting material for supercapacitor electrode applications. The performance of VO2 as supercapacitor electrode in organic electrolytes has never been reported before. Herein, two-dimensional nanosheets of VO2 are prepared by the simultaneous solution reduction and exfoliation from bulk V2O5 powder by hydrothermal method. A specific capacitance of 405 Fg−1 is achieved for VO2 based supercapacitor in an organic electrolyte, in three electrode configuration. The symmetric capacitor based on VO2 nanosheet electrodes and the liquid organic electrolyte exhibits an energy density of 46 Wh kg−1 at a power density of 1.4 kW kg−1 at a constant current density of 1 Ag−1. Furthermore, flexible solid-state supercapacitors are fabricated using same electrode material and Alumina-silica based gel electrolyte. The solid-state device delivers a specific capacitance of 145 Fg−1 and a device capacitance of 36 Fg−1 at a discharge current density of 1 Ag−1. Series combination of three solid state capacitors is capable of lighting up a red LED for more than 1 minute.

  15. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  16. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  17. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  18. Application of thin film mercury electrodes and solid amalgam electrodes in electrochemical analysis of the nucleic acids components: detection of the two-dimensional phase transients of adenosine

    Czech Academy of Sciences Publication Activity Database

    Hasoň, Stanislav; Vetterl, Vladimír

    2004-01-01

    Roč. 63, 1-2 (2004), s. 37-41 ISSN 1567-5394 R&D Projects: GA AV ČR KJB4004305; GA AV ČR IBS5004107 Institutional research plan: CEZ:AV0Z5004920 Keywords : mercury film electrodes * solid amalgam electrodes * roughness Subject RIV: BO - Biophysics Impact factor: 2.261, year: 2004

  19. Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization

    International Nuclear Information System (INIS)

    Guillorn, Michael A.; Carr, Dustin W.; Tiberio, Richard C.; Greenbaum, Elias; Simpson, Michael L.

    2000-01-01

    We report a versatile process for the fabrication of dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. This technique provides a controllable and reproducible method for creating structures suited for the electrical characterization of asymmetric molecules for molecular electronics applications. Electrode structures employing pairs of Au electrodes and non-Au electrodes were fabricated in three different patterns. Parallel electrode structures 300 μm long with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances less than 6 nm, and a multiterminal electrode structure with reproducible interelectrode distances of 8 nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices. (c) 2000 American Vacuum Society

  20. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors.

    Science.gov (United States)

    Xiao, Xu; Peng, Xiang; Jin, Huanyu; Li, Tianqi; Zhang, Chengcheng; Gao, Biao; Hu, Bin; Huo, Kaifu; Zhou, Jun

    2013-09-25

    High-performance all-solid-state supercapacitors (SCs) are fabricated based on thin, lightweight, and flexible freestanding MVNN/CNT hybrid electrodes. The device shows a high volume capacitance of 7.9 F/cm(3) , volume energy and power density of 0.54 mWh/cm(3) and 0.4 W/cm(3) at a current density of 0.025 A/cm(3) . By being highly flexible, environmentally friendly, and easily connectable in series and parallel, the all-solid-state SCs promise potential applications in portable/wearable electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Exploiting Stretchable Metallic Springs as Compliant Electrodes for Cylindrical Dielectric Elastomer Actuators (DEAs

    Directory of Open Access Journals (Sweden)

    Chien-Hao Liu

    2017-11-01

    Full Text Available In recent years, dielectric elastomer actuators (DEAs have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and stretch/contraction motions under the application of high external voltages. Most compliant electrodes are made of carbon powders or thin metallic films. In situations involving large deformations or improper fabrication, the electrodes are susceptible to breakage and increased resistivity. The worst cases result in a loss of conductivity and functional failure. In this study, we developed a method by which to exploit stretchable metallic springs as compliant electrodes for cylindrical DEAs. This design was inspired by the extensibility of mechanical springs. The main advantage of this approach is the fact that the metallic spring-like compliant electrodes remain conductive and do not increase the stiffness as the tube-like DEAs elongate in the axial direction. This can be attributed to a reduction in thickness in the radial direction. The proposed cylindrical structure is composed of highly-stretchable VHB 4905 film folded within a hollow tube and then sandwiched between copper springs (inside and outside to allow for stretching and contraction in the axial direction under the application of high DC voltages. We fabricated a prototype and evaluated the mechanical and electromechanical properties of the device experimentally using a high-voltage source of 9.9 kV. This device demonstrated a non-linear increase in axial stretching with an increase in applied voltage, reaching a maximum extension of 0.63 mm (axial strain of 2.35% at applied voltage of 9.9 kV. Further miniaturization and the incorporation of compressive springs are expected to allow the implementation of the proposed method in soft micro-robots and bio-mimetic applications.

  2. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  3. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures. Lack of controllability and reproducibility of this technique in the conventional way is still considered as an inadequacy for industrialization since it is performed manually. Therefore, inkjet-printing technology was proposed as an adequate approach to perform scalable and controllable impregnation for SOC air electrodes, which in turn leads to low operating temperatures. Composite LSM-ionic conductive air electrodes of weight ratio 1:2 were fabricated by inkjet impregnation of lanthanum strontium manganite (La0.8Sr0.2MnO3) precursor nitrates onto a porous ionic conductive backbone structure. First, porous yttria stabilized zirconia (8YSZ) substrates prepared by tape casting were used to study the influence of the printing parameters on the lateral dispersion and penetration of LSM ink inside the pores. XRD analysis confirmed the formation of LSM phase after calcination at 800°C for 2 h, while SEM revealed the formation of LSM nanostructures. It has been found by optical microscope observations that the spacing between the drops and the substrate temperature have a significant role in controlling the printing process. Next, the optimized printing parameters were applied in the inkjet impregnation of the LSM ink into porous YSZ electrodes that were spin coated on both sides of dense YSZ layers. LSM-YSZ composite air electrodes achieved an area specific resistance (ASR) of around 0.29 Ω.cm2 at 700°C. The performance of LSM-YSZ composite electrodes was influenced by the microstructure and the thickness, and by the electrode/electrolyte interface characteristics. As a result, the enhancement in LSM-YSZ composite electrode performance was observed due to the better percolation in LSM, YSZ and oxygen diffusion. Finally

  4. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.; Gaynor, Whitney; Ding, I-Kang; Rim, Seung-Bum; Peumans, Peter; McGehee, Michael D.

    2011-01-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag

  5. Cathodic electrogenerated chemiluminescence of aromatic Tb(III) chelates at polystyrene-graphite composite electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Tuomi, Sami; Kulmala, Sakari

    2017-01-01

    Tb(III) chelates exhibit intense hot electron-induced electrogenerated chemiluminescence during cathodic polarization of metal/polystyrene-graphite (M/PG) electrodes in fully aqueous solutions. The M/PG working electrode provides a sensitive means for the determination of aromatic Tb(III) chelates at nanomolar concentration levels with a linear log-log calibration curve spanning more than five orders of magnitude. The charge transport and other properties of these novel electrodes were studied by electrochemiluminescence measurements and cyclic voltammetry. The present composite electrodes can by utilized both under pulse polarization and DC polarization unlike oxide-coated metal electrodes which do not tolerate cathodic DC polarization. The present cost-effective electrodes could be utilized e.g. in immunoassays where polystyrene is extensively used as a solid phase for various bioaffinity assays by using electrochemiluminescent Tb(III) chelates or e.g. Ru(bpy) 3 2+ as labels. - Highlights: • Generation of hydrated electrons at Polystyrene-graphite electrodes. • The insulating polystyrene layer on the outer electrode surface seems necessary. • Hydrated electrons are able to produce chemiluminescence. • Strongest signal and lowest std. dev. achieved at same graphite weight fraction.

  6. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  7. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.

    Science.gov (United States)

    Park, Sanghoon; Kim, Yura; Jung, Hyosub; Park, Jun-Young; Lee, Naesung; Seo, Yongho

    2017-12-11

    In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical method. Output voltage induced by sound waves was measured and analyzed when a mechanical tension was applied to the device. Another energy harvester was made with a metallic electrode, where Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 V pp was measured with a tensile stress of 1.75 MPa, and this was increased up to 9.1 V pp with a stress of 2.18 MPa for the metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was saturated to ~7.04 V after 180 s charging time.

  8. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Method of preparing a negative electrode including lithium alloy for use within a secondary electrochemical cell

    Science.gov (United States)

    Tomczuk, Zygmunt; Olszanski, Theodore W.; Battles, James E.

    1977-03-08

    A negative electrode that includes a lithium alloy as active material is prepared by briefly submerging a porous, electrically conductive substrate within a melt of the alloy. Prior to solidification, excess melt can be removed by vibrating or otherwise manipulating the filled substrate to expose interstitial surfaces. Electrodes of such as solid lithium-aluminum filled within a substrate of metal foam are provided.

  10. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, K.G.; Steen, W.M.; Manna, I. [Univ. of Liverpool (United Kingdom)] [and others

    1996-12-31

    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  11. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo

    2017-01-01

    , the nickel and pore networks undergo major reorganization and the formation of internal voids is observed in the nickel-oxide particles after the oxidation. These observations are discussed in terms of reaction kinetics, electrode mechanical stress and the consequences of redox cycling on electrode...... towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging...

  12. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  13. Use of polished and mercury film-modified silver solid amalgam electrodes in electrochemical analysis of DNA

    Czech Academy of Sciences Publication Activity Database

    Fadrná, Renata; Cahová, Kateřina; Havran, Luděk; Josypčuk, Bohdan; Fojta, Miroslav

    2005-01-01

    Roč. 17, 5-6 (2005), s. 452-459 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA ČR GA203/04/1325; GA AV ČR KJB4004302 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : DNA electrochemistry * solid amalgam electrodes * mercury film electrodes * DNA damage Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.189, year: 2005

  14. The Use of the Silver Solid Amalgam Electrode for Voltammetric Determination of 9-Nitroanthracene

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Nováková, Kateřina; Barek, J.; Vyskočil, V.; Chýlková, J.

    2016-01-01

    Roč. 49, č. 1 (2016), s. 37-48 ISSN 0003-2719 R&D Projects: GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388955 Keywords : 9-Nitroanthracene * Silver solid amalgam electrode * Voltammetry Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2016

  15. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  16. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  17. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  18. Transferred metal electrode films for large-area electronic devices

    International Nuclear Information System (INIS)

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  19. (suspended solids and metals) removal efficiencies

    African Journals Online (AJOL)

    ABSTRACT. Presented in this paper are the results of correlational analyses and logistic regression between metal substances (Cd, Cu,. Pb, Zn), as well as suspended solids removal, and physical pond parameters of 19 stormwater retention pond case studies obtained from the International Stormwater BMP database.

  20. Carbon paste electrode in a solid-contact minicavity

    International Nuclear Information System (INIS)

    Ferreira, Antonio Ap. Pupim; Ribeiro, Sidney Jose Lima; Fugivara, Cecilio Sadao; Caiut, Jose Mauricio Almeida; Sargentelli, Vagner; Benedetti, Assis Vicente

    2011-01-01

    This work describes the preparation of carbon paste electrode (EPC) in a solid-contact minicavity and its evaluation when containing carbon paste without and with SiO 2 (Eu 3+ 2%) and SiO 2 (Eu 3+ 2%)-lysine sub-micrometrics particles. For this study cyclic voltammetry and electrochemical impedance measurements were performed at pH 7.4 in 0.1 mol L -1 PBS containing Fe(CN) 6 -3 / -4 redox species. The impedance results were interpreted based on a charge-transfer reaction involving Fe(CN) 6 -3 / -4 species and/or oxygen at higher frequencies and, diffusion of the electroactive species and carbon paste characteristics at lower frequencies. EPC-minicavity is suitable for electroanalysis using modified carbon paste. (author)

  1. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Cabalková, D.; Fischer, J.; Navrátil, Tomáš; Pecková, K.; Josypčuk, Bohdan

    2011-01-01

    Roč. 9, č. 1 (2011), s. 83-86 ISSN 1610-3653 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : differential pulse voltammetry * silver solid amalgam electrode * solid phase extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.881, year: 2011

  2. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  3. Effect on Cs removal of solid-phase metal oxidation in metal ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keun-Young; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of).

