WorldWideScience

Sample records for solid mechanics code

  1. Sierra/Solid Mechanics 4.48 User's Guide.

    Energy Technology Data Exchange (ETDEWEB)

    Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Gampert, Scott; Xavier, Patrick G.; Plews, Julia A.

    2018-03-01

    Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

  2. The 1989 progress report: Solid-state Mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1989-01-01

    The 1989 progress report of the laboratory of Solid-state Mechanics of the Polytechnic School (France) is presented. The investigations are focused on the study of strain and failure of solids and structures. The results reported concern the fields of: stability and bifurcation of elastic or inelastic systems, damage and fatigue (resistance improvement, failure risks on pipe systems, crack propagation), the development of a computer code for soil strengthening by using linear inclusions, mechanical behavior of several rocks for the safety of underground works, expert systems. The published papers, the conferences and the Laboratory staff are listed [fr

  3. Development of a computational framework on fluid-solid mixture flow simulations for the COMPASS code

    International Nuclear Information System (INIS)

    Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi

    2010-01-01

    The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods. (author)

  4. Sierra/solid mechanics 4.22 user's guide.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jesse David

    2011-10-01

    Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for the analysis of solids and structures. It provides capabilities for explicit dynamic and implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and an extensive library of material models. The code is written for parallel computing environments, and it allows for scalable solutions of very large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Sierra/SM.

  5. Sierra/SolidMechanics 4.48 User's Guide: Addendum for Shock Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    This is an addendum to the Sierra/SolidMechanics 4.48 User's Guide that documents additional capabilities available only in alternate versions of the Sierra/SolidMechanics (Sierra/SM) code. These alternate versions are enhanced to provide capabilities that are regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. The ITAR regulated codes are only distributed to entities that comply with the ITAR export-control requirements. The ITAR enhancements to Sierra/SM in- clude material models with an energy-dependent pressure response (appropriate for very large deformations and strain rates) and capabilities for blast modeling. Since this is an addendum to the standard Sierra/SM user's guide, please refer to that document first for general descriptions of code capability and use.

  6. Sierra/SolidMechanics 4.46 Example Problems Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael

    2018-03-01

    Presented in this document are tests that exist in the Sierra/SolidMechanics example problem suite, which is a subset of the Sierra/SM regression and performance test suite. These examples showcase common and advanced code capabilities. A wide variety of other regression and verification tests exist in the Sierra/SM test suite that are not included in this manual.

  7. Computer codes for simulating atomic-displacement cascades in solids subject to irradiation

    International Nuclear Information System (INIS)

    Asaoka, Takumi; Taji, Yukichi; Tsutsui, Tsuneo; Nakagawa, Masayuki; Nishida, Takahiko

    1979-03-01

    In order to study atomic displacement cascades originating from primary knock-on atoms in solids subject to incident radiation, the simulation code CASCADE/CLUSTER is adapted for use on FACOM/230-75 computer system. In addition, the code is modified so as to plot the defect patterns in crystalline solids. As other simulation code of the cascade process, MARLOWE is also available for use on the FACOM system. To deal with the thermal annealing of point defects produced in the cascade process, the code DAIQUIRI developed originally for body-centered cubic crystals is modified to be applicable also for face-centered cubic lattices. By combining CASCADE/CLUSTER and DAIQUIRI, we then prepared a computer code system CASCSRB to deal with heavy irradiation or saturation damage state of solids at normal temperature. Furthermore, a code system for the simulation of heavy irradiations CASCMARL is available, in which MARLOWE code is substituted for CASCADE in the CASCSRB system. (author)

  8. Applied mechanics of solids

    CERN Document Server

    Bower, Allan F

    2009-01-01

    Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based. Develop Intuitive Ability to Identify and Avoid Physically Meaningless Predictions Applied Mechanics of Solids is a powerful tool for understanding how to take advantage of these revolutionary computer advances in the field of solid mechanics. Beginning with a description of the physical and mathematical laws that govern deformation in solids, the text presents modern constitutive equations, as well as analytical and computational methods of stress analysis and fracture mechanics. It also addresses the nonlinear theory of deformable rods, membranes, plates, and shells, and solutions to important boundary and initial value problems in solid mechanics. The author uses the step-by-step manner of a blackboard lecture to explain problem solving methods, often providing...

  9. Development of a new generation solid rocket motor ignition computer code

    Science.gov (United States)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  10. Applications in solid mechanics

    DEFF Research Database (Denmark)

    Ølgaard, Kristian Breum; Wells, Garth N.

    2012-01-01

    Problems in solid mechanics constitute perhaps the largest field of application of finite element methods. The vast majority of solid mechanics problems involve the standard momentum balance equation, posed in a Lagrangian setting, with different models distinguished by the choice of nonlinear...... or linearized kinematics, and the constitutive model for determining the stress. For some common models, the constitutive relationships are rather complex. This chapter addresses a number of canonical solid mechanics models in the context of automated modeling, and focuses on some pertinent issues that arise...

  11. Sierra/SolidMechanics 4.48 Verification Tests Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    Presented in this document is a small portion of the tests that exist in the Sierra / SolidMechanics (Sierra / SM) verification test suite. Most of these tests are run nightly with the Sierra / SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra / SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra / SM Example Problems Manual. Note, many other verification tests exist in the Sierra / SM test suite, but have not yet been included in this manual.

  12. Application bar-code system for solid radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Kim, T. K.; Kang, I. S.; Cho, H. S.; Son, J. S. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Solid radioactive wastes are generated from the post-irradiated fuel examination facility, the irradiated material examination facility, the research reactor, and the laboratories at KAERI. A bar-code system for a solid radioactive waste management of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by bar-code system.

  13. Modelling of fluid-solid interaction using two stand-alone codes

    CSIR Research Space (South Africa)

    Grobler, Jan H

    2010-01-01

    Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...

  14. Solid mechanics a variational approach

    CERN Document Server

    Dym, Clive L

    2013-01-01

    Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems.  Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as ...

  15. Fast Coding Unit Encoding Mechanism for Low Complexity Video Coding

    OpenAIRE

    Gao, Yuan; Liu, Pengyu; Wu, Yueying; Jia, Kebin; Gao, Guandong

    2016-01-01

    In high efficiency video coding (HEVC), coding tree contributes to excellent compression performance. However, coding tree brings extremely high computational complexity. Innovative works for improving coding tree to further reduce encoding time are stated in this paper. A novel low complexity coding tree mechanism is proposed for HEVC fast coding unit (CU) encoding. Firstly, this paper makes an in-depth study of the relationship among CU distribution, quantization parameter (QP) and content ...

  16. Introduction to the Mechanics of Deformable Solids Bars and Beams

    CERN Document Server

    H Allen, David

    2013-01-01

    Introduction to the Mechanics of Deformable Solids: Bars and Beams introduces the theory of beams and bars, including axial, torsion, and bending loading and analysis of bars that are subjected to combined loadings, including resulting complex stress states using Mohr’s circle. The book  provides failure analysis based on maximum stress criteria and introduces design using models developed in the text. Throughout the book, the author emphasizes fundamentals, including consistent mathematical notation. The author also presents the fundamentals of the mechanics of solids in such a way that the beginning student is able to progress directly to a follow-up course that utilizes two- and three-dimensional finite element codes imbedded within modern software packages for structural design purposes. As such, excessive details included in the previous generation of textbooks on the subject are obviated due to their obsolescence with the availability of today’s finite element software packages. This book also:...

  17. Current Solid Mechanics Research

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    About thirty years ago James Lighthill wrote an essay on “What is Mechanics?” With that he also included some examples of the applications of mechanics. While his emphasis was on fluid mechanics, his own research area, he also included examples from research activities in solid mechanics....

  18. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  19. Statistical mechanics of low-density parity-check codes

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2004-02-13

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  20. Statistical mechanics of low-density parity-check codes

    International Nuclear Information System (INIS)

    Kabashima, Yoshiyuki; Saad, David

    2004-01-01

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  1. Geometrical setting of solid mechanics

    International Nuclear Information System (INIS)

    Fiala, Zdenek

    2011-01-01

    Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.

  2. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  3. Introduction to solid mechanics an integrated approach

    CERN Document Server

    Lubliner, Jacob

    2017-01-01

    This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.  .

  4. Test of Effective Solid Angle code for the efficiency calculation of volume source

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. Y.; Kim, J. H.; Choi, H. D. [Seoul National Univ., Seoul (Korea, Republic of); Sun, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is hard to determine a full energy (FE) absorption peak efficiency curve for an arbitrary volume source by experiment. That's why the simulation and semi-empirical methods have been preferred so far, and many works have progressed in various ways. Moens et al. determined the concept of effective solid angle by considering an attenuation effect of γ-rays in source, media and detector. This concept is based on a semi-empirical method. An Effective Solid Angle code (ESA code) has been developed for years by the Applied Nuclear Physics Group in Seoul National University. ESA code converts an experimental FE efficiency curve determined by using a standard point source to that for a volume source. To test the performance of ESA Code, we measured the point standard sources and voluminous certified reference material (CRM) sources of γ-ray, and compared with efficiency curves obtained in this study. 200∼1500 KeV energy region is fitted well. NIST X-ray mass attenuation coefficient data is used currently to check for the effect of linear attenuation only. We will use the interaction cross-section data obtained from XCOM code to check the each contributing factor like photoelectric effect, incoherent scattering and coherent scattering in the future. In order to minimize the calculation time and code simplification, optimization of algorithm is needed.

  5. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  6. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  7. Computational thermal, chemical, fluid, and solid mechanics for geosystems management.

    Energy Technology Data Exchange (ETDEWEB)

    Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu

    2011-09-01

    This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

  8. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    Science.gov (United States)

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  9. Significance of Strain in Formulation in Theory of Solid Mechanics

    Science.gov (United States)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    2003-01-01

    The basic theory of solid mechanics was deemed complete circa 1860 when St. Venant provided the strain formulation or the field compatibility condition. The strain formulation was incomplete. The missing portion has been formulated and identified as the boundary compatibility condition (BCC). The BCC, derived through a variational formulation, has been verified through integral theorem and solution of problems. The BCC, unlike the field counterpart, do not trivialize when expressed in displacements. Navier s method and the stiffness formulation have to account for the extra conditions especially at the inter-element boundaries in a finite element model. Completion of the strain formulation has led to the revival of the direct force calculation methods: the Integrated Force Method (IFM) and its dual (IFMD) for finite element analysis, and the completed Beltrami-Michell formulation (CBMF) in elasticity. The benefits from the new methods in elasticity, in finite element analysis, and in design optimization are discussed. Existing solutions and computer codes may have to be adjusted for the compliance of the new conditions. Complacency because the discipline is over a century old and computer codes have been developed for half a century can lead to stagnation of the discipline.

  10. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  11. Geometrical setting of solid mechanics

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2011-01-01

    Roč. 326, č. 8 (2011), s. 1983-1997 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional research plan: CEZ:AV0Z20710524 Keywords : solid mechanics * Lagrangian system * time-discrete approximation Subject RIV: BE - Theoretical Physics Impact factor: 2.857, year: 2011

  12. Advanced mechanics of solids

    CERN Document Server

    Bruhns, Otto T

    2003-01-01

    Mechanics, and in particular, the mechanics of solids, forms the basis of all engi­ neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt­ ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per­ ceived as difficult. On the other hand, they always also declared that the preoccu­ pation with mechanics made an essential c...

  13. Stochastic upscaling in solid mechanics: An excercise in machine learning

    International Nuclear Information System (INIS)

    Koutsourelakis, P.S.

    2007-01-01

    This paper presents a consistent theoretical and computational framework for upscaling in random microstructures. We adopt an information theoretic approach in order to quantify the informational content of the microstructural details and find ways to condense it while assessing quantitatively the approximation introduced. In particular, we substitute the high-dimensional microscale description by a lower-dimensional representation corresponding for example to an equivalent homogeneous medium. The probabilistic characteristics of the latter are determined by minimizing the distortion between actual macroscale predictions and the predictions made using the coarse model. A machine learning framework is essentially adopted in which a vector quantizer is trained using data generated computationally or collected experimentally. Several parallels and differences with similar problems in source coding theory are pointed out and an efficient computational tool is employed. Various applications in linear and non-linear problems in solid mechanics are examined

  14. Order information coding in working memory: Review of behavioural studies and cognitive mechanisms

    Directory of Open Access Journals (Sweden)

    Barbara Dolenc

    2014-06-01

    Full Text Available Executive processes, such as coding for sequential order, are of extreme importance for higher-order cognitive tasks. One of the significant questions is, how order information is coded in working memory and what cognitive mechanisms and processes mediate it. The aim of this review paper is to summarize results of studies that explore whether order and item memory are two separable processes. Furthermore, we reviewed evidence for each of the proposed cognitive mechanism that might mediate order processing. Previous behavioural and neuroimaging data suggest different representation and processing of item and order information in working memory. Both information are maintained and recalled separately and this separation seems to hold for recognition as well as for recall. To explain the result of studies of order coding, numerous cognitive mechanisms were proposed. We focused on four different mechanisms by which order information might be coded and retrieved, namely inter-item associations, direct coding, hierarchical coding and magnitude coding. Each of the mechanisms can explain some of the aspect of order information coding, however none of them is able to explain all of the empirical findings. Due to its complex nature it is not surprising that a single mechanism has difficulties accounting for all the behavioral data and order memory may be more accurately characterized as the result of a set of mechanisms rather than a single one. Moreover, the findings beget a question of whether different types of memory for order information might exist.

  15. Granular deformation mechanisms in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  16. New diffusion mechanism for high temperature diffusion in solids

    International Nuclear Information System (INIS)

    Doan, N.V.; Adda, Y.

    1986-09-01

    A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation

  17. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  18. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Science.gov (United States)

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  19. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Mohamed, N.M. [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Shaharun, M.S. [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Naz, M.Y. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia)

    2016-06-15

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al{sub 2}O{sub 3} supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I{sub D}/I{sub G} ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  20. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N.M.; Shaharun, M.S.; Naz, M.Y.

    2016-01-01

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al_2O_3 supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I_D/I_G ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  1. Electromagnetic field and mechanical stress analysis code

    International Nuclear Information System (INIS)

    1978-01-01

    Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem

  2. Solid tumors are poroelastic solids with a chemo-mechanical feedback on growth.

    Science.gov (United States)

    Ambrosi, D; Pezzuto, S; Riccobelli, D; Stylianopoulos, T; Ciarletta, P

    2017-12-01

    The experimental evidence that a feedback exists between growth and stress in tumors poses challenging questions. First, the rheological properties (the "constitutive equations") of aggregates of malignant cells are still a matter of debate. Secondly, the feedback law (the "growth law") that relates stress and mitotic-apoptotic rate is far to be identified. We address these questions on the basis of a theoretical analysis of in vitro and in vivo experiments that involve the growth of tumor spheroids. We show that solid tumors exhibit several mechanical features of a poroelastic material, where the cellular component behaves like an elastic solid. When the solid component of the spheroid is loaded at the boundary, the cellular aggregate grows up to an asymptotic volume that depends on the exerted compression. Residual stress shows up when solid tumors are radially cut, highlighting a peculiar tensional pattern. By a novel numerical approach we correlate the measured opening angle and the underlying residual stress in a sphere. The features of the mechanobiological system can be explained in terms of a feedback of mechanics on the cell proliferation rate as modulated by the availability of nutrient, that is radially damped by the balance between diffusion and consumption. The volumetric growth profiles and the pattern of residual stress can be theoretically reproduced assuming a dependence of the target stress on the concentration of nutrient which is specific of the malignant tissue.

  3. Solid mechanics theory, modeling, and problems

    CERN Document Server

    Bertram, Albrecht

    2015-01-01

    This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.

  4. Syrthes thermal code and Estet or N3S fluid mechanics codes coupling; Couplage du code de thermique Syrthes et des codes de mecanique des fluides N3S et ou Estet

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1997-06-01

    EDF has developed numerical codes for modeling the conductive, radiative and convective thermal transfers and their couplings in complex industrial configurations: the convection in a fluid is solved by Estet in finite volumes or N3S in finite elements, the conduction is solved by Syrthes and the wall-to-wall thermal radiation is modelled by Syrthes with the help of a radiosity method. Syrthes controls the different heat exchanges which may occur between fluid and solid domains, using an explicit iterative method. An extension of Syrthes has been developed in order to allow the consideration of configurations where several fluid codes operate simultaneously, using ``message passing`` tools such as PVM (Parallel Virtual Machine) and the Calcium code coupler developed at EDF. Application examples are given

  5. Axisym finite element code: modifications for pellet-cladding mechanical interaction analysis

    International Nuclear Information System (INIS)

    Engelman, G.P.

    1978-10-01

    Local strain concentrations in nuclear fuel rods are known to be potential sites for failure initiation. Assessment of such strain concentrations requires a two-dimensional analysis of stress and strain in both the fuel and the cladding during pellet-cladding mechanical interaction. To provide such a capability in the FRAP (Fuel Rod Analysis Program) codes, the AXISYM code (a small finite element program developed at the Idaho National Engineering Laboratory) was modified to perform a detailed fuel rod deformation analysis. This report describes the modifications which were made to the AXISYM code to adapt it for fuel rod analysis and presents comparisons made between the two-dimensional AXISYM code and the FRACAS-II code. FRACAS-II is the one-dimensional (generalized plane strain) fuel rod mechanical deformation subcode used in the FRAP codes. Predictions of these two codes should be comparable away from the fuel pellet free ends if the state of deformation at the pellet midplane is near that of generalized plane strain. The excellent agreement obtained in these comparisons checks both the correctness of the AXISYM code modifications as well as the validity of the assumption of generalized plane strain upon which the FRACAS-II subcode is based

  6. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobayashi, A.

    1985-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. The medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in plane strain condition; water in the ground does not change its phase; heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively in the coupled model. Several types of problems are analyzed. The one is a study of some of the effects of completely coupled thermo-hydro-mechanical behavior on the response of a saturated-unsaturated porous rock containing a buried heat source. Excavation of an underground opening which has radioactive wastes at elevated temperatures is modeled and analyzed. The results shows that the coupling phenomena can be estimated at some degree by the numerical procedure. The computer code has a powerful ability to analyze of the repository the complex nature of the repository

  7. Mechanics of solids and fluids

    International Nuclear Information System (INIS)

    Ziegler, F.

    1991-01-01

    This book is a comprehensive treatise on the mechanics of solids and fluids, with a significant application to structural mechanics. In reading through the text, I can not help being impressed with Dr. Ziegler's command of both historical and contemporary developments of theoretical and applied mechanics. The book is a unique volume which contains information not easily found throughout the related literature. The book opens with a fundamental consideration of the kinematics of particle motion, followed by those of rigid body and deformable medium .In the latter case, both small and finite deformation have been presented concisely, paving the way for the constitutive description given later in the book. In both chapters one and two, the author has provided sufficient applications of the theoretical principles introduced. Such a connection between theory and appication is a common theme throughout every chapter, and is quite an attractive feature of the book

  8. Structure Formation Mechanisms during Solid Ti with Molten Al Interaction

    International Nuclear Information System (INIS)

    Gurevich, L; Pronichev, D; Trunov, M

    2016-01-01

    The study discuses advantages and disadvantages of previously proposed mechanisms of the formation of structure between solid Ti and molten Al and presents a new mechanism based on the reviewed and experimental data. The previously proposed mechanisms were classified into three groups: mechanisms of precipitation, mechanisms of destruction and mechanisms of chemical interaction between intermetallics and melt. The reviewed mechanisms did not explain the formation of heterogeneous interlayer with globular aluminide particles and thin layers of pure Al, while the present study reveals variation in the solid Ti/molten Al reaction kinetics during various phases of laminated metal-intermetallic composite formation. The proposed mechanism considers formed during composite fabrication thin oxide interlayers between Ti and Al evolution and its impact on the intermetallic compound formation and explains the initial slow rate of intermetallic interlayer formation and its subsequent acceleration when the oxide foils are ruptured. (paper)

  9. ORNL probabilistic fracture-mechanics code OCA-P

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Ball, D.G.

    1984-01-01

    The computer code OCA-P was developed at the request of the USNRC for the purpose of helping to evaluate the integrity of PWR pressure vessels during overcooling accidents (OCA's). The code can be used for both deterministic and probabilistic fracture-mechanics calculations, and consists essentially of OCA-II and a Monte Carlo routine similar to that developed by Strosnider et al. In the probabilistic mode OCA-P generates a large number of vessels (10 6 more or less), each with a different combination of the various values of the different parameters involved in the analysis of flaw behavior. For each of these vessels a deterministic fracture-mechanics analysis is performed (calculation of K/sub I/, K/sub Ic/, K/sub Ia/) to determine whether vessel failure takes place. The conditional probability of failure is simply the number of vessels that fail divided by the number of vessels generated. OCA-II is used for the deterministic analysis. Basic input to OCA-II includes, among other things, the primry-system pressure transient and the temperature transient for the coolant in the reactor-vessel downcomer. With this and additional information available OCA-II performs a one-dimensional thermal analysis to obtain the temperature distribution in the wall as a function of time and then a one-dimensional linear-elastic stress analysis. OCA-P has been checked against similar codes and is presently being used in the Integrated Pressurized Thermal Shock Program for specific PWR plants

  10. Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes

    International Nuclear Information System (INIS)

    Vitkova, M.; Kalchev, B.; Stefanova, S.

    2006-01-01

    The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed

  11. General aspects of solid on liquid growth mechanisms

    International Nuclear Information System (INIS)

    Laux, E; Charmet, J; Haquette, H; Banakh, O; Jeandupeux, L; Graf, B; Keppner, H

    2009-01-01

    Liquids, in general, tend to have a lower density as solids and therefore it is not straightforward to deposit solid over liquids in a way that the liquid becomes hermetically sealed under the solid layer. The authors review that several phenomena that can easily be observed in nature are only due to particular anomalies and solid on liquid is rather an exception as the rule. Natural solid on liquid systems are lacking of thermal, mechanical or chemical stability. It is not surprising, that one is not at all used thinking about to e.g. replace the gate oxide in a thin film transistor by a thin film of oil, or, to find in other microsystems functional liquids between a stack of thin solid films. However, once this becomes a serious option, a large variety of new Microsystems with new functionalities can be easily designed. In another paper (this conference and [1]) the authors pioneered that the polymer Parylene (poly(p-xylylene)) can be deposited on liquids coming already quite close to the above mentioned vision. In this paper the authors ask if one can synthesize other solid on liquid systems and surprisingly conclude, based on experimental evidence, that solid on liquid deposition seems to rather be the rule and not the exception.

  12. Diffusion mechanisms in grain boundaries in solids

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-01-01

    A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures

  13. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  14. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    Science.gov (United States)

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  15. Experimental studies and modelling of cation interactions with solid materials: application to the MIMICC project. (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes)

    International Nuclear Information System (INIS)

    Hardin, Emmanuelle

    1999-01-01

    The study of cation interactions with solid materials is useful in order to define the chemistry interaction component of the MIMICC project (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes). This project will validate the chemistry-transport coupled codes. Database have to be supplied on the cesium or ytterbium interactions with solid materials in suspension. The solid materials are: a strong cation exchange resin, a natural sand which presents small impurities, and a zirconium phosphate. The cation exchange resin is useful to check that the surface complexation theory can be applied on a pure cation exchanger. The sand is a natural material, and its isotherms will be interpreted using pure oxide-cation system data, such as pure silica-cation data. Then the study on the zirconium phosphate salt is interesting because of the increasing complexity in the processes (dissolution, sorption and co-precipitation). These data will enable to approach natural systems, constituted by several complex solids which can interfere on each other. These data can also be used for chemistry-transport coupled codes. Potentiometric titration, sorption isotherms, sorption kinetics, cation surface saturation curves are made, in order to obtain the different parameters relevant to the cation sorption at the solid surface, for each solid-electrolyte-cation system. The influence of different parameters such as ionic strength, pH, and electrolyte is estimated. All the experimental curves are fitted with FITEQL code based on the surface complexation theory using the constant capacitance model, in order to give a mechanistic interpretation of the ion retention phenomenon at the solid surface. The speciation curves of all systems are plotted, using the FITEQL code too. Systems with an increasing complexity are studied: dissolution, sorption and coprecipitation coexist in the cation-salt systems. Then the data obtained on each single solid, considered

  16. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  17. Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of a saturated-unsaturated medium

    International Nuclear Information System (INIS)

    Ohnishi, Y.; Shibata, H.; Kobsayashi, A.

    1987-01-01

    A model is presented which describes fully coupled thermo-hydro-mechanical behavior of a porous geologic medium. The mathematical formulation for the model utilizes the Biot theory for the consolidation and the energy balance equation. If the medium is in the condition of saturated-unsaturated flow, then the free surfaces are taken into consideration in the model. The model, incorporated in a finite element numerical procedure, was implemented in a two-dimensional computer code. The code was developed under the assumptions that the medium is poro-elastic and in the plane strain condition; that water in the ground does not change its phase; and that heat is transferred by conductive and convective flow. Analytical solutions pertaining to consolidation theory for soils and rocks, thermoelasticity for solids and hydrothermal convection theory provided verification of stress and fluid flow couplings, respectively, in the coupled model. Several types of problems are analyzed

  18. Mechanical behavior and microstructure during compression of semi-solid ZK60-RE magnesium alloy at high solid content

    International Nuclear Information System (INIS)

    Shan Weiwei; Luo Shoujing

    2007-01-01

    Mechanical behavior during compression of semi-solid ZK60-RE magnesium alloy at high solid content is researched in this paper. The alloy was prepared from ZK60 alloy and rare earth elements by casting, equal channel angular extruding, and liquidus forging. Semi-solid isothermal pre-treatment was carried out to make the grains globular before the compression. Here, several groups of true strain-true stress curves with different variables during compression are given to make comparisons of their mechanical behaviors. Liquid paths were the most essential to deformation, and its variation during compression depends on the strain rate. Here, thixotropic strength is defined as the true stress at the first peak in the true stress-true strain curve

  19. Introduction to solid mechanics an integrated approach

    CERN Document Server

    Lubliner, Jacob

    2014-01-01

    This textbook presents for the first time in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Since the turn of the millennium, it has become common in engineering schools to combine the traditional undergraduate offerings in rigid-body statics (usually called “statics”) and deformable body mechanics (known traditionally as “strength of materials” or, more recently, “mechanics of materials”) into a single, introductory course in solid mechanics. Many textbooks for the new course sequentially meld pieces of existing, discrete books—sometimes, but not always, acknowledging the origin—into two halves covering Statics and Mechanics of Materials. In this volume, Professors Lubliner and Papadopoulos methodically combine the essentials of statics and mechanics of materials, illustrating the relationship of concepts throughout, into one "integrated" text. This book also: ·         Offers thorough...

  20. A two-dimensional finite element method for analysis of solid body contact problems in fuel rod mechanics

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1988-06-01

    Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de

  1. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    Deemer, B.; Murphy, J.; Claytor, T.

    1990-01-01

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  2. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  3. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    Science.gov (United States)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  4. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  5. Multiscale methods in computational fluid and solid mechanics

    NARCIS (Netherlands)

    Borst, de R.; Hulshoff, S.J.; Lenz, S.; Munts, E.A.; Brummelen, van E.H.; Wall, W.; Wesseling, P.; Onate, E.; Periaux, J.