    2017-07-01

    Metal ferrocyanides (MFCs) have been studied for many years and are regarded as efficient adsorbents for the selective removal of radioactive cesium (Cs) from contaminated aqueous solutions. Although their efficiency has been demonstrated, various investigations on the physicochemical, thermal, and radiological stability of the solids of MFCs are required to enhance the applicability of MFCs in the treatment process. We observed that the Cs adsorption efficiencies of cobalt and nickel ferrocyanides decreased as their aging period increased, while the Cs adsorption efficiencies of copper and zinc ferrocyanides did not decrease. The tendencies of these ferrocyanides were accelerated by exposure of the solids at a higher temperature for a longer time. Our comprehensive analyses demonstrated that only the oxidizable metals in the MFCs can be oxidized by aging time and increasing temperature; also, this affects the Cs removal efficiency by decreasing the exchangeable sites in the solids. The chemical stability of MFCs is very important for the optimization of the synthesis and storage conditions.

  4. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  5. Determination of work function of graphene under a metal electrode and its role in contact resistance.

    Science.gov (United States)

    Song, Seung Min; Park, Jong Kyung; Sul, One Jae; Cho, Byung Jin

    2012-08-08

    Although the work function of graphene under a given metal electrode is critical information for the realization of high-performance graphene-based electronic devices, relatively little relevant research has been carried out to date. In this work, the work function values of graphene under various metals are accurately measured for the first time through a detailed analysis of the capacitance-voltage (C-V) characteristics of a metal-graphene-oxide-semiconductor (MGOS) capacitor structure. In contrast to the high work function of exposed graphene of 4.89-5.16 eV, the work function of graphene under a metal electrode varies depending on the metal species. With a Cr/Au or Ni contact, the work function of graphene is pinned to that of the contacted metal, whereas with a Pd or Au contact the work function assumes a value of ∼4.62 eV regardless of the work function of the contact metal. A study of the gate voltage dependence on the contact resistance shows that the latter case provides lower contact resistance.

  6. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  7. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  8. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  9. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  10. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  11. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  12. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  13. Towards flexible solid-state supercapacitors for smart and wearable electronics.

    Science.gov (United States)

    Dubal, Deepak P; Chodankar, Nilesh R; Kim, Do-Heyoung; Gomez-Romero, Pedro

    2018-03-21

    Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.

  14. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  15. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  16. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  18. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-05-10

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  19. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors.

    Science.gov (United States)

    Muralee Gopi, Chandu V V; Ravi, Seenu; Rao, S Srinivasa; Eswar Reddy, Araveeti; Kim, Hee-Je

    2017-04-19

    Carbon nanotubes (CNT) and metal sulfides have attracted considerable attention owing to their outstanding properties and multiple application areas, such as electrochemical energy conversion and energy storage. Here we describes a cost-effective and facile solution approach to the preparation of metal sulfides (PbS, CuS, CoS, and NiS) grown directly on CNTs, such as CNT/PbS, CNT/CuS, CNT/CoS, and CNT/NiS flexible electrodes for quantum dot-sensitized solar cells (QDSSCs) and supercapacitors (SCs). X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy confirmed that the CNT network was covered with high-purity metal sulfide compounds. QDSSCs equipped with the CNT/NiS counter electrode (CE) showed an impressive energy conversion efficiency (η) of 6.41% and remarkable stability. Interestingly, the assembled symmetric CNT/NiS-based polysulfide SC device exhibited a maximal energy density of 35.39 W h kg -1 and superior cycling durability with 98.39% retention after 1,000 cycles compared to the other CNT/metal-sulfides. The elevated performance of the composites was attributed mainly to the good conductivity, high surface area with mesoporous structures and stability of the CNTs and the high electrocatalytic activity of the metal sulfides. Overall, the designed composite CNT/metal-sulfide electrodes offer an important guideline for the development of next level energy conversion and energy storage devices.

  20. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid-Mercury Free Silver Solid Amalgam Electrode - Tool for Electroanalysis of Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Šelešovská-Fadrná, R.; Navrátil, Tomáš; Vlček, Milan

    2007-01-01

    Roč. 52, č. 6 (2007), s. 911-929 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : ascorbic acid * solid silver amalgam electrodes * cysteine * voltammetry Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  2. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  3. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  5. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  6. Preparation and Properties of Mercury Film Electrodes on Solid Amalgam Surface

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Barek, J.

    2010-01-01

    Roč. 22, 17-18 (2010), s. 1967-1973 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : voltammetry * solid and paste amalgam * Mercury film electrode Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  7. The effect of metal-buffer bilayer drain/source electrodes on the operational stability of the organic field effect transistors

    International Nuclear Information System (INIS)

    Karimi-Alavijeh, H.R.; Ehsani, A.

    2015-01-01

    In this paper, we have investigated experimentally the effect of different drain/source (D/S) electrodes and charge injection buffer layers on the electrical properties and operational stability of a stilbene organic field effect transistor (OFET). The results show that the organic buffer layer of copper phthalocyanine (CuPc) considerably improves the electrical properties of the transistors, but has a negligible effect on their temporal behavior. On the other hand, inorganic metal-oxide buffer layer of molybdenum oxide (MoO 3 ) drastically changes both the electrical properties and operational stability. The functionalities of this metal-oxide tightly depend on the properties of the D/S metallic electrodes. OFETs with Al/MoO 3 as the bilayer D/S electrodes have the best electrical properties: field effect mobility μ eff = 0.32 cm 2 V −1 s −1 and threshold voltage V TH = − 5 V and the transistors with Ag/MoO 3 have the longest operational stability. It was concluded that the chemical stability of the metal/metal-oxide or metal/organic interfaces of the bilayer D/S electrodes determine the operational stability of the OFETs. - Highlights: • The effect of buffer layers on the performance of the stilbene OFETs has been investigated. • Inorganic buffer layer improved the electrical and temporal behaviors simultaneously. • Organic buffer layer only changes the electrical properties. • Chemical stability of the interfaces determines the operational stability of the transistor

  8. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  9. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  10. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  11. Poly(vinyl chloride) membrane alkali metal ion-selective electrodes based on crystalline synthetic zeolite of the Faujasite type

    International Nuclear Information System (INIS)

    Aghai, H.; Giahi, M.; Arvand Barmehi, M.

    2002-01-01

    Potentiometric electrodes based on the incorporation of zeolite particle in to poly (vinyl chloride) (pvc) membranes are described. The electrodes characteristics are evaluated regarding the response towards alkali ions. Pvc membranes plasticised with dibutyl phthalate and without lipophilic additives (co-exchanger) were used throughout this study. The electrode exhibits a Nernst ion response over the alkali metal cations concentration a range of 1.0x10 - 4 - 1.0 x 10 1 M with a slop of 57.0 ± 0.9 mV per decade of concentration a working ph range (3.0- 9.0) and a fast response time (≤15 c). The selective coefficients for cesium ion as test species with respect to alkaline earth, ammonium and some heavy metal ions were determined. Zeolite-PVC electrodes were applied to the determination of ionic surfactant

  12. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  13. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-08-26

    Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Zinc composite anode for batteries with solid electrolyte

    Science.gov (United States)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  15. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  16. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Harry, KJ; Higa, K; Srinivasan, V; Balsara, NP

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabled estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.

  17. Relation of radiation damage of metallic solids to electronic structure. Pt. 5

    International Nuclear Information System (INIS)

    Shalaev, A.M.; Adamenko, A.A.

    1977-01-01

    The problem of relating a damage in metal solids to the parameters of radiation fluxes and the physical nature of a target is considered. Basing upon experimental and theoretical investigations into the processes of interaction of particle fluxes with solids, the following conclusions have been reached. Threshold energy of ion displacement in the crystal lattice of a metal solid is dependent on the energy of a bombarding particle, which is due to ionization and electroexcitation stimulated by energy transfer from a fast particle to a system of collectivized electrons. The rate of metal solid damage by radiation depends on the state of the crystal lattice, in particular on its defectness. Variations of local electron density in the vicinity of a defect are related with changing thermodynamic characteristics of radiation-induced defect formation. A type of atomic bond in a solid affects the rate of radiation damage. The greatest damage occurs in materials with a covalent bond

  18. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2017-04-01

    Full Text Available The electrochemical response of serotonin on the modified electrode based on multiwalled-carbon-nanotube (MWCNT doped respectively with nickel, zinc and iron oxide nanoparticles coating on glassy carbon electrode (GCE at physiological pH 7 was determined using cyclic voltammetry (CV and square wave voltammetry (SWV. The modified GCE/MWCNT-metal oxide electrodes exhibited excellent electrocatalytic activity towards the detection of serotonin at large peak current and lower oxidation potentials compared to other electrodes investigated. The dynamic range for the serotonin determination was between 5.98 × 10−3 μM to 62.8 μM with detection limits 118, 129 and 166 nM for GCE/MWCNT-NiO, GCE/MWCNT-ZnO and GCE/MWCNT-Fe3O4 sensors respectively. GCE-MWCNT-NiO was the best electrode in terms of serotonin current response, electrode stability, resistance to fouling and limit of detection towards the analyte. The developed sensors were found to be electrochemically stable, reusable, economically effective due to their extremely low operational cost, and have demonstrated good limit of detection, sensitivity and selectivity towards serotonin determination in urine samples. Keywords: Metal oxides nanoparticles, Multiwalled carbon nanotubes, Glassy carbon electrode, Serotonin, Cyclic voltammetry, Square wave voltammetry

  19. Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions. [Patent application

    Science.gov (United States)

    Mrazek, F.C.; Smaga, J.A.; Battles, J.E.

    1981-01-19

    A positive electrode for a secondary electrochemical cell is described wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

  20. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    -diffusion barrier sandwiched between the YSZ electrolyte and an LSCF:CGO oxygen electrode. Impedance Spectroscopy was used during the tests to diagnose the change in electrochemical response of the different components of the SOECs. The results showed a significantly lower degradation rate for the cell with an LSCF......Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  1. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

    2010-01-01

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I-V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ~12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  2. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  3. Zinc composite anode for batteries with solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tedjar, F.; Melki, T.; Zerroual, L. (Setif Univ. (Algeria). Unite de Recherche Electrochimie)

    1992-05-01

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn[sup 2+] electrode (e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased. (orig.).

  4. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    OpenAIRE

    Anastasios Economou

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have ...

  5. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  6. Proteus Mirabilis Bacteria Biosensor Development Based on Modified Gold Electrode with 4-Carboxyphenyl Diazonium Salts for Heavy Metals Toxicity Detection

    Directory of Open Access Journals (Sweden)

    Yosra BRAHAM

    2014-05-01

    Full Text Available In this work we describe a new biosensor for heavy metals detection, based on the immobilization of bacteria, Proteus mirabilis on gold electrode modified with aryl electrografting film. To enhance the stability of the biosystem, additional materials were used such as functionalized Fe3O4 nanoparticles (NPs, cationic (PAH, anionic (PSS polyelectrolytes, Bovine Serum Albumin (BSA and glutaraldehyde as a cross-linking agent. Before the immobilization step, the activity of Proteus mirabilis bacteria in the presence of heavy metals ions was attempted using the ion ammonium selective electrodes (ISEs. The modication of the gold electrodes with the electrochemical reduction of 4- carboxyphenyl diazonium salts to form stable layers for sensing applications was characterized by cyclic voltammetry and chronoamperometry measurements. The adhesion of the bacteria cell on gold electrode was evaluated using contact angle measurements. The immobilized bacteria-metal interaction was evaluated using the electrochemical impedance spectroscopy (EIS measurements. A notable effect of metal on the bacteria activity is observed in the concentration range from 10-3 to 1 µM and from 1µM to 1nM for Co2+, Cd2+, Cu2+ and Hg2+, respectively.

  7. Development of new metal matrix composite electrodes for electrical discharge machining through powder metallurgy process

    Directory of Open Access Journals (Sweden)

    C. Mathalai Sundaram

    2014-12-01

    Full Text Available Electrical discharge machining (EDM is one of the widely used nontraditional machining methods to produce die cavities by the erosive effect of electrical discharges. This method is popular due to the fact that a relatively soft electrically conductive tool electrode can machine hard work piece. Copper electrode is normally used for machining process. Electrode wear rate is the major drawback for EDM researchers. This research focus on fabrication of metal matrix composite (MMC electrode by mixing copper powder with titanium carbide (TiC and Tungsten carbide (WC powder through powder metallurgy process, Copper powder is the major amount of mixing proportion with TiC and WC. However, this paper focus on the early stage of the project where powder metallurgy route was used to determine suitable mixing time, compaction pressure and sintering and compacting process in producing EDM electrode. The newly prepared composite electrodes in different composition are tested in EDM for OHNS steel.

  8. Metal Recovery from Industrial Solid Waste — Contribution to Resource Sustainability

    Science.gov (United States)

    Yang, Yongxiang

    Increased demand of metals has driven the accelerated mining and metallurgical production in recent years, causing fast depletion of primary metals resources. On the contrary, the mining and metallurgical industry generates large amount of solid residues and waste such as tailings, slags, flue dust and leach residues, with relative low valuable metal contents. On the other hand, end-of-life (EoL) consumer products form another significant resources. The current technology and processes for primary metals production are not readily applicable for direct metals extraction from these waste materials, and special adaptation and tailor-made processes are required. In the present paper, various solid waste resources are reviewed, and current technologies and R&D trends are discussed. The recent research at author's group is illustrated for providing potential solutions to future resource problems, including metal recovery from MSW incinerator bottom ashes, zinc recovery from industrial ashes and residues, and rare earth metals recovery from EoL permanent magnets.

  9. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  10. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  11. Strategies for the fabrication of porous platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kloke, Arne; Stetten, Felix von; Kerzenmacher, Sven [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); Zengerle, Roland [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitaet Freiburg (Germany)

    2011-11-16

    Porous platinum is of high technological importance due to its various applications in fuel cells, sensors, stimulation electrodes, mechanical actuators and catalysis in general. Based on a discussion of the general principles behind the reduction of platinum salts and corresponding deposition processes this article discusses techniques available for platinum electrode fabrication. The numerous, different strategies available to fabricate platinum electrodes are reviewed and discussed in the context of their tuning parameters, strengths and weaknesses. These strategies comprise bottom-up approaches as well as top-down approaches. In bottom-up approaches nanoparticles are synthesized in a first step by chemical, photochemical or sonochemical means followed by an electrode formation step by e.g. thin film technology or network formation to create a contiguous and conducting solid electrode structure. In top-down approaches fabrication starts with an already conductive electrode substrate. Corresponding strategies enable the fabrication of substrate-based electrodes by e.g. electrodeposition or the fabrication of self-supporting electrodes by dealloying. As a further top-down strategy, this review describes methods to decorate porous metals other than platinum with a surface layer of platinum. This way, fabrication methods not performable with platinum can be applied to the fabrication of platinum electrodes with the special benefit of low platinum consumption. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Energy Harvesting, Electrode Processes and the Partitioning and Speciation of Solid Phase Iron and Sulfur in Marine Sediments

    National Research Council Canada - National Science Library

    Reimers, Clare

    2003-01-01

    .... Sediment, pore water and electrode surface analyses indicated that electricity product ion is coupled to the oxidation of dissolved and solid-phase forms of reduced sulfur supplied from the sediments...

  13. Modeling of solid oxide fuel cells with particle size and porosity grading in anode electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; Flesner, R.; Kim, G.Y.; Chandra, A. [Department of Mechanical Engineering, Iowa State University, Ames, Iowa (United States)

    2012-02-15

    Solid oxide fuel cells (SOFCs) have the potential to meet the critical energy needs of our modern civilization and minimize the adverse environmental impacts from excessive energy consumption. They are highly efficient, clean, and can run on variety of fuel gases. However, little investigative focus has been put on optimal power output based on electrode microstructure. In this work, a complete electrode polarization model of SOFCs has been developed and utilized to analyze the performance of functionally graded anode with different particle size and porosity profiles. The model helps to understand the implications of varying the electrode microstructure from the polarization standpoint. The work identified conditions when grading can improve the cell performance and showed that grading is not always beneficial or necessary. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  15. Fast ion transport at solid-solid interfaces in hybrid battery anodes

    Science.gov (United States)

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2018-04-01

    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

  16. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  17. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  18. Voltammetric Determination of N,N-Dimethyl-4-amine-carboxyazobenzene at a Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Barek, J.; Dodova, E.; Navrátil, Tomáš; Josypčuk, Bohdan; Novotný, Ladislav; Zima, J.

    2003-01-01

    Roč. 15, č. 22 (2003), s. 1778-1781 ISSN 1040-0397 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : N,N-dimethyl-4-amino-carboxyazobenzene * differential pulse voltammetry * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.811, year: 2003

  19. Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.

    Science.gov (United States)

    Perera, Rukshan T; Rosenstein, Jacob K

    2018-01-31

    Nanoscale working electrodes and miniaturized electroanalytical devices are valuable platforms to probe molecular phenomena and perform chemical analyses. However, the inherent close distance of metallic electrodes integrated into a small volume of electrolyte can complicate classical electroanalytical techniques. In this study, we use a scanning nanopipette contact probe as a model miniaturized electrochemical cell to demonstrate measurable side effects of the reaction occurring at a quasi-reference electrode. We provide evidence for in situ generation of nanoparticles in the absence of any electroactive species and we critically analyze the origin, nucleation, dissolution and dynamic behavior of these nanoparticles as they appear at the working electrode. It is crucial to recognize the implications of using quasi-reference electrodes in confined electrochemical cells, in order to accurately interpret the results of nanoscale electrochemical experiments.

  20. Electrochemical characterization of calcium cobaltite based porous electrodes; Caracterizacao eletroquimica de eletrodos porosos a base de cobaltita de calcio

    Energy Technology Data Exchange (ETDEWEB)

    Fulgencio, E.B.G.A.; Vasconcelos, K.; Silva, R.M.; Melo, P.; Caetano, A.A.; Campos, L.F.A.; Dutra, R.P.S.; Macedo, D.A., E-mail: erikbgrisi@gmail.com [Universidade Federal da Paraiba (UFPB), PB (Brazil)

    2016-07-01

    Materials based on alkali metal oxides and alkaline earth metal have shown high technological interest in recent years. Among these materials, calcium and cobalt oxide composition Ca{sub 3}Co{sub 4}O{sub 9} (C349) has emerged as thermoelectric material and, more recently, as cathode for solid oxide fuel cell (SOFC). In this study, C349 powder was obtained by solid state reaction of a mixture containing cobalt oxide and calcium carbonate from shellfish shells (CaCO{sub 3} ∼ 98%), previously calcined at 550° C. Symmetrical cells (cathode / substrate / cathode) were prepared by screen printing of C349 electrodes in gadolinium-doped ceria substrates. The characterization by electrochemical impedance spectroscopy revealed that the C349 obtained in this work has an area specific resistance compatible with electrodes obtained by chemical routes (from literature). (author)

  1. Printed metal back electrodes for R2R fabricated polymer solar cells studied using the LBIC technique

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Søndergaard, Roar; Jørgensen, Mikkel

    2011-01-01

    The performance of printable metal back electrodes for polymer solar cells were investigated using light beam induced current (LBIC) mapping of the final solar cell device after preparation to identify the causes of poor performance. Three different types of silver based printable metal inks were...

  2. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  3. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    International Nuclear Information System (INIS)

    Liu Yunguo; Zhou Ming; Zeng Guangming; Li Xin; Xu Weihua; Fan Ting

    2007-01-01

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals

  4. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)]. E-mail: axore@163.com; Zhou Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Zeng Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Li Xin [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Xu Weihua [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Fan Ting [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2007-03-06

    Mining of mineral ore and disposal of resulting waste tailings pose a significant risk to the surrounding environment. The objective of this work is to demonstrate the feasibility to remove heavy metals from mine tailings with the use of bioleaching and meanwhile to investigate the effect of solids concentration on removal of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria and the transformation of heavy metal forms after the bioleaching process. This work showed the laboratory results of bioleaching experiments on Pb-Zn-Cu mine tailings. The results showed that 98.08% Zn, 96.44% Cu, and 43.52% Pb could be removed from mine tailings by the bioleaching experiment after 13 days at 1% (w/v) solids concentration and the rates of pH reduction, ORP rise and sulfate production were reduced with the increase of solids concentration, due to the buffering capacity of mine tailing solids. The results also indicated that solid concentration 1% was found to be best to bacterial activity and metal solubilization of the five solids concentration tested (1%, 2%, 5%, 8% and 10%) under the chosen experimental conditions. In addition, the bioleaching had a significant impact on changes in partitioning of heavy metals.

  5. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    Science.gov (United States)

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  7. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  8. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  9. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  10. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  11. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  12. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    Science.gov (United States)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  13. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  14. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  15. Metallic CoS₂ nanowire electrodes for high cycling performance supercapacitors.

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-11

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g(-1) at a scan rate of 0.01 V s(-1)) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g(-1)) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  16. On calculation of lattice parameters of refractory metal solid solutions

    International Nuclear Information System (INIS)

    Barsukov, A.D.; Zhuravleva, A.D.; Pedos, A.A.

    1995-01-01

    Technique for calculating lattice periods of solid solutions is suggested. Experimental and calculation values of lattice periods of some solid solutions on the basis of refractory metals (V-Cr, Nb-Zr, Mo-W and other) are presented. Calculation error was correlated with experimental one. 7 refs.; 2 tabs

  17. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  18. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin-water electrode system

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Graham, Leigh; Groote, Joris de; Vierendeels, Jan; Leys, Christophe

    2007-01-01

    Electrical breakdown and water surface deformation in a metal pin-water electrode system with dc applied voltages is studied for small inter-electrode distances (2-12 mm). The radius of curvature of the metal pin is 0.5 cm to exclude corona before breakdown at these small inter-electrode spacings. Calculations of the water surface deformation as a function of the applied voltage and initial inter-electrode spacing are compared with measurements of the water elevation. For distances smaller than 7 mm the calculated stability limit of the water surface corresponds with the experimentally obtained breakdown voltage. It is proved with fast CCD images and calculations of the electrical field distribution that the water surface instability triggers the electrical breakdown in this case. The images show that at breakdown the water surface has a Taylor cone-like shape. At inter-electrode distance of 7 mm and larger the breakdown voltage is well below the water stability limit and the conductive channel at breakdown is formed between the pin electrode and the static water surface. Both cases are discussed and compared

  19. Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Ebbehøj, Søren Lyng; Hauch, Anne

    2015-01-01

    of the pathways through which they can be reached. New methods for performing TPB specific pathway analysis on 3D image data are introduced, analyzing the pathway properties of each TPB site in the electrode structure. The methods seek to provide additional information beyond whether the TPB sites are percolating......The density and percolation of Triple phase boundary sites are important quantities in analyzing microstructures of solid oxide fuel cell electrodes from tomography data. However, these measures do not provide descriptions of the quality of the TPB sites in terms of the length and radius...... or not by also analyzing the pathway length to the TPB sites and the bottleneck radius of the pathway. We show how these methods can be utilized in quantifying and relating the TPB specific results to cell test data of an electrode reduction protocol study for Ni/Scandia-and-Yttria-doped-Zirconia (Ni...

  20. Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.

    Science.gov (United States)

    Okubo, Masashi; Yamada, Atsuo

    2017-10-25

    Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.