    2006-01-01

    First, an attempt is made towards gaining a more systematic understanding of recent progress in multiscale modelling in computational solid and fluid mechanics. Sub- sequently, the discussion is focused on variational multiscale methods for the compressible and incompressible Navier-Stokes

  6. Design and implementation of a novel mechanical testing system for cellular solids.

    Science.gov (United States)

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  7. Development of probabilistic fracture mechanics code PASCAL and user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Katsuyuki; Onizawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Li, Yinsheng; Kato, Daisuke [Fuji Research Institute Corporation, Tokyo (Japan)

    2001-03-01

    As a part of the aging and structural integrity research for LWR components, a new PFM (Probabilistic Fracture Mechanics) code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed since FY1996. This code evaluates the failure probability of an aged reactor pressure vessel subjected to transient loading such as PTS (Pressurized Thermal Shock). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics methodologies and computer performance. The code has some new functions in optimized sampling and cell dividing procedure in stratified Monte Carlo simulation, elastic-plastic fracture criterion of R6 method, extension analysis models in semi-elliptical crack, evaluation of effect of thermal annealing and etc. In addition, an input data generator of temperature and stress distribution time histories was also prepared in the code. Functions and performance of the code have been confirmed based on the verification analyses and some case studies on the influence parameters. The present phase of the development will be completed in FY2000. Thus this report provides the user's manual and theoretical background of the code. (author)

  8. Experimental analysis of nonlinear problems in solid mechanics

    International Nuclear Information System (INIS)

    1982-01-01

    The booklet presents abstracts of papers from the Euromech Colloqium No. 152 held from Sept. 20th to 24th, 1982 in Wuppertal, Federal Republic of Germany. All the papers are dealing with Experimental Analysis of Nonlinear Problems in Solid Mechanics. (RW)

  9. SCATLAW: a code of scattering law and cross sections calculation for liquids and solids

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1978-11-01

    A code for calculation of the scattering law S(Q,ω), differential and double differential cross sections and scattering kernels in the energy range E(0 - 683 meV) and wave-vector transfer Q(0 - 40 A -1 ) is presented. The code can be used both for solids and liquids which are coherent or incoherent scatterer. For liquids the calculations are based on the most recent theoretical models involving the correlation functions and generalized field approach. The phonon expansion model and the free gas model are also analysed in term of frequency spectra obtained from inelastic neutron scattering using time-of-flight technique. Several results on liquid sodium at T = 233 deg C and on liquid bismuth at T = 286 deg C and T = 402 deg C are presented. (author)

  10. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  11. Extended solid solubility of a Co–Cr system by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Torres-Villaseñor, G.; Bolarín-Miró, A.M.; Cortés-Escobedo, C.A.

    2012-01-01

    Highlights: ► Solubility of the Co–Cr system is modified by means of Mechanical Alloying (MA). ► MA induces the formation of new solid solutions of Co–Cr system in non-equilibrium. ► MA promote the formation of metastable Co–Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co–Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co 100−x Cr x (0 ≤ x ≤ 100, Δx = 10) to study the effect of mechanical processing in the solubility of the Co–Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  12. Extended solid solubility of a Co-Cr system by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sanchez-De Jesus, F., E-mail: fsanchez@uaeh.edu.mx [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales-UNAM, Apdo. Postal 70-360, 04510 Mexico, DF (Mexico); Bolarin-Miro, A.M. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Cortes-Escobedo, C.A. [Centro de Investigacion e Innovacion Tecnologica del IPN Cda. CECATI S/N, Col. Sta. Catarina, Azcapotzalco, 02250 Mexico, DF (Mexico)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Solubility of the Co-Cr system is modified by means of Mechanical Alloying (MA). Black-Right-Pointing-Pointer MA induces the formation of new solid solutions of Co-Cr system in non-equilibrium. Black-Right-Pointing-Pointer MA promote the formation of metastable Co-Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co-Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co{sub 100-x}Cr{sub x} (0 {<=} x {<=} 100, {Delta}x = 10) to study the effect of mechanical processing in the solubility of the Co-Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  13. The fuel and channel thermal/mechanical behaviour code FACTAR 2.0 (LOCA)

    International Nuclear Information System (INIS)

    Westbye, C.J.; Mackinnon, J.C.; Gu, B.W.

    1996-01-01

    The computer code FACTAR 2.0 (LOCA) models the thermal and mechanical response of components within a single CANDU fuel channel under loss-of-coolant accident conditions. This code version is the successor to the FACTAR 1.x code series, and features many modelling enhancements over its predecessor. In particular, the thermal hydraulic treatment has been extended to model reverse and bi-directional coolant flow, and the axial variation in coolant flow rate. Thermal radiation is calculated by a detailed surface-to-surface model, and the ability to represent a greater range of geometries (including experimental configurations employed in code validation) has been implemented. Details of these new code treatments are described in this paper. (author)

  14. The failure mechanisms of HTR coated particle fuel and computer code

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Shao Youlin; Liang Tongxiang; Tang Chunhe

    2010-01-01

    The basic constituent unit of fuel element in HTR is ceramic coated particle fuel. And the performance of coated particle fuel determines the safety of HTR. In addition to the traditional detection of radiation experiments, establishing computer code is of great significance to the research. This paper mainly introduces the structure and the failure mechanism of TRISO-coated particle fuel, as well as a few basic assumptions,principles and characteristics of some existed main overseas codes. Meanwhile, this paper has proposed direction of future research by comparing the advantages and disadvantages of several computer codes. (authors)

  15. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  16. Industrial solid and liquid waste treatment processes; Les procedes de traitement des dechets industriels solides et liquides

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-11-01

    This catalogue gives information on 68 chemical, mechanical, magnetic, electrical, thermal, etc. techniques for the processing of solid, viscous and liquid, common or special, industrial wastes. The various processes are presented as files, which are easily retrievable through keywords, waste type or industry codes, processing types, distributors. Technologies, performances and applications of each techniques are presented, together with references and company contacts

  17. Effective Mechanical Property Estimation of Composite Solid Propellants Based on VCFEM

    Directory of Open Access Journals (Sweden)

    Liu-Lei Shen

    2018-01-01

    Full Text Available A solid rocket motor is one of the critical components of solid missiles, and its life and reliability mostly depend on the mechanical behavior of a composite solid propellant (CSP. Effective mechanical properties are critical material constants to analyze the structural integrity of propellant grain. They are estimated by a numerical method that combines the Voronoi cell finite element method (VCFEM and the homogenization method in the present paper. The correctness of this combined method has been validated by comparing with a standard finite element method and conventional theoretical models. The effective modulus and the effective Poisson’s ratio of a CSP varying with volume fraction and component material properties are estimated. The result indicates that the variations of the volume fraction of inclusions and the properties of the matrix have obvious influences on the effective mechanical properties of a CSP. The microscopic numerical analysis method proposed in this paper can also be used to provide references for the design and the analysis of other large volume fraction composite materials.

  18. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    Science.gov (United States)

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  19. Office of Naval Research: Solid and Structural Mechanics

    DEFF Research Database (Denmark)

    Belytschenko, T.; Murphy, W.P.; Bernitsas, M.M.

    1997-01-01

    The goal of this report is to pursue a new paradigm for basic research in Solid and Structural Mechanics in order to serve the needs of the Navy of the 21st century. The framework for the report was established through meetings of the committee with Navy engineers and Office of Naval Research...

  20. Application of SolidWorks Plastic in the Training in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Maria Ivanova Bakalova

    2017-12-01

    Full Text Available Abstract. In this article is presented an example of the application of SolidWorks the training in mechanical engineering. The main features of the design of the parts intended for injection molding are mentioned. SolidWorks allows all these recommendations to be implemented when creating the details. The text explains the simulation settings that are made in SolidWorks Plastics when simulating injection molding. Through a specific example referred to how to make an analysis of the results obtained.

  1. MOCUM: A two-dimensional method of characteristics code based on constructive solid geometry and unstructured meshing for general geometries

    International Nuclear Information System (INIS)

    Yang Xue; Satvat, Nader

    2012-01-01

    Highlight: ► A two-dimensional numerical code based on the method of characteristics is developed. ► The complex arbitrary geometries are represented by constructive solid geometry and decomposed by unstructured meshing. ► Excellent agreement between Monte Carlo and the developed code is observed. ► High efficiency is achieved by parallel computing. - Abstract: A transport theory code MOCUM based on the method of characteristics as the flux solver with an advanced general geometry processor has been developed for two-dimensional rectangular and hexagonal lattice and full core neutronics modeling. In the code, the core structure is represented by the constructive solid geometry that uses regularized Boolean operations to build complex geometries from simple polygons. Arbitrary-precision arithmetic is also used in the process of building geometry objects to eliminate the round-off error from the commonly used double precision numbers. Then, the constructed core frame will be decomposed and refined into a Conforming Delaunay Triangulation to ensure the quality of the meshes. The code is fully parallelized using OpenMP and is verified and validated by various benchmarks representing rectangular, hexagonal, plate type and CANDU reactor geometries. Compared with Monte Carlo and deterministic reference solution, MOCUM results are highly accurate. The mentioned characteristics of the MOCUM make it a perfect tool for high fidelity full core calculation for current and GenIV reactor core designs. The detailed representation of reactor physics parameters can enhance the safety margins with acceptable confidence levels, which lead to more economically optimized designs.

  2. Virtual work and shape change in solid mechanics

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book provides novel insights into two basic subjects in solid mechanics: virtual work and shape change. When we move a solid, the work we expend in moving it is used to modify both its shape and its velocity. This observation leads to the Principle of Virtual Work. Virtual work depends linearly on virtual velocities, which are velocities we may think of. The virtual work of the internal forces accounts for the changes in shape. Engineering provides innumerable examples of shape changes, i.e., deformations, and of velocities of deformation. This book presents examples of usual and unusual shape changes, providing with the Principle of Virtual Work various and sometimes new equations of motion for smooth and non-smooth (i.e., with collisions) motions: systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, beams with third ...

  3. STEALTH: a Lagrange explicit finite difference code for solids, structural, and thermohydraulic analysis. Volume 2: sample and verification problems. Computer code manual

    International Nuclear Information System (INIS)

    Hofmann, R.

    1982-08-01

    STEALTH sample and verification problems are presented to help users become familiar with STEALTH capabilities, input, and output. Problems are grouped into articles which are completely self-contained. The pagination in each article is A.n, where A is a unique alphabetic-character article identifier and n is a sequential page number which starts from 1 on the first page of text for each article. Articles concerning new capabilities will be added as they become available. STEALTH sample and verification calculations are divided into the following general categories: transient mechanical calculations dealing with solids; transient mechanical calculations dealing with fluids; transient thermal calculations dealing with solids; transient thermal calculations dealing with fluids; static and quasi-static calculations; and complex boundary interaction calculations

  4. Long non-coding RNAs: Mechanism of action and functional utility

    Directory of Open Access Journals (Sweden)

    Shakil Ahmad Bhat

    2016-10-01

    Full Text Available Recent RNA sequencing studies have revealed that most of the human genome is transcribed, but very little of the total transcriptomes has the ability to encode proteins. Long non-coding RNAs (lncRNAs are non-coding transcripts longer than 200 nucleotides. Members of the non-coding genome include microRNA (miRNA, small regulatory RNAs and other short RNAs. Most of long non-coding RNA (lncRNAs are poorly annotated. Recent recognition about lncRNAs highlights their effects in many biological and pathological processes. LncRNAs are dysfunctional in a variety of human diseases varying from cancerous to non-cancerous diseases. Characterization of these lncRNA genes and their modes of action may allow their use for diagnosis, monitoring of progression and targeted therapies in various diseases. In this review, we summarize the functional perspectives as well as the mechanism of action of lncRNAs. Keywords: LncRNA, X-chromosome inactivation, Genome imprinting, Transcription regulation, Cancer, Immunity

  5. kinematic design of lift-tipping mechanism for small solid waste ...

    African Journals Online (AJOL)

    User

    ABSTRACT. A number of small waste collection trucks such as tricycles are in use in a number of developing countries. The use of such technology has been popular in a country like Ghana. This paper presents a design of lift-tipping mechanism for small solid waste collection trucks. A five bar mechanism is developed with ...

  6. The mechanism of reequilibration of solids in the presence of a fluid phase

    International Nuclear Information System (INIS)

    Putnis, Andrew; Putnis, Christine V.

    2007-01-01

    The preservation of morphology (pseudomorphism) and crystal structure during the transformation of one solid phase to another is regularly used as a criterion for a solid-state mechanism, even when there is a fluid phase present. However, a coupled dissolution-reprecipitation mechanism also preserves the morphology and transfers crystallographic information from parent to product by epitaxial nucleation. The generation of porosity in the product phase is a necessary condition for such a mechanism as it allows fluid to maintain contact with a reaction interface which moves through the parent phase from the original surface. We propose that interface-coupled dissolution-reprecipitation is a general mechanism for reequilibration of solids in the presence of a fluid phase. - Graphical abstract: A single crystal of KBr is transformed to a porous single crystal of KCl by immersion in saturated KCl solution. The image shows partial transformation of a crystal of KBr (core) to KCl (porous, milky rim) by an interface coupled dissolution-reprecipitation mechanism. The external dimensions and crystallographic orientation of the original crystal are preserved, while a reaction interface moves through the crystal

  7. New developments on Monte Carlo simulation code for the calculation of Atom Displacements Induced rates by High Energy Electrons in Solid Materials

    International Nuclear Information System (INIS)

    Damiani, Daniela D.; Cruz, Carlos M.; Pinnera, Ibrahin; Abreu, Yamiel; Leyva, Antonio

    2015-01-01

    New developments and simulations on regard to the interactions of incident gamma radiation over solids materials using the MCSAD (Monte Carlo Simulation of Atom Displacement) code are presented. In this code Monte Carlo algorithms are applied in order to sample all electrons and gamma interaction processes occurring during their transport through a solid target, especially those connected to the output of atom displacements events. Particularly, it is calculated the limit angle to elastic scattering for the electrons on a new approach, which allows correctly the splitting of the electron single processes at higher scattering angles. On this way, the probability of single electron scattering processes transferring high recoil atomic energy leading to atom displacement effects is calculated and consequently sampled in the MCSAD code. In addition, it is considered some other new theoretical aspects in order to improve previous versions, like the one concerning the selection of threshold energy for displacements at a given atom site in dependence of the atom recoil direction. (Author)

  8. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  9. The Code Aster: a product for mechanical engineers

    International Nuclear Information System (INIS)

    Levesque, J.R.

    1998-01-01

    The Code Aster is a 2D or 3D structural finite element software: analysis of structures and thermo-mechanics for evaluation and research with linear for non linear modelling. Since 1989, it has been the host structure that capitalizes on developments made by the Research and Development Division in the field of numerical modelling in structural mechanics, and user experience feedback. It is an industrial design tool, particularly for engineering of facilities in operation and for the evaluation of new projects. This software was developed using a quality Assurance methodology with independent validation. Upgrades to this product are guided by the objective of satisfying the needs of expertise studies, attempting to make functions coherent and complete. (author)

  10. Characterisation of metal combustion with DUST code

    Energy Technology Data Exchange (ETDEWEB)

    García-Cascales, José R., E-mail: jr.garcia@upct.es [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Velasco, F.J.S. [Centro Universitario de la Defensa de San Javier, MDE-UPCT, C/Coronel Lopez Peña s/n, 30730 Murcia (Spain); Otón-Martínez, Ramón A.; Espín-Tolosa, S. [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Bentaib, Ahmed; Meynet, Nicolas; Bleyer, Alexandre [Institut de Radioprotection et Sûreté Nucléaire, BP 17, 92260 Fontenay-aux-Roses (France)

    2015-10-15

    Highlights: • This paper is part of the work carried out by researchers of the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security of France. • We have developed a code for the study of mobilisation and combustion that we have called DUST by using CAST3M, a multipurpose software for studying many different problems of Mechanical Engineering. • In this paper, we present the model implemented in the code to characterise metal combustion which describes the combustion model, the kinetic reaction rates adopted and includes a first comparison between experimental data and calculated ones. • The results are quite promising although suggest that improvement must be made on the kinetic of the reaction taking place. - Abstract: The code DUST is a CFD code developed by the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security, France (IRSN) with the objective to assess the dust explosion hazard in the vacuum vessel of ITER. Thus, DUST code permits the analysis of dust spatial distribution, remobilisation and entrainment, explosion, and combustion. Some assumptions such as particle incompressibility and negligible effect of pressure on the solid phase make the model quite appealing from the mathematical point of view, as the systems of equations that characterise the behaviour of the solid and gaseous phases are decoupled. The objective of this work is to present the model implemented in the code to characterise metal combustion. In order to evaluate its ability analysing reactive mixtures of multicomponent gases and multicomponent solids, two combustion problems are studied, namely H{sub 2}/N{sub 2}/O{sub 2}/C and H{sub 2}/N{sub 2}/O{sub 2}/W mixtures. The system of equations considered and finite volume approach are briefly presented. The closure relationships used are commented and special attention is paid to the reaction rate correlations used in the model. The numerical

  11. SATURN-FS 1: A computer code for thermo-mechanical fuel rod analysis

    International Nuclear Information System (INIS)

    Ritzhaupt-Kleissl, H.J.; Heck, M.

    1993-09-01

    The SATURN-FS code was written as a general revision of the SATURN-2 code. SATURN-FS is capable to perform a complete thermomechanical analysis of a fuel pin, with all thermal, mechanical and irradiation-based effects. Analysis is possible for LWR and for LMFBR fuel pins. The thermal analysis consists of calculations of the temperature profile in fuel, gap and in the cladding. Pore migration, stoichiometry change of oxide fuel, gas release and diffusion effects are taken into account. The mechanical modeling allows the non steady-state analysis of elastic and nonelastic fuel pin behaviour, such as creep, strain hardening, recovery and stress relaxation. Fuel cracking and healing is taken into account as well as contact and friction between fuel and cladding. The modeling of the irradiation effects comprises swelling and fission gas production, Pu-migration and irradiation induced creep. The code structure, the models and the requirements for running the code are described in the report. Recommendations for the application are given. Program runs for verification and typical examples of application are given in the last part of this report. (orig.) [de

  12. Analysis of the Current Technical Issues on ASME Code and Standard for Nuclear Mechanical Design(2009)

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, B. S.; Yoo, S. H.

    2009-11-01

    This report describes the analysis on the current revision movement related to the mechanical design issues of the U.S ASME nuclear code and standard. ASME nuclear mechanical design in this report is composed of the nuclear material, primary system, secondary system and high temperature reactor. This report includes the countermeasures based on the ASME Code meeting for current issues of each major field. KAMC(ASME Mirror Committee) of this project is willing to reflect a standpoint of the domestic nuclear industry on ASME nuclear mechanical design and play a technical bridge role for the domestic nuclear industry in ASME Codes application

  13. Analysis of the Current Technical Issues on ASME Code and Standard for Nuclear Mechanical Design(2009)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, B. S.; Yoo, S. H.

    2009-11-15

    This report describes the analysis on the current revision movement related to the mechanical design issues of the U.S ASME nuclear code and standard. ASME nuclear mechanical design in this report is composed of the nuclear material, primary system, secondary system and high temperature reactor. This report includes the countermeasures based on the ASME Code meeting for current issues of each major field. KAMC(ASME Mirror Committee) of this project is willing to reflect a standpoint of the domestic nuclear industry on ASME nuclear mechanical design and play a technical bridge role for the domestic nuclear industry in ASME Codes application

  14. Friction mechanisms and interfacial slip at fluid-solid interfaces

    CERN Document Server

    Leger, L

    2003-01-01

    We present series of experiments based on near field laser velocimetry, developed to characterize the friction mechanisms at fluid-solid interfaces. For polymers, entangled polymer melts are sheared against smooth solid surfaces, covered by surface attached polymer chains of the same chemical species, having a controlled surface density. Direct measurements of the interfacial velocity and of the shear force allow identification of the molecular mechanisms of friction. Depending on the value of the inverse of the shear rate experienced by the polymer compared to the reptation time, the transition between a regime of high and a regime of low friction observed when increasing the shear rate can be related to disentanglement or to the extraction of the surface chains from the bulk polymer. Surfaces with adjusted friction properties can thus be designed by choosing chain anchored length and surface density. For simple fluids, the direct measurements of the interfacial velocity show that, contrary to the usual hypo...

  15. Fluid and solid mechanics in a poroelastic network induced by ultrasound.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-01-04

    We made a theoretical analysis on the fluid and solid mechanics in a poroelastic medium induced by low-power ultrasound. Using a perturbative approach, we were able to linearize the governing equations and obtain analytical solutions. We found that ultrasound could propagate in the medium as a mechanical wave, but would dissipate due to frictional forces between the fluid and the solid phase. The amplitude of the wave depends on the ultrasonic power input. We applied this model to the problem of drug delivery to soft biological tissues by low-power ultrasound and proposed a mechanism for enhanced drug penetration. We have also found the coexistence of two acoustic waves under certain circumstances and pointed out the importance of very accurate experimental determination of the high-frequency properties of brain tissue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    Science.gov (United States)

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  17. Solid solution in Al-4.5 wt% Cu produced by mechanical alloying

    International Nuclear Information System (INIS)

    Fogagnolo, J.B.; Amador, D.; Ruiz-Navas, E.M.; Torralba, J.M.

    2006-01-01

    Mechanical alloying has been used to produce oxide dispersion strengthened alloys, intermetallic compounds, aluminium alloys and to obtain nanostructured and amorphous materials, as well as to extend the solid solution limit. In this work, Al and Cu elemental powders were subjected to high-energy milling to produce Al-4.5 wt% Cu powder alloy. The powders obtained were characterized by scanning electron microscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), aiming to explore if the copper is present in solid solution or as small particles after high-energy milling. Related to the formation of a supersaturated solid solution, the results of scanning electron microscopy and X-ray diffraction are non-conclusive: the copper could be dispersed with a very small size, undetectable to both techniques. The Al 2 Cu precipitation at temperatures between 160 and 230 deg. C, verified by DSC and XRD analyses, substantiated that mechanical alloying had produced a supersaturated solid solution of copper in aluminium. The crystallite size as a function of milling time and annealing temperature was also determined by X-ray techniques

  18. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.

  19. An implicit Smooth Particle Hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)

    2000-05-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  20. The Aster code; Code Aster

    Energy Technology Data Exchange (ETDEWEB)

    Delbecq, J.M

    1999-07-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  1. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    Science.gov (United States)

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  2. Mechanical modelling of PCI with FRAGEMA and CEA finite element codes

    International Nuclear Information System (INIS)

    Joseph, J.; Bernard, Ph.; Atabek, R.; Chantant, M.

    1983-01-01

    In the framework of their common program, CEA and FRAGEMA have undertaken the mechanical modelization of PCI. In the first step two different codes, TITUS and VERDON, have been tested by FRAGEMA and CEA respectively. Whereas the two codes use a finite element method to describe the thermomechanical behaviour of a fuel element, input models are not the same for the two codes: to take into account the presence of cracks in UO 2 , an axisymmetric two dimensional mesh pattern and the Druecker-Prager criterion are used in VERDON and a 3D equivalent method in TITUS. Two rods have been studied with these two methods: PRISCA 04bis and PRISCA 104 which were ramped in SILOE. The results show that the stresses and strains are the same with the two codes. These methods are further applied to the complete series of the common ramp test rods program of FRAGEMA and CEA. (author)

  3. Localization and solitary waves in solid mechanics

    CERN Document Server

    Champneys, A R; Thompson, J M T

    1999-01-01

    This book is a collection of recent reprints and new material on fundamentally nonlinear problems in structural systems which demonstrate localized responses to continuous inputs. It has two intended audiences. For mathematicians and physicists it should provide useful new insights into a classical yet rapidly developing area of application of the rich subject of dynamical systems theory. For workers in structural and solid mechanics it introduces a new methodology for dealing with structural localization and the related topic of the generation of solitary waves. Applications range from classi

  4. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  5. Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, D B [Concentration Heat and Momentum Ltd, London (United Kingdom)

    1998-12-31

    Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.

  6. Simultaneous fluid-flow, heat-transfer and solid-stress computation in a single computer code

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, D.B. [Concentration Heat and Momentum Ltd, London (United Kingdom)

    1997-12-31

    Computer simulation of flow- and thermally-induced stresses in mechanical-equipment assemblies has, in the past, required the use of two distinct software packages, one to determine the forces and the temperatures, and the other to compute the resultant stresses. The present paper describes how a single computer program can perform both tasks at the same time. The technique relies on the similarity of the equations governing velocity distributions in fluids to those governing displacements in solids. The same SIMPLE-like algorithm is used for solving both. Applications to 1-, 2- and 3-dimensional situations are presented. It is further suggested that Solid-Fluid-Thermal, ie SFT analysis may come to replace CFD on the one hand and the analysis of stresses in solids on the other, by performing the functions of both. (author) 7 refs.

  7. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  8. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  9. A Mechanism to Avoid Collusion Attacks Based on Code Passing in Mobile Agent Systems

    Science.gov (United States)

    Jaimez, Marc; Esparza, Oscar; Muñoz, Jose L.; Alins-Delgado, Juan J.; Mata-Díaz, Jorge

    Mobile agents are software entities consisting of code, data, state and itinerary that can migrate autonomously from host to host executing their code. Despite its benefits, security issues strongly restrict the use of code mobility. The protection of mobile agents against the attacks of malicious hosts is considered the most difficult security problem to solve in mobile agent systems. In particular, collusion attacks have been barely studied in the literature. This paper presents a mechanism that avoids collusion attacks based on code passing. Our proposal is based on a Multi-Code agent, which contains a different variant of the code for each host. A Trusted Third Party is responsible for providing the information to extract its own variant to the hosts, and for taking trusted timestamps that will be used to verify time coherence.

  10. On two possible mechanisms of metallic island remotion from solid surface at heavy multicharged ion irradiation

    International Nuclear Information System (INIS)

    Vorob'eva, I.V.; Geguzin, Ya.E.; Monastyrenko, V.E.

    1986-01-01

    Two mechanisms of energy transfer from a moving ion to a metallic island film on a solid surface are described. A particular case when the energy transfer quantity is enough to remove an island from the solid surface breaking adhesion bond is considered. One mechanism is 'shaking off', another one is a 'jumping up' mechanism. The essence of the first mechanism is that an ion bombarding the surface excites a cylindrical shock wave with a front that can 'shake off' islands from the solid surface along the ion trajectory when it reaches the surface. An island is heated in pulsed mode, and during thermal expansion it should push off the substrate, and so it jumps up. The pure case of such mechanism is observed when an ion transverses an island and transfers energy to the latter one that is defined by the quantity of ion energy losses in the island

  11. Coupling of the SYRTHES thermal code with the ESTET or N3S fluid mechanics codes; Couplage du code de thermique SYRTHES et des codes de mecanique des fluides ESTET ou N3S

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [Simulog, 78 (France)

    1998-12-31

    Thermal aspects take place in several industrial applications in which Electricite de France (EdF) is concerned. In most cases, several physical phenomena like conduction, radiation and convection are involved in thermal transfers. The aim of this paper is to present a numerical tool adapted to industrial configurations and which uses the coupling between fluid convection (resolved with ESTET in finite-volumes or with N3S in finite-elements) and radiant heat transfers between walls (resolved with SYRTHES using a radiosity method). SYRTHES manages the different thermal exchanges that can occur between fluid and solid domains thanks to an explicit iterative method. An extension of SYRTHES has been developed which allows to take into account simultaneously several fluid codes using `message passing` computer tools like Parallel Virtual Machine (PVM) and the code coupling software CALCIUM developed by the Direction of Studies and Researches (DER) of EdF. Various examples illustrate the interest of such a numerical tool. (J.S.) 12 refs.

  12. Coupling of the SYRTHES thermal code with the ESTET or N3S fluid mechanics codes; Couplage du code de thermique SYRTHES et des codes de mecanique des fluides ESTET ou N3S

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I. [Simulog, 78 (France)

    1997-12-31

    Thermal aspects take place in several industrial applications in which Electricite de France (EdF) is concerned. In most cases, several physical phenomena like conduction, radiation and convection are involved in thermal transfers. The aim of this paper is to present a numerical tool adapted to industrial configurations and which uses the coupling between fluid convection (resolved with ESTET in finite-volumes or with N3S in finite-elements) and radiant heat transfers between walls (resolved with SYRTHES using a radiosity method). SYRTHES manages the different thermal exchanges that can occur between fluid and solid domains thanks to an explicit iterative method. An extension of SYRTHES has been developed which allows to take into account simultaneously several fluid codes using `message passing` computer tools like Parallel Virtual Machine (PVM) and the code coupling software CALCIUM developed by the Direction of Studies and Researches (DER) of EdF. Various examples illustrate the interest of such a numerical tool. (J.S.) 12 refs.