  1. Voltametric Determination of Adenine, Guanine and DNA Using Liquid Mercury Free Polished Silver Solid Amalgam Electrode

    Czech Academy of Sciences Publication Activity Database

    Fadrná, Renata; Josypčuk, Bohdan; Fojta, Miroslav; Navrátil, Tomáš; Novotný, Ladislav

    2004-01-01

    Roč. 37, č. 3 (2004), s. 399-413 ISSN 0003-2719 R&D Projects: GA AV ČR KSK4040110 Grant - others:GIT(AR) 101/02/U111/CZ Keywords : voltammetry * DNA * polished silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 1.165, year: 2004

  2. Optimum design of the metal bellows on the SolidWorks platform

    Directory of Open Access Journals (Sweden)

    Mikhail V. Chugunov

    2017-06-01

    Full Text Available Introduction: The metal bellows are widely used in various technical systems as the sensitive, compensating and separating elements. A variety of possible constructive solutions using bellows causes a broad range of standard sizes specified in GOST. In this regard the problem of the metal bellows design, which in the present case resolves itself to the choice of the bellow corresponding to the set specifications optimum, is important. Thus, the purpose of the research is the development of technique and software for the optimum design automation of the considered class structures. Materials and Methods: SolidWorks is the world leader in the area of CAD/CAE computer aided design-engineering system and possesses not only a developed standard functionality, but also opportunities of extension of this functionality by the user. In this article SolidWorks is used as a platform for the development of Add-In application to create automatically the metal bellow 3D model for the given parameters from the database corresponding to the given specifications. At the same time access to SolidWorks simulation functionality, through the analysis of SolidWorks Simulation, and to the appropriate database is provided by COM technology. For the solution of the optimization problem, the functionality of the Add-In-application developed by authors of this article is used. A development environment is MS Visual Studio C ++ (2015. The basis for work is object-oriented programming with API SolidWorks use. Results: The technique of optimum design of the metal bellows is developed. The software represents the SolidWorks application for practical use creating the project solution in the form of 3D models (parts and assemblies corresponding to the given specifications. Discussion and Conclusions: The developed technique and software reduce considerably time for the development of the project for structures of the considered class.

  3. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    International Nuclear Information System (INIS)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento; Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres

    2016-01-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO 3 Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  4. Metal adsorption process in activated carbon fiber from textile PAN fiber aim electrode production

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento, E-mail: alinerodrigues_1@msn.com [Instituto Tecnologico Aeroespacial (ITA), Sao Jose dos Campos, SP (Brazil); Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Cuna, Andres [Faculdade de Quimica, Universidad de la Republica (Uruguay)

    2016-07-01

    Full text: Carbon fibers have a variety of applications in industry and have been increasingly studied to explore their various characteristics. Studies show that the activated carbon fiber has been effective in removing small contaminants as well as activated carbon, because of its characteristic porosity. Other studies relate carbonaceous materials to the electrical conductivity devices application. This work is based on the use of an activated carbon fiber from textile polyacrylonitrile (PAN) for metallic ion adsorption from aqueous solution. Consequently, it improves the electrical characteristics and this fact show the possibility to use this material as electrode. The work was performed by adsorption process in saline solution (NO{sub 3}Ag and ClPd) and activated carbon fiber in felt form as adsorbent. The metal adsorption on activated carbon fiber was characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). It was observed that activated carbon fiber showed good adsorption capacity for the metals used. At the end of the process, the activated carbon fiber samples gained about 15% by weight, related to metallic fraction incorporated into the fiber and the process of adsorption does not changed the structural, morphological and chemistry inertness of the samples. The results indicate the feasibility of this metal incorporation techniques activated carbon fiber for the production of electrodes facing the electrochemical area. (author)

  5. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-05-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  6. Effect of Bainitic Microstructure on Ballistic Performance of Armour Steel Weld Metal Using Developed High Ni-Coated Electrode

    Science.gov (United States)

    Pramanick, A. K.; Das, H.; Reddy, G. M.; Ghosh, M.; Nandy, S.; Pal, T. K.

    2018-04-01

    Welding of armour steel has gained significant importance during the past few years as recent civilian and military requirements demand weld metal properties matching with base metal having good ballistic performance along with high strength and toughness at - 40 °C as per specification. The challenge of armour steel welding therefore lies in controlling the weld metal composition which is strongly dependent on welding electrode/consumables, resulting in desired weld microstructure consisting of lower bainite along with retained austenite. The performance of butt-welded armour steel joints produced by the developed electrodes was evaluated using tensile testing, ballistic testing, impact toughness at room temperature and subzero temperature. Microstructures of weld metals are exclusively characterized by x-ray diffraction technique, scanning electron microscope and transmission electron microscopy with selected area diffraction pattern. Experimental results show that weld metal with relatively lower carbon, higher manganese and lower nickel content was attributed to lower bainite with film type of retained austenite may be considered as a most covetable microstructure for armour steel weld metal.

  7. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  8. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  9. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  10. A solid-contact Pb2+-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    International Nuclear Information System (INIS)

    Yu Shunyang; Li Fuhai; Yin Tanji; Liu Yongming; Pan, Dawei; Qin Wei

    2011-01-01

    Highlights: → All reagents used for the electrodes preparation were commercially available. → The lower detection limit of the proposed electrode reached subnanomolar levels. → No water film was observed with conventional commercially available PVC ion-sensing membranes. → This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb 2+ -selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade -1 and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  11. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  12. Development of solid state reference electrodes and pH sensors for monitoring nuclear reactor cooling water systems

    International Nuclear Information System (INIS)

    Hettiarachchi, S.; Makela, K.; Macdonald, D.D.

    1991-01-01

    The growing interest in the electrochemical and corrosion behavior of structural alloys in high temperature aqueous systems has stimulated research in the design and testing of reliable reference electrodes and pH sensors for use in such environments. External reference electrodes have been successfully used in the recent years in high temperature aqueous environments, although their long-term stability is questionable. On the other hand, more reliable pH sensors have been developed by various workers for high temperature applications, the major drawback being their sensitivity to dissolved hydrogen, oxygen and other redox species. This paper describes the development of both solid-state reference electrodes and yttria-stabilized zirconia (YSZ) pH sensors for application in high temperature aqueous systems. (author)

  13. Combined use of transcranial magnetic stimulation and metal electrode implants: a theoretical assessment of safety considerations

    Science.gov (United States)

    Golestanirad, Laleh; Rouhani, Hossein; Elahi, Behzad; Shahim, Kamal; Chen, Robert; Mosig, Juan R.; Pollo, Claudio; Graham, Simon J.

    2012-12-01

    This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.

  14. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  15. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  16. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  17. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  18. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  19. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    The electrode performance of solid oxide fuel cell anode with Pd nanoparticles at the interface of ScYSZ electrolyte and Sr0.94Ti0.9Nb0.1O3 (STN) electrode introduced in the form of metal functional layer have been investigated at temperatures below 600 °C. A metal functional layer consisting of Pd...... was deposited by magnetron sputtering. Effecting from heat treatments, Pd nanoparticles with particle sizes in the range of 5–20 nm were distributed at the interface, and throughout the backbone. The polarization resistance of the modified STN reduced to 30 Ωcm2 at 600 °C, which is three times less than...... an unmodified STN backbone. In order to improve the anode performance further, Pd and Gd-doped CeO2 electrocatalysts were infiltrated into the STN backbone. The modified interface with Pd nanoparticles in combination with nanostructured electrocatalyst by infiltration resulted in polarisation resistances of 0...

  20. Advanced manufacturing of intermediate temperature, direct methane oxidation membrane electrode assemblies for durable solid oxide fuel cell, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN proposes to create an innovative anode supported membrane electrode assembly (MEA) for solid oxide fuel cells (SOFCs) that is capable of long-term operation at...

  1. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  2. Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, D.W.; Zhang, S.Q.; Jin, Y.; Yi, T.H.; Xie, S.; Chen, C.H.

    2006-01-01

    As a possible high-capacity Li-ion battery anode material, Li 2 SnO 3 was prepared via a solid-state reaction route and a sol-gel route, separately. Its electrochemical performance was tested in coin-type cells with metallic Li as the counter electrode. The results show that the sol-gel derived Li 2 SnO 3 has uniform nano-sized particles (200-300 nm) and can deliver a better reversible capacity (380 mAh/g after 50 cycles in the voltage window of 0-1 V) than that from the solid-state reaction route. The characterizations by means of galvanostatic cycling, cyclic voltammetry and ex situ X-ray diffraction indicate that the electrochemical process of the Li 2 SnO 3 lithiation proceeds with an initial structural reduction of the composite oxide into Sn-metal and Li 2 O followed by a reversible Li-Sn alloy formation in the Li 2 O matrix. Due to the buffer role of the Li 2 O matrix, the reversibility of the secondary Li-Sn alloy electrode is largely secured

  3. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2005-02-01

    Full Text Available Electrochemical biosensors have superior properties over other existingmeasurement systems because they can provide rapid, simple and low-cost on-fielddetermination of many biological active species and a number of dangerous pollutants. Inour work, we suggested a new heavy metal biosensor based on interaction of heavy metalions (Cd2+ and Zn2+ with phytochelatin, which was adsorbed on the surface of the hangingmercury drop electrode, using adsorptive transfer stripping differential pulse voltammetry.In addition, we applied the suggested technique for the determination of heavy metals in abiological sample – human urine and platinum in a pharmaceutical drug. The detectionlimits (3 S/N of Cd(II, Zn(II and cis-platin were about 1.0, 13.3 and 1.9 pmole in 5 μl,respectively. On the basis of the obtained results, we propose that the suggested techniqueoffers simple, rapid, and low-cost detection of heavy metals in environmental, biologicaland medical samples.

  4. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  5. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  6. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  7. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  8. Application of impulsive methods to the study of diffusion in solid state alloys

    International Nuclear Information System (INIS)

    Belaidouni, Said

    1979-01-01

    This research thesis deals with the field of high temperature melt environments, and more particularly with the determination of the contribution of different steps of the electrochemical reaction (charge transfer, transport of electro-active species, variation of the electrode surface condition). The use of metal electrodes highlighted the importance of phenomena of diffusion in the metal. This leaded to the use of impulsive methods to determine solid-state transport properties. After a presentation of the theoretical processing of impulsive methods (cell potential, transport equations, double-layer charge), and a discussion of the diffusion in metal alloys (diffusion flow, diffusion coefficients, grain boundary diffusion), the author reports an experimental investigation (installation and measurement equipment) and discusses the obtained results (alloy thermodynamics, diffusion studied by the deposition method, impulsive methods with potentiostatic or galvano-static pulses) [fr

  9. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  10. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    Science.gov (United States)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano; Basu, Sourav; Rosen, Evelyn; Holt, Jason; Thomsen, Scott

    2017-10-17

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  11. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Dennis W.; Abraham, Daniel P; Lu, Wenquan; Gallagher, Kevin G.; Bettge, Martin; Jansen, Andrew N

    2015-01-21

    The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

  12. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    Science.gov (United States)

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  13. Optimization of BSCF-SDC composite air electrode for intermediate temperature solid oxide electrolyzer cell

    International Nuclear Information System (INIS)

    Heidari, Dorna; Javadpour, Sirus; Chan, Siew Hwa

    2017-01-01

    Highlights: • Effect of BSCF-SDC composite air electrode on SOEC electrochemical performance. • Effects on performance of BSCF-SDC air electrode, fuel humidity and temperature. • Desired IT-SOEC performance by compositing the BSCF air electrode with SDC. - Abstract: Solid oxide electrolyzer cells (SOECs) are devises which recently have attracted lots of attention due to their advantages. Their high operating temperature leads to mechanical compatibility issues such as thermal expansion mismatch between layers of material in the cell. The aim of this study is to mitigate the issue of thermal expansion mismatch between Ba_0_._5Sr_0_._5Co_0_._8Fe_0_._2O_3_−_δ (BSCF) and samaria doped ceria, Sm_0_._2Ce_0_._8O_1_._9 (SDC), enhance the triple-phase boundaries and improve the adhesion of the electrode to the electrolytes, hence improve the cell performance. To make BSCF more thermo-mechanically compatible with the SDC electrolyte, the formation of a composite electrode by introducing SDC as the compositing material is proposed. In this study, 10 wt.%, 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% of commercial SDC powder was mixed with BSCF powder, prepared by sol-gel method, to make the composite air electrode. After successfully synthesizing the BSCF-SDC/YSZ-SDC/Ni-YSZ electrolyzer cell, the electrochemical performance was tested for the intermediate-temperature SOEC (IT-SOEC), over the temperature range of 650–800 °C. The microstructure of each sample was studied by field emission electron microscopy (FESEM, JEOL, JSM 6340F) for possible pin holes. The result of this study proves that the sample with 20% SDC-80% BSCF shows the highest performance among the investigated cells.