  13. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.

  14. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marguet, S.D. [Electricite de France (EDF), 92 - Clamart (France)

    1997-12-31

    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF`s neutronic code COCCINELLE uses the Rowland`s formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission`s products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on `low` configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.) 7 refs.

  15. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    International Nuclear Information System (INIS)

    Marguet, S.D.

    1997-01-01

    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF's neutronic code COCCINELLE uses the Rowland's formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission's products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on 'low' configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.)

  16. User's manuals of probabilistic fracture mechanics analysis code for aged piping, PASCAL-SP

    International Nuclear Information System (INIS)

    Itoh, Hiroto; Nishikawa, Hiroyuki; Onizawa, Kunio; Kato, Daisuke; Osakabe, Kazuya

    2010-03-01

    As a part of research on the material degradation and structural integrity assessment for aged LWR components, a PFM (Probabilistic Fracture Mechanics) analysis code PASCAL-SP (PFM Analysis of Structural Components in Aging LWR - Stress Corrosion Cracking at Welded Joints of Piping) has been developed. This code evaluates the failure probabilities at welded joints of aged piping by a Monte Carlo method. PASCAL-SP treats stress corrosion cracking (SCC) and fatigue crack growth in piping, according to the approaches of NISA and JSME FFS Code. The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the latest knowledge in the SCC assessment and fracture criteria of piping. In addition, the accuracy of flaw detection and sizing at in-service inspection and residual stress distribution were modeled based on experimental data and introduced into PASCAL-SP. This code has been developed for a cross-check use by the regulatory body in Japan. In addition to this, this code can also be used for a research purpose by researchers in academia and industries. This report provides the user's manual and theoretical background of the code. (author)

  17. OCA-P, a deterministic and probabilistic fracture-mechanics code for application to pressure vessels

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Ball, D.G.

    1984-05-01

    The OCA-P code is a probabilistic fracture-mechanics code that was prepared specifically for evaluating the integrity of pressurized-water reactor vessels when subjected to overcooling-accident loading conditions. The code has two-dimensional- and some three-dimensional-flaw capability; it is based on linear-elastic fracture mechanics; and it can treat cladding as a discrete region. Both deterministic and probabilistic analyses can be performed. For the former analysis, it is possible to conduct a search for critical values of the fluence and the nil-ductility reference temperature corresponding to incipient initiation of the initial flaw. The probabilistic portion of OCA-P is based on Monte Carlo techniques, and simulated parameters include fluence, flaw depth, fracture toughness, nil-ductility reference temperature, and concentrations of copper, nickel, and phosphorous. Plotting capabilities include the construction of critical-crack-depth diagrams (deterministic analysis) and various histograms (probabilistic analysis)

  18. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Behzad Binesh

    2016-02-01

    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  19. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  20. Multi-scale mechanics of granular solids from grain-resolved X-ray measurements

    Science.gov (United States)

    Hurley, R. C.; Hall, S. A.; Wright, J. P.

    2017-11-01

    This work discusses an experimental technique for studying the mechanics of three-dimensional (3D) granular solids. The approach combines 3D X-ray diffraction and X-ray computed tomography to measure grain-resolved strains, kinematics and contact fabric in the bulk of a granular solid, from which continuum strains, grain stresses, interparticle forces and coarse-grained elasto-plastic moduli can be determined. We demonstrate the experimental approach and analysis of selected results on a sample of 1099 stiff, frictional grains undergoing multiple uniaxial compression cycles. We investigate the inter-particle force network, elasto-plastic moduli and associated length scales, reversibility of mechanical responses during cyclic loading, the statistics of microscopic responses and microstructure-property relationships. This work serves to highlight both the fundamental insight into granular mechanics that is furnished by combined X-ray measurements and describes future directions in the field of granular materials that can be pursued with such approaches.

  1. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Yiwen Fang

    2016-02-01

    Full Text Available Long non-coding RNAs (lncRNAs play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based mechanisms and via cross-talk with other RNA species. lncRNAs can function as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identifying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.

  2. Low-level waste shallow burial assessment code

    International Nuclear Information System (INIS)

    Fields, D.E.; Little, C.A.; Emerson, C.J.

    1981-01-01

    PRESTO (Prediction of Radiation Exposures from Shallow Trench Operationns) is a computer code developed under United States Environmental Protection Agency funding to evaluate possible health effects from radionuclide releases from shallow, radioctive-waste disposal trenches and from areas contaminated with operational spillage. The model is intended to predict radionuclide transport and the ensuing exposure and health impact to a stable, local population for a 1000-year period following closure of the burial grounds. Several classes of submodels are used in PRESTO to represent scheduled events, unit system responses, and risk evaluation processes. The code is modular to permit future expansion and refinement. Near-surface transport mechanisms considered in the PRESTO code are cap failure, cap erosion, farming or reclamation practices, human intrusion, chemical exchange within an active surface soil layer, contamination from trench overflow, and dilution by surface streams. Subsurface processes include infiltration and drainage into the trench, the ensuing solubilization of radionuclides, and chemical exchange between trench water and buried solids. Mechanisms leading to contaminated outflow include trench overflow and downwad vertical percolation. If the latter outflow reaches an aquifer, radiological exposure from irrigation or domestic consumption is considered. Airborne exposure terms are evaluated using the Gaussian plume atmospheric transport formulation as implemented by Fields and Miller

  3. A program for undergraduate research into the mechanisms of sensory coding and memory decay

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, R J

    2010-09-28

    This is the final technical report for this DOE project, entitltled "A program for undergraduate research into the mechanisms of sensory coding and memory decay". The report summarizes progress on the three research aims: 1) to identify phyisological and genetic correlates of long-term habituation, 2) to understand mechanisms of olfactory coding, and 3) to foster a world-class undergraduate neuroscience program. Progress on the first aim has enabled comparison of learning-regulated transcripts across closely related learning paradigms and species, and results suggest that only a small core of transcripts serve truly general roles in long-term memory. Progress on the second aim has enabled testing of several mutant phenotypes for olfactory behaviors, and results show that responses are not fully consistent with the combinitoral coding hypothesis. Finally, 14 undergraduate students participated in this research, the neuroscience program attracted extramural funding, and we completed a successful summer program to enhance transitions for community-college students into 4-year colleges to persue STEM fields.

  4. Molecular mechanisms of FK506-induced hypertension in solid organ transplantation patients

    Institute of Scientific and Technical Information of China (English)

    Wang Jianglin; Guo Ren; Liu Shikun; Chen Qingjie; Zuo Shanru; Yang Meng; Zuo Xiaocong

    2014-01-01

    Objective Tacrolimus (FK506) is an immunosuppressive drug,which is widely used to prevent rejection of transplanted organs.However,chronic administration of FK506 leads to hypertension in solid organ transplantation patients,and its molecular mechanisms are much more complicated.In this review,we will discuss the above-mentioned molecular mechanisms of FK506-induced hypertension in solid organ transplantation subjects.Data sources The data analyzed in this review were mainly from relevant articles without restriction on the publication date reported in PubMed.The terms "FK506" or "tacrolimus" and "hypertension"were used for the literature search.Study selection Original articles with no limitation of research design and critical reviews containing data relevant to FK506-induced hypertension and its molecular mechanisms were retrieved,reviewed and analyzed.Results There are several molecular mechanisms attributed to FK506-induced hypertension in solid organ transplantation subjects.First,FK506 binds FK506 binding protein 12 and its related isoform 12.6 (FKBP12/12.6) and removes them from intracellular ryanodine receptors that induce a calcium ion leakage from the endoplasmic/sarcoplasmic reticulum.The conventional protein kinase C beta II (cPKCβⅡ)-mediated phosphorylation of endothelial nitric oxide (NO) synthase at Thr495,which reduces the production of NO,was activated by calcium ion leakage.Second,transforming growth factor receptor/SMAD2/3 signaling activation plays an important role in Treg/Th17 cell imbalance in T cells which toget converge to cause inflammation,endothelial dysfunction,and hypertension following tacrolimus treatment.Third,the activation of with-no-K(Lys) kinases/STE20/SPS1-related proline/alanine-rich kinase/thiazide-sensitive sodium chloride co-transporter (WNKs/SPAK/NCC) pathway has a central role in tacrolimus-induced hypertension.Finally,the enhanced activity of renal renin-angiotensin-aldosterone system seems to play a crucial role in

  5. Statistical mechanics of error-correcting codes

    Science.gov (United States)

    Kabashima, Y.; Saad, D.

    1999-01-01

    We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

  6. Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels

    Energy Technology Data Exchange (ETDEWEB)

    Alamino, Roberto C; Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2007-10-12

    Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases.

  7. Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels

    International Nuclear Information System (INIS)

    Alamino, Roberto C; Saad, David

    2007-01-01

    Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases

  8. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    Science.gov (United States)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  9. Computer code SICHTA-85/MOD 1 for thermohydraulic and mechanical modelling of WWER fuel channel behaviour during LOCA and comparison with original version of the SICHTA code

    International Nuclear Information System (INIS)

    Bujan, A.; Adamik, V.; Misak, J.

    1986-01-01

    A brief description is presented of the expansion of the SICHTA-83 computer code for the analysis of the thermal history of the fuel channel for large LOCAs by modelling the mechanical behaviour of fuel element cladding. The new version of the code has a more detailed treatment of heat transfer in the fuel-cladding gap because it also respects the mechanical (plastic) deformations of the cladding and the fuel-cladding interaction (magnitude of contact pressure). Also respected is the change in pressure of the gas filling of the fuel element, the mechanical criterion is considered of a failure of the cladding and the degree is considered of the blockage of the through-flow cross section for coolant flow in the fuel channel. The LOCA WWER-440 model computation provides a comparison of the new SICHTA-85/MOD 1 code with the results of the original 83 version of SICHTA. (author)

  10. Development of a finite element code to solve thermo-hydro-mechanical coupling and simulate induced seismicity.

    Science.gov (United States)

    María Gómez Castro, Berta; De Simone, Silvia; Rossi, Riccardo; Larese De Tetto, Antonia; Carrera Ramírez, Jesús

    2015-04-01

    Coupled thermo-hydro-mechanical modeling is essential for CO2 storage because of (1) large amounts of CO2 will be injected, which will cause large pressure buildups and might compromise the mechanical stability of the caprock seal, (2) the most efficient technique to inject CO2 is the cold injection, which induces thermal stress changes in the reservoir and seal. These stress variations can cause mechanical failure in the caprock and can also trigger induced earthquakes. To properly assess these effects, numerical models that take into account the short and long-term thermo-hydro-mechanical coupling are an important tool. For this purpose, there is a growing need of codes that couple these processes efficiently and accurately. This work involves the development of an open-source, finite element code written in C ++ for correctly modeling the effects of thermo-hydro-mechanical coupling in the field of CO2 storage and in others fields related to these processes (geothermal energy systems, fracking, nuclear waste disposal, etc.), and capable to simulate induced seismicity. In order to be able to simulate earthquakes, a new lower dimensional interface element will be implemented in the code to represent preexisting fractures, where pressure continuity will be imposed across the fractures.

  11. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  12. Comparison of two approaches for differentiating full-field data in solid mechanics

    International Nuclear Information System (INIS)

    Avril, Stéphane; Feissel, Pierre; Villon, Pierre; Pierron, Fabrice

    2010-01-01

    In this study, the issue of reconstructing the gradients of noisy full-field data is addressed within the framework of solid mechanics. Two approaches are considered, a global one based on finite element approximation (FEA) and a local one based on diffuse approximation (DA). For both approaches, it is proposed to monitor locally the filtering effect in order to adapt the uncertainty to the local signal to noise ratio. Both approaches are applied to a case study which is commonly considered as difficult in solid mechanics (open-hole tensile test on a composite laminate). Both DA and FEA are successful for detecting local subsurface damage from the measured noisy displacement fields. Indications are also provided about the compared performances of DA and FEA. It is shown that DA is more robust, but the downside is that it is also more CPU time consuming

  13. Mechanism to synthesize a ‘moving optical mark’ at solid-ambient interface for the estimation of thermal diffusivity of solid

    Directory of Open Access Journals (Sweden)

    Settu Balachandar

    2016-01-01

    Full Text Available A novel mechanism is proposed, involving a novel interaction between solid-sample supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a ‘moving optical-mark’ at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. ‘Product of velocity of optical-mark and distance’ versus ‘non-dimensional velocity’ is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature.

  14. FEMAXI-III: a computer code for the analysis of thermal and mechanical behavior of fuel rods

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo; Ichikawa, Michio; Iwano, Yoshihiko; Ito, Kenichi; Saito, Hiroaki; Kashima, Koichi; Kinoshita, Motoyasu; Okubo, Tadatsune.

    1985-12-01

    FEMAXI-III is a computer code to predict the thermal and mechanical behavior of a light water fuel rod during its irradiation life. It can analyze the integral behavior of a whole fuel rod throughout its life, as well as the localized behavior of a small part of fuel rod. The localized mechanical behavior such as the cladding ridge deformation is analyzed by the two-dimensional axisymmetric finite element method. FEMAXI-III calculates, in particular, the temperature distribution, the radial deformation, the fission gas release, and the inner gas pressure as a function of irradiation time and axial position, and the stresses and strains in the fuel and cladding at a small part of fuel rod as a function of irradiation time. For this purpose, Elasto-plasticity, creep, thermal expansion, fuel cracking and crack healing, relocation, densification, swelling, hot pressing, heat generation distribution, fission gas release, and fuel-cladding mechanical interaction are modelled and their interconnected effects are considered in the code. Efforts have been made to improve the accuracy and stability of finite element solution and to minimize the computer memory and running time. This report describes the outline of the code and the basic models involved, and also includes the application of the code and its input manual. (author)

  15. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  16. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  17. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    Science.gov (United States)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  18. Simulation based engineering in solid mechanics

    CERN Document Server

    Rao, J S

    2017-01-01

    This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtai...

  19. Development of an advanced PFM code for the integrity evaluation of nuclear piping system under combined aging mechanisms

    International Nuclear Information System (INIS)

    Datta, Debashis

    2010-02-01

    A nuclear piping system is composed of several straight pipes and elbows joined by welding. These weld sections are usually the most susceptible failure parts susceptible to various degradation mechanisms. Whereas a specific location of a reactor piping system might fail by a combination of different aging mechanisms, e.g. fatigue and/or stress corrosion cracking, the majority of the piping probabilistic fracture mechanics (PFM) codes can only consider a single aging mechanism at a time. So, a probabilistic fracture mechanics computer code capable of considering multiple aging mechanisms was developed for an accurate failure analysis of each specific component of a nuclear piping section. The newly proposed crack morphology based probabilistic leak flow rate module is introduced in this code to separately treat fatigue and SCC type cracks. Improved models e.g. stressors models, elbow failure model, SIFs model, local seismic occurrence probability model, performance based crack detection models, etc., are also included in this code. Recent probabilistic fatigue (S-N) and SCC crack initiation (S-T) and subsequent crack growth rate models are coded. An integrated probabilistic risk assessment and probabilistic fracture mechanics methodology is proposed. A complete flow chart regarding the combined aging mechanism model is presented. The combined aging mechanism based module can significantly reduce simulation efforts and time. Two NUREG benchmark problems, e.g. reactor pressure vessel outlet nozzle section and a surge line elbow located just below the pressurizer are reinvestigated by this code. The results showed that, contribution of pre-existing cracks in addition to initiating cracks, can significantly increase the overall failure probability. Inconel weld location of reactor pressure vessel outlet nozzle section showed the weakest point in terms of relative through-wall leak failure probability in the order of about 10 -2 at the 40-year plant life. Considering

  20. A thermo-mechanical benchmark calculation of an hexagonal can in the BTI accident with ABAQUS code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-07-01

    The thermo-mechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the ABAQUS code: the effects of the geometric nonlinearity are shown and the results are compared with those of a previous analysis performed with the INCA code. (author)

  1. Australasian code for reporting of mineral resources and ore reserves (the JORC code)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest revision of the Code first published in 1989 becomes effective in September 1999. It was prepared by the Joint Ores Reserves Committee of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC). It sets out minimum standards, recommendations and guidelines for public reporting of exploration results, mineral resources and ore reserves in Australasia. In this edition, the guidelines, which were previously separated from the Code, have been placed after the respective Code clauses. The Code is applicable to all solid minerals, including diamonds, other gemstones and coal for which public reporting is required by the Australian and New Zealand Stock Exchanges.

  2. Asymptotic methods in mechanics of solids

    CERN Document Server

    Bauer, Svetlana M; Smirnov, Andrei L; Tovstik, Petr E; Vaillancourt, Rémi

    2015-01-01

    The construction of solutions of singularly perturbed systems of equations and boundary value problems that are characteristic for the mechanics of thin-walled structures are the main focus of the book. The theoretical results are supplemented by the analysis of problems and exercises. Some of the topics are rarely discussed in the textbooks, for example, the Newton polyhedron, which is a generalization of the Newton polygon for equations with two or more parameters. After introducing the important concept of the index of variation for functions special attention is devoted to eigenvalue problems containing a small parameter. The main part of the book deals with methods of asymptotic solutions of linear singularly perturbed boundary and boundary value problems without or with turning points, respectively. As examples, one-dimensional equilibrium, dynamics and stability problems for rigid bodies and solids are presented in detail. Numerous exercises and examples as well as vast references to the relevant Russi...

  3. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  4. Theoretical study of coupling mechanisms between oxygen diffusion, chemical reaction, mechanical stresses in a solid-gas reactive system

    International Nuclear Information System (INIS)

    Creton, N.; Optasanu, V.; Montesin, T.; Garruchet, S.

    2008-01-01

    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO 2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate. (authors)

  5. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Imitation Learning Based on an Intrinsic Motivation Mechanism for Efficient Coding

    Directory of Open Access Journals (Sweden)

    Jochen eTriesch

    2013-11-01

    Full Text Available A hypothesis regarding the development of imitation learning is presented that is rooted in intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated learning (IML for efficient coding in active perception, wherein an agent learns to perform actions with its sense organs to facilitate efficient encoding of the sensory data. To this end, actions of the sense organs that improve the encoding of the sensory data trigger an internally generated reinforcement signal. Here it is argued that the same IML mechanism might also support the development of imitation when general actions beyond those of the sense organs are considered: The learner first observes a tutor performing a behavior and learns a model of the the behavior's sensory consequences. The learner then acts itself and receives an internally generated reinforcement signal reflecting how well the sensory consequences of its own behavior are encoded by the sensory model. Actions that are more similar to those of the tutor will lead to sensory signals that are easier to encode and produce a higher reinforcement signal. Through this, the learner's behavior is progressively tuned to make the sensory consequences of its actions match the learned sensory model. I discuss this mechanism in the context of human language acquisition and bird song learning where similar ideas have been proposed. The suggested mechanism also offers an account for the development of mirror neurons and makes a number of predictions. Overall, it establishes a connection between principles of efficient coding, intrinsic motivations and imitation.

  7. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  8. Fission product release from nuclear fuel I. Physical modelling in the ASTEC code

    International Nuclear Information System (INIS)

    Brillant, G.; Marchetto, C.; Plumecocq, W.

    2013-01-01

    Highlights: • Physical modeling of FP and SM release in ASTEC is presented. • The release is described as solid state diffusion within fuel for high volatile FP. • The release is described as FP vaporisation for semi volatile FP. • The release is described as fuel vaporisation for low volatile FP. • ASTEC validation is presented in the second paper. - Abstract: This article is the first of a series of two articles dedicated to the mechanisms of fission product release from a degraded core as they are modelled in the ASTEC code. The ASTEC code aims at simulating severe accidents in nuclear reactors from the initiating event up to the radiological consequences on the environment. This code is used for several applications such as nuclear plant safety evaluation including probabilistic studies and emergency preparedness. To cope with the requirements of robustness and low calculation time, the code is based on a semi-empirical approach and only the main limiting phenomena that govern the release from intact rods and from debris beds are considered. For solid fuel, fission products are classified into three groups, depending on their degree of volatility. The kinetics of volatile fission products release depend on the rate-limiting process of solid-state diffusion through fuel grains. For semi-volatile fission products, the release from the open fuel porosities is assumed to be governed by vaporisation and mass transfer processes. The key phenomenon for the release of low volatile fission products is supposed to be fuel volatilisation. A similar approach is used for the release of fission products from a rubble bed. An in-depth validation of the code including both analytical and integral experiments is the subject of the second article

  9. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    Science.gov (United States)

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  10. Fuel element thermo-mechanical analysis during transient events using the FMS and FETMA codes

    International Nuclear Information System (INIS)

    Hernandez Lopez Hector; Hernandez Martinez Jose Luis; Ortiz Villafuerte Javier

    2005-01-01

    In the Instituto Nacional de Investigaciones Nucleares of Mexico, the Fuel Management System (FMS) software package has been used for long time to simulate the operation of a BWR nuclear power plant in steady state, as well as in transient events. To evaluate the fuel element thermo-mechanical performance during transient events, an interface between the FMS codes and our own Fuel Element Thermo Mechanical Analysis (FETMA) code is currently being developed and implemented. In this work, the results of the thermo-mechanical behavior of fuel rods in the hot channel during the simulation of transient events of a BWR nuclear power plant are shown. The transient events considered for this work are a load rejection and a feedwater control failure, which among the most important events that can occur in a BWR. The results showed that conditions leading to fuel rod failure at no time appeared for both events. Also, it is shown that a transient due load rejection is more demanding on terms of safety that the failure of a controller of the feedwater. (authors)

  11. A non-linear, finite element, heat conduction code to calculate temperatures in solids of arbitrary geometry

    International Nuclear Information System (INIS)

    Tayal, M.

    1987-01-01

    Structures often operate at elevated temperatures. Temperature calculations are needed so that the design can accommodate thermally induced stresses and material changes. A finite element computer called FEAT has been developed to calculate temperatures in solids of arbitrary shapes. FEAT solves the classical equation for steady state conduction of heat. The solution is obtained for two-dimensional (plane or axisymmetric) or for three-dimensional problems. Gap elements are use to simulate interfaces between neighbouring surfaces. The code can model: conduction; internal generation of heat; prescribed convection to a heat sink; prescribed temperatures at boundaries; prescribed heat fluxes on some surfaces; and temperature-dependence of material properties like thermal conductivity. The user has a option of specifying the detailed variation of thermal conductivity with temperature. For convenience to the nuclear fuel industry, the user can also opt for pre-coded values of thermal conductivity, which are obtained from the MATPRO data base (sponsored by the U.S. Nuclear Regulatory Commission). The finite element method makes FEAT versatile, and enables it to accurately accommodate complex geometries. The optional link to MATPRO makes it convenient for the nuclear fuel industry to use FEAT, without loss of generality. Special numerical techniques make the code inexpensive to run, for the type of material non-linearities often encounter in the analysis of nuclear fuel. The code, however, is general, and can be used for other components of the reactor, or even for non-nuclear systems. The predictions of FEAT have been compared against several analytical solutions. The agreement is usually better than 5%. Thermocouple measurements show that the FEAT predictions are consistent with measured changes in temperatures in simulated pressure tubes. FEAT was also found to predict well, the axial variations in temperatures in the end-pellets(UO 2 ) of two fuel elements irradiated

  12. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    Science.gov (United States)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  13. The community project COSA: comparison of geo-mechanical computer codes for salt

    International Nuclear Information System (INIS)

    Lowe, M.J.S.; Knowles, N.C.

    1986-01-01

    Two benchmark problems related to waste disposal in salt were tackled by ten European organisations using twelve rock-mechanics finite element computer codes. The two problems represented increasing complexity with first a hypothetical verification and then the simulation of a laboratory experiment. The project allowed to ascertain a shapshot of the current combined expertise of European organisations in the modelling of salt behaviour

  14. Durability and Mechanical Performance of PMMA/Stone Sludge Nanocomposites for Acrylic Solid Surface Applications

    Directory of Open Access Journals (Sweden)

    Samah EL-Bashir

    2017-11-01

    Full Text Available Acrylic solid surface sheets were prepared by mixing different kinds of stone sludge fillers (SSF in Poly (methyl methacrylate (PMMA nanocomposites. PMMA nanocomposite syrups were made using free radical polymerization of methylmethacrylate (MMA, then two kinds of nanofillers were added, namely, hydrophilic nanosilica and clay Halloysite nanotubules (HNTs. Acrylic solid surface sheets were manufactured by mixing the syrups with SSFs. The morphology of the produced sheets was studied using optical, and Scanning Electron Microscopy (SEM that revealed the uniform distribution of stone sludge in the polymeric matrix. The study of the physical properties showed promising mechanical performance and durability of PMMA/SSF nanocomposites for acrylic solid surface applications.

  15. Solid-state reactions during mechanical milling of Fe-Al under nitrogen atmosphere

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Čížek, J.; Jančík, D.

    2013-01-01

    Roč. 568, AUG (2013), s. 106-111 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : milling * mechanical alloying * Mössbauer phase analysis * Fe-Al alloy * microstructure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2013

  16. Localized solid-state amorphization at grain boundaries in a nanocrystalline Al solid solution subjected to surface mechanical attrition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Tao, N [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Hong, Y [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China); Lu, J [LASMIS, University of Technology of Troyes, 10000, Troyes (France); Lu, K [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2005-11-21

    Using high-resolution electron microscopy, localized solid-state amorphization (SSA) was observed in a nanocrystalline (NC) Al solid solution (weight per cent 4.2 Cu, 0.3 Mn, the rest being Al) subjected to a surface mechanical attrition treatment. It was found that the deformation-induced SSA may occur at the grain boundary (GB) where either the high density dislocations or dislocation complexes are present. It is suggested that lattice instability due to elastic distortion within the dislocation core region plays a significant role in the initiation of the localized SSA at defective sites. Meanwhile, the GB of severely deformed NC grains exhibits a continuously varying atomic structure in such a way that while most of the GB is ordered but reveals corrugated configurations, localized amorphization may occur along the same GB.

  17. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    International Nuclear Information System (INIS)

    Miyazaki, Yukihiro; Marangoni, Alejandro G

    2014-01-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ∼ Φ 0.89 ) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 10 9 Pa and E L (PW) = 1.64 × 10 9 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress. (papers)

  18. Molecular dynamics simulation of uranium compound adsorption on solid surface

    International Nuclear Information System (INIS)

    Omori, Yuki; Takizawa, Yuji; Okamoto, Tsuyoshi

    2010-01-01

    Particles mixed in the UF6 gas have the property of accumulating on the inside of piping or units. This type of accumulation will cause material unaccounted for (MUF) in the UF6 gas processing facilities. Development of a calculation model for estimating the accumulation rate of uranium compounds has been expected. And predicting possible part of the units where uranium compounds adsorb will contribute to design an effective detection system. The purpose of this study is to take the basic knowledge of the particle's adsorption mechanism from the microscopic point of view. In simulation analysis, UF5 model particle is produced, then two types of solid surfaces are prepared; one is a solid surface at rest and the other is a moving solid surface. The result obtained by the code 'PABS' showed that when the solid surface moves at a lower velocity, the particle's adsorption process dominates over the particle's breakup one. Besides the velocity of the solid surface, other principal factors affecting an adsorption ratio were also discussed. (author)

  19. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  20. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    Mailhe, P.

    2014-01-01

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  1. A Monte Carlo simulation code for calculating damage and particle transport in solids: The case for electron-bombarded solids for electron energies up to 900 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.

  2. HCPB TBM thermo mechanical design: Assessment with respect codes and standards and DEMO relevancy

    International Nuclear Information System (INIS)

    Cismondi, F.; Kecskes, S.; Aiello, G.