  14. Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S.; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-01

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g-1 at a scan rate of 0.01 V s-1) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g-1) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  15. Construction and Application of Flow Enzymatic Biosensor Based of Silver Solid Amalgam Electrode for Determination of Sarcosine

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Oksana; Barek, J.; Josypčuk, Bohdan

    2015-01-01

    Roč. 27, č. 11 (2015), s. 2559-2566 ISSN 1040-0397 R&D Projects: GA ČR GBP206/12/G151; GA ČR GAP206/11/1638 Institutional support: RVO:61388955 Keywords : biosensors * sarcosine * silver solid amalgam electrode Subject RIV: CG - Electrochemistry Impact factor: 2.471, year: 2015

  16. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  17. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  18. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  19. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  20. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    International Nuclear Information System (INIS)

    Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E.

    2011-01-01

    Highlights: → Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. → Operating costs at the optimum conditions were 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. → Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. → The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m -2 ), initial concentration (75-500 μg L -1 ) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m -2 , respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L -1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  1. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M., E-mail: kobya@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Gebologlu, U.; Ulu, F.; Oncel, S. [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Demirbas, E. [Gebze Institute of Technology, Department of Chemistry, 41400 Gebze (Turkey)

    2011-05-30

    Highlights: > Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. > Operating costs at the optimum conditions were 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. > Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. > The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m{sup -2}), initial concentration (75-500 {mu}g L{sup -1}) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m{sup -2}, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 {mu}g L{sup -1} with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  2. Interface Modification of Bernal- and Rhombohedral-Stacked Trilayer-Graphene/Metal Electrode on Resistive Switching of Silver Electrochemical Metallization Cells.

    Science.gov (United States)

    Wang, Jer-Chyi; Chan, Ya-Ting; Chen, Wei-Fan; Wu, Ming-Chung; Lai, Chao-Sung

    2017-10-25

    Bernal- and rhombohedral-stacked trilayer graphene (B- and r-TLG) on nickel (Ni) and iridium (Ir) films acting as bottom electrodes (BEs) of silver electrochemical metallization cells (Ag-EMCs) have been investigated in this study. Prior to the fabrication of the EMC devices, Raman mapping and atomic force microscopy are applied to identify the B- and r-TLG sheets, with the latter revealing a significant D peak and a rough surface for the Ir film. The Ag-EMCs with the stacked BE of r-TLG on the Ir film show a conductive mechanism of Schottky emission at the positive top electrode bias for both high- and low-resistance states that can be examined by the resistance change with the device area and are modulated by pulse bias operation. Thus, an effective electron barrier height of 0.262 eV at the r-TLG and Ir interface is obtained because of the conspicuous energy gap of r-TLG on the Ir film and the van der Waals (vdW) gap between the r-TLG and Ir contact metal. With the use of Ni instead of Ir contact metal, the Ag-EMCs with TLG BE demonstrate +0.3 V/-0.75 V operation voltages, more than 10 4 s data retention at 115 °C and 250 times endurance testing, making the TLG sheets suitable for low-power nonvolatile memory applications on flexible substrates.

  3. Enhanced performance of amorphous In-Ga-Zn-O thin-film transistors using different metals for source/drain electrodes

    Science.gov (United States)

    Pyo, Ju-Young; Cho, Won-Ju

    2017-09-01

    In this paper, we propose an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with off-planed source/drain electrodes. We applied different metals for the source/drain electrodes with Ni and Ti to control the work function as high and low. When we measured the configuration of Ni to drain and source to Ti, the a-IGZO TFT showed increased driving current, decreased leakage current, a high on/off current ratio, low subthreshold swing, and high mobility. In addition, we conducted a reliability test with a gate bias stress test at various temperatures. The results of the reliability test showed the Ni drain and Ti drain had an equivalent effective energy barrier height. Thus, we confirmed that the proposed off-planed structure improved the electrical characteristics of the fabricated devices without any degradation of characteristics. Through the a-IGZO TFT with different source/drain electrode metal engineering, we realized high-performance TFTs for next-generation display devices.

  4. Radiation hazard of solid metallic tailings in Shangluo, China

    OpenAIRE

    Zhuang Sukai; Lu Xinwei; Li Jiantao; Li Qian

    2016-01-01

    The radiation hazards of five kinds of different solid metallic tailings collected from Shangluo, China were determined on the basis of natural radioactivity measurements using low background multichannel gamma ray spectrometry. The activity concentration of 226Ra, 232Th and 40K in the tailings ranged from 5.1 to 204.3, 3.8 to 28.5, and 289.6 to 762.3 Bq/kg, respectively. The radium equivalent activities and the external hazard indexes of all studied metall...

  5. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan Jian; Zhang Jian; Su Yuchang; Zhang Xigui; Xia Baojia

    2010-01-01

    In this paper, we describe how the mechanism of formation of a protective film [the solid electrolyte interphase (or interface) (SEI)] on a graphite electrode for Li-ion batteries was investigated from the novel perspective of precipitation of the final decomposition products that arise from the reduction of a nonaqueous electrolyte solution in contact with the graphite electrode. Within the framework of this new perspective, we can elegantly account for the compositional and structural differences between the basal-plane and edge-plane SEIs and for the origins of the multi-layer structure and the parabolic growth law of the SEIs on both the edge-plane and basal-plane surfaces of the graphite electrode.

  6. Comparative Study of PVC-Free All-Solid-State, PVC Membrane, and Carbon Paste Ion-Selective Electrodes for the Determination of Dapoxetine Hydrochloride in Pharmaceutical Formulation.

    Science.gov (United States)

    Aziz, Azza; Khamees, Nesrin; Mohamed, Tagreed Abdel-Fattah; Derar, Abeer Rashad

    2016-11-01

    The potentiometric response characteristics and analytical applications of a poly(vinyl chloride) (PVC)-free all-solid-state ion-selective electrode for dapoxetine hydrochloride (DAP) are examined. The Nernstian response of the electrode was evaluated by comparison with PVC-based liquid membrane and carbon paste electrodes. The PVC-free electrode is prepared by direct incorporation of dapoxetine-tetraphenyl borate (DAP-TPB) as a sensing element into a commercial nail varnish containing cellulose acetate propionate. The composite was applied onto a 3 mm diameter graphite disk electrode. The electrode exhibited a Nernstian slope of 56.0 mV/decade in the concentration range of 1 × 10-4 to 1 × 10-2 mol/L with an LOD of 2 × 10-5 mol/L. The electrode is independent of pH in the range of 2 to 6 and showed good selectivity for DAP with respect to a large number of inorganic cations and amino acids. Comparable Nernstian slope, sensitivity, pH range, and selectivity pattern were obtained with a PVC membrane and a carbon paste incorporating DAP-TPB as a sensing element and dioctylphthalate as a solvent mediator. The electrodes were used for the determination of DAP in pure solution and in tablets without extraction with high accuracy and precision (RSD ≤ 2%). The nail varnish solid-state electrode is simple, economical, and rapid when compared with PVC membrane and carbon paste electrodes.

  7. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  8. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  9. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  10. Peierls' instability in a one-dimensional potentially metallic solid

    International Nuclear Information System (INIS)

    Valladares, A.A.; Cetina, E.A.; Sansores, L.E.

    1980-01-01

    The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)

  11. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    Bhamini Bhujun

    Full Text Available Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF were prepared by a facile sol–gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR and thermal gravimetric analysis (TG. X-ray diffraction (XRD analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF, NiCoFe2O4 (NiCoF and NiCuFe2O4 (NiCuF. The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM, as well as energy dispersive spectroscopy (EDS. The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg−1 was obtained with CuCoF at a scan rate of 5 mV s−1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg−1 was obtained at a current density of 1 Ag−1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors. Keywords: Mixed ternary transition metal ferrite (MTTMF, Nanocomposites, Sol–gel, Cyclic voltammetry, Asymmetric supercapacitor

  12. Friction and solid-solid adhesion on complex metallic alloys

    Science.gov (United States)

    Dubois, Jean-Marie; Belin-Ferré, Esther

    2014-01-01

    The discovery in 1987 of stable quasicrystals in the Al–Cu–Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid–solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so. PMID:27877675

  13. A solid-contact Pb{sup 2+}-selective electrode using poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) as ion-to-electron transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Shunyang [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li Fuhai [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Yin Tanji [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Liu Yongming [Chemistry and Chemical Engineering College, Yantai University, Yantai 264005 (China); Pan, Dawei [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Qin Wei, E-mail: wqin@yic.ac.cn [CAS and Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2011-09-30

    Highlights: {yields} All reagents used for the electrodes preparation were commercially available. {yields} The lower detection limit of the proposed electrode reached subnanomolar levels. {yields} No water film was observed with conventional commercially available PVC ion-sensing membranes. {yields} This research provides an excellent strategy for fabrication of robust polymeric ion sensors. - Abstract: In this work, a novel all-solid-state polymeric membrane Pb{sup 2+}-selective electrode was developed by using for the first time poly(2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene) (MEH-PPV) as solid contact. To demonstrate the ion-to-electron transducing ability of MEH-PPV, chronopotentiometry and electrochemical impedance spectroscopy measurements were carried out. The proposed electrodes showed a Nernstian response of 29.1 mV decade{sup -1} and a lower detection limit of subnanomolar level. No water film was observed with the conventional plasticized PVC membrane. This work demonstrates a new strategy for the fabrication of robust potentiometric ion sensors.

  14. Contact engineering for efficient charge injection in organic transistors with low-cost metal electrodes

    Science.gov (United States)

    Panigrahi, D.; Kumar, S.; Dhar, A.

    2017-10-01

    Controlling charge injection at the metal-semiconductor interface is very crucial for organic electronic devices in general as it can significantly influence the overall device performance. Herein, we report a facile, yet efficient contact modification approach, to enhance the hole injection efficiency through the incorporation of a high vacuum deposited TPD [N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine] interlayer between the electrodes and the active semiconducting layer. The device performance parameters such as mobility and on/off ratio improved significantly after the inclusion of the TPD buffer layer, and more interestingly, the devices with cost effective Ag and Cu electrodes were able to exhibit a superior device performance than the typically used Au source-drain devices. We have also observed that this contact modification technique can be even more effective than commonly used metal oxide interface modifying layers. Our investigations demonstrate the efficacy of the TPD interlayer in effectively reducing the interfacial contact resistance through the modification of pentacene energy levels, which consequently results in the substantial improvement in the device performances.

  15. Flexible Fe2O3 and V2O5 nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors.

    Science.gov (United States)

    Jiang, He; Niu, Hao; Yang, Xue; Sun, Zhiqin; Li, Fuzhi; Wang, Qian; Qu, Fengyu

    2018-04-16

    Flexible highly porous Fe2O3 and V2O5 nanofibers are synthesized by a facile electrospinning method followed by calcination treatment and directly used as binder-free electrodes for high-performance supercapacitors. These Fe2O3 and V2O5 nanofibers interconnect with each other and construct three-dimensional hierarchical porous films with high specific surface area. Benefiting from the unique structural features, the intriguing binder-free Fe2O3 and V2O5 porous nanofiber electrodes possess high specific capacitance of 255 F g-1 and 256 F g-1 at 2 mV s-1 in 1 M Na2SO4 electrolyte, respectively. An all-solid-state asymmetric supercapacitor is fabricated using Fe2O3 and V2O5 nanofibers as negative and positive electrodes, respectively, and the all-solid-state asymmetric supercapacitor can be operated up to 1.8 V attributed to the wide and opposite potential window of both electrodes. The assembled all-solid-state asymmetric supercapacitor achieves a high energy density up to 32.2 Wh kg-1 at an average power density of 128.7 W kg-1 as well as excellent cycling stability and power capability. The effective and facile synthesis method and superior electrochemical performance provided in this work make electrospun Fe2O3 and V2O5 nanofibers promising electrode materials for high performance asymmetric supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A model for osmium isotopic evolution of metallic solids at the core-mantle boundary

    Science.gov (United States)

    Humayun, Munir

    2011-03-01

    Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of

  17. All-solid-state lithium batteries – The Mg2FeH6-electrode LiBH4-electrolyte system

    DEFF Research Database (Denmark)

    Huen, Priscilla; Ravnsbæk, Dorthe B.