    2011-01-01

    In the frame of the activities of the European TBM Consortium of Associates the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) is developed in Karlsruhe Institute of Technology (KIT). After performing detailed thermal and fluid dynamic analyses of the preliminary HCPB TBM design, the thermo mechanical behaviour of the TBM under typical ITER loads has to be assessed. A synthesis of the different design options proposed has been realized building two different assemblies of the HCPB-TBM: these two assemblies and the analyses performed on them are presented in this paper. Finite Element thermo-mechanical analyses of two detailed 1/4 scaled models of the HCPB-TBM assemblies proposed have been performed, with the aim of verifying the accordance of the mechanical behaviour with the criteria of the design codes and standards. The structural design limits specified in the codes and standard are discussed in relation with the EUROFER available data and possible damage modes. Solutions to improve the weak structural points of the present design are identified and the DEMO relevancy of the present thermal and structural design parameters is discussed.

  3. The Aster code

    International Nuclear Information System (INIS)

    Delbecq, J.M.

    1999-01-01

    The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)

  4. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  5. Use of near infared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  6. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  7. The Initial Atmospheric Transport (IAT) Code: Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Charles W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartel, Timothy James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34D accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.

  8. An Enhanced Erasure Code-Based Security Mechanism for Cloud Storage

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2014-01-01

    Full Text Available Cloud computing offers a wide range of luxuries, such as high performance, rapid elasticity, on-demand self-service, and low cost. However, data security continues to be a significant impediment in the promotion and popularization of cloud computing. To address the problem of data leakage caused by unreliable service providers and external cyber attacks, an enhanced erasure code-based security mechanism is proposed and elaborated in terms of four aspects: data encoding, data transmission, data placement, and data reconstruction, which ensure data security throughout the whole traversing into cloud storage. Based on the mechanism, we implement a secure cloud storage system (SCSS. The key design issues, including data division, construction of generator matrix, data encoding, fragment naming, and data decoding, are also described in detail. Finally, we conduct an analysis of data availability and security and performance evaluation. Experimental results and analysis demonstrate that SCSS achieves high availability, strong security, and excellent performance.

  9. Applied structural and solid mechanics section: 1983 review and 1984 programs

    International Nuclear Information System (INIS)

    Chadha, J.A.

    1984-01-01

    This report reviews briefly the applied research and problem solving work carried out by the Applied Structural and Solid Mechanics Section during 1983. In 1983 there was a strong demand for services in the areas of theroretical and experimental stress analysis, heat transfer analysis, nonlinear analysis, and general structural analyses related to nuclear and thermal power plant, and transmission line components. Development of capabilities in these areas progressed well. Proposed work programs for 1984 are outlined in this report

  10. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms

    International Nuclear Information System (INIS)

    Drot, Romuald

    1998-01-01

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th 4 (PO 4 ) 4 P 2 O 7 , Zr 2 O(PO 4 ) 2 which allow to study the effect of PO 4 and P 2 O 7 groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP 2 O 7 presents only one single site (P 2 O 7 groups) whereas Th 4 (PO 4 ) 4 P 2 O 7 and Zr 2 O(PO 4 ) 2 admit two types of sites (PO 4 /P 2 O 7 and PO 4 /oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO 3 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO 2+ 2 et de UO 2 NO + 3 species) and only one for Eu(III) (sorption of EuNO 2+ 3 ). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid suspension using FITEQL code (CCM). As sorption equilibria were defined, experimental retention data simulation was performed with respect to structural

  11. 21 CFR 206.10 - Code imprint required.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...

  12. 3D PiC code investigations of Auroral Kilometric Radiation mechanisms

    International Nuclear Information System (INIS)

    Gillespie, K M; McConville, S L; Speirs, D C; Ronald, K; Phelps, A D R; Bingham, R; Cross, A W; Robertson, C W; Whyte, C G; He, W; Vorgul, I; Cairns, R A; Kellett, B J

    2014-01-01

    Efficient (∼1%) electron cyclotron radio emissions are known to originate in the X mode from regions of locally depleted plasma in the Earths polar magnetosphere. These emissions are commonly referred to as the Auroral Kilometric Radiation (AKR). AKR occurs naturally in these polar regions where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. Initial studies were conducted in the form of 2D PiC code simulations [1] and a scaled laboratory experiment that was constructed to reproduce the mechanism of AKR. As studies progressed, 3D PiC code simulations were conducted to enable complete investigation of the complex interaction dimensions. A maximum efficiency of 1.25% is predicted from these simulations in the same mode and frequency as measured in the experiment. This is also consistent with geophysical observations and the predictions of theory.

  13. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  14. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  15. COMTA - a computer code for fuel mechanical and thermal analysis

    International Nuclear Information System (INIS)

    Basu, S.; Sawhney, S.S.; Anand, A.K.; Anantharaman, K.; Mehta, S.K.

    1979-01-01

    COMTA is a generalized computer code for integrity analysis of the free standing fuel cladding, with natural UO 2 or mixed oxide fuel pellets. Thermal and Mechanical analysis is done simultaneously for any power history of the fuel pin. For analysis, the fuel cladding is assumed to be axisymmetric and is subjected to axisymmetric load due to contact pressure, gas pressure, coolant pressure and thermal loads. Axial variation of load is neglected and creep and plasticity are assumed to occur at constant volume. The pellet is assumed to be made of concentric annuli. The fission gas release integral is dependent on the temperature and the power produced in each annulus. To calculate the temperature distribution in the fuel pin, the variation of bulk coolant temperature is given as an input to the code. Gap conductance is calculated at every time step, considering fuel densification, fuel relocation and gap closure, filler gas dilution by released fission gas, gap closure by expansion and irradiation swelling. Overall gap conductance is contributed by heat transfer due to the three modes; conduction convection and radiation as per modified Ross and Stoute model. Equilibrium equations, compatibility equations, stress strain relationships (including thermal strains and permanent strains due to creep and plasticity) are used to obtain triaxial stresses and strains. Thermal strain is assumed to be zero at hot zero power conditions. The boundary conditions are obtained for radial stresses at outside and inside surfaces by making these equal to coolant pressure and internal pressure respectively. A multi-mechanism creep model which accounts for thermal and irradiation creep is used to calculate the overall creep rate. Effective plastic strain is a function of effective stress and material constants. (orig.)

  16. Interrelations of codes in human semiotic systems.

    OpenAIRE

    Somov, Georgij

    2016-01-01

    Codes can be viewed as mechanisms that enable relations of signs and their components, i.e., semiosis is actualized. The combinations of these relations produce new relations as new codes are building over other codes. Structures appear in the mechanisms of codes. Hence, codes can be described as transformations of structures from some material systems into others. Structures belong to different carriers, but exist in codes in their "pure" form. Building of codes over other codes fosters t...

  17. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  18. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    International Nuclear Information System (INIS)

    Kalibjian, J.R.

    1985-01-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes

  19. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown for each problem in order to facilitate element selection when computer resources are limited.

  20. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  1. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  2. Introduction to electronic relaxation in solids: mechanisms and measuring techniques

    International Nuclear Information System (INIS)

    Bonville, P.

    1983-01-01

    The fluctuations of electronic magnetic moments in solids may be investigated by several techniques, either electronic or nuclear. This paper is an introduction of the most frequently encountered paramagnetic relaxation mechanisms (phonons, conduction electrons, exchange or dipolar interactions) in condensed matter, and to the different techniques used for measuring relaxation frequencies: electronic paramagnetic resonance, nuclear magnetic resonance, Moessbauer spectroscopy, inelastic neutron scattering, measurement of longitudinal ac susceptibility and γ-γ perturbed angular correlations. We mainly focus our attention on individual ionic fluctuation spectra, the majority of the experimental work refered to concerning rare earth systems [fr

  3. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  4. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    Probabilistic fracture mechanics (PFM) analysis is a major element of the comprehensive probabilistic methodology endorsed by the Nuclear Regulatory Commission (NRC) for evaluation of the integrity of pressurized water reactor pressure vessels subjected to pressurized-thermal-shock (PTS) transients. OCA-P and VISA-II are PTS PFM computer codes that are currently referenced in Regulatory Guide 1.154 as acceptable codes for performing plant-specific analyses. These codes perform PFM analyses to estimate the increase in vessel failure probability as the vessel accumulates radiation damage over the operating life of the vessel. Experience with the application of these codes in the last few years has provided insights into areas where they could be improved. As more plants approach the PTS screening criteria and are required to perform plant-specific analyses, there will be an increasing need for an improved and validated PTS PFM code that is accepted by the NRC and utilities. The NRC funded Heavy Section Steel Technology Program (HSST) at the Oak Ridge National Laboratory is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) code, which is expected to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as (1) a PFM global modeling methodology; (2) the calculation of the axial stress component associated with coolant streaming beneath an inlet nozzle; (3) a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an appropriate range of two and three dimensional inner-surface flaws; (4) the flexibility to generate a variety of output reports; and (5) enhanced user friendliness

  5. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    Science.gov (United States)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present

  6. MCTP, a code for the thermo-mechanical analysis of a fuel rod of BWR type reactors (Neutron part)

    International Nuclear Information System (INIS)

    Hernandez L, H.; Ortiz V, J.

    2003-01-01

    In the National Institute of Nuclear Research of Mexico a code for the thermo-mechanical analysis of the fuel rods of the BWR type reactors of the Nucleo electric Central of Laguna Verde is developed. The code solves the diffusion equation in cylindrical coordinates with several energy groups. The code, likewise, calculates the temperature distribution and power distribution in those fuel rods. The code is denominated Multi groups With Temperatures and Power (MCTP). In the code, the energy with which the fission neutrons are emitted it is divided in six groups. They are also considered the produced perturbations by the changes in the temperatures of the materials that constitute the fuel rods, the content of fission products, the uranium consumption and in its case the gadolinium, as well as the plutonium production. In this work there are present preliminary results obtained with the code, using data of operation of the Nucleo electric Central of Laguna Verde. (Author)

  7. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  8. Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding.

    Science.gov (United States)

    Rhodes, Gillian; Burton, Nichola; Jeffery, Linda; Read, Ainsley; Taylor, Libby; Ewing, Louise

    2018-05-01

    Individuals with autism spectrum disorder (ASD) can have difficulty recognizing emotional expressions. Here, we asked whether the underlying perceptual coding of expression is disrupted. Typical individuals code expression relative to a perceptual (average) norm that is continuously updated by experience. This adaptability of face-coding mechanisms has been linked to performance on various face tasks. We used an adaptation aftereffect paradigm to characterize expression coding in children and adolescents with autism. We asked whether face expression coding is less adaptable in autism and whether there is any fundamental disruption of norm-based coding. If expression coding is norm-based, then the face aftereffects should increase with adaptor expression strength (distance from the average expression). We observed this pattern in both autistic and typically developing participants, suggesting that norm-based coding is fundamentally intact in autism. Critically, however, expression aftereffects were reduced in the autism group, indicating that expression-coding mechanisms are less readily tuned by experience. Reduced adaptability has also been reported for coding of face identity and gaze direction. Thus, there appears to be a pervasive lack of adaptability in face-coding mechanisms in autism, which could contribute to face processing and broader social difficulties in the disorder. © 2017 The British Psychological Society.

  9. CO Self-Shielding as a Mechanism to Make 16O-Enriched Solids in the Solar Nebula

    Directory of Open Access Journals (Sweden)

    Joseph A. Nuth, III

    2014-05-01

    Full Text Available Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, 16O-depleted solar system. This is distinct from the relatively 16O-enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in 16O-depleted solids, we argue that complementary enhancements of 16O-enriched solids can also be produced via C16O-based, Fischer-Tropsch type (FTT catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed 16O enrichment in calcium-aluminum-rich inclusions (CAIs, such as those from the meteorite, Isheyevo (CH/CHb, as well as in chondrules from the meteorite, Acfer 214 (CH3. CO self-shielding results in an overall increase in the 17O and 18O content of nebular solids only to the extent that there is a net loss of C16O from the solar nebula. In contrast, if C16O reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  10. CO Self-Shielding as a Mechanism to Make O-16 Enriched Solids in the Solar Nebula

    Science.gov (United States)

    Nuth, Joseph A. III; Johnson, Natasha M.; Hill, Hugh G. M.

    2014-01-01

    Photochemical self-shielding of CO has been proposed as a mechanism to produce solids observed in the modern, O-16 depleted solar system. This is distinct from the relatively O-16 enriched composition of the solar nebula, as demonstrated by the oxygen isotopic composition of the contemporary sun. While supporting the idea that self-shielding can produce local enhancements in O-16 depleted solids, we argue that complementary enhancements of O-16 enriched solids can also be produced via CO-16 based, Fischer-Tropsch type (FTT) catalytic processes that could produce much of the carbonaceous feedstock incorporated into accreting planetesimals. Local enhancements could explain observed O-16 enrichment in calcium-aluminum-rich inclusions (CAIs), such as those from the meteorite, Isheyevo (CH/CHb), as well as in chondrules from the meteorite, Acfer 214 (CH3). CO selfshielding results in an overall increase in the O-17 and O-18 content of nebular solids only to the extent that there is a net loss of CO-16 from the solar nebula. In contrast, if CO-16 reacts in the nebula to produce organics and water then the net effect of the self-shielding process will be negligible for the average oxygen isotopic content of nebular solids and other mechanisms must be sought to produce the observed dichotomy between oxygen in the Sun and that in meteorites and the terrestrial planets. This illustrates that the formation and metamorphism of rocks and organics need to be considered in tandem rather than as isolated reaction networks.

  11. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup

    International Nuclear Information System (INIS)

    Berna, G.A.; Beyer, G.A.; Davis, K.L.; Lanning, D.D.

    1997-12-01

    FRAPCON-3 is a FORTRAN IV computer code that calculates the steady-state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, and deformation of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (1) heat conduction through the fuel and cladding, (2) cladding elastic and plastic deformation, (3) fuel-cladding mechanical interaction, (4) fission gas release, (5) fuel rod internal gas pressure, (6) heat transfer between fuel and cladding, (7) cladding oxidation, and (8) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat-transfer correlations. The codes' integral predictions of mechanical behavior have not been assessed against a data base, e.g., cladding strain or failure data. Therefore, it is recommended that the code not be used for analyses of cladding stress or strain. FRAPCON-3 is programmed for use on both mainframe computers and UNIX-based workstations such as DEC 5000 or SUN Sparcstation 10. It is also programmed for personal computers with FORTRAN compiler software and at least 8 to 10 megabytes of random access memory (RAM). The FRAPCON-3 code is designed to generate initial conditions for transient fuel rod analysis by the FRAPTRAN computer code (formerly named FRAP-T6)

  12. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-08-01

    We generalize the conditions for stable electrodeposition at isotropic solid-solid interfaces using a kinetic model which incorporates the effects of stresses and surface tension at the interface. We develop a stability diagram that shows two regimes of stability: a previously known pressure-driven mechanism and a new density-driven stability mechanism that is governed by the relative density of metal in the two phases. We show that inorganic solids and solid polymers generally do not lead to stable electrodeposition, and provide design guidelines for achieving stable electrodeposition.

  13. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    Science.gov (United States)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  14. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Science.gov (United States)

    2011-06-21

    ...The NRC is amending its regulations to incorporate by reference the 2005 Addenda (July 1, 2005) and 2006 Addenda (July 1, 2006) to the 2004 ASME Boiler and Pressure Vessel Code, Section III, Division 1; 2007 ASME Boiler and Pressure Vessel Code, Section III, Division 1, 2007 Edition (July 1, 2007), with 2008a Addenda (July 1, 2008); 2005 Addenda (July 1, 2005) and 2006 Addenda (July 1, 2006) to the 2004 ASME Boiler and Pressure Vessel Code, Section XI, Division 1; 2007 ASME Boiler and Pressure Vessel Code, Section XI, Division 1, 2007 Edition (July 1, 2007), with 2008a Addenda (July 1, 2008); and 2005 Addenda, ASME OMa Code-2005 (approved July 8, 2005) and 2006 Addenda, ASME OMb Code-2006 (approved July 6, 2006) to the 2004 ASME Code for Operation and Maintenance of Nuclear Power Plants (OM Code). The NRC is also incorporating by reference (with conditions on their use) ASME Boiler and Pressure Vessel Code Case N-722-1, ``Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated with Alloy 600/82/182 Materials, Section XI, Division 1,'' Supplement 8, ASME approval date: January 26, 2009, and ASME Boiler and Pressure Vessel Code Case N-770-1, ``Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated With UNS N06082 or UNS W86182 Weld Filler Material With or Without Application of Listed Mitigation Activities, Section XI, Division 1,'' ASME approval date: December 25, 2009.

  15. A multiplex coding imaging spectrometer for X-ray astronomy

    International Nuclear Information System (INIS)

    Rocchia, R.; Deschamps, J.Y.; Koch-Miramond, L.; Tarrius, A.

    1985-06-01

    The paper describes a multiplex coding system associated with a solid state spectrometer Si(Li) designed to be placed at the focus of a grazing incidence telescope. In this instrument the spectrometric and imaging functions are separated. The coding system consists in a movable mask with pseudo randomly distributed holes, located in the focal plane of the telescope. The pixel size lies in the range 100-200 microns. The close association of the coding system with a Si(Li) detector gives an imaging spectrometer combining the good efficiency (50% between 0,5 and 10 keV) and energy resolution (ΔE approximately 90 to 160 eV) of solid state spectrometers with the spatial resolution of the mask. Simulations and results obtained with a laboratory model are presented

  16. Development and verifications of fast reactor fuel design code ''Ceptar''

    International Nuclear Information System (INIS)

    Ozawa, T.; Nakazawa, H.; Abe, T.

    2001-01-01

    The annular fuel is very beneficial for fast reactors, because it is available for both high power and high burn-up. Concerning the irradiation behavior of the annular fuel, most of annular pellets irradiated up to high burn-up showed shrinkage of the central hole due to deformation and restructuring of the pellets. It is needed to predict precisely the shrinkage of the central hole during irradiation, because it has a great influence on power-to-melt. In this paper, outline of CEPTAR code (Calculation code to Evaluate fuel pin stability for annular fuel design) developed to meet this need is presented. In this code, the radial profile of fuel density can be computed by using the void migration model, and law of conservation of mass defines the inner diameter. For the mechanical analysis, the fuel and cladding deformation caused by the thermal expansion, swelling and creep is computed by the stress-strain analysis using the approximation of plane-strain. In addition, CEPTAR can also take into account the effect of Joint-Oxide-Gain (JOG) which is observed in fuel-cladding gap of high burn-up fuel. JOG has an effect to decrease the fuel swelling and to improve the gap conductance due to deposition of solid fission product. Based on post-irradiation data on PFR annular fuel, we developed an empirical model for JOG. For code verifications, the thermal and mechanical data obtained from various irradiation tests and post-irradiation examinations were compared with the predictions of this code. In this study, INTA (instrumented test assembly) test in JOYO, PTM (power-to-melt) test in JOYO, EBR-II, FFTF and MTR in Harwell laboratory, and post-irradiation examinations on a number of PFR fuels, were used as verification data. (author)

  17. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    Science.gov (United States)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  18. Code development and analyses within the area of transmutation and safety

    International Nuclear Information System (INIS)

    Maschek, W.

    2002-01-01

    A strong code development is going on to meet various demands resulting from the development of dedicated reactors for transmutation and incineration. Code development is concerned with safety codes and general codes needed for assessing scenarios and transmutation strategies. Analyses concentrate on various ADS systems with solid and liquid molten salt fuels. Analyses deal with ADS Demo Plant (5th FP EU) and transmuters with advanced fuels

  19. Dynamic behavior of a solid particle bed in a liquid pool

    International Nuclear Information System (INIS)

    Liu Ping; Yasunaka, Satoshi; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Tobita, Yoshiharu

    2007-01-01

    Dynamic behavior of solid particle beds in a liquid pool against pressure transients was investigated to model the mobility of core materials in a postulated disrupted core of a liquid metal fast reactor. A series of experiments was performed with a particle bed of different bed heights, comprising different monotype solid particles, where variable initial pressures of the originally pressurized nitrogen gas were adopted as the pressure sources. Computational simulations of the experiments were performed using SIMMER-III, a fast reactor safety analysis code. Comparisons between simulated and experimental results show that the physical model for multiphase flows used in the SIMMER-III code can reasonably represent the transient behaviors of pool multiphase flows with rich solid phases, as observed in the current experiments. This demonstrates the basic validity of the SIMMER-III code on simulating the dynamic behaviors induced by pressure transients in a low-energy disrupted core of a liquid metal fast reactor with rich solid phases

  20. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  1. Molecular mechanisms for synergistic effect of proteasome inhibitors with platinum-based therapy in solid tumors.

    Science.gov (United States)

    Chao, Angel; Wang, Tzu-Hao

    2016-02-01

    The successful development of the proteasome inhibitor bortezomib as an anticancer drug has improved survival in patients with multiple myeloma. With the emergence of the newly US Food and Drug Administration-approved proteasome inhibitor carfilzomib, ongoing trials are investigating this compound and other proteasome inhibitors either alone or in combination with other chemotherapy drugs. However, in solid tumors, the efficacy of proteasome inhibitors has not lived up to expectations. Results regarding the potential clinical efficacy of bortezomib combined with other agents in the treatment of solid tumors are eagerly awaited. Recent identification of the molecular mechanisms (involving apoptosis and autophagy) by which bortezomib and cisplatin can overcome chemotherapy resistance and sensitize tumor cells to anticancer therapy can provide insights into the development of novel therapeutic strategies for patients with solid malignancies. Copyright © 2016. Published by Elsevier B.V.

  2. 75 FR 24323 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Science.gov (United States)

    2010-05-04

    ...The NRC proposes to amend its regulations to incorporate by reference the 2005 Addenda through 2008 Addenda of Section III, Division 1, and the 2005 Addenda through 2008 Addenda of Section XI, Division 1, of the ASME Boiler and Pressure Vessel Code (ASME B&PV Code); and the 2005 Addenda and 2006 Addenda of the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code). The NRC also proposes to incorporate by reference ASME Code Case N-722-1, ``Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated With Alloy 600/82/182 Materials Section XI, Division 1,'' and Code Case N-770, ``Alternative Examination Requirements and Acceptance Standards for Class 1 PWR [Pressurized- Water Reactor] Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material with or without Application of Listed Mitigation Activities.''

  3. HTR fuel modelling with the ATLAS code. Thermal mechanical behaviour and fission product release assessment

    International Nuclear Information System (INIS)

    Guillermier, Pierre; Daniel, Lucile; Gauthier, Laurent

    2009-01-01

    To support AREVA NP in its design on HTR reactor and its HTR fuel R and D program, the Commissariat a l'Energie Atomique developed the ATLAS code (Advanced Thermal mechanicaL Analysis Software) with the objectives: - to quantify, with a statistical approach, the failed particle fraction and fission product release of a HTR fuel core under normal and accidental conditions (compact or pebble design). - to simulate irradiation tests or benchmark in order to compare measurements or others code results with ATLAS evaluation. These two objectives aim at qualifying the code in order to predict fuel behaviour and to design fuel according to core performance and safety requirements. A statistical calculation uses numerous deterministic calculations. The finite element method is used for these deterministic calculations, in order to be able to choose among three types of meshes, depending on what must be simulated: - One-dimensional calculation of one single particle, for intact particles or particles with fully debonded layers. - Two-dimensional calculations of one single particle, in the case of particles which are cracked, partially debonded or shaped in various ways. - Three-dimensional calculations of a whole compact slice, in order to simulate the interactions between the particles, the thermal gradient and the transport of fission products up to the coolant. - Some calculations of a whole pebble, using homogenization methods are being studied. The temperatures, displacements, stresses, strains and fission product concentrations are calculated on each mesh of the model. Statistical calculations are done using these results, taking into account ceramic failure mode, but also fabrication tolerances and material property uncertainties, variations of the loads (fluence, temperature, burn-up) and core data parameters. The statistical method used in ATLAS is the importance sampling. The model of migration of long-lived fission products in the coated particle and more

  4. Mechanical behavior of a fast reactor core: Application of the 3D codes to SUPER PHENIX 1

    International Nuclear Information System (INIS)

    Bernard, A.; Masoni, P.; Dorsselaere, J.P. van

    1983-01-01

    The series of the 3-dimensional mechanical codes of a fast reactor core was used for the first time within the framework of a design study of an industrial reactor: SUPER-PHENIX 1. These codes are the following ones: - ARGOH which calculates the behavior of an isolated subassembly. - HARMONIE which calculates the core mechanical equilibrium - TRACAR which yields a graphic visualization of HARMONIE results, and calculates the handling forces and support reactions - HARMOREA which calculates the reactivity variations between given equilibrium states (for instance: pads effect and diagrid effect); now at the end of its development. The calculations were performed on 1/3 of the SPX1 core. Their purpose is double: - on the one hand, to check design criteria, and provide the loadings for the subassembly mechanical design studies; on the other hand, to evaluate the reactivity effects, related to the horizontal core deformations, and useful for operation and safety studies. The results of these calculations showed that the design criteria were verified for the contractual lifetime of the subassemblies. (orig.)

  5. 3D FE simulation of PCMI (Pellet-Cladding Mechanical Interaction) considering frictionless contact

    International Nuclear Information System (INIS)

    Seo, Sang-Kyu; Lee, Sung-Uk; Lee, Eun-Ho; Yang, Dong-Yol; Kim, Hyo-Chan; Yang, Yong-Sik

    2014-01-01

    The goal of this code is coupling every aspect of physical phenomenon. Monodimensional FE model has been made for METEOR. It is good to evaluate the global behavior in high burn up levels. However, the multi-dimensional PCI analysis code is necessary to precisely analyze the stress distribution especially in case of the crack analysis. CAST3M 3D finite element code has been developed considering thermo-mechanical interaction in detail for TOUTATIS code. The advanced multidimensional code called ALCYONE has been developed considering chemical-physics and thermomechanical aspects. Although there are many codes that analyze pellet and cladding interaction, it is difficult to consider every physical aspect. In this paper, pellet to cladding mechanical interaction in 3D has been simulated with frictionless contact using the developed module, which is written in FORTRANN90. In this paper, 3D PCMI FE model is simulated with frictionless contact and elastic deformation. From the frictionless contact analysis, the interfacial pressure has been calculated and then this is used to obtain the solid heat coefficient which is a main factor to analyze the thermal distribution

  6. Electro-Thermal-Mechanical Simulation Capability Final Report

    International Nuclear Information System (INIS)

    White, D

    2008-01-01

    This is the Final Report for LDRD 04-ERD-086, 'Electro-Thermal-Mechanical Simulation Capability'. The accomplishments are well documented in five peer-reviewed publications and six conference presentations and hence will not be detailed here. The purpose of this LDRD was to research and develop numerical algorithms for three-dimensional (3D) Electro-Thermal-Mechanical simulations. LLNL has long been a world leader in the area of computational mechanics, and recently several mechanics codes have become 'multiphysics' codes with the addition of fluid dynamics, heat transfer, and chemistry. However, these multiphysics codes do not incorporate the electromagnetics that is required for a coupled Electro-Thermal-Mechanical (ETM) simulation. There are numerous applications for an ETM simulation capability, such as explosively-driven magnetic flux compressors, electromagnetic launchers, inductive heating and mixing of metals, and MEMS. A robust ETM simulation capability will enable LLNL physicists and engineers to better support current DOE programs, and will prepare LLNL for some very exciting long-term DoD opportunities. We define a coupled Electro-Thermal-Mechanical (ETM) simulation as a simulation that solves, in a self-consistent manner, the equations of electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechanics (elastic-plastic deformation, and contact with friction). There is no existing parallel 3D code for simulating ETM systems at LLNL or elsewhere. While there are numerous magnetohydrodynamic codes, these codes are designed for astrophysics, magnetic fusion energy, laser-plasma interaction, etc. and do not attempt to accurately model electromagnetically driven solid mechanics. This project responds to the Engineering R and D Focus Areas of Simulation and Energy Manipulation, and addresses the specific problem of Electro-Thermal-Mechanical simulation for design and analysis of energy manipulation systems

  7. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, M. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teague, M. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  8. Long non-coding RNAs: Mechanism of action and functional utility

    OpenAIRE

    Bhat, Shakil Ahmad; Ahmad, Syed Mudasir; Mumtaz, Peerzada Tajamul; Malik, Abrar Ahad; Dar, Mashooq Ahmad; Urwat, Uneeb; Shah, Riaz Ahmad; Ganai, Nazir Ahmad

    2016-01-01

    Recent RNA sequencing studies have revealed that most of the human genome is transcribed, but very little of the total transcriptomes has the ability to encode proteins. Long non-coding RNAs (lncRNAs) are non-coding transcripts longer than 200 nucleotides. Members of the non-coding genome include microRNA (miRNA), small regulatory RNAs and other short RNAs. Most of long non-coding RNA (lncRNAs) are poorly annotated. Recent recognition about lncRNAs highlights their effects in many biological ...