    2018-01-01

    The complex hydride Mg2FeH6 is investigated as conversion type anode in a solid-state all-hydride Li-battery employing LiBH4 as solid-state electrolyte. In the solid-state battery, Mg2FeH6 exhibits improvements in the capacity retention and initial Coulombic efficiency of > 3 and > 2.5 times......, respectively, compared to the conventional liquid-electrolyte battery. Through investigations of the conversion reactions of Mg2FeH6, formation of MgH2 as intermediate in the conversion to Mg is discovered the first time. In addition, the effect of mixing procedure for the electrode-electrolyte composite...... on the battery performance is discussed....

  18. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  19. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  20. Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.; Ketchum, Douglas R.; Ghodssi, Reza

    2015-10-01

    A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 with solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.

  1. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.

    2013-10-07

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  2. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.; Irvine, J. T. S.; Traversa, Enrico; Boulfrad, S.

    2013-01-01

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  3. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

  4. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  5. TiN nanoparticles on CNT-graphene hybrid support as noble-metal-free counter electrode for quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Youn, Duck Hyun; Seol, Minsu; Kim, Jae Young; Jang, Ji-Wook; Choi, Youngwoo; Yong, Kijung; Lee, Jae Sung

    2013-02-01

    The development of an efficient noble-metal-free counter electrode is crucial for possible applications of quantum-dot-sensitized solar cells (QDSSCs). Herein, we present TiN nanoparticles on a carbon nanotube (CNT)-graphene hybrid support as a noble-metal-free counter electrode for QDSSCs employing a polysulfide electrolyte. The resulting TiN/CNT-graphene possesses an extremely high surface roughness, a good metal-support interaction, and less aggregation relative to unsupported TiN; it also has superior solar power conversion efficiency (4.13 %) when applying a metal mask, which is much higher than that of the state-of-the-art Au electrode (3.35 %). Based on electrochemical impedance spectroscopy measurements, the enhancement is ascribed to a synergistic effect between TiN nanoparticles and the CNT-graphene hybrid, the roles of which are to provide active sites for the reduction of polysulfide ions and electron pathways to TiN nanoparticles, respectively. The combination of graphene and CNTs leads to a favorable morphology that prevents stacking of graphene or bundling of CNTs, which maximizes the contact of the support with TiN nanoparticles and improves electron-transfer capability relative to either carbon material alone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  7. N-Confused Porphyrin Immobilized on Solid Supports: Synthesis and Metal Ions Sensing Efficacy

    Directory of Open Access Journals (Sweden)

    Sara R. D. Gamelas

    2018-04-01

    Full Text Available In this work, the N-confused porphyrin 5,10,15,20-tetraphenyl-2-aza-21-carbaporphyrin (NCTPP was immobilized on neutral or cationic supports based on silica and on Merrifield resin. The new materials were characterized by appropriate techniques (UV-Vis spectroscopy, SEM, and zeta potential analysis. Piezoelectric quartz crystal gold electrodes were coated with the different hybrids and their ability to interact with heavy metals was evaluated. The preliminary results obtained showed that the new materials can be explored for metal cations detection and the modification of the material surface is a key factor in tuning the metal selectivity.

  8. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  9. Electrode-electrolyte BIMEVOX system for moderate temperature oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, J.C.; Pirovano, C.; Nowogrocki, G.; Mairesse, G. [Laboratoire de Cristallochimie et Physicochimie du Solide, URA CNRS 452, USTL-ENSCL BP 108, 59652 Villeneuve d`Ascq (France); Labrune, Ph.; Lagrange, G. [Centre de recherches Claude Delorme, Air Liquide, Jouy en Josas (France)

    1998-12-01

    Electrochemical separation of oxygen from air is a promising application for oxide conductor solid electrolytes. However, several important specifications are required in order to obtain an efficient separation device. First of all, the electrolyte material must exhibit a high conductivity at moderate temperature. From this point of view, a new family of materials called BIMEVOX ideally fulfils this condition. Secondly, a typical separation device must comport two electrodes on opposite faces of the electrolyte. These electrodes must act as electronic collectors but also, at the cathodic side, as an oxygen dissociation catalyst. BIMEVOX electrolytes exhibit ionic conductivity values that can allow work at temperature below 500C. The classical electrode approach, like in solid oxide fuel cells, consists in using a specific mixed oxide, for instance strontium lanthanum manganite or cobaltite. However, the lower the temperature, the lower the efficiency of these electrodes which quickly appears as the limiting factor. In previous work on bismuth lead oxide electrolytes, we proposed a new approach that consists of using the surface of the bismuth-based electrolyte itself as the catalyst, the electron collection being then performed by a co-sintered metallic grid. This `in-situ` electrode system provides many advantages, particularly it eliminates the problem of the chemical compatibility between electrode and electrolyte materials. Taking into account the presence of both catalytic vanadium and bismuth cations in BIMEVOX, we checked under these conditions the separation of oxygen from air for different electrolytes (BICOVOX, BICUVOX, BIZNVOX) at various temperatures in the range 430-600C. For instance, using a BICOVOX pellet with a gold grid inserted on each side makes it possible to separate oxygen with nearly 100% efficiency for current density values up to 1000 mA/cm{sup -2}. For higher intensity values, the faradic efficiency progressively but reversibly decreases

  10. Determination of the Resistance of Cone-Shaped Solid Electrodes

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Hendriksen, Peter Vang; Koch, Søren

    2017-01-01

    during processing can be avoided. Newman's formula for current constriction in the electrolyte is then used to deduce the active contact area based on the ohmic resistance of the cell, and from this the surface specific electro-catalytic activity. However, for electrode materials with low electrical......A cone-shaped electrode pressed into an electrolyte can with advantage be utilized to characterize the electro-catalytic properties of the electrode, because it is less dependent on the electrode microstructure than e.g. thin porous composite electrodes, and reactions with the electrolyte occurring...... conductivity (like Ce1-xPrxO2-δ), the resistance of the cell is significantly influenced by the ohmic resistance of the cone electrode, wherefore it must be included. In this work the ohmic resistance of a cone is modelled analytically based on simplified geometries. The two analytical models only differ...

  11. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    Science.gov (United States)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  12. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  13. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates

    International Nuclear Information System (INIS)

    Chadderdon, Xiaotong H.; Chadderdon, David J.; Matthiesen, John E.

    2017-01-01

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. Understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. Here, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. By understanding the underlying mechanisms it enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  14. Mechanisms of Furfural Reduction on Metal Electrodes: Distinguishing Pathways for Selective Hydrogenation of Bioderived Oxygenates.

    Science.gov (United States)

    Chadderdon, Xiaotong H; Chadderdon, David J; Matthiesen, John E; Qiu, Yang; Carraher, Jack M; Tessonnier, Jean-Philippe; Li, Wenzhen

    2017-10-11

    Electrochemical reduction of biomass-derived platform molecules is an emerging route for the sustainable production of fuels and chemicals. However, understanding gaps between reaction conditions, underlying mechanisms, and product selectivity have limited the rational design of active, stable, and selective catalyst systems. In this work, the mechanisms of electrochemical reduction of furfural, an important biobased platform molecule and model for aldehyde reduction, are explored through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important biobased polymer precursors and fuels.

  15. The donor-supply electrode enhances performance in colloidal quantum dot solar cells.

    Science.gov (United States)

    Maraghechi, Pouya; Labelle, André J; Kirmani, Ahmad R; Lan, Xinzheng; Adachi, Michael M; Thon, Susanna M; Hoogland, Sjoerd; Lee, Anna; Ning, Zhijun; Fischer, Armin; Amassian, Aram; Sargent, Edward H

    2013-07-23

    Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun's broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry-one based on a donor-supply electrode (DSE)-that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance.

  16. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Na Ayudhya, Chartchalerm Isarankura; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N- (5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn 2+ , was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device

  17. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  18. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  19. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  20. Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode

    International Nuclear Information System (INIS)

    Jian, Xuan; Yang, Hui-min; Li, Jia-gang; Zhang, Er-hui; Cao, Le-le; Liang, Zhen-hai

    2017-01-01

    Highlights: • Porous nanostructure carbon quantum dots/polypyrrole composite film was successfully synthesized by direct electrochemical method. • A flexible all-solid-state supercapacitor device was fabricated using the carbon quantum dots/polypyrrole composite electrode. • The flexible supercapacitor exhibits high specific capacitance, excellent reliability and long cycling life. - Abstract: Recently, carbon quantum dots (CQDs) as a new zero-dimensional carbon nanomaterial have become a focus in electrochemical energy storage. In this paper, flexible all-solid-state supercapacitors (ASSSs) were electrochemically synthesized by on-step co-deposition of appropriate amounts of pyrrole monomer and CQDs in aqueous solution. The different electrodeposition time plays an important role in controlling morphologies of stainless steel wire meshes (SSWM)-supported CQDs/PPy composite film. The morphologies and compositions of the obtained CQDs/PPy composite electrodes were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Furthermore, a novel flexible ASSS device was fabricated using CQDs/PPy composite as the electrode and separated by polyvinyl alcohol/LiCl gel electrolyte. Benefiting from superior electrochemical properties of CQDs and PPy, the as-prepared CQDs/PPy composite ASSSs exhibit outstanding electrochemical performance with the areal capacitance 315 mF cm −2 (corresponding to specific capacitance of 308 F g −1 ) at a current density of 0.2 mA cm −2 and long cycle life with 85.7% capacitance retention after 2 000 cycles.

  1. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  2. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  3. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  4. Computational analysis on the electrode geometric parameters for the reversible solid oxide cells

    International Nuclear Information System (INIS)

    Lee, Seoung-Ju; Jung, Chi-Young; Yi, Sung-Chul

    2017-01-01

    Increasing global energy demands have been accelerating the research and development of reversible electrochemical systems that can realize an efficient use of the intermittent renewable energy resources. This paper thus describes a numerical investigation of reversible solid oxide cells (RSOCs), for their high energy efficiency delivered from the high operating temperatures ranging from 600 to 1000 °C. Unlike the previous studies, a model-based strategy is applied for the simultaneous integration of different operating modes (namely, fuel cell and electrolysis cell modes) to enable more realistic predictions on the trade-off behavior of the effects of electrode design parameters on the cell performance. This approach was taken to investigate the effects of various geometric designs and operating parameters (electrode backing layer thickness; interconnector rib size; fuel gas composition) on the current-potential characteristic and the round-trip efficiency. The cell performance was significantly affected by the rib size, particularly when the backing layer was thin, because of the uneven distribution of the reactant species. Overall, this study provides insights into key geometric design parameters that dominate the performance of dual-mode RSOCs.

  5. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  6. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  7. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  8. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  9. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  10. Electrochemical separation of cerium and yttrium in molten chlorides on liquid-metallic electrodes

    International Nuclear Information System (INIS)

    Yamshchikov, L.F.; Lebedev, V.A.; Nichkov, I.F.

    1978-01-01

    An estimating calculation of the coefficients of separation of cerium and yttrium in the process of electrolysis in molten salts on liquid electrodes of aluminium, gallium, indium, lead, tin, antimonium and zinc is carried out. The calculation of the separation coefficients was carried out according to the known values of activation coefficients of cerium and yttrium in fusible metals. The electrolysis was carried out at 973 K in the argon air in the cell with an eutectic mixture of NaCl and KCl as an elactrolyte. It is shown that the salten phase is concentrated by yttrium, and the melallic one- by cerium on all the electrodes. The value of the separation coefficient of Ce and Y is considerably high and continuously increases on the fusible metals in the Zn, In, Ga, Al, Pb, Sn, Sb series. The experimental values of the separation coefficients practically coincide with the theoretically calculated ones, testifying to the possibility of the effective separation of elements even in a single-staged possibility of the effective separation of elements even in a single-staged process. An electrolysis of molten salts is not inferior in its selectivity to the universally recognized methods of the fine purification of substances permitting to separate Ce and Y with the Ksub(sep) approximately equal to 10

  11. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    Science.gov (United States)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power

  12. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mosdale, R [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee; Stevens, P [CEA Centre d` Etudes de Grenoble, 38 (France). Dept. de Thermohydraulique et de Physique

    1993-12-31

    A new method of preparation of Electrode/Membrane/Electrode (EME) assemblies for Proton Exchange Membrane Fuel Cells (PEMFC) has been developed. The electrodes are deposited directly onto a Nafion electrolyte membrane from a mixture of platinized carbon, Nafion solution, and PTFE by using a spray technique. By this technique, porous electrodes are obtained with an optimized gas/electrolyte/catalyst interface, and electrode/membrane interface.