  9. Adaptation of OCA-P, a probabilistic fracture-mechanics code, to a personal computer

    International Nuclear Information System (INIS)

    Ball, D.G.; Cheverton, R.D.

    1985-01-01

    The OCA-P probabilistic fracture-mechanics code can now be executed on a personal computer with 512 kilobytes of memory, a math coprocessor, and a hard disk. A user's guide for the particular adaptation has been prepared, and additional importance sampling techniques for OCA-P have been developed that allow the sampling of only the tails of selected distributions. Features have also been added to OCA-P that permit RTNDT to be used as an ''independent'' variable in the calculation of P

  10. The Coding Question.

    Science.gov (United States)

    Gallistel, C R

    2017-07-01

    Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microspheres for the Growth of Silicon Nanowires via Vapor-Liquid-Solid Mechanism

    Directory of Open Access Journals (Sweden)

    Arancha Gómez-Martínez

    2014-01-01

    Full Text Available Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. The resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  12. Sampling procedures using optical-data and partial wave cross sections in a Monte Carlo code for simulating kilovolt electron and positron transport in solids

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Salvat, F.; Liljequist, D.

    1994-09-01

    The details of a Monte Carlo code for computing the penetration and energy loss of electrons and positrons in solids are described. The code, intended for electrons and positrons with energies from ∼ 100 eV to ∼ 100 keV, is based on the simulation of individual elastic and inelastic collisions. Elastic collisions are simulated using differential cross sections computed by the relativistic partial wave method applied to a muffin-tin Dirac-Hartree-Fock-Slater potential. Inelastic collisions are simulated by means of a model based on optical and photoelectric data, which are extended to the non-zero momentum transfer region by means of somewhat different algorithms for valence electron excitations and inner-shell excitations. This report focuses on the description of detailed formulae and sampling methods. 10 refs, 3 figs, 8 tabs

  13. Version 4. 00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  14. Version 4.00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  15. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  16. A statistical–mechanical view on source coding: physical compression and data compression

    International Nuclear Information System (INIS)

    Merhav, Neri

    2011-01-01

    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical–mechanical behavior of a certain model of a chain of connected particles (e.g. a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative of this function. Beyond the fact that this analogy may be interesting in its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics

  17. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  18. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness

  19. Review of application code and standards for mechanical and piping design of HANARO fuel test loop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.

    1998-02-01

    The design and installation of the irradiation test facility for verification test of the fuel performance are very important in connection with maximization of the utilization of HANARO. HANARO fuel test loop was designed in accordance with the same code and standards of nuclear power plant because HANARO FTL will be operated the high pressure and temperature same as nuclear power plant operation conditions. The objective of this study is to confirm the propriety of application code and standards for mechanical and piping of HANARO fuel test loop and to decide the technical specification of FTL systems. (author). 18 refs., 8 tabs., 6 figs.

  20. Solid State Bonding Mechanics In Extrusion And FSW: Experimental Tests And Numerical Analyses

    International Nuclear Information System (INIS)

    Buffa, G.; Fratini, L.; Donati, L.; Tomesani, L.

    2007-01-01

    In the paper the authors compare the different solid state bonding mechanics for both the processes of hollow profiles extrusion and Friction Stir Welding (FSW), through the results obtained from a wide experimental campaign on AA6082-T6 aluminum alloys. Microstructure evaluation, tensile tests and micro-hardness measurements realized on specimens extracted by samples of the two processes are discussed also by means of the results obtained from coupled FEM simulation of the processes

  1. Sub-Transport Layer Coding

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2014-01-01

    Packet losses in wireless networks dramatically curbs the performance of TCP. This paper introduces a simple coding shim that aids IP-layer traffic in lossy environments while being transparent to transport layer protocols. The proposed coding approach enables erasure correction while being...... oblivious to the congestion control algorithms of the utilised transport layer protocol. Although our coding shim is indifferent towards the transport layer protocol, we focus on the performance of TCP when ran on top of our proposed coding mechanism due to its widespread use. The coding shim provides gains...

  2. Thermal mechanical analysis of a solid breeding blanket

    International Nuclear Information System (INIS)

    Aquaro, Donato

    2003-01-01

    This paper deals with a theoretical model of thermal mechanical behaviour of pebble beds, used as neutron multiplier or tritium breeder in the breeding blanket of a fusion nuclear reactor. The model tries to sum up the advantages of the two approaches ('discrete' method and macroscopic method), presently used for analysing the pebble bed behaviour, without their intrinsic disadvantages. The developed method has the capability to describe the microscopic behaviour of the single sphere (as the discrete approach does), and the capability to model complex structures under variable loads, typical of the macroscopic approach, without doing the unrealistic assumption of continuum homogeneous and isotropic material. The model describes the thermal mechanical behaviour of a single sphere compressed in elastic plastic conditions. The obtained relations have been extrapolated to regular lattices of spheres and subsequently to pebble beds (characterised by a macroscopic parameter called 'packing factor') of simple geometric shapes using statistical considerations. The results of the model have been assessed by comparison with results obtained by means of numerical simulations and experimental tests. The ongoing activity is the implementation in a FEM code of a new finite element, which represents one or several regular lattices of spheres, the non linear stiffness of which is obtained from the mono dimensional compression model of one sphere. The results of the numerical simulation permits to construct and display the strain and stress distribution of the single spheres by means of an implemented graphical interface

  3. On the relation between texture perception and fundamental mechanical parameters for liquids and time dependent solids

    NARCIS (Netherlands)

    Vliet, van T.

    2002-01-01

    Abstract Aspects of the relationship between texture perception in the mouth and fundamental mechanical parameters for liquids and time dependent solids are discussed. The emphasis is on the physical side of the relation. The importance is stressed of the incorporation of a thorough knowledge of

  4. Documentation of probabilistic fracture mechanics codes used for reactor pressure vessels subjected to pressurized thermal shock loading: Parts 1 and 2. Final report

    International Nuclear Information System (INIS)

    Balkey, K.; Witt, F.J.; Bishop, B.A.

    1995-06-01

    Significant attention has been focused on the issue of reactor vessel pressurized thermal shock (PTS) for many years. Pressurized thermal shock transient events are characterized by a rapid cooldown at potentially high pressure levels that could lead to a reactor vessel integrity concern for some pressurized water reactors. As a result of regulatory and industry efforts in the early 1980's, a probabilistic risk assessment methodology has been established to address this concern. Probabilistic fracture mechanics analyses are performed as part of this methodology to determine conditional probability of significant flaw extension for given pressurized thermal shock events. While recent industry efforts are underway to benchmark probabilistic fracture mechanics computer codes that are currently used by the nuclear industry, Part I of this report describes the comparison of two independent computer codes used at the time of the development of the original U.S. Nuclear Regulatory Commission (NRC) pressurized thermal shock rule. The work that was originally performed in 1982 and 1983 to compare the U.S. NRC - VISA and Westinghouse (W) - PFM computer codes has been documented and is provided in Part I of this report. Part II of this report describes the results of more recent industry efforts to benchmark PFM computer codes used by the nuclear industry. This study was conducted as part of the USNRC-EPRI Coordinated Research Program for reviewing the technical basis for pressurized thermal shock (PTS) analyses of the reactor pressure vessel. The work focused on the probabilistic fracture mechanics (PFM) analysis codes and methods used to perform the PTS calculations. An in-depth review of the methodologies was performed to verify the accuracy and adequacy of the various different codes. The review was structured around a series of benchmark sample problems to provide a specific context for discussion and examination of the fracture mechanics methodology

  5. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies.

    Science.gov (United States)

    Valenzuela, Nicole M; Reed, Elaine F

    2017-06-30

    Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.

  6. Magnetorheological technology for fabricating tunable solid electrolyte with enhanced conductivity and mechanical property

    Science.gov (United States)

    Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua

    2018-03-01

    Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.

  7. Some problems in mechanics of growing solids with applications to AM technologies

    Science.gov (United States)

    Manzhirov, A. V.

    2018-04-01

    Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.

  8. Hybrid real-code ant colony optimisation for constrained mechanical design

    Science.gov (United States)

    Pholdee, Nantiwat; Bureerat, Sujin

    2016-01-01

    This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.

  9. Development and Verification of Smoothed Particle Hydrodynamics Code for Analysis of Tsunami near NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Young Beom; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    It becomes more complicated when considering the shape and phase of the ground below the seawater. Therefore, some different attempts are required to precisely analyze the behavior of tsunami. This paper introduces an on-going activities on code development in SNU based on an unconventional mesh-free fluid analysis method called Smoothed Particle Hydrodynamics (SPH) and its verification work with some practice simulations. This paper summarizes the on-going development and verification activities on Lagrangian mesh-free SPH code in SNU. The newly developed code can cover equation of motions and heat conduction equation so far, and verification of each models is completed. In addition, parallel computation using GPU is now possible, and GUI is also prepared. If users change input geometry or input values, they can simulate for various conditions geometries. A SPH method has large advantages and potential in modeling of free surface, highly deformable geometry and multi-phase problems that traditional grid-based code has difficulties in analysis. Therefore, by incorporating more complex physical models such as turbulent flow, phase change, two-phase flow, and even solid mechanics, application of the current SPH code is expected to be much more extended including molten fuel behaviors in the sever accident.

  10. Long non-coding RNA expression profiling of mouse testis during postnatal development.

    Directory of Open Access Journals (Sweden)

    Jin Sun

    Full Text Available Mammalian testis development and spermatogenesis play critical roles in male fertility and continuation of a species. Previous research into the molecular mechanisms of testis development and spermatogenesis has largely focused on the role of protein-coding genes and small non-coding RNAs, such as microRNAs and piRNAs. Recently, it has become apparent that large numbers of long (>200 nt non-coding RNAs (lncRNAs are transcribed from mammalian genomes and that lncRNAs perform important regulatory functions in various developmental processes. However, the expression of lncRNAs and their biological functions in post-natal testis development remain unknown. In this study, we employed microarray technology to examine lncRNA expression profiles of neonatal (6-day-old and adult (8-week-old mouse testes. We found that 8,265 lncRNAs were expressed above background levels during post-natal testis development, of which 3,025 were differentially expressed. Candidate lncRNAs were identified for further characterization by an integrated examination of genomic context, gene ontology (GO enrichment of their associated protein-coding genes, promoter analysis for epigenetic modification, and evolutionary conservation of elements. Many lncRNAs overlapped or were adjacent to key transcription factors and other genes involved in spermatogenesis, such as Ovol1, Ovol2, Lhx1, Sox3, Sox9, Plzf, c-Kit, Wt1, Sycp2, Prm1 and Prm2. Most differentially expressed lncRNAs exhibited epigenetic modification marks similar to protein-coding genes and tend to be expressed in a tissue-specific manner. In addition, the majority of differentially expressed lncRNAs harbored evolutionary conserved elements. Taken together, our findings represent the first systematic investigation of lncRNA expression in the mammalian testis and provide a solid foundation for further research into the molecular mechanisms of lncRNAs function in mammalian testis development and spermatogenesis.

  11. An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Yuhuai Peng

    2017-08-01

    Full Text Available As a key technology in smart healthcare monitoring systems, wireless body area networks (WBANs can pre-embed sensors and sinks on body surface or inside bodies for collecting different vital signs parameters, such as human Electrocardiograph (ECG, Electroencephalograph (EEG, Electromyogram (EMG, body temperature, blood pressure, blood sugar, blood oxygen, etc. Using real-time online healthcare, patients can be tracked and monitored in normal or emergency conditions at their homes, hospital rooms, and in Intensive Care Units (ICUs. In particular, the reliability and effectiveness of the packets transmission will be directly related to the timely rescue of critically ill patients with life-threatening injuries. However, traditional fault-tolerant schemes either have the deficiency of underutilised resources or react too slowly to failures. In future healthcare systems, the medical Internet of Things (IoT for real-time monitoring can integrate sensor networks, cloud computing, and big data techniques to address these problems. It can collect and send patient’s vital parameter signal and safety monitoring information to intelligent terminals and enhance transmission reliability and efficiency. Therefore, this paper presents a design in healthcare monitoring systems for a proactive reliable data transmission mechanism with resilience requirements in a many-to-one stream model. This Network Coding-based Fault-tolerant Mechanism (NCFM first proposes a greedy grouping algorithm to divide the topology into small logical units; it then constructs a spanning tree based on random linear network coding to generate linearly independent coding combinations. Numerical results indicate that this transmission scheme works better than traditional methods in reducing the probability of packet loss, the resource redundant rate, and average delay, and can increase the effective throughput rate.

  12. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  13. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  14. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing [Energy; Lu, Dongping [Energy; Bowden, Mark [Environmental; El Khoury, Patrick Z. [Environmental; Han, Kee Sung [Environmental; Deng, Zhiqun Daniel [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy

    2018-01-22

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport properties of liquid phase synthesized Li7P3S11 is identified and discussed.

  15. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology (United States)

    2010-01-31

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium

  16. A new code for predicting the thermo-mechanical and irradiation behavior of metallic fuels in sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to predict the irradiation behavior of U-Zr and U-Pu-Zr metallic alloy fuel pins and UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named Fuel Engineering and Structural analysis Tool (FEAST). FEAST has several modules working in coupled form with an explicit numerical algorithm. These modules describe fission gas release and fuel swelling, fuel chemistry and restructuring, temperature distribution, fuel-clad chemical interaction, and fuel and clad mechanical analysis including transient creep-fracture for the clad. Given the fuel pin geometry, composition and irradiation history, FEAST can analyze fuel and clad thermo-mechanical behavior at both steady-state and design-basis (non-disruptive) transient scenarios. FEAST was written in FORTRAN-90 and has a simple input file similar to that of the LWR fuel code FRAPCON. The metal-fuel version is called FEAST-METAL, and is described in this paper. The oxide-fuel version, FEAST-OXIDE is described in a companion paper. With respect to the old Argonne National Laboratory code LIFE-METAL and other same-generation codes, FEAST-METAL emphasizes more mechanistic, less empirical models, whenever available. Specifically, fission gas release and swelling are modeled with the GRSIS algorithm, which is based on detailed tracking of fission gas bubbles within the metal fuel. Migration of the fuel constituents is modeled by means of thermo-transport theory. Fuel-clad chemical interaction models based on precipitation kinetics were developed for steady-state operation and transients. Finally, a transient intergranular creep-fracture model for the clad, which tracks the nucleation and growth of the cavities at the grain boundaries, was developed for and implemented in the code. Reducing the empiricism in the constitutive models should make it more acceptable to extrapolate FEAST-METAL to new fuel compositions and higher burnup, as envisioned in advanced sodium reactors

  17. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael

    2015-09-01

    During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

  18. Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.

    Science.gov (United States)

    Bahar, Amir S; Shapiro, Matthew L

    2012-02-08

    The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.

  19. CISM-Course on Modern Optical Methods in Experimental Solid Mechanics

    CERN Document Server

    2000-01-01

    The book covers the theories and physics of advanced new optical measuring methods and problems of experimental performance, recent achievements in the basic interferometric methods holography, speckle-interferometry, shearography as well as linear/non-linear photoelasticity and photoviscoelasticity, Moiré- and grid-techniques. It deals with theory and application of digital image processing, methods of data recording, data processing and -visualisation, with mathematical/numerical procedures for final evaluation of digitised measured data and the principle of hybrid techniques. It introduces into the new perceptions of methods in experimental solid mechanics and it should encourage scientists to deal intensively with the theories for further developments, and enables practitioners, to understand theory and physics of the new achievements at least and to apply the methods in research als well as in developments in practice.

  20. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    International Nuclear Information System (INIS)

    Williamson, R.L.; Knoll, D.A.

    2009-01-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  1. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)

    2016-06-15

    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  2. Nonsteady Combustion Mechanisms of Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn

    1997-01-01

    .... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...

  3. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  4. RITA, a promising Monte Carlo code for recoil implantation

    International Nuclear Information System (INIS)

    Desalvo, A.; Rosa, R.

    1982-01-01

    A computer code previously set up to simulate ion penetration in amorphous solids has been extended to handle with recoil phenomena. Preliminary results are compared with existing experimental data. (author)

  5. International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics

    CERN Document Server

    Tseng, Kadin

    1990-01-01

    The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary­ wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto­ dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas­ sive parallelism. This Symposium was sponsored by United ...

  6. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  7. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  8. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    Directory of Open Access Journals (Sweden)

    Duxin Li

    2013-01-01

    Full Text Available The effects of polytetrafluoroethylene (PTFE, graphite, ultrahigh molecular weight polyethylene (UHMWPE, and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  9. Tribological and mechanical behaviors of polyamide 6/glass fiber composite filled with various solid lubricants.

    Science.gov (United States)

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study.

  10. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    Science.gov (United States)

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  11. Development of Deterministic and Probabilistic Fracture Mechanics Analysis Code PROFAS-RV for Reactor Pressure Vessel - Progress of the Work

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Lee, Bong Sang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, a deterministic/probabilistic fracture mechanics analysis program for reactor pressure vessel, PROFAS-RV, is developed. This program can evaluate failure probability of RPV using recent radiation embrittlement model of 10CFR50.61a and stress intensity factor calculation method of RCC-MRx code as well as the required basic functions of PFM program. Applications of some new radiation embrittlement model, material database, calculation method of stress intensity factors, and others which can improve fracture mechanics assessment of RPV are introduced. The purpose of this study is to develop a probabilistic fracture mechanics (PFM) analysis program for RPV considering above modification and application of newly developed models and calculation methods. In this paper, it deals with the development progress of the PFM analysis program for RPV, PROFAS-RV. The PROFAS-RV is being tested with other codes, and it is expected to revise and upgrade by reflecting the latest model and calculation method continuously. These efforts can minimize the uncertainty of the integrity evaluation for the reactor pressure vessel.

  12. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  13. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    International Nuclear Information System (INIS)

    Sivakumar Babu, G.L.; Lakshmikanthan, P.; Santhosh, L.G.

    2015-01-01

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m 3 to 10.3 kN/m 3 at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43

  14. Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in [Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India); Santhosh, L.G., E-mail: lgsanthu2006@gmail.com [Centre for Sustainable Technologies (CST), Indian Institute of Science, Bangalore 560012 (India)

    2015-05-15

    Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.

  15. Evolving a Dynamic Predictive Coding Mechanism for Novelty Detection

    OpenAIRE

    Haggett, Simon J.; Chu, Dominique; Marshall, Ian W.

    2007-01-01

    Novelty detection is a machine learning technique which identifies new or unknown information in data sets. We present our current work on the construction of a new novelty detector based on a dynamical version of predictive coding. We compare three evolutionary algorithms, a simple genetic algorithm, NEAT and FS-NEAT, for the task of optimising the structure of an illustrative dynamic predictive coding neural network to improve its performance over stimuli from a number of artificially gener...

  16. Twenty years of fracture mechanics and flaw evaluation applications in the ASME Nuclear Code

    International Nuclear Information System (INIS)

    Riccardella, P.C.

    1991-01-01

    The paper presents a retrospective on the development and applications of fracture mechanics-based toughness requirements and flaw evaluation methodology in Sections III and XI of the ASME Code. Section III developments range from the rules and requirements for thick section Class 1 pressure vessels to thinner section components in other Classes. Section XI applications include flaw acceptance standards and evaluation methodology for various components ranging from pressure vessels to thins section piping of carbon and austenitic steels. The experience gained in operating plant applications of these rules and procedures are also discussed

  17. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    Science.gov (United States)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  18. 21 CFR 330.3 - Imprinting of solid oral dosage form drug products.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...

  19. Empirical stopping powers for ions in solids

    International Nuclear Information System (INIS)

    Ziegler, J.F.; Biersack, J.P.; Littmark, U.

    1983-01-01

    The work of Brandt and collaborators on low energy ion stopping powers has been extended to create an empirical formulation for the stopping of ions in solids. The result is a simple computer program (about 60 lines of code) which calculates stopping powers from zero to 100 MeV/amu for all ions in all elemental solids. This code has been compared to the data in about 2000 papers, and has a standard error of 9% for energies above keV/amu. This approach includes high energy relativistic effects and shell-corrections. In the medium energy range it uses stopping theory based on the local-density approximation and Lindhard stopping in a free electron gas. This is applied to realistic Hartree-Fock charge distributions for crystalline solids. In the low energy range it uses the Brandt concepts of ion stripping relative to the Fermi velocity of solids, and also his formalism for the relation of projectile ionization to its effective charge. The details of the calculation are presented, and a broad comparison is shown with experiment. Special comparative examples are shown of both the low energy stopping power oscillations which depend on the atomic number of the ion, and also of the target

  20. A study on properties of water substitute solid phantom using EGS code

    International Nuclear Information System (INIS)

    Saitoh, H.; Myojoyama, A.; Tomaru, T.; Fukuda, K.; Fujisaki, T.; Abe, S.

    2003-01-01

    To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51, IAEA Technical Reports no.398 and JSMP Standard dosimetry for radiotherapy 2001. In these recommendations, water is defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R 50 2 (E 0 pl and fluence-scaling factors h pl of several commercially available water substitute solid phantoms were determined using EGS Monte Carlo simulation. Furthermore, the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling. (author)

  1. 24 CFR 200.925c - Model codes.

    Science.gov (United States)

    2010-04-01

    ... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...

  2. Fuel performance analysis code 'FAIR'

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1994-01-01

    For modelling nuclear reactor fuel rod behaviour of water cooled reactors under severe power maneuvering and high burnups, a mechanistic fuel performance analysis code FAIR has been developed. The code incorporates finite element based thermomechanical module, physically based fission gas release module and relevant models for modelling fuel related phenomena, such as, pellet cracking, densification and swelling, radial flux redistribution across the pellet due to the build up of plutonium near the pellet surface, pellet clad mechanical interaction/stress corrosion cracking (PCMI/SSC) failure of sheath etc. The code follows the established principles of fuel rod analysis programmes, such as coupling of thermal and mechanical solutions along with the fission gas release calculations, analysing different axial segments of fuel rod simultaneously, providing means for performing local analysis such as clad ridging analysis etc. The modular nature of the code offers flexibility in affecting modifications easily to the code for modelling MOX fuels and thorium based fuels. For performing analysis of fuel rods subjected to very long power histories within a reasonable amount of time, the code has been parallelised and is commissioned on the ANUPAM parallel processing system developed at Bhabha Atomic Research Centre (BARC). (author). 37 refs

  3. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, E. D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chambers, Robert S. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kropka, Jamie Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  4. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Science.gov (United States)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  5. Energy barriers and mechanisms in solid-solid polymorphic transitions exhibiting cooperative motion

    NARCIS (Netherlands)

    van den Ende, J.A.; Ensing, B.; Cuppen, H.M.

    2016-01-01

    Understanding solid–solid polymorphic transitions within molecular crystals on the molecular scale is a challenging task. It is, however, crucial for the understanding of transitions that are thought to occur through cooperative motion, which offer an interesting perspective for future applications.

  6. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....

  7. SCANAIR: A transient fuel performance code

    International Nuclear Information System (INIS)

    Moal, Alain; Georgenthum, Vincent; Marchand, Olivier

    2014-01-01

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  8. SCANAIR: A transient fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Moal, Alain, E-mail: alain.moal@irsn.fr; Georgenthum, Vincent; Marchand, Olivier

    2014-12-15

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  9. Isotopic study on mechanism for skeletal isomerization of n-butane over solid acids

    International Nuclear Information System (INIS)

    Suzuki, Tetsuo; Okuhara, Toshio

    2000-01-01

    Reaction mechanism for skeletal isomerization of n-butane over typical strong solid acids were investigated by using 1,4- 13 C 2 -n-butane. We used FI MASS for the analysis of 13 C distribution to get the parent pattern. 13 C-distribution of isobutane formed at 423 K over SO 3 2- /ZrO 2 (SZ) and Cs 2.5 H 0.5 PW 12 O 40 (Cs2.5) were close to binomial distributions, indicating that the isomerization proceeded mainly via a bimolecular mechanism on these catalysts. On the other hand, at 523 K over Cs2.5, the isotopic distribution pattern in isobutane was quite different from the binomial one; the fraction of 13 C 2 -isobutane was much greater than the binomial distribution. This result demonstrates that an intramolecular (monomolecular) rearrangement became significant at 523 K over Cs2.5. The contribution of monomolecular pathway was higher on Cs2.5 than on SZ. We presumed that the contribution of mechanism is related to the acidic property and the dehydrogenation ability of the catalyst. (S.Y.)

  10. The TESS [Tandem Experiment Simulation Studies] computer code user's manual

    International Nuclear Information System (INIS)

    Procassini, R.J.

    1990-01-01

    TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs

  11. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  12. Assessment of environmental policy implementation in solid waste management in Kathmandu, Nepal.

    Science.gov (United States)

    Dangi, Mohan B; Schoenberger, Erica; Boland, John J

    2017-06-01

    In Nepal, full-fledged environmental legislation was rare before the democratic constitution of 1990. The first law covering the environment and sustainability was the Environment Protection Act 1997. While the Solid Waste Act was introduced in 1987, the problem of solid waste management still surfaces in Kathmandu. In order to understand the bedrock of this unrelenting failure in solid waste management, the manuscript digs deeper into policy implementation by dissecting solid waste rules, environmental legislations, relevant local laws, and solid waste management practices in Kathmandu, Nepal. A very rich field study that included surveys, interviews, site visits, and literature review provided the basis for the article. The study shows that volumes of new Nepalese rules are crafted without effective enforcement of their predecessors and there is a frequent power struggle between local government bodies and central authority in implementing the codes and allocating resources in solid waste management. The study concludes that Kathmandu does not require any new instrument to address solid waste problems; instead, it needs creation of local resources, execution of local codes, and commitment from central government to allow free exercise of these policies.

  13. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Peshkov, Ilya, E-mail: peshkov@math.nsc.ru [Open and Experimental Center for Heavy Oil, Université de Pau et des Pays de l' Adour, Avenue de l' Université, 64012 Pau (France); Romenski, Evgeniy, E-mail: evrom@math.nsc.ru [Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk (Russian Federation); Zanotti, Olindo, E-mail: olindo.zanotti@unitn.it [Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy)

    2016-06-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  14. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    International Nuclear Information System (INIS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2016-01-01

    Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier

  15. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    Science.gov (United States)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  16. On the Motion of solids in modified quantum mechanics

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-01-01

    In this paper we apply the unified dynamics of Ghirardi, Rimini and Weber to the translational and rotational motion of solids in three dimensions. We show that, in a certain approximation, the rotational equations can formally be reduced to the translational ones already known. We point out that the rotation of solids as well as their translation are practically of classical nature without any observable quantum effects

  17. Development of the PRO-LOCA Probabilistic Fracture Mechanics Code, MERIT Final Report

    International Nuclear Information System (INIS)

    Scott, Paul; Kurth, Robert; Cox, Andrew; Olson, Rick; Rudland, Dave

    2010-12-01

    The MERIT project has been an internationally financed program with the main purpose of developing probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code named PRO-LOCA. The principal objective of the project has been to develop probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code. The MERIT program has produced a code named PRO-LOCA with the following features: - Crack initiation models for fatigue or stress corrosion cracking for previously unflawed material. - Subcritical crack growth models for fatigue and stress corrosion cracking for both initiated and pre-existing circumferential defects. - Models for flaw detection by inspections and leak detection. - Crack stability. The PRO-LOCA code can thus predict the leak or break frequency for the whole sequence of initiation, subcritical crack growth until wall penetration and leakage, instability of the through-wall crack (pipe rupture). The outcome of the PRO-LOCA code are a sequence of failure frequencies which represents the probability of surface crack developing, a through-wall crack developing and six different sizes of crack opening areas corresponding to different leak flow rates or LOCA categories. Note that the level of quality assurance of the PRO-LOCA code is such that the code in its current state of development is considered to be more of a research code than a regulatory tool.

  18. Development of the PRO-LOCA Probabilistic Fracture Mechanics Code, MERIT Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Paul; Kurth, Robert; Cox, Andrew; Olson, Rick (Battelle Columbus (United States)); Rudland, Dave (Nuclear Regulatory Commission (United States))

    2010-12-15

    The MERIT project has been an internationally financed program with the main purpose of developing probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code named PRO-LOCA. The principal objective of the project has been to develop probabilistic models for piping failure of nuclear components and to include these models in a probabilistic code. The MERIT program has produced a code named PRO-LOCA with the following features: - Crack initiation models for fatigue or stress corrosion cracking for previously unflawed material. - Subcritical crack growth models for fatigue and stress corrosion cracking for both initiated and pre-existing circumferential defects. - Models for flaw detection by inspections and leak detection. - Crack stability. The PRO-LOCA code can thus predict the leak or break frequency for the whole sequence of initiation, subcritical crack growth until wall penetration and leakage, instability of the through-wall crack (pipe rupture). The outcome of the PRO-LOCA code are a sequence of failure frequencies which represents the probability of surface crack developing, a through-wall crack developing and six different sizes of crack opening areas corresponding to different leak flow rates or LOCA categories. Note that the level of quality assurance of the PRO-LOCA code is such that the code in its current state of development is considered to be more of a research code than a regulatory tool.

  19. Cooperative optimization and their application in LDPC codes

    Science.gov (United States)

    Chen, Ke; Rong, Jian; Zhong, Xiaochun

    2008-10-01

    Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.

  20. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  1. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.

    Science.gov (United States)

    Dustan, A C; Cohen, B; Petrie, J G

    2005-05-30

    An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.

  2. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  3. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  4. A fuel performance code TRUST VIc and its validation

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M; Kogai, T [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)

    1997-08-01

    This paper describes a fuel performance code TRUST V1c developed to analyze thermal and mechanical behavior of LWR fuel rod. Submodels in the code include FP gas models depicting gaseous swelling, gas release from pellet and axial gas mixing. The code has FEM-based structure to handle interaction between thermal and mechanical submodels brought by the gas models. The code is validated against irradiation data of fuel centerline temperature, FGR, pellet porosity and cladding deformation. (author). 9 refs, 8 figs.

  5. A fuel performance code TRUST VIc and its validation

    International Nuclear Information System (INIS)

    Ishida, M.; Kogai, T.

    1997-01-01

    This paper describes a fuel performance code TRUST V1c developed to analyze thermal and mechanical behavior of LWR fuel rod. Submodels in the code include FP gas models depicting gaseous swelling, gas release from pellet and axial gas mixing. The code has FEM-based structure to handle interaction between thermal and mechanical submodels brought by the gas models. The code is validated against irradiation data of fuel centerline temperature, FGR, pellet porosity and cladding deformation. (author). 9 refs, 8 figs

  6. Relationship between various pressure vessel and piping codes

    International Nuclear Information System (INIS)

    Canonico, D.A.

    1976-01-01

    Section VIII of the ASME Code provides stress allowable values for material specifications that are provided in Section II Parts A and B. Since the adoption of the ASME Code over 60 years ago the incidence of failure has been greatly reduced. The Codes are currently based on strength criteria and advancements in the technology of fracture toughness and fracture mechanics should permit an even greater degree of reliability and safety. This lecture discusses the various Sections of the Code. It describes the basis for the establishment of design stress allowables and promotes the idea of the use of fracture mechanics

  7. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  8. Structural analysis and magnetic properties of solid solutions of Co–Cr system obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, UAEH Carr., Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Betancourt, I.; Torres-Villaseñor, G. [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-03-15

    In this paper, a systematic study on the structural and magnetic properties of Co{sub 100−x}Cr{sub x} alloys (0mechanical alloying is presented. Co and Cr elemental powders were used as precursors, and mixed in an adequate weight ratio to obtain Co{sub 1−x}Cr{sub x} (0Mechanical milling was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as the milling media with a ball:powder weight ratio of 10:1. The mixtures were milled for 7 h. Results shown that after 7 h of milling time, solid solutions based on Co-hcp, Co-fcc and Cr-bcc structures were obtained. The saturation polarization indicated a maximum value of 1.17 T (144 Am{sup 2}/kg) for the Co{sub 90}Cr{sub 10}, which decreases with the increasing of the Cr content up to x=80, as a consequence of the dilution effect of the magnetic moment which is caused by the Cr content and by the competition between ferromagnetic and antiferromagnetic exchange interactions. The coercivity increases up to 34 kA/m (435 Oe) for Co{sub 40}Cr{sub 60}. For Cr rich compositions, it is observed an important decrease reaching 21 kA/m (272 Oe) for Co{sub 10}Cr{sub 90,} it is related to the grain size and the structural change. Besides, the magnetic anisotropy constant was determined for each composition. Magnetic thermogravimetric analysis allowed to obtain Curie temperatures corresponding to the formation of hcp-Co(Cr) and fcc-Co(Cr) solid solutions. - Highlights: • Mechanical alloying (MA) induces the formation of solid solutions of Co–Cr system in non-equilibrium. • We report the crystal structure and the magnetic behavior of Co–Cr alloys produced by MA. • MA improves the magnetic properties of Co–Cr system.

  9. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  10. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  11. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Science.gov (United States)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  12. Assessment of thema code against spreading experiments

    International Nuclear Information System (INIS)

    Spindler, B.; Veteau, J.M.; Cecco, L. de; Montanelli, P.; Pineau, D.

    2000-01-01

    In the frame work of severe accident research, the spreading code THEMA, developed at CEA/DRN, aims at predicting the spreading extent of molten core after a vessel melt-through. The code solves fluid balance equations integrated over the fluid depth for oxidic and/or metallic phases under the shallow water assumption, using a finite difference scheme. Solidification is taken into account through crust formation on the substrate and at contact with the surroundings, as well as increase of fluid viscosity with solid fraction in the melt. A separate energy equation is solved for the solid substrate, including possible ablation. The assessment of THEMA code against the spreading experiments performed in the framework of the corium spreading and coolability project of the European Union is presented. These experiments use either simulating materials at medium (RIT), or at high temperature (KATS), or corium (VULCANO, FARO), conducted at different mass flow rates and with large or low solidification interval. THEMA appears to be able to simulate the whole set of the experiments investigated. Comparison between experimental and computed spreading lengths and substrate temperatures are quite satisfactory. The results show a rather large sensitivity at mass flow rate and inlet temperature, indicating that, generally, efforts should be made to improve the accuracy of the measurements of such parameters in the experiments. (orig.)

  13. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation

    NARCIS (Netherlands)

    Biesebeke, R. te; Biezen, N. van; Vos, W.M. de; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2005-01-01

    Solid-state fermentation (SSF) with Aspergillus oryzae results in high levels of secreted protein. However, control mechanisms of gene expression in SSF have been only poorly studied. In this study we show that both glucoamylase (glaB) and protease (alpA, nptB) genes are highly expressed during

  14. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  15. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2017-10-01

    We investigate the stability of electrodeposition at solid-solid interfaces for materials exhibiting an anisotropic mechanical response. The stability of electrodeposition or resistance to the formation of dendrites is studied within a linear stability analysis. The deformation and stress equations are solved using the Stroh formalism and faithfully recover the boundary conditions at the interface. The stability parameter is used to quantify the stability of different solid-solid interfaces incorporating the full anisotropy of the elastic tensor of the two materials. Results show a high degree of variability in the stability parameter depending on the crystallographic orientation of the solids in contact, and point to opportunities for exploiting this effect in developing Li metal anodes.

  16. Microstructure and Mechanical Strengths of Metastable FCC Solid Solutions in Al-Ce-Fe System

    OpenAIRE

    A., Inoue; H., Yamaguchi; M., Kikuchi; T., Masumoto; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research; Institute for Materials Research

    1990-01-01

    A metastable fcc solid solution (SS) with high mechanical strengths and good bending ductility was found to be formed in rapidly solidified Al-Ce-Fe alloys containing the solute elements below about 6 at%. The SS consists of equiaxed grains with a size of about 2μm and contains a high density of internal defects. The highest hardness (H_v) and tensile fracture strengtn (σ_f) are 440 and 860 MPa in the as-quenched state and remain almost unchanged up to about 600 K for 1 h, though fine compoun...

  17. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  18. Codes of practice and related issues in biomedical waste management

    Energy Technology Data Exchange (ETDEWEB)

    Moy, D.; Watt, C. [Griffith Univ. (Australia)

    1996-12-31

    This paper outlines the development of a National Code of Practice for biomedical waste management in Australia. The 10 key areas addressed by the code are industry mission statement; uniform terms and definitions; community relations - public perceptions and right to know; generation, source separation, and handling; storage requirements; transportation; treatment and disposal; disposal of solid and liquid residues and air emissions; occupational health and safety; staff awareness and education. A comparison with other industry codes in Australia is made. A list of outstanding issues is also provided; these include the development of standard containers, treatment effectiveness, and reusable sharps containers.

  19. Reliable Communication in Wireless Meshed Networks using Network Coding

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Paramanathan, Achuthan; Hundebøll, Martin

    2012-01-01

    The advantages of network coding have been extensively studied in the field of wireless networks. Integrating network coding with existing IEEE 802.11 MAC layer is a challenging problem. The IEEE 802.11 MAC does not provide any reliability mechanisms for overheard packets. This paper addresses...... this problem and suggests different mechanisms to support reliability as part of the MAC protocol. Analytical expressions to this problem are given to qualify the performance of the modified network coding. These expressions are confirmed by numerical result. While the suggested reliability mechanisms...

  20. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  1. Energy production from mechanical biological treatment and Composting plants exploiting solid anaerobic digestion batch: An Italian case study

    International Nuclear Information System (INIS)

    Di Maria, F.; Sordi, A.; Micale, C.

    2012-01-01

    Highlights: ► This work quantifies the Italian Composting and MBT facilities upgradable by SADB. ► The bioCH 4 from SADB of source and mechanical selected OFMSW is of 220–360 Nl/kg VS. ► The upgrading investment cost is 30% higher for Composting than for MBT. ► Electricity costs are 0.11–0.28 €/kW h, not influenced by differentiate collection. ► Electrical energy costs are constant for SADB treating more than 30 ktons/year. - Abstract: The energetic potential of the organic fraction of municipal solid waste processed in both existing Composting plants and Mechanical Biological Treatment (MBT) plants, can be successfully exploited by retrofitting these plants with the solid anaerobic digestion batch process. On the basis of the analysis performed in this study, about 50 MBT plants and 35 Composting plants were found to be suitable for retrofitting with Solid Anaerobic Digestion Batch (SADB) facilities. Currently the organic fraction of Municipal Solid Waste (OFMSW) arising from the MBT facilities is about 1,100,000 tons/year, whereas that arising from differentiated collection and treated in Composting plants is about 850,000 tons/year. The SADB performances were analyzed by the aid of an experimental apparatus and the main results, in agreement with literature data, show that the biogas yield ranged from 400 to 650 Nl/kg of Volatile Solids (VS), with a methane content ranging from 55% to 60% v/v. This can lead to the production of about 500 GW h of renewable energy per year, giving a CO 2 reduction of about 270,000 tons/year. From the economic point of view, the analysis shows that the mean cost of a kW h of electrical energy produced by upgrading MBT and Composting facilities with the SADB, ranges from 0.11 and 0.28 €/kW h, depending on the plant size and the amount of waste treated.

  2. Thermoacoustics of solids: A pathway to solid state engines and refrigerators

    Science.gov (United States)

    Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio

    2018-01-01

    Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.

  3. Determination of the δ15N of nitrate in solids; RSIL lab code 2894

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping; Revesz, Kinga; Casciotti, Karen; Hannon, Janet E.

    2007-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2894 is to determine the δ15N of nitrate (NO3-) in solids. The nitrate fraction of the nitrogen species is dissolved by water (called leaching) and can be analyzed by the bacterial method covered in RSIL lab code 2899. After leaching, the δ15N of the dissolved NO3- is analyzed by conversion of the NO3- to nitrous oxide (N2O), which serves as the analyte for mass spectrometry. A culture of denitrifying bacteria is used in the enzymatic conversion of NO3- to N2O, which follows the pathway shown in equation 1: NO3- → NO2- → NO → 1/2 N2O (1) Because the bacteria Pseudomonas aureofaciens lack N2O reductive activity, the reaction stops at N2O, unlike the typical denitrification reaction that goes to N2. After several hours, the conversion is complete, and the N2O is extracted from the vial, separated from volatile organic vapor and water vapor by an automated -65 °C isopropanol-slush trap, a Nafion drier, a CO2 and water removal unit (Costech #021020 carbon dioxide absorbent with Mg(ClO4)2), and trapped in a small-volume trap immersed in liquid nitrogen with a modified Finnigan MAT (now Thermo Scientific) GasBench 2 introduction system. After the N2O is released, it is further purified by gas chromatography before introduction to the isotope-ratio mass spectrometer (IRMS). The IRMS is a Thermo Scientific Delta V Plus continuous flow IRMS (CF-IRMS). It has a universal triple collector, consisting of two wide cups with a narrow cup in the middle; it is capable of simultaneously measuring mass/charge (m/z) of the N2O molecule 44, 45, and 46. The ion beams from these m/z values are as follows: m/z = 44 = N2O = 14N14N16O; m/z = 45 = N2O = 14N15N16O or 14N14N17O; m/z = 46 = N2O = 14N14N18O. The 17O contributions to the m/z 44 and m/z 45 ion beams are accounted for before δ15N values are reported.

  4. One-dimensional thermohydraulic code THESEUS and its application to chilldown process simulation in two-phase hydrogen flows

    Science.gov (United States)

    Papadimitriou, P.; Skorek, T.

    THESUS is a thermohydraulic code for the calculation of steady state and transient processes of two-phase cryogenic flows. The physical model is based on four conservation equations with separate liquid and gas phase mass conservation equations. The thermohydraulic non-equilibrium is calculated by means of evaporation and condensation models. The mechanical non-equilibrium is modeled by a full-range drift-flux model. Also heat conduction in solid structures and heat exchange for the full spectrum of heat transfer regimes can be simulated. Test analyses of two-channel chilldown experiments and comparisons with the measured data have been performed.

  5. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  6. Effect of volume ratio of liquid to solid on the interfacial microstructure and mechanical properties of high chromium cast iron and medium carbon steel bimetal

    International Nuclear Information System (INIS)

    Xiong Bowen; Cai Changchun; Lu Baiping

    2011-01-01

    Highlights: → Volume ratio of liquid to solid affects significantly the interfacial microstructure. → Elemental diffusion activity is increased by increasing volume ratio. → Mechanical property is improved by increasing volume ratio. - Abstract: The high chromium cast iron and medium carbon steel bimetal was fabricated by liquid-solid casting technology. The effect of volume ratios of liquid to solid (6:1, 10:1 and 12:1) on the interfacial microstructure and mechanical properties of bimetal was investigated. The interfacial microstructure was analyzed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The shear strength and microhardness in as-cast condition were studied at room temperature. The results show that the volume ratios of liquid to solid affect significantly the interfacial microstructure. When liquid-solid volume ratio was 6:1, the unbonded region was detected in interface region because the imported heat energy cannot support effectively the diffusion of element, whereas, when liquid-solid volume ratios reach 10:1 and 12:1, a sound interfacial microstructure was achieved by the diffusion of C, Cr, Mo, Cu and Mn, and metallurgical bonding without unbonded region, void and hole, etc. was detected. With the increase of liquid-solid volume ratio, the elemental diffusion activity improves, resulting in the increase of width of interface transition region. At the same distance from interface, with the increase of liquid-solid volume ratio, the microhardness is degraded in HCCI, but increased in MCS. The shear strength is also improved with the increase of liquid-solid volume ratio.

  7. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  8. Codes of Ethics and Teachers' Professional Autonomy

    Science.gov (United States)

    Schwimmer, Marina; Maxwell, Bruce

    2017-01-01

    This article considers the value of adopting a code of professional ethics for teachers. After having underlined how a code of ethics stands to benefits a community of educators--namely, by providing a mechanism for regulating autonomy and promoting a shared professional ethic--the article examines the principal arguments against codes of ethics.…

  9. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  10. Stiffening solids with liquid inclusions

    Science.gov (United States)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  11. Topological Qubits from Valence Bond Solids

    Science.gov (United States)

    Wang, Dong-Sheng; Affleck, Ian; Raussendorf, Robert

    2018-05-01

    Topological qubits based on S U (N )-symmetric valence-bond solid models are constructed. A logical topological qubit is the ground subspace with twofold degeneracy, which is due to the spontaneous breaking of a global parity symmetry. A logical Z rotation by an angle 2 π /N , for any integer N >2 , is provided by a global twist operation, which is of a topological nature and protected by the energy gap. A general concatenation scheme with standard quantum error-correction codes is also proposed, which can lead to better codes. Generic error-correction properties of symmetry-protected topological order are also demonstrated.

  12. Development of a multispectral autoradiography using a coded aperture

    Science.gov (United States)

    Noto, Daisuke; Takeda, Tohoru; Wu, Jin; Lwin, Thet T.; Yu, Quanwen; Zeniya, Tsutomu; Yuasa, Tetsuya; Hiranaka, Yukio; Itai, Yuji; Akatsuka, Takao

    2000-11-01

    Autoradiography is a useful imaging technique to understand biological functions using tracers including radio isotopes (RI's). However, it is not easy to describe the distribution of different kinds of tracers simultaneously by conventional autoradiography using X-ray film or Imaging plate. Each tracer describes each corresponding biological function. Therefore, if we can simultaneously estimate distribution of different kinds of tracer materials, the multispectral autoradiography must be a quite powerful tool to better understand physiological mechanisms of organs. So we are developing a system using a solid state detector (SSD) with high energy- resolution. Here, we introduce an imaging technique with a coded aperture to get spatial and spectral information more efficiently. In this paper, the imaging principle is described, and its validity and fundamental property are discussed by both simulation and phantom experiments with RI's such as 201Tl, 99mTc, 67Ga, and 123I.

  13. SOLISOL-handling of solid solutions. Version 1.1

    International Nuclear Information System (INIS)

    Boerjesson, S.; Emren, A.

    1992-09-01

    SOLISOL is a C computer program designed to model geochemical reactions involving solid solutions. The program searches equilibrium concentrations of the components in the aqueous phase and the solid solution given by limited quantities of the solid solution components. The equilibrium code PHREEQE is used as a subprogram in SOLISOL. Subprograms external to PHREEQE extract information from PHREEQE results, take care of conserved properties, calculate solubilities and produce inputdata for PHREEQE. The essential idea in this process is to calculate solubilities for the components in terms of saturation indices, and give directions to PHREEQE on how to search for the equilibrium under those constraints. (au)

  14. Solid on liquid deposition, a review of technological solutions

    OpenAIRE

    Homsy, Alexandra; Laux, Edith; Jeandupeux, Laure; Charmet, Jérôme; Bitterli, Roland; Botta, Chiara; Rebetez, Yves; Banakh, Oksana; Keppner, Herbert

    2015-01-01

    Solid-on-liquid deposition (SOLID) techniques are of great interest to the MEMS and NEMS (Micro- and Nano Electro Mechanical Systems) community because of potential applications in biomedical engineering, on-chip liquid trapping, tunable micro-lenses, and replacements of gate oxides. However, depositing solids on liquid with subsequent hermetic sealing is difficult because liquids tend to have a lower density than solids. Furthermore, current systems seen in nature lack thermal, mechanical or...

  15. On Identifying which Intermediate Nodes Should Code in Multicast Networks

    DEFF Research Database (Denmark)

    Pinto, Tiago; Roetter, Daniel Enrique Lucani; Médard, Muriel

    2013-01-01

    the data packets. Previous work has shown that in lossless wireline networks, the performance of tree-packing mechanisms is comparable to network coding, albeit with added complexity at the time of computing the trees. This means that most nodes in the network need not code. Thus, mechanisms that identify...... intermediate nodes that do require coding is instrumental for the efficient operation of coded networks and can have a significant impact in overall energy consumption. We present a distributed, low complexity algorithm that allows every node to identify if it should code and, if so, through what output link...

  16. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO2 layers

    International Nuclear Information System (INIS)

    Sharma, Parul; Anguita, J V; Stolojan, V; Henley, S J; Silva, S R P

    2010-01-01

    A large area compatible and solid-state process for growing silica nanowires is reported using nickel, titanium and silicon dioxide layers on silicon. The silica nanowires also contain silicon, as indicated by Raman spectroscopy. The phonon confinement model is employed to measure the diameter of the Si rich tail for our samples. The measured Raman peak shift and full width at half-maximum variation with the nanowire diameter qualitatively match with data available in the literature. We have investigated the effect of the seedbed structure on the nanowires, and the effect of using different gas conditions in the growth stages. From this, we have obtained the growth mechanism, and deduced the role of each individual substrate seedbed layer in the growth of the nanowires. We report a combined growth mechanism, where the growth is initiated by a solid-liquid-solid process, which is then followed by a vapour-liquid-solid process. We also report on the formation of two distinct structures of nanowires (type I and type II). The growth of these can be controlled by the use of titanium in the seedbed. We also observe that the diameter of the nanowires exhibits an inverse relation with the catalyst thickness.

  17. Code, standard and specifications

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    Radiography also same as the other technique, it need standard. This standard was used widely and method of used it also regular. With that, radiography testing only practical based on regulations as mentioned and documented. These regulation or guideline documented in code, standard and specifications. In Malaysia, level one and basic radiographer can do radiography work based on instruction give by level two or three radiographer. This instruction was produced based on guideline that mention in document. Level two must follow the specifications mentioned in standard when write the instruction. From this scenario, it makes clearly that this radiography work is a type of work that everything must follow the rule. For the code, the radiography follow the code of American Society for Mechanical Engineer (ASME) and the only code that have in Malaysia for this time is rule that published by Atomic Energy Licensing Board (AELB) known as Practical code for radiation Protection in Industrial radiography. With the existence of this code, all the radiography must follow the rule or standard regulated automatically.

  18. Yucca Mountain Project thermal and mechanical codes first benchmark exercise: Part 3, Jointed rock mass analysis

    International Nuclear Information System (INIS)

    Costin, L.S.; Bauer, S.J.

    1991-10-01

    Thermal and mechanical models for intact and jointed rock mass behavior are being developed, verified, and validated at Sandia National Laboratories for the Yucca Mountain Site Characterization Project. Benchmarking is an essential part of this effort and is one of the tools used to demonstrate verification of engineering software used to solve thermomechanical problems. This report presents the results of the third (and final) phase of the first thermomechanical benchmark exercise. In the first phase of this exercise, nonlinear heat conduction code were used to solve the thermal portion of the benchmark problem. The results from the thermal analysis were then used as input to the second and third phases of the exercise, which consisted of solving the structural portion of the benchmark problem. In the second phase of the exercise, a linear elastic rock mass model was used. In the third phase of the exercise, two different nonlinear jointed rock mass models were used to solve the thermostructural problem. Both models, the Sandia compliant joint model and the RE/SPEC joint empirical model, explicitly incorporate the effect of the joints on the response of the continuum. Three different structural codes, JAC, SANCHO, and SPECTROM-31, were used with the above models in the third phase of the study. Each model was implemented in two different codes so that direct comparisons of results from each model could be made. The results submitted by the participants showed that the finite element solutions using each model were in reasonable agreement. Some consistent differences between the solutions using the two different models were noted but are not considered important to verification of the codes. 9 refs., 18 figs., 8 tabs

  19. SWIMS: a small-angle multiple scattering computer code

    International Nuclear Information System (INIS)

    Sayer, R.O.

    1976-07-01

    SWIMS (Sigmund and WInterbon Multiple Scattering) is a computer code for calculation of the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media. The code uses the tabulated angular distributions of Sigmund and Winterbon for a Thomas-Fermi screened Coulomb potential. The fraction of the incident beam scattered into a cone defined by the polar angle α is computed as a function of α for reduced thicknesses over the range 0.01 less than or equal to tau less than or equal to 10.0. 1 figure, 2 tables

  20. The representatives of the various intersubchannel transfer mechanisms and their effects on the predictions of the ASSERT-4 subchannel code

    Energy Technology Data Exchange (ETDEWEB)

    Tye, P [Ecole Polytechnique, Montreal, PQ (Canada)

    1994-12-31

    In this paper, effects of that the constitutive relations used to represent some of the intersubchannel transfer mechanisms have on the predictions of the ASSERT-4 subchannel code for horizontal flows are examined. In particular the choices made in the representation of the gravity driven phase separation phenomena, which is unique to the horizontal fuel channel arrangement seen in CANDU reactors, are analyzed. This is done by comparing the predictions of the ASSERT-4 subchannel code with experimental data on void fraction, mass flow rate, and pressure drop obtained for two horizontal interconnected subchannels. ASSERT-4, the subchannel code used by the Canadian nuclear industry, uses an advanced drift flux model which permits departure from both thermal and mechanical equilibrium between the phases to be accurately modeled. In particular ASSERT-4 contains models for the buoyancy effects which cause phase separation between adjacent subchannels in horizontal flows. This feature, which is of great importance in the subchannel analysis of CANDU reactors, is implemented in the constitutive relationship for the relative velocity required by the conservation equations. In order to, as much as is physically possible, isolate different inter-subchannel transfer mechanisms, three different subchannel orientations are analyzed. These are: the two subchannels at the same elevation, the high void subchannel below the low void subchannel, and the high void subchannel above the low void subchannel. It is observed that for all three subchannel orientations ASSERT-4 does a reasonably good job of predicting the experimental trends. However, certain modifications to the representation of the gravitational phase separation effects which seem to improve the overall predictions are suggested. (author). 12 refs., 12 figs.

  1. Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India.