  13. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  14. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish, E-mail: manish1@rci.rutgers.edu [Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854 (United States); Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D. [MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M. [Mechanical Engineering and Materials Science Department, Rice University, Houston, Texas 77005 (United States)

    2014-09-01

    Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS{sub 2}. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS{sub 2} on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  15. Voltammetric determination of trace amounts of 2-methyl-4,6-dinitrophenol at a silver solid amalgam electrode

    Czech Academy of Sciences Publication Activity Database

    Fischer, J.; Barek, J.; Josypčuk, Bohdan; Navrátil, Tomáš

    2006-01-01

    Roč. 18, č. 2 (2006), s. 127-130 ISSN 1040-0397 R&D Projects: GA ČR GA203/03/0182; GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : 2-methyl-4,6-dinitrophenol * differential pulse voltammetry * silver solid amalgam electrode Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  16. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  17. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  18. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces

    International Nuclear Information System (INIS)

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. -- Highlights: • Physico-chemical parameters investigated in build-up samples from 32 road surfaces. • Mineralogical composition primarily governs the physico-chemical characteristics. • High clay forming mineral content in fine solids increases SSA and ECEC. • Characteristics influenced by quartz and amorphous content with particle size. • High quartz content in coarse particles contributes reduced metal adsorption. -- The mineralogical composition of solids is the governing factor influencing metal adsorption to solids in pollutant build-up on urban surfaces

  19. Analysis of the dynamic behavior of porous nickel electrodes in alkaline solutions

    International Nuclear Information System (INIS)

    Real, Silvia G; Visintin, Arnaldo; Castro, Elida B

    2004-01-01

    The nickel electrode is important for its electrocatalytic properties, when it is used in water electrolysis, and for use as a positive terminal in alkaline nickel-cadmium, nickel-iron, nickel-zinc, nickel-hydrogen and nickel-metal hydride batteries. Since there are many factors related to the functioning of these batteries that have still not been clarified, such as the memory effect associated with the change in structure of the nickel hydroxide and the phenomenon of 'battery sudden death', that produce serious problems mostly in spaces uses, this work discusses the dynamic behavior of the porous nickel hydroxide electrode. This electrode possesses outstanding properties such as high power density, good cyclability and elevated specific energy, which make it unique for the above-mentioned applications. The electrochemical storage of energy in this electrode is based on the reversible characteristics of nickel hydroxide/oxhydroxide redox coupling. The reversibility of the process is an important factor in battery materials. In the case of the Ni oxide, during the electrode discharge H + is inserted and this process inverts during the charging. This work presents the results obtained with the use of impedance spectroscopy for different discharge states of the electrode material in order to correlate its electrochemical properties according to the development of physical chemical models. These models include the charging and discharging processes, the process of proton diffusion in the solid and the porous nature of the material. Knowledge about the functioning of the electrode material is obtained by adjusting the experimental data according to the model and the parametric identification to determine values associated with such variables as area of active material, diffusion coefficient of the H + , conductivity of the solid as a function of the discharge state and kinetic constants of the charge transfer process (CW)

  20. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  1. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  2. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  3. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  4. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1975-01-01

    Tritides of such metals as scandium, titanium, and erbium are useful materials for determining the effects of helium accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation, as reported elsewhere, which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages (2 to 4 years, depending on the parent metal), the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Scandium is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature tritium solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp scandium lattice are only minimally changed by tritium solution, and we have succeeded in obtaining single crystal ScT 0 . 3 samples in two crystallographic orientations. Using a very sensitive technique, we have measured 3 He emission from both these samples, as well as from fine-grained thin film scandium-tritium solid solution samples (ScT 0 . 3 - 0 . 4 ). The fine-grained film samples release 3 He at 2 to 3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  5. Broadly tunable metal halide perovskites for solid-state light-emission applications

    OpenAIRE

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as broad tunability of bandgap, defect tolerance, high photoluminescence quantum efficiency and high emission color purity (narrow full-width at half maximum). In this review, the photophysical propert...

  6. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  7. Electrocatalytic behavior of carbon paste electrode modified with metal phthalocyanines nanoparticles toward the hydrogen evolution

    International Nuclear Information System (INIS)

    Abbaspour, Abdolkarim; Norouz-sarvestani, Fatemeh; Mirahmadi, Ehsan

    2012-01-01

    Highlights: ► The new construction of a carbon paste electrode impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). ► The decrease overpotential and higher current value obtained in nano ZnPc and nano NiPc compared to bulky ZnPc and bulky NiPc, respectively. ► Types of the catalyst and pH of the solution affect the electro catalytic proton reduction reaction considerably. - Abstract: This paper describes the construction of a carbon paste electrode (CPE) impregnated with nanoparticles of Zn and Ni phthalocyanine (nano ZnPc and nano NiPc). These new electrodes (nano ZnPc-CPE and nano NiPc-CPE) reveal interesting electrocatalytic behavior toward hydrogen evolution reaction (HER). Voltammetric characteristics indicated that the proposed electrodes display better electrocatalytic activity compared to their corresponding bulky modified metal phthalocyanines (MPcs) in minimizing overpotential and increasing the reduction current of HER. Electrocatalytic activities irregularly change with the pH of the solution. However by increasing the pH while nano MPcs are still active, bulky MPcs are almost inactive, and their corresponding ΔE increase by increasing the pH.

  8. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  9. Heavy metal levels and solid phase speciation in street dusts of Delhi, India

    International Nuclear Information System (INIS)

    Banerjee, Anju D.K.

    2003-01-01

    Although the street dusts of Delhi contain considerably high levels of Cr, Ni, Cu, Cd, Zn and Pb, solid phase speciation results indicate comparatively limited environmental mobility and bioavailability of Ni and Cr. - Street dust samples were collected from three different localities (industrial, heavy traffic and rural) situated in the greater Delhi area of India. The samples analyzed for Cd, Zn, Pb, Ni, Cu, and Cr indicated remarkably high levels of Cr, Ni, and Cu in the industrial area, whilst Pb and Cd did not show any discernible variations between the three localities. A multivariate statistical approach (Principal Component Analysis) was used to define the possible origin of metals in dusts. The street dusts were sequentially extracted so that the solid pools of Cd, Zn, Pb, Ni, Cu, Cr could be partitioned into five operationally defined fractions viz. exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. Metal recoveries in sequential extractions were ±10% of the independently measured total metal concentrations. Cd was the only metal present appreciably (27.16%) in the exchangeable fraction and Cu was the only metal predominantly associated (44.26%) with organic fraction. Zn (45.64%) and Pb (28.26%) were present mainly in the Fe-Mn oxide fraction and the residual fraction was the most dominant solid phase pool of Cr (88.12%) and Ni (70.94%). Assuming that the mobility and bioavailability are related to the solubility of geochemical forms of the metals and decrease in order of extraction, the apparent mobility and potential metal bioavailability for these highly contaminated street dust samples is: Cd>Zn congruent with Pb>Ni>Cu>Cr

  10. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  11. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  12. The Electrode Characteristics of the Sintered AB{sub 5}-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sang Min; Park, Won; Choi, Seung Jun; Park, Choong Nyeon [Department of Metallurgical Engineering, Chonnam National University, Kawngju, (Korea, Republic of); Noh, Hak [Autombile Reseach Center, Chonnom National University, Kwangju (Korea, Republic of); Choi, Jeon [Department. of Iron and Metallurgical Engineering., Hanlyo Sanup University, Kwangyang (Korea, Republic of)

    1996-12-15

    The AB{sub 5} type metal hydride electrodes using (LM)Ni{sub 4.49}C0{sub 0.1}Mn{sub 0.205}Al{sub 0.205}(LM : Lanthanium rich Mischmetal) alloy powders({<=}200mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrode were sintered at 40 for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning election microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrode with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increasing sintering time. However, there is little difference of discharge capacity for both electrodes. (author). 9 refs., 2 tabs., 4 figs., 2 ills.

  13. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  14. Composite metal-hydrogen electrodes for metal-hydrogen batteries. Final report, October 1, 1993 - April 15, 1997

    International Nuclear Information System (INIS)

    Ruckman, M.W.; Strongin, M.; Weismann, H.

    1997-04-01

    The purpose of this project is to develop and conduct a feasibility study of metallic thin films (multilayered and alloy composition) produced by advanced sputtering techniques for use as anodes in Ni-metal hydrogen batteries that would be deposited as distinct anode, electrolyte and cathode layers in thin film devices. The materials could also be incorporated in secondary consumer batteries (i.e. type AF(4/3 or 4/5)) which use electrodes in the form of tapes. The project was based on pioneering studies of hydrogen uptake by ultra-thin Pd-capped Nb films, these studies suggested that materials with metal-hydrogen ratios exceeding those of commercially available metal hydride materials and fast hydrogen charging and discharging kinetics could be produced. The project initially concentrated on gas phase and electrochemical studies of Pd-capped niobium films in laboratory-scale NiMH cells. This extended the pioneering work to the wet electrochemical environment of NiMH batteries and exploited advanced synchrotron radiation techniques not available during the earlier work to conduct in-situ studies of such materials during hydrogen charging and discharging. Although batteries with fast charging kinetics and hydrogen-metal ratios approaching unity could be fabricated, it was found that oxidation, cracking and corrosion in aqueous solutions made pure Nb films and multilayers poor candidates for battery application. The project emphasis shifted to alloy films based on known elemental materials used for NiMH batteries. Although commercial NiMH anode materials contain many metals, it was found that 0.24 μm thick sputtered Zr-Ni films cycled at least 50 times with charging efficiencies exceeding 95% and [H]/[M] ratios of 0.7-1.0. Multilayered or thicker Zr-Ni films could be candidates for a thin film NiMH battery that may have practical applications as an integrated power source for modern electronic devices

  15. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste.

    Science.gov (United States)

    Mahto, Ashesh; Gupta, Rajeev; Ghara, Krishna Kanta; Srivastava, Divesh N; Maiti, Pratyush; D, Kalpana; Rivera, Paul-Zavala; Meena, R; Nataraj, S K

    2017-10-15

    This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl 2 in inert atmosphere resulting in high surface area (730-900m 2 g -1 ) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg -1 , whereas all solid supercapacitor devised using PVA/H 3 PO 4 polyelectrolyte showed stable capacitance of 105Fg -1 at 0.2Ag -1 . The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable. Copyright © 2017. Published by Elsevier B.V.

  16. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  17. A study of the metal content of municipal solid waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Churney, K.L.; Domalski, E.S.

    1998-01-01

    Knowledge of the content of toxic components, so called pollutant precursors, in the municipal solid waste (MSW) stream is essential to development of the strategies for source reduction and reuse, recycling, composting and disposal. Data are scarce; trends in composition for any locality even more so. In a previous study the total and water soluble chlorine content of the components of municipal solid waste were determined from sampling studies at two sites, Baltimore County, MD, and Brooklyn, NY, each for a five day period. The total sulfur content of the combined combustible components was also determined. Because of the scarcity of data and synergistic effects, it seemed appropriate to determine the heavy metal content of the preceding material prior to its disposal. The metals chosen were the so-called priority pollutant metals (PPM): antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc.

  18. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  19. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Liang, Junsheng; Su, Shijie; Fang, Xu; Wang, Dazhi; Xu, Shuangchao

    2016-01-01

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H_2SO_4) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m"2·g"−"1. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g"−"1, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg"−"1. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g"−"1 at a current density of 4 A·g"−"1, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g"−"1. And the specific capacitance of the electrode can retain 89% after 1500 charge/discharge cycles.

  20. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  1. Fuel Cell Electrodes Based on Carbon Nanotube/Metallic Nanoparticles Hybrids Formed on Porous Stainless Steel Pellets

    Directory of Open Access Journals (Sweden)

    S. M. Khantimerov

    2013-01-01

    Full Text Available The preparation of carbon nanotube/metallic particle hybrids using pressed porous stainless steel pellets as a substrate is described. The catalytic growth of carbon nanotubes was carried out by CVD on a nickel catalyst obtained by impregnation of pellets with a highly dispersive colloidal solution of nickel acetate tetrahydrate in ethanol. Granular polyethylene was used as the carbon source. Metallic particles were deposited by thermal evaporation of Pt and Ag using pellets with grown carbon nanotubes as a base. The use of such composites as fuel cell electrodes is discussed.

  2. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  3. Liquid and gel electrodes for transverse free flow electrophoresis

    Science.gov (United States)

    Jung, Byoungsok; Rose, Klint A; Shusteff, Maxim; Persat, Alexandre; Santiago, Juan

    2015-04-07

    The present invention provides a mechanism for separating or isolating charged particles under the influence of an electric field without metal electrodes being in direct contact with the sample solution. The metal electrodes normally in contact with the sample are replaced with high conductivity fluid electrodes situated parallel and adjacent to the sample. When the fluid electrodes transmit the electric field across the sample, particles within the sample migrate according to their electrophoretic mobility.

  4. Ozone production by an atmospheric pulsed discharge with pre-ionization electrodes and partly covered electrode

    International Nuclear Information System (INIS)

    Kaneda, S.; Shimosaki, M.; Hayashi, N.; Ihara, S.; Satoh, S.; Yamabe, C.

    2002-01-01

    In this paper, results on ozone production by atmospheric pulsed discharge, are reported. In the research, two types of ozonizer (Type I and Type II) have been used to investigate improvements of ozone concentration and production efficiency. The ozonizer has plane-to-plane metal electrodes structure, and pre-ionization electrodes are placed on the high voltage electrodes (Type I). In Type II, the surface of grounded electrode with 20 mm of width is covered partly by dielectric (thin rubber) with 11 mm of width, while the geometry of both metal electrodes is same to Type I. In the case of Type I, maximum concentration of about 100 ppm and maximum yield of 70 g/kWh were obtained at input power of 0.3 W. On the other hands, in the case of Type II, 800 ppm and 100 g/kWh were obtained at input power of 1.5 W. It was found that the ozone concentration and production yield were improved by using electrode covered by dielectric. (author)

  5. 3He release characteristics of metal tritides and scandium--tritium solid solutions

    International Nuclear Information System (INIS)

    Perkins, W.G.; Kass, W.J.; Beavis, L.C.

    1976-01-01

    Tritides of such metals as Sc, Ti, and Er are useful materials for determining the effects of He accumulation in metallic solids, for example, CTR first wall materials. Such effects include lattice strain and gross deformation which are related to 3 He retention and ultimate release. Long term gas release studies have indicated that, during the early life of a metal ditritide, a large fraction of the 3 He is retained in the solid. At more advanced ages, the 3 He release rate becomes comparable to the generation rate. Statistical analysis of the data indicates that the acceleration in 3 He release rate depends on accumulated 3 He concentration rather than strictly on age. 3 He outgassing results are presented for thin films of ScT 2 , TiT 2 , and ErT 2 , and the critical 3 He concentrations are discussed in terms of a percolation model. Phase transformations which occur on tritide formation cast some doubt on the validity of extrapolating results obtained for metal tritides to predictions regarding the accumulation of helium in metals. Sc is unique among the early transition and rare-earth metals in that the metal exhibits a very high room temperature T solubility (T/Sc = 0.4) with no phase transformation. Indeed, even the lattice parameters of the hcp Sc lattice are only minimally changed by T solution. Single crystal ScT/sub 0.3/ samples in two crystallographic orientations were obtained. Using a very sensitive technique, 3 He emission was measured from both these samples, as well as from fine-grained thin film Sc--T solid solution samples (ScT/sub 0.3-0.4/). The fine-grained film samples release 3 He at 2-3 percent of the generation rate, while the emission rate from the single-crystal samples is approximately 0.05 percent of the generation rate, indicating a strong grain size effect

  6. Voltammetric behavior of osmium-labeled DNA at mercury meniscus-modified solid amalgam electrodes. Detecting DNA hybridization

    Czech Academy of Sciences Publication Activity Database

    Josypčuk, Bohdan; Fojta, Miroslav; Havran, Luděk; Heyrovský, Michael; Paleček, Emil

    2006-01-01

    Roč. 18, č. 2 (2006), s. 186-194 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42; GA AV ČR IAA4004402; GA AV ČR KJB4004302; GA AV ČR IBS5004355 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : voltammetry * solid amalgam electrodes * DNA-osmium complex * hybridization * catalytic hydrogen evolution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  7. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode.

    Science.gov (United States)

    Li, Xiaoyan; Wang, Jun; Zhao, Yaping; Ge, Fengyan; Komarneni, Sridhar; Cai, Zaisheng

    2016-10-05

    The proposed approach for fabricating ultralight self-sustained electrodes facilitates the structural integration of highly flexible carbon nanofibers, amino-modified multiwalled carbon nanotubes (AM-MWNT), and MnO 2 nanoflakes for potential use in wearable supercapacitors. Because of the higher orientation of AM-MWNT and the sublimation of terephthalic acid (PTA) in the carbonization process, freestanding electrodes could be realized with high porosity and flexibility and could possess remarkable electrochemical properties without using polymer substrates. Wearable symmetric solid-state supercapacitors were further assembled using a LiCl/PVA gel electrolyte, which exhibit a maximum energy density of 44.57 Wh/kg (at a power density of 337.1 W/kg) and a power density of 13330 W/kg (at an energy density of 19.64 Wh/kg) with a working voltage as high as 1.8 V. Due to the combination of several favorable traits such as flexibility, high energy density, and excellent electrochemical cyclability, the presently developed wearable supercapacitors with wide potential windows are expected to be useful for new kinds of portable electric devices.

  8. The donor-supply electrode enhances performance in colloidal quantum dot solar cells

    KAUST Repository

    Maraghechi, Pouya

    2013-07-23

    Colloidal quantum dot (CQD) solar cells combine solution-processability with quantum-size-effect tunability for low-cost harvesting of the sun\\'s broad visible and infrared spectrum. The highest-performing colloidal quantum dot solar cells have, to date, relied on a depleted-heterojunction architecture in which an n-type transparent metal oxide such as TiO2 induces a depletion region in the p-type CQD solid. These devices have, until now, been limited by a modest depletion region depth produced in the CQD solid owing to limitations in the doping available in TiO2. Herein we report a new device geometry - one based on a donor-supply electrode (DSE) - that leads to record-performing CQD photovoltaic devices. Only by employing this new charge-extracting approach do we deepen the depletion region in the CQD solid and thereby extract notably more photocarriers, the key element in achieving record photocurrent and device performance. With the use of optoelectronic modeling corroborated by experiment, we develop the guidelines for building a superior CQD solar cell based on the DSE concept. We confirm that using a shallow-work-function terminal electrode is essential to producing improved charge extraction and enhanced performance. © 2013 American Chemical Society.

  9. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  10. Regularities in electroconductivity and thermo-emf in systems of binary continuous solid solutions of metals

    International Nuclear Information System (INIS)

    Vedernikov, M.V.; Dvunitkin, V.G.; Zhumagulov, A.

    1978-01-01

    Given are new experimental data about specific electric resistance of 10 systems of binary continuous solid metal solutions at the temperatures of 293 and 4.2 K: Cr-V, Mo-Nb, Mo-V, Cr-Mo, Nb-V, Ti-Zr, Hf-Zr, Hf-Ti, Sc-Zr, Sc-Hf. For the first time a comparative analysis of all available data on the resistance dependence on the composition of systems of continuous solid solutions, which covers 21 systems, is carried out. The ''resistance-composition'' dependence for such alloy systems is found to be of two types. The dependence of the first type is characteristic of the systems, formed by two isoelectronic metals, the dependence of the second type - for the systems, formed by non-isoelectronic metals. Thermo-emf of each type of solid solutions differently depends on their compositions

  11. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma

    International Nuclear Information System (INIS)

    Wu Jian; Yu Jing; Li Jun; Wang Jianping; Ying Yibin

    2007-01-01

    In this paper, the discharge ignited in a capillary connecting two beakers filled with electrolyte solution is investigated. During the experiment, an external electrical voltage is applied through two platinum electrodes dipped in the beakers. A gas bubble forms inside the capillary when the applied voltage is higher than 1000 V. Since the beakers are tilted slightly, after generation, the bubble moves slowly to the uphill outlet of the capillary due to buoyancy. When the bubble reaches the end of the capillary, it cracks and a bright discharge is ignited. The emission spectra of the discharge plasma are related to the metal ions dissolved in the solution and thus can be used for metal ion detection. An application of the system to measurement of water hardness is shown

  12. Investigation of the connection between plasma temperature and electrode temperature in metal-halide lamps

    International Nuclear Information System (INIS)

    Fromm, D.C.; Gleixner, K.H.; Lieder, G.H.

    2002-01-01

    Spatial profiles of electrode temperatures and plasma temperatures have been measured on 'real' HID lamps filled with a commercial metal-halide compound. The absolute accuracy of pyrometric determination of electrode tip temperatures was ±30 K, while the determination of plasma core temperatures, using a modified Bartels method, has an accuracy of ±100 K. We could deduce a close correlation between the plasma temperature in front of an electrode T p and its tip temperature T t due to the influence of the cataphoresis. If T p is reduced at the cathode the T t value has also lowered, whereas T p at the anode is raised together with its T t data. This correlation disappears at ballast frequencies above 100 Hz, whereas the cataphoresis influence on T p continues up to 500 Hz. Based on the latter limit, a rough estimation of the cataphoresis velocity delivers 700 cm s -1 . As a tentative interpretation, we suggest that the connection between T p and T t is caused by an increase of the ion part of the total current at the cathode due to Na accumulation before it. Thus, the cathode has to emit fewer electrons and works at a lower temperature. Further results are the temporal behaviour of T t depends on the ballast type. For vertical operation the strong influence of convection on T t has also to be taken into account. Above 100 Hz, where only convection plays a role, the upper electrode T t exceeds the T t value of the lower electrode by nearly 400 K. This discrepancy one may explain, tentatively, by convection heating of the upper electrode and convection cooling of the lower one. (author)

  13. Applications of porous electrodes to metal-ion removal and the design of battery systems

    International Nuclear Information System (INIS)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 μg Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected

  14. Applications of porous electrodes to metal-ion removal and the design of battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Trost, G.G.

    1983-09-01

    This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 ..mu..g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.

  15. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    Science.gov (United States)

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  16. All-Solid-State High-Energy Asymmetric Supercapacitors Enabled by Three-Dimensional Mixed-Valent MnOx Nanospike and Graphene Electrodes.

    Science.gov (United States)

    Yang, Jie; Li, Guizhu; Pan, Zhenghui; Liu, Meinan; Hou, Yuan; Xu, Yijun; Deng, Hong; Sheng, Leimei; Zhao, Xinluo; Qiu, Yongcai; Zhang, Yuegang

    2015-10-14

    Three-dimensional (3D) nanostructures enable high-energy storage devices. Here we report a 3D manganese oxide nanospike (NSP) array electrode fabricated by anodization and subsequent electrodeposition. All-solid-state asymmetric supercapacitors were assembled with the 3D Al@Ni@MnOx NSP as the positive electrode, chemically converted graphene (CCG) as the negative electrode, and Na2SO4/poly(vinyl alcohol) (PVA) as the polymer gel electrolyte. Taking advantage of the different potential windows of Al@Ni@MnOx NSP and CCG electrodes, the asymmetric supercapacitor showed an ideal capacitive behavior with a cell voltage up to 1.8 V, capable of lighting up a red LED indicator (nominal voltage of 1.8 V). The device could deliver an energy density of 23.02 W h kg(-1) at a current density of 1 A g(-1). It could also preserve 96.3% of its initial capacitance at a current density of 2 A g(-1) after 10000 charging/discharging cycles. The remarkable performance is attributed to the unique 3D NSP array structure that could play an important role in increasing the effective electrode surface area, facilitating electrolyte permeation, and shortening the electron pathway in the active materials.

  17. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  18. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  19. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  20. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.