    Science.gov (United States)

    Ramaiah, B J; Ramana, G V; Datta, Manoj

    2017-10-01

    The article presents the physical and mechanical properties of the emplaced municipal solid waste (MSW) recovered from different locations of the Ghazipur and Okhla dumps both located at Delhi, India. Mechanical compressibility and shear strength of the collected MSW were evaluated using a 300×300mm direct shear (DS) shear box. Compression ratio (C c ') of MSW at these two dumps varied between 0.11 and 0.17 and is falling on the lower bound of the range (0.1-0.5) of the data reported in the literature for MSW. Low C c ' of MSW is attributed to the relatively low percentages of compressible elements such as textiles, plastics and paper, coupled with relatively high percentages of inert materials such as soil-like and gravel sized fractions. Shear strength of MSW tested is observed to be displacement dependent. The mobilized shear strength parameters i.e., the apparent cohesion intercept (c') and friction angle (ϕ') of MSW at these two dumps are best characterized by c'=13kPa and ϕ'=23° at 25mm displacement and c'=17kPa and ϕ'=34° at 55mm displacement and are in the range reported for MSW in the literature. A large database on the shear strength of MSW from 18 countries that includes: the experimental data from 277 large-scale DS tests (in-situ and laboratory) and the data from back analysis of 11 failed landfill slopes is statistically analyzed. Based on the analysis, a simple linear shear strength envelope, characterized by c'=17kPa and ϕ'=32°, is proposed for MSW for preliminary use in the absence of site-specific data for stability evaluation of the solid waste landfill under drained conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Two mechanisms of droplet splashing on a solid substrate

    KAUST Repository

    Jian, Zhen

    2017-11-29

    We investigate droplet impact on a solid substrate in order to understand the influence of the gas in the splashing dynamics. We use numerical simulations where both the liquid and the gas phases are considered incompressible in order to focus on the gas inertial and viscous contributions. We first confirm that the dominant gas effect on the dynamics is due to its viscosity through the cushioning of the gas layer beneath the droplet. We then describe an additional inertial effect that is directly related to the gas density. The two different splashing mechanisms initially suggested theoretically are observed numerically, depending on whether a jet is created before or after the impacting droplet wets the substrate. Finally, we provide a phase diagram of the drop impact outputs as the gas viscosity and density vary, emphasizing the dominant effect of the gas viscosity with a small correction due to the gas density. Our results also suggest that gas inertia influences the splashing formation through a Kelvin–Helmholtz-like instability of the surface of the impacting droplet, in agreement with former theoretical works.

  3. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  4. Pharmaceutical cocrystals:formation mechanisms, solubility behaviour and solid-state properties

    OpenAIRE

    Alhalaweh, Amjad

    2012-01-01

    The primary aim of pharmaceutical materials engineering is the successful formulation and process development of pharmaceutical products. The diversity of solid forms available offers attractive opportunities for tailoring material properties. In this context, pharmaceutical cocrystals, multicomponent crystalline materials with definite stoichiometries often stabilised by hydrogen bonding, have recently emerged as interesting alternative solid forms with potential for improving the physical a...

  5. Updated questions and research on mechanisms which control release in nuclear power plants. Solubility or other effects?

    International Nuclear Information System (INIS)

    Guinard, L.; Noel, D.; Kerrec, O.

    1997-01-01

    There are many computer codes, based on mass transfer in the liquid phase, which have been developed to help in predicting emission and transport of corrosion products. Their limit for the release is discussed and, through two new studies, it is investigated how new mechanisms can be taken into account. Models based on the transfer of electronic or ionic charges in the solid phase should be developed. (K.A.)

  6. Updated questions and research on mechanisms which control release in nuclear power plants. Solubility or other effects?

    Energy Technology Data Exchange (ETDEWEB)

    Guinard, L.; Noel, D.; Kerrec, O.

    1997-01-01

    There are many computer codes, based on mass transfer in the liquid phase, which have been developed to help in predicting emission and transport of corrosion products. Their limit for the release is discussed and, through two new studies, it is investigated how new mechanisms can be taken into account. Models based on the transfer of electronic or ionic charges in the solid phase should be developed. (K.A.). 29 refs.

  7. Development of steam explosion simulation code JASMINE

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagano, Katsuhiro; Araki, Kazuhiro

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author).

  8. GRAYSKY-A new gamma-ray skyshine code

    International Nuclear Information System (INIS)

    Witts, D.J.; Twardowski, T.; Watmough, M.H.

    1993-01-01

    This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is accounted for by the use of buildup factors. This is an approximate method of solution but one that has been shown to produce results that are acceptable for dose rate predictions on operating plants. The novel features of GRAYSKY are as follows: 1. The code is fully integrated with a semianalytical point kernel shielding code, currently under development at BNFL, which offers powerful solid-body modeling capabilities. 2. The geometry modeling also allows the skyshine response function to be used in a manner that accounts for the shielding of air-scattered radiation. 3. Skyshine buildup factors calculated using the skyshine response function have been used as well as dose buildup factors

  9. Development of steam explosion simulation code JASMINE

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun; Nagano, Katsuhiro; Araki, Kazuhiro.

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author)

  10. The reductive decomposition of calcium sulphate I. Kinetics of the apparent solid-solid reaction

    NARCIS (Netherlands)

    Kamphuis, B.; Potma, A.W.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The reductive decomposition of calcium sulphate by hydrogen is used for the regeneration of calcium-based atmospheric fluidized bed combustion (AFBC) SO2 sorbents. The apparent solid¿solid reaction between CaS and CaSO4, one of the steps involved in the reaction mechanism of the reductive

  11. BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    Energy Technology Data Exchange (ETDEWEB)

    Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)

    2017-02-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  12. Gauge theory and defects in solids

    CERN Document Server

    Edelen, DGB

    2012-01-01

    This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field e

  13. A Restructuring of the HS Package for the MIDAS Computer Code

    International Nuclear Information System (INIS)

    Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W.

    2005-01-01

    As one of the processes for a localized severe accident analysis code, KAERI is developing a severe accident code MIDAS, based on MELCOR. The existing data saving method uses pointer variables for a fix-sized storage management, and it deteriorates the readability, maintainability and portability of the code. But new features in FORTRAN90 such as a dynamic allocation have been used for the restructuring. The restructuring of the data saving and transferring method of the existing code makes it easy to understand the code. Before an entire restructuring of the code, a restructuring template for a simple package was developed and tested. The target for the restructuring was the HS package which is responsible for calculation the heat conduction within an intact, solid structure and energy transfer across its boundary surfaces into control volumes. The verification was done through comparing the results before and after the restructuring

  14. Induction technology optimization code

    International Nuclear Information System (INIS)

    Caporaso, G.J.; Brooks, A.L.; Kirbie, H.C.

    1992-01-01

    A code has been developed to evaluate relative costs of induction accelerator driver systems for relativistic klystrons. The code incorporates beam generation, transport and pulsed power system constraints to provide an integrated design tool. The code generates an injector/accelerator combination which satisfies the top level requirements and all system constraints once a small number of design choices have been specified (rise time of the injector voltage and aspect ratio of the ferrite induction cores, for example). The code calculates dimensions of accelerator mechanical assemblies and values of all electrical components. Cost factors for machined parts, raw materials and components are applied to yield a total system cost. These costs are then plotted as a function of the two design choices to enable selection of an optimum design based on various criteria. (Author) 11 refs., 3 figs

  15. OCENER, a one-dimensional computer code for the numerical simulation of the mechanical effects of peaceful underground nuclear explosions in rocks

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.; Chidambaram, R.

    1979-01-01

    An account is given of a one-dimensional spherical symmetric computer code for the numerical simulation of the effects of peaceful underground nuclear explosions in rocks (OCENER). In the code, the nature of the stress field and response of the medium to this field are modelled numerically by finite difference form of the laws of continuum mechanics and the constitutive relations of the rock medium in which the detonation occurs. It enables to approximate well the cavity growth and fracturing of the surrounding rock for contained explosions and the events upto the time the spherical symmetry is valid for cratering-type explosions. (auth.)

  16. Computational mechanics research at ONR

    International Nuclear Information System (INIS)

    Kushner, A.S.

    1986-01-01

    Computational mechanics is not an identified program at the Office of Naval Research (ONR), but rather plays a key role in the Solid Mechanics, Fluid Mechanics, Energy Conversion, and Materials Science programs. The basic philosophy of the Mechanics Division at ONR is to support fundamental research which expands the basis for understanding, predicting, and controlling the behavior of solid and fluid materials and systems at the physical and geometric scales appropriate to the phenomena of interest. It is shown in this paper that a strong commonalty of computational mechanics drivers exists for the forefront research areas in both solid and fluid mechanics

  17. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  18. Baseline options and greenhouse gas emission reduction of clean development mechanism project in urban solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Ai; Hanaki, K. [Department of Urban Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Aramaki, T. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904(Japan)

    2003-07-01

    The Clean Development Mechanism (CDM) was adopted in the Kyoto Protocol as a flexibility mechanism to reduce greenhouse gases (GHGs) and has been started with such projects as improving efficiency of individual technology. Although applying various countermeasures to urban areas has significant potentials for reducing GHGs, these countermeasures have not been proposed as CDM projects in the practical stage. A CDM project needs to be validated that it will reduce GHGs additionally compared with a baseline, that is, a predictive value of GHG emissions in the absence of the project. This study examined the introduction of solid waste incineration with electricity generation into three different cities, A, B and C. The main solid waste treatment and the main fuel source are landfill and coal, respectively, in City A, incineration and natural gas in City B, and landfill and hydro in City C. GHG emission reductions of each city under several baseline options assumed here were evaluated. Even if the same technology is introduced, the emission reduction greatly varies according to the current condition and the future plan of the city: 1043-1406 kg CO2/t of waste in City A, 198-580 kg CO2/t in City B, and wide range of zero to over 1000 kg CO2/t in City C. Baseline options also cause significant difference in the emission reduction even in the same city (City C). Incinerating solid waste after removing plastics by source separation in City B increased GHG emission reduction potential up to 730-900 kg CO2/t, which enhances the effectiveness as a CDM project.

  19. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  20. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  1. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  2. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  3. Development of code SFINEL (Spent fuel integrity evaluator)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Chin Young; Ohk, Young Kil; Yang, Yong Sik; Kim, Dong Ju; Kim, Nam Ku [Hanyang University, Seoul (Korea)

    1999-01-01

    SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed through this project. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms. SFINEL code has been thoroughly benchmarked against the collected in-pile data and operating experiences: deformation and rupture, and cladding oxidation, rod internal pressure creep, then comprehensive whole degradation process. (author). 75 refs., 51 figs., 5 tabs.

  4. GAPCON-THERMAL-3 code description

    International Nuclear Information System (INIS)

    Lanning, D.D.; Mohr, C.L.; Panisko, F.E.; Stewart, K.B.

    1978-01-01

    GAPCON-3 is a computer program that predicts the thermal and mechanical behavior of an operating fuel rod during its normal lifetime. The code calculates temperatures, dimensions, stresses, and strains for the fuel and the cladding in both the radial and axial directions for each step of the user specified power history. The method of weighted residuals is for the steady state temperature calculation, and is combined with a finite difference approximation of the time derivative for transient conditions. The stress strain analysis employs an iterative axisymmetric finite element procedure that includes plasticity and creep for normal and pellet-clad mechanical interaction loads. GAPCON-3 can solve steady state and operational transient problems. Comparisons of GAPCON-3 predictions to both closed form analytical solutions and actual inpile instrumented fuel rod data have demonstrated the ability of the code to calculate fuel rod behavior. GAPCON-3 features a restart capability and an associated plot package unavailable in previous GAPCON series codes

  5. GAPCON-THERMAL-3 code description

    Energy Technology Data Exchange (ETDEWEB)

    Lanning, D.D.; Mohr, C.L.; Panisko, F.E.; Stewart, K.B.

    1978-01-01

    GAPCON-3 is a computer program that predicts the thermal and mechanical behavior of an operating fuel rod during its normal lifetime. The code calculates temperatures, dimensions, stresses, and strains for the fuel and the cladding in both the radial and axial directions for each step of the user specified power history. The method of weighted residuals is for the steady state temperature calculation, and is combined with a finite difference approximation of the time derivative for transient conditions. The stress strain analysis employs an iterative axisymmetric finite element procedure that includes plasticity and creep for normal and pellet-clad mechanical interaction loads. GAPCON-3 can solve steady state and operational transient problems. Comparisons of GAPCON-3 predictions to both closed form analytical solutions and actual inpile instrumented fuel rod data have demonstrated the ability of the code to calculate fuel rod behavior. GAPCON-3 features a restart capability and an associated plot package unavailable in previous GAPCON series codes.

  6. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Cui, Shijie; Zhang, Dalin; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-01

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  7. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  8. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  9. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    Science.gov (United States)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  10. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  11. Evaluation of the thermal-mechanical performance of fuel rods of a BWR during a power ramp using the FUELSIM code

    International Nuclear Information System (INIS)

    Pantoja C, R.

    2010-01-01

    To avoid the risk to environment due to release of radioactive material, because of occurrence of an accident, it is the priority of the design and performance of the diverse systems of safety of a commercial nuclear power plant. The safety of nuclear power plants requires, therefore, monitoring those parameters having some direct or indirect effect on safety. The thermal limits are values set for those parameters considered having most impact on the safe operation of a nuclear power reactor. Some thermal limits monitoring requires the thermal-mechanical analysis of the rods containing the nuclear fuel. The fuel rod thermal-mechanical behavior under irradiation is a complex process in which there exists a great deal of interrelated physical and chemical phenomena, so that the fuel rod performance analysis in the core of a nuclear power reactor is generally accomplished by using computer codes, which integrate several of the phenomena that are expected to occur during the lifetime of the fuel rod in the core. The main application of the thermal-mechanical analysis codes is the prediction of occurrence of conditions and/or phenomena that could lead to the deterioration or even mechanical failure of the fuel rod cladding, as, for example, the pellet-cladding interaction. In the operation of a nuclear power reactor, fuel preconditioning operations refer to the operational procedures employed to reduce the fuel rod failure probability due to fuel-cladding interaction, specially during reactor startup. Preconditioning simulations are therefore necessary to determine in advance limit values for the power that can be generated in a fuel rod, and thus avoiding any rod damage. In this work, a first analysis of the thermal-mechanical performance of typical fuel rods used in nuclear reactors of the type BWR 5/6, as those two nuclear reactors in Laguna Verde, Veracruz, is performed. This study includes two types of fuel rods: one from a fuel assembly design with an array 8 x 8

  12. Structural Relaxations and Thermodynamic Properties of Molecular Amorphous Solids by Mechanical Milling

    Science.gov (United States)

    Tsukushi, I.; Yamamuro, O.; Matsuo, T.

    The organic crystals of tri-O-methyl-β-cyclodextrin (TMCD) and its three clathrate compounds containing benzoic acid (BA), p-nitrobenzoic acid (NBA) and p-hydroxybenzoic acid (HBA), sucrose (SUC), salicin (SAL), phenolphthalein (PP), 1,3,5-tri-α-naphthylbenzene (TNB) were amorphized by milling with a vibrating mill for 2 ˜ 16 hours at room temperature. The amorphization was checked by differential scanning calorimetry (DSC) and X-ray powder diffraction. The heat capacities of crystals, liquid quenched glasses (LQG), and mechanically-milled amorphous solid (MMAS) of TMCD and TNB were measured with an adiabatic calorimeter in the temperature range between 12 and 375 K. For both compounds, the enthalpy relaxation of MMAS appeared in the wide temperature range below Tg and the released configurational enthalpy was much larger than that of LQG, indicating that MMAS is more disordered and strained than LQG.

  13. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.

    Science.gov (United States)

    Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2010-02-15

    Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Code of a Tokamak Fusion Energy Facility ITER

    International Nuclear Information System (INIS)

    Yasuhide Asada; Kenzo Miya; Kazuhiko Hada; Eisuke Tada

    2002-01-01

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of s ystem-based code for integrity . The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  15. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  16. FEMAXI-III, a computer code for fuel rod performance analysis

    International Nuclear Information System (INIS)

    Ito, K.; Iwano, Y.; Ichikawa, M.; Okubo, T.

    1983-01-01

    This paper presents a method of fuel rod thermal-mechanical performance analysis used in the FEMAXI-III code. The code incorporates the models describing thermal-mechanical processes such as pellet-cladding thermal expansion, pellet irradiation swelling, densification, relocation and fission gas release as they affect pellet-cladding gap thermal conductance. The code performs the thermal behavior analysis of a full-length fuel rod within the framework of one-dimensional multi-zone modeling. The mechanical effects including ridge deformation is rigorously analyzed by applying the axisymmetric finite element method. The finite element geometrical model is confined to a half-pellet-height region with the assumption that pellet-pellet interaction is symmetrical. The 8-node quadratic isoparametric ring elements are adopted for obtaining accurate finite element solutions. The Newton-Raphson iteration with an implicit algorithm is applied to perform the analysis of non-linear material behaviors accurately and stably. The pellet-cladding interaction mechanism is exactly treated using the nodal continuity conditions. The code is applicable to the thermal-mechanical analysis of water reactor fuel rods experiencing variable power histories. (orig.)

  17. Development of chemical equilibrium analysis code 'CHEEQ'

    International Nuclear Information System (INIS)

    Nagai, Shuichiro

    2006-08-01

    'CHEEQ' code which calculates the partial pressure and the mass of the system consisting of ideal gas and pure condensed phase compounds, was developed. Characteristics of 'CHEEQ' code are as follows. All the chemical equilibrium equations were described by the formation reactions from the mono-atomic gases in order to simplify the code structure and input preparation. Chemical equilibrium conditions, Σν i μ i =0 for the gaseous compounds and precipitated condensed phase compounds and Σν i μ i > 0 for the non-precipitated condensed phase compounds, were applied. Where, ν i and μ i are stoichiometric coefficient and chemical potential of component i. Virtual solid model was introduced to perform the calculation of constant partial pressure condition. 'CHEEQ' was consisted of following 3 parts, (1) analysis code, zc132. f. (2) thermodynamic data base, zmdb01 and (3) input data file, zindb. 'CHEEQ' code can calculate the system which consisted of elements (max.20), condensed phase compounds (max.100) and gaseous compounds. (max.200). Thermodynamic data base, zmdb01 contains about 1000 elements and compounds, and 200 of them were Actinide elements and their compounds. This report describes the basic equations, the outline of the solution procedure and instructions to prepare the input data and to evaluate the calculation results. (author)

  18. Laser-induced stresses versus mechanical stress power measurements during laser ablation of solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; Russo, R.E.

    1995-01-01

    Laser-induced stresses resulting from high-power laser-material interactions have been studied extensively. However, the rate of change in mechanical energy, or stress power, due to laser-induced stresses has only recently been investigated. An unanswered question for monitoring laser-material interactions in the far-field is whether stress power differs from stresses measured, particularly with respect to laser-energy coupling to a solid target. This letter shows experimental acoustic data which demonstrate that stress power measured in the far field of the target shows changes in laser-energy coupling, whereas the stresses measured do not. For the ambient medium above the target, stress power and stress together reflect changes in laser-energy coupling. copyright 1995 American Institute of Physics

  19. submitter BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    CERN Document Server

    Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th

    2017-01-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.

  20. Wave propagation in elastic solids

    CERN Document Server

    Achenbach, Jan

    1984-01-01

    The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat

  1. Bring out your codes! Bring out your codes! (Increasing Software Visibility and Re-use)

    Science.gov (United States)

    Allen, A.; Berriman, B.; Brunner, R.; Burger, D.; DuPrie, K.; Hanisch, R. J.; Mann, R.; Mink, J.; Sandin, C.; Shortridge, K.; Teuben, P.

    2013-10-01

    Progress is being made in code discoverability and preservation, but as discussed at ADASS XXI, many codes still remain hidden from public view. With the Astrophysics Source Code Library (ASCL) now indexed by the SAO/NASA Astrophysics Data System (ADS), the introduction of a new journal, Astronomy & Computing, focused on astrophysics software, and the increasing success of education efforts such as Software Carpentry and SciCoder, the community has the opportunity to set a higher standard for its science by encouraging the release of software for examination and possible reuse. We assembled representatives of the community to present issues inhibiting code release and sought suggestions for tackling these factors. The session began with brief statements by panelists; the floor was then opened for discussion and ideas. Comments covered a diverse range of related topics and points of view, with apparent support for the propositions that algorithms should be readily available, code used to produce published scientific results should be made available, and there should be discovery mechanisms to allow these to be found easily. With increased use of resources such as GitHub (for code availability), ASCL (for code discovery), and a stated strong preference from the new journal Astronomy & Computing for code release, we expect to see additional progress over the next few years.

  2. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 4

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Sagawa, Hiroshi; Matsuoka, Fushiki; Chijimatsu, Masakazu; Amemiya, Kiyoshi

    2005-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu-3D·EL and PHREEQC, those are existing analysis code, is developed in this study. (1) We have introduced 8 nodes element for THAMES code in order to solve the coupled thermal, hydraulic and mechanical phenomena. Furthermore, in order to obtain the reliable resolution, each phenomenon is solved separately instead of full coupling. (2) In order to upgrade Dtransu-3D·EL model, we have introduced gas diffusion independent on aqueous element. (3) We have adopted surface site density for the bentonite depend on water content and CSH solid phase based on the ratio of C/S for cementitious material in the geochemistry module, and studied on the methodology of time mesh for kinetic model and separate method for pore water chemistry in the bentonite. (4) In order to develop THMC code, we have modified Multi p hreeqc to keep efficiency distributed processing for geochemical calculation and modified COUPLYS to calculate continuous treatment, and studied on the coupling module. After THAMES, Dtransu, PHREEQC and the hydraulic conductivity module were installed in COUPLYS, verification study was carried out to check basic function. (5) In order to ensure efficiency of analysis processor, we have developed supporting tool for graphic processor for THMC code and supporting tool of interpretation for geochemistry results. (author)

  3. Guide to the Changes between the 2009 and 2012 International Energy Conservation Code

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, Terry S.; Conover, David R.

    2012-05-31

    The International Code Council (ICC) published the 2012 International Energy Conservation Code{reg_sign} (IECC) in early 2012. The 2012 IECC is based on revisions, additions, and deletions to the 2009 IECC that were considered during the ICC code development process conducted in 2011. Solid vertical lines, arrows, or asterisks printed in the 2012 IECC indicate where revisions, deletions, or relocations of text respectively were made to 2009 IECC. Although these marginal markings indicate where changes have been made to the code, they do not provide any further guidance, leaving the reader to consult and compare the 2009 and 2012 IECC for more detail.

  4. Pulse coded safety logic for PFBR

    International Nuclear Information System (INIS)

    Anwer, Md. Najam; Satheesh, N.; Nagaraj, C.P.; Krishnakumar, B.

    2002-01-01

    Full text: Reactor safety logic is designed to initiate safety action against design basis events. The reactor is shutdown by de-energizing electromagnets and dropping the absorber rods under gravity. In prototype fast breeder reactor (PFBR), shutdown is affected by two independent shutdown systems, viz., control and safety rod drive mechanism (CSRDM) and diverse safety rod drive mechanism (DSRDM). Two separate safety logics are proposed for CSRDM and DSRDM, i.e. solid state logic with on-line fine impulse test (FIT) for CSRDM and pulse coded safety logic (PCSL) for DSRDM. The PCSL primarily utilizes the fact that the vast majority of faults in the logic circuitry result in static conditions at the output. It is arranged such that the presence of pulses are required to hold the shutdown actuators and any DC logic state, either logic 0 or logic 1 releases them. It is a dynamic, self-testing logic and used in a number of reactors. This paper describes the principle of operation of PCSL, its advantages, the concept of guard line logic (GLL), detection of stuck at 0 and stuck at 1 faults, fail safe and diversity features. The implementation of PCSL using Altera Max+Plus II software for PFBR trip signals and the results of simulation are discussed. This paper also describes a test jig using 80186 based system for testing PCSL for various input parameter's combinations and monitoring the outputs

  5. Coded ultrasonic remote control without batteries

    International Nuclear Information System (INIS)

    Gerhardy, C; Burlage, K; Schomburg, W K

    2009-01-01

    A concept for battery-less remote controls has been developed based on mechanically actuated beams and micro whistles generating ultrasound signals. These signals need to be frequency or time coded to increase the number of signals which can be distinguished from each other and environmental ultrasound. Several designs for generating coded ultrasonic signals have been investigated

  6. The ASME Boiler and Pressure Vessel Code: overview

    International Nuclear Information System (INIS)

    Farr, J.R.

    1987-01-01

    To become familiar with the Boiler and Pressure Vessel Code of the American Society of Mechanical Engineers, it is necessary to understand the history, organization, and operation of the Boiler Code Committee as well as to become familiar with the important aspects of each Section of the Code. This chapter will review the background and contents of the Code as well as give a review of the salient contents of most sections. (author)

  7. NATIONAL EXPERIENCES REGARDING CORPORATE GOVERNANCE PROPER PRACTICE CODES

    Directory of Open Access Journals (Sweden)

    Durgheu Liliana

    2010-12-01

    Full Text Available This paper is about the principles of proper governance codes, which even tough have blossomed in all parts of the world for more than a decade, the degree in which companies adopt the codes vary in different countries, and the decision to adopt a certain code does not automatically guarranty efficient corporate governance. The paper trys to identify the mechanisms needed for implementing the codes and that will lead to higher efficiency.

  8. Diode-pumped solid state laser for inertial fusion energy

    International Nuclear Information System (INIS)

    Payne, S.A.; Krupke, W.F.; Orth, C.D.

    1994-11-01

    The authors evaluate the prospect for development of a diode-pumped solid-state-laser driver in an inertial fusion energy power plant. Using a computer code, they predict that their 1 GWe design will offer electricity at 8.6 cents/kW · hr with the laser operating at 8.6% efficiency and the recycled power level at 31%. The results of their initial subscale experimental testbed of a diode-pumped solid state laser are encouraging, demonstrating good efficiencies and robustness

  9. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  10. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  11. Multiphase integral reacting flow computer code (ICOMFLO): User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.L.; Lottes, S.A.; Petrick, M.

    1997-11-01

    A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air

  12. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2016-08-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty

  13. Solid Rocket Motor Design Using Hybrid Optimization

    Directory of Open Access Journals (Sweden)

    Kevin Albarado

    2012-01-01

    Full Text Available A particle swarm/pattern search hybrid optimizer was used to drive a solid rocket motor modeling code to an optimal solution. The solid motor code models tapered motor geometries using analytical burn back methods by slicing the grain into thin sections along the axial direction. Grains with circular perforated stars, wagon wheels, and dog bones can be considered and multiple tapered sections can be constructed. The hybrid approach to optimization is capable of exploring large areas of the solution space through particle swarming, but is also able to climb “hills” of optimality through gradient based pattern searching. A preliminary method for designing tapered internal geometry as well as tapered outer mold-line geometry is presented. A total of four optimization cases were performed. The first two case studies examines designing motors to match a given regressive-progressive-regressive burn profile. The third case study studies designing a neutrally burning right circular perforated grain (utilizing inner and external geometry tapering. The final case study studies designing a linearly regressive burning profile for right circular perforated (tapered grains.

  14. Vertical hydraulic transport of particulate solids

    International Nuclear Information System (INIS)

    Restini, C.V.; Massarani, G.

    1977-01-01

    The problem of particulate solid vertical transport is formulated using the conservation equations of Continuum Mechanics. It is shown that the constitutive equation for solid-fluid interaction term in the equations of motion may be determined by rather simple experiments of homogeneous fluidization. The predicted fluid pressure drop and solid concentration are in satisfacting agreement with past experiments and with data obtained in this work. (Author) [pt

  15. Multiple Schemes for Mobile Payment Authentication Using QR Code and Visual Cryptography

    Directory of Open Access Journals (Sweden)

    Jianfeng Lu

    2017-01-01

    Full Text Available QR code (quick response code is used due to its beneficial properties, especially in the mobile payment field. However, there exists an inevitable risk in the transaction process. It is not easily perceived that the attacker tampers with or replaces the QR code that contains merchant’s beneficiary account. Thus, it is of great urgency to conduct authentication of QR code. In this study, we propose a novel mechanism based on visual cryptography scheme (VCS and aesthetic QR code, which contains three primary schemes for different concealment levels. The main steps of these schemes are as follows. Firstly, one original QR code is split into two shadows using VC multiple rules; secondly, the two shadows are embedded into the same background image, respectively, and the embedded results are fused with the same carrier QR code, respectively, using XOR mechanism of RS and QR code error correction mechanism. Finally, the two aesthetic QR codes can be stacked precisely and the original QR code is restored according to the defined VCS. Experiments corresponding to three proposed schemes are conducted and demonstrate the feasibility and security of the mobile payment authentication, the significant improvement of the concealment for the shadows in QR code, and the diversity of mobile payment authentication.

  16. Mechanical Engineering Department engineering research: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication

  17. Aromatic C-Nitroso Compounds and Their Dimers: A Model for Probing the Reaction Mechanisms in Crystalline Molecular Solids

    Directory of Open Access Journals (Sweden)

    Ivana Biljan

    2017-12-01

    Full Text Available This review is focused on the dimerization and dissociation of aromatic C-nitroso compounds and their dimers, the reactions that could be used as a convenient model for studying the thermal organic solid-state reaction mechanisms. This molecular model is simple because it includes formation or breaking of only one covalent bond between two nitrogen atoms. The crystalline molecular solids of nitroso dimers (azodioxides dissociate by photolysis under the cryogenic conditions, and re-dimerize by slow warming. The thermal re-dimerization reaction is examined under the different topotactic conditions in crystals: disordering, surface defects, and phase transformations. Depending on the conditions, and on the molecular structure, aromatic C-nitroso compounds can associate to form one-dimensional polymeric structures and are able to self-assemble on gold surfaces.

  18. Nuclear code case development of printed-circuit heat exchangers with thermal and mechanical performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Aakre, Shaun R. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Mechanical Engineering; Jentz, Ian W. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Mechanical Engineering; Anderson, Mark H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Mechanical Engineering

    2018-03-27

    The U.S. Department of Energy has agreed to fund a three-year integrated research project to close technical gaps involved with compact heat exchangers to be used in nuclear applications. This paper introduces the goals of the project, the research institutions, and industrial partners working in collaboration to develop a draft Boiler and Pressure Vessel Code Case for this technology. Heat exchanger testing, as well as non-destructive and destructive evaluation, will be performed by researchers across the country to understand the performance of compact heat exchangers. Testing will be performed using coolants and conditions proposed for Gen IV Reactor designs. Preliminary observations of the mechanical failure mechanisms of the heat exchangers using destructive and non-destructive methods is presented. Unit-cell finite element models assembled to help predict the mechanical behavior of these high-temperature components are discussed as well. Performance testing methodology is laid out in this paper along with preliminary modeling results, an introduction to x-ray and neutron inspection techniques, and results from a recent pressurization test of a printed-circuit heat exchanger. The operational and quality assurance knowledge gained from these models and validation tests will be useful to developers of supercritical CO2 systems, which commonly employ printed-circuit heat exchangers.

  19. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  20. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  1. Non-Coding RNAs in Arabidopsis

    DEFF Research Database (Denmark)

    van Wonterghem, Miranda

    This work evolves around elucidating the mechanisms of micro RNAs (miRNAs) in Arabidopsis thaliana. I identified a new class of nuclear non-coding RNAs derived from protein coding genes. The genes are miRNA targets with extensive gene body methylation. The RNA species are nuclear localized and de...

  2. Network Coding Protocols for Data Gathering Applications

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    Tunable sparse network coding (TSNC) with various sparsity levels of the coded packets and different feedback mechanisms is analysed in the context of data gathering applications in multi-hop networks. The goal is to minimize the completion time, i.e., the total time required to collect all data ...

  3. Solid state synthesis, crystal growth and optical properties of urea and p-chloronitrobenzene solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2016-01-15

    Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.

  4. Mechanical behavior of a fast reactor core application of 3D codes to SUPER-PHENIX 1 and parametric studies

    International Nuclear Information System (INIS)

    Bernard, A.; Dorsselaere, J.P. van

    1984-01-01

    This paper presents the SPX1 project calculations, performed on 1/3 core with the aid of the series of 3D codes described in Session 2. The main criteria, related to contact forces, head bowings and handling forces, are fulfilled. Some parametric studies on the mechanical equilibrium are also presented. The main parameters are: the axial pad level, the subassembly stiffness and the pad local stiffness. (author)

  5. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  6. Development of high temperature mechanical rig for characterizing the viscoplastic properties of alloys used in solid oxide cells

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Greco, Fabio; Kwok, Kawai

    2018-01-01

    Analyzing the thermo-mechanical reliability of solid oxide cell (SOC) stack requires precise measurement of the mechanical properties of the different components in the stack at operating conditions of the SOC. It is challenging to precisely characterize the time dependent deformational properties...... temperature and in controlled atmosphere. The methodology uses a mechanical loading rig designed to apply variable as well as constant loads on samples within a gas-tight high temperature furnace. In addition, a unique remotely installed length measuring setup involving laser micrometer is used to monitor...... deformations in the sample. Application of the methodology is exemplified by measurement of stress relaxation, creep and constant strain rate behaviors of a high temperature alloy used in the construction of SOC metallic interconnects at different temperatures. Furthermore, measurements using the proposed...

  7. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  8. The Mechanism of Solid State Joining THA with AlMg3Mn Alloy

    Directory of Open Access Journals (Sweden)

    Kaczorowski M.

    2014-06-01

    Full Text Available The results of experimental study of solid state joining of tungsten heavy alloy (THA with AlMg3Mn alloy are presented. The aim of these investigations was to study the mechanism of joining two extremely different materials used for military applications. The continuous rotary friction welding method was used in the experiment. The parameters of friction welding process i.e. friction load and friction time in whole studies were changed in the range 10 to 30kN and 0,5 to 10s respectively while forging load and time were constant and equals 50kN and 5s. The results presented here concerns only a small part whole studies which were described elsewhere. These are focused on the mechanism of joining which can be adhesive or diffusion controlled. The experiment included macro- and microstructure observations which were supplemented with SEM investigations. The goal of the last one was to reveal the character of fracture surface after tensile test and to looking for anticipated diffusion of aluminum into THA matrix. The results showed that joining of THA with AlMg2Mn alloy has mainly adhesive character, although the diffusion cannot be excluded.

  9. Ab initio study of structural and mechanical property of solid molecular hydrogens

    Science.gov (United States)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  10. Solid waste management in Khartoum industrial area

    International Nuclear Information System (INIS)

    Elsidig, N. O. A.

    2004-05-01

    This study was conducted in Khartoum industrial area (KIA). The study discusses solid waste generation issues in KIA as well as solid waste collection, storage, transport and final disposal methods. A focus on environmental impact resulting from the accumulation of solid waste was presented by reviewing solid waste management in developed as well as developing countries starting from generation to final disposal. Environmental health legislation in Sudan was investigated. The study covers all the (eight) industrial sub-sectors presented in KIA. The main objective of the study is to assess the situation of solid waste in KIA. To fulfill the objectives of the study the researcher deemed it necessary to explore problems related to solid waste generation and solid waste arrangement with special emphasis on final disposal methods. Practically, 31 (thirty-one) factories representing the different industrial sub-sectors in KIA were studied. This represents 25% of the total number of factories located in KIA. Data were obtained by, questionnaires, interviews and observations mainly directed to concerned officials, solid waste workers, pickers and brokers. Obtained data were stored, coded, tabulated and analyzed using the computer systems (excel and SPSS programmes). The obtained results should clear deficiency in the management of solid waste which led to great environmental deterioration in KIA and neighboring residential areas. The environment in studied area is continuously polluted due to high pollution loads and unproved solid waste management. In order to maintain health environment operating factories have to pretreated their solid waste according to the recognized standards and waste minimization techniques such as recycling and re use should be widely applied, moreover, running crash programme for environmental sanitation in Khartoum state should be expanded and improved to include special characteristics of solid waste from industries. Finally, increase awareness

  11. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  12. Implementation, verification, and validation of the FPIN2 metal fuel pin mechanics model in the SASSYS/SAS4A LMR transient analysis codes

    International Nuclear Information System (INIS)

    Sofu, T.; Kramer, J.M.

    1994-01-01

    The metal fuel version of the FPIN2 code which provides a validated pin mechanics model is coupled with SASSYS/SAS4A Version 3.0 for single pin calculations. In this implementation, SASSY/SAS4A provides pin temperatures, and FPIN2 performs analysis of pin deformation and predicts the time and location of cladding failure. FPIN2 results are also used for the estimates of axial expansion of fuel and associated reactivity effects. The revalidation of the integrated SAS-FPIN2 code system is performed using TREAT tests

  13. An introduction to the electron theory of solids

    CERN Document Server

    Stringer, John; Hopkins, D W; Finniston, H M

    2013-01-01

    An Introduction to the Electron Theory of Solids introduces the reader to the electron theory of solids. Topics covered range from the breakdown of classical theory to atomic spectra and the old quantum theory, as well as the uncertainty principle of Heisenberg and the foundations of quantum mechanics. Some problems in wave mechanics and a wave-mechanical treatment of the simple harmonic oscillator and the hydrogen atom are also presented.Comprised of 12 chapters, this book begins with an introduction to Isaac Newton's theory of classical mechanics and how the scientists after him discounted h

  14. TEMP: a computer code to calculate fuel pin temperatures during a transient

    International Nuclear Information System (INIS)

    Bard, F.E.; Christensen, B.Y.; Gneiting, B.C.

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method

  15. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  16. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    Science.gov (United States)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  17. The Redox Code.

    Science.gov (United States)

    Jones, Dean P; Sies, Helmut

    2015-09-20

    The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.

  18. User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.2 for reactor pressure vessel (Contract research)

    International Nuclear Information System (INIS)

    Osakabe, Kazuya; Onizawa, Kunio; Shibata, Katsuyuki; Kato, Daisuke

    2006-09-01

    As a part of the aging structural integrity research for LWR components, the probabilistic fracture mechanics (PFM) analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed in JAEA. This code evaluates the conditional probabilities of crack initiation and fracture of a reactor pressure vessel (RPV) under transient conditions such as pressurized thermal shock (PTS). The development of the code has been aimed to improve the accuracy and reliability of analysis by introducing new analysis methodologies and algorithms considering the recent development in the fracture mechanics and computer performance. PASCAL Ver.1 has functions of optimized sampling in the stratified Monte Carlo simulation, elastic-plastic fracture criterion of the R6 method, crack growth analysis models for a semi-elliptical crack, recovery of fracture toughness due to thermal annealing and so on. Since then, under the contract between the Ministry of Economy, Trading and Industry of Japan and JAEA, we have continued to develop and introduce new functions into PASCAL Ver.2 such as the evaluation method for an embedded crack, K I database for a semi-elliptical crack considering stress discontinuity at the base/cladding interface, PTS transient database, and others. A generalized analysis method is proposed on the basis of the development of PASCAL Ver.2 and results of sensitivity analyses. Graphical user interface (GUI) including a generalized method as default values has been also developed for PASCAL Ver.2. This report provides the user's manual and theoretical background of PASCAL Ver.2. (author)

  19. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  20. Utility of QR codes in biological collections.

    Science.gov (United States)

    Diazgranados, Mauricio; Funk, Vicki A

    2013-01-01

    The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers' electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections.

  1. Utility of QR codes in biological collections

    Directory of Open Access Journals (Sweden)

    Mauricio Diazgranados

    2013-07-01

    Full Text Available The popularity of QR codes for encoding information such as URIs has increased exponentially in step with the technological advances and availability of smartphones, digital tablets, and other electronic devices. We propose using QR codes on specimens in biological collections to facilitate linking vouchers’ electronic information with their associated collections. QR codes can efficiently provide such links for connecting collections, photographs, maps, ecosystem notes, citations, and even GenBank sequences. QR codes have numerous advantages over barcodes, including their small size, superior security mechanisms, increased complexity and quantity of information, and low implementation cost. The scope of this paper is to initiate an academic discussion about using QR codes on specimens in biological collections.

  2. Density-functional theory for fluid-solid and solid-solid phase transitions.

    Science.gov (United States)

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/nfcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  3. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  4. Sheared solid materials

    Indian Academy of Sciences (India)

    ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic ... We expect that m is a key order parameter for amorphous solids or glasses. .... It satisfies the mechanical equilibrium condition and can be calculated ...

  5. MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    Grieshemer, D.P.; Gill, D.F.; Nease, B.R.; Carpenter, D.C.; Joo, H.; Millman, D.L.; Sutton, T.M.; Stedry, M.H.; Dobreff, P.S.; Trumbull, T.H.; Caro, E.

    2013-01-01

    MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10 -5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each

  6. Comparison of LIFE-4 and TEMECH code predictions with TREAT transient test data

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Bard, F.E.; Hunter, C.W.

    1984-09-01

    Transient tests in the TREAT reactor were performed on FFTF Reference design mixed-oxide fuel pins, most of which had received prior steady-state irradiation in the EBR-II reactor. These transient test results provide a data base for calibration and verification of fuel performance codes and for evaluation of processes that affect pin damage during transient events. This paper presents a comparison of the LIFE-4 and TEMECH fuel pin thermal/mechanical analysis codes with the results from 20 HEDL TREAT experiments, ten of which resulted in pin failure. Both the LIFE-4 and TEMECH codes provided an adequate representation of the thermal and mechanical data from the TREAT experiments. Also, a criterion for 50% probability of pin failure was developed for each code using an average cumulative damage fraction value calculated for the pins that failed. Both codes employ the two major cladding loading mechanisms of differential thermal expansion and central cavity pressurization which were demonstrated by the test results. However, a detailed evaluation of the code predictions shows that the two code systems weigh the loading mechanism differently to reach the same end points of the TREAT transient results

  7. Multi-dimensional Code Development for Safety Analysis of LMR

    International Nuclear Information System (INIS)

    Ha, K. S.; Jeong, H. Y.; Kwon, Y. M.; Lee, Y. B.

    2006-08-01

    A liquid metal reactor loaded a metallic fuel has the inherent safety mechanism due to the several negative reactivity feedback. Although this feature demonstrated through experiments in the EBR-II, any of the computer programs until now did not exactly analyze it because of the complexity of the reactivity feedback mechanism. A multi-dimensional detail program was developed through the International Nuclear Energy Research Initiative(INERI) from 2003 to 2005. This report includes the numerical coupling the multi-dimensional program and SSC-K code which is used to the safety analysis of liquid metal reactors in KAERI. The coupled code has been proved by comparing the analysis results using the code with the results using SAS-SASSYS code of ANL for the UTOP, ULOF, and ULOHS applied to the safety analysis for KALIMER-150

  8. Circular codes revisited: a statistical approach.

    Science.gov (United States)

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Implantation of FRAPCON-2 code in HB computer

    International Nuclear Information System (INIS)

    Silva, C.F. da.

    1987-05-01

    The modifications carried out for implanting FRAPCON-2 computer code in the HB DPS-T7 computer are presented. The FRAPCON-2 code calculates thermo-mechanical response during long period of burnup in stationary state for fuel rods of PWR type reactors. (M.C.K.)

  10. Bridging Inter-flow and Intra-flow Network Coding for Video Applications

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2013-01-01

    transmission approach to decide how much and when to send redundancy in the network, and a minimalistic feedback mechanism to guarantee delivery of generations of the different flows. Given the delay constraints of video applications, we proposed a simple yet effective coding mechanism, Block Coding On The Fly...

  11. Rulemaking efforts on codes and standards

    International Nuclear Information System (INIS)

    Millman, G.C.

    1992-01-01

    Section 50.55a of the NRC regulations provides a mechanism for incorporating national codes and standards into the regulatory process. It incorporates by reference ASME Boiler and Pressure Vessel Code (ASME B and PV Code) Section 3 rules for construction and Section 11 rules for inservice inspection and inservice testing. The regulation is periodically amended to update these references. The rulemaking process, as applied to Section 50.55a amendments, is overviewed to familiarize users with associated internal activities of the NRC staff and the manner in which public comments are integrated into the process. The four ongoing rulemaking actions that would individually amend Section 50.55a are summarized. Two of the actions would directly impact requirements for inservice testing. Benefits accrued with NRC endorsement of the ASME B and PV Code, and possible future endorsement of the ASME Operations and Maintenance Code (ASME OM Code), are identified. Emphasis is placed on the need for code writing committees to be especially sensitive to user feedback on code rules incorporated into the regulatory process to ensure that the rules are complete, technically accurate, clear, practical, and enforceable

  12. Emotional Actions Are Coded Via Two Mechanisms: With And Without Identity

    Directory of Open Access Journals (Sweden)

    Joanna eWincenciak

    2016-05-01

    Full Text Available Accurate perception of an individual’s identity and emotion derived from their actions and behavior is essential for successful social functioning. Here we determined the role of identity in the representation of emotional whole-body actions using visual adaptation paradigms. Participants adapted to actors performing different whole-body actions in a happy and sad fashion. Following adaptation subsequent neutral actions appeared to convey the opposite emotion. We demonstrate two different emotional action aftereffects showing distinctive adaptation characteristics. For one short-lived aftereffect, adaptation to the emotion expressed by an individual resulted in biases in the perception of the expression of emotion by other individuals, indicating an identity-independent representation of emotional actions. A second, longer lasting, aftereffect was observed where adaptation to the emotion expressed by an individual resulted in longer-term biases in the perception of the expressions of emotion only by the same individual; this indicated an additional identity-dependent representation of emotional actions. Together, the presence of these two aftereffects indicates the existence of two mechanisms for coding emotional actions, only one of which takes into account the actor’s identity. The results that we observe might parallel processing of emotion from face and voice.

  13. Solid-state physics for electronics

    National Research Council Canada - National Science Library

    Moliton, André

    2009-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. Quantum mechanics: some basics . . . . . . . . . . . . . . . . . . . . . . 1.2.1. The wave equation in solids: from Maxwell's to Schrödinger's equation via...

  14. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms; Sorption des ions U(VI) et Eu(III) a l`interface solution - solides phosphates: Etude structurale et mechanismes

    Energy Technology Data Exchange (ETDEWEB)

    Drot, Romuald [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-09-18

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, Zr{sub 2}O(PO{sub 4}){sub 2} which allow to study the effect of PO{sub 4} and P{sub 2}O{sub 7} groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP{sub 2}O{sub 7} presents only one single site (P{sub 2}O{sub 7} groups) whereas Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} and Zr{sub 2}O(PO{sub 4}){sub 2} admit two types of sites (PO{sub 4}/P{sub 2}O{sub 7} and PO{sub 4}/oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO{sub 3} 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO{sup 2+}{sub 2} et de UO{sub 2}NO{sup +}{sub 3} species) and only one for Eu(III) (sorption of EuNO{sup 2+}{sub 3}). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid

  15. Field-based tests of geochemical modeling codes usign New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  16. Introduction to contact mechanics

    CERN Document Server

    Fischer-Cripps, Anthony C

    2000-01-01

    Contact mechanics deals with the elastic or plastic contact between two solid objects, and is thus intimately connected with such topics as fracture, hardness, and elasticity.This text, intended for advanced undergraduates, begins with an introduction to the mechanical properties of materials, general fracture mechanics, and fractures in brittle solids.This is followed by a detailed discussion of stresses and the nature of elastic and elastic-plastic contact.

  17. Comparison of a 3D multi‐group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri

    Science.gov (United States)

    Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas

    2009-01-01

    A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw

  18. Elastic creep-fatigue evaluation for ASME [American Society of Mechanical Engineers] code

    International Nuclear Information System (INIS)

    Severud, L.K.; Winkel, B.V.

    1987-02-01

    Reassessment of past ASME N-47 creep-fatigue rules have been under way by committee members. The new proposed elastic creep-fatigue methods are easier to apply than those previously in the code case. They also provide a wider range of practical application while still providing conservative assessments. It is expected that new N-47 code rules for elastic creep-fatigue evaluation will be adopted in the near future

  19. The influence of drawing temperature on mechanical properties and organisation of melt spun polyethylene solid-state drawn in the pseudo-affine regime

    NARCIS (Netherlands)

    Hu, Xin; Alcock, B.; Loos, J.

    2006-01-01

    Mechanical properties of high density polyethylene (HDPE) solid-state drawn with fixed draw ratio at different temperatures in a fiber/tape spin line were investigated. All drawing experiments were performed in the pseudo-affine regime, i.e. no effective relaxation of the molecules occurs during

  20. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  1. Computer-assisted Particle-in-Cell code development

    International Nuclear Information System (INIS)

    Kawata, S.; Boonmee, C.; Teramoto, T.; Drska, L.; Limpouch, J.; Liska, R.; Sinor, M.

    1997-12-01

    This report presents a new approach for an electromagnetic Particle-in-Cell (PIC) code development by a computer: in general PIC codes have a common structure, and consist of a particle pusher, a field solver, charge and current density collections, and a field interpolation. Because of the common feature, the main part of the PIC code can be mechanically developed on a computer. In this report we use the packages FIDE and GENTRAN of the REDUCE computer algebra system for discretizations of field equations and a particle equation, and for an automatic generation of Fortran codes. The approach proposed is successfully applied to the development of 1.5-dimensional PIC code. By using the generated PIC code the Weibel instability in a plasma is simulated. The obtained growth rate agrees well with the theoretical value. (author)

  2. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  3. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    Science.gov (United States)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  4. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Fuel performance codes approximate this complex behavior using an axisymmetric, axially-stacked, one-dimensional radial representation to save computation cost. However, the need for improved modeling of PCMI and, particularly, the importance of multidimensional capability for accurate fuel performance simulation has been identified as safety margin decreases. Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed

  5. Synchrotron radiography of direct-shear in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C M; Nagira, T; Nakatsuka, N; Yasuda, H; Dahle, A K; Uesugi, K

    2012-01-01

    Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

  6. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  7. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  8. State of art in FE-based fuel performance codes

    International Nuclear Information System (INIS)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun

    2013-01-01

    Finite element (FE) method that is reliable and proven solution in mechanical field has been introduced into fuel performance codes for multidimensional analysis. The present state of the art in numerical simulation of FE-based fuel performance predominantly involves 2-D axisymmetric model and 3-D volumetric model. The FRAPCON and FRAPTRAN own 1.5-D and 2-D FE model to simulate PCMI and cladding ballooning. In 2-D simulation, the FALCON code, developed by EPRI, is a 2-D (R-Z and R-θ) fully thermal-mechanically coupled steady-state and transient FE-based fuel behavior code. The French codes TOUTATIS and ALCYONE which are 3-D, and typically used to investigate localized behavior. In 2008, the Idaho National Laboratory (INL) has been developing multidimensional (2-D and 3-D) nuclear fuel performance code called BISON. In this paper, the current state of FE-based fuel performance code and their models are presented. Based on investigation into the codes, requirements and direction of development for new FE-based fuel performance code can be discussed. Based on comparison of models in FE-based fuel performance code, status of art in the codes can be discussed. A new FE-based fuel performance code should include typical pellet and cladding models which all codes own. In particular, specified pellet and cladding model such as gaseous swelling and high burnup structure (HBS) model should be developed to improve accuracy of code as well as consider AC condition. To reduce computation cost, the approximated gap and the optimized contact model should be also developed. Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena, occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. This multiphysics behavior is often tightly coupled, a well known example being the thermomechanical behavior. Adding to this complexity, important aspects of fuel behavior are inherently

  9. Solid Loss of Carrots During Simulated Gastric Digestion.

    Science.gov (United States)

    Kong, Fanbin; Singh, R Paul

    2011-03-01

    The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick's second law of diffusion for an infinite cylinder, which are between 0.75 × 10(-11) and 8.72 × 10(-11) m(2)/s, depending on the pH of the gastric fluid.

  10. Exceptionally stable and hierarchically porous self-standing zeolite monolith based on a solution-mediated and solid-state transformation synergistic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Do, Manh Huy [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Cheng, Dang-guo, E-mail: dgcheng@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Chen, Fengqiu [Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, Zhejiang (China); College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhan, Xiaoli [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-15

    Although many strategies exist for fabricating hierarchical zeolite monolith, it is still challenging to synthesize pure hierarchical zeolite monolith with intracrystalline meso-/macropores and stability suitable for industrial application in a general and efficient process. Here we describe a simple quasi-solid gel crystallization route to prepare hierarchical self-standing ZSM-5 zeolite monolith via the use of Na{sup +} and OH{sup −} as counterions to modify the breaking and remaking of T–O–T (T = Si or Al) bonds. X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission electron microscopy (TEM), laser scan confocal microscopy (LSCM), N{sub 2} adsorption–desorption, mercury porosimetry, solid-state nuclear magnetic resonance (NMR), and compression mechanical testing were applied to elucidate the structure and mechanical stability of the obtained monolith. The self-standing monolith is composed of self-interconnected meso-/macroporous MFI crystals with tunable intracrystalline meso-/macropores and possesses an unusually mechanical stability with a crushing strength of 5.01 MPa. Combined with controllable structure of the defect-free membrane layer on the monolith top, the self-standing zeolite monolith should widen their potential applications. - Highlights: • Hierarchical self-standing MFI zeolite monoliths were synthesized via a facile method. • Na{sup +} and OH{sup −} are used as counterions for breaking and remaking of T–O–T (T = Si or Al) bonds. • Hierarchical self-standing MFI zeolite monoliths result from zeolite crystal intergrowth. • Self-standing zeolite monolith has an excellent mechanical stability with tunable intracrystalline meso-/macropores.

  11. Tracking Code for Microwave Instability

    International Nuclear Information System (INIS)

    Heifets, S.; SLAC

    2006-01-01

    To study microwave instability the tracking code is developed. For bench marking, results are compared with Oide-Yokoya results [1] for broad-band Q = 1 impedance. Results hint to two possible mechanisms determining the threshold of instability

  12. On locality of Generalized Reed-Muller codes over the broadcast erasure channel

    KAUST Repository

    Alloum, Amira

    2016-07-28

    One to Many communications are expected to be among the killer applications for the currently discussed 5G standard. The usage of coding mechanisms is impacting broadcasting standard quality, as coding is involved at several levels of the stack, and more specifically at the application layer where Rateless, LDPC, Reed Slomon codes and network coding schemes have been extensively studied, optimized and standardized in the past. Beyond reusing, extending or adapting existing application layer packet coding mechanisms based on previous schemes and designed for the foregoing LTE or other broadcasting standards; our purpose is to investigate the use of Generalized Reed Muller codes and the value of their locality property in their progressive decoding for Broadcast/Multicast communication schemes with real time video delivery. Our results are meant to bring insight into the use of locally decodable codes in Broadcasting. © 2016 IEEE.

  13. Universal Mechanism of Spin Relaxation in Solids

    Science.gov (United States)

    Chudnovsky, Eugene

    2006-03-01

    Conventional elastic theory ignores internal local twists and torques. Meantime, spin-lattice relaxation is inherently coupled with local elastic twists through conservation of the total angular momentum (spin + lattice). This coupling gives universal lower bound (free of fitting parameters) on the relaxation of the atomic or molecular spin in a solid [1] and on the relaxation of the electron spin in a quantum dot [2]. [1] E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev. B 72, 094426 (2005). [2] C. Calero, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. Lett. 95, 166603 (2005).

  14. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  15. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures

    International Nuclear Information System (INIS)

    Wu, Z.; Bei, H.; Pharr, G.M.; George, E.P.

    2014-01-01

    Compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. To clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 −3 s −1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. To better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due

  16. SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-08-01

    This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.

  17. Report on the Current Technical Issues on ASME Nuclear Code and Standard

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, B. S.; Yoo, S. H.

    2008-11-01

    This report describes the analysis on the current revision movement related to the mechanical design issues of the U.S ASME nuclear code and standard. ASME nuclear mechanical design in this report is composed of the nuclear material, primary system, secondary system and high temperature reactor. This report includes the countermeasures based on the ASME Code meeting for current issues of each major field. KAMC(ASME Mirror Committee) of this project is willing to reflect a standpoint of the domestic nuclear industry on ASME nuclear mechanical design and play a technical bridge role for the domestic nuclear industry in ASME Codes application

  18. A Monte-Carlo code for the detailed simulation of electron and light-ion tracks in condensed matter

    International Nuclear Information System (INIS)

    Emfietzoglou, D.; Papamichael, G.; Karava, K.; Androulidakis, I.; Pathak, A.; Phillips, G. W.; Moscovitch, M.; Kostarelos, K.

    2006-01-01

    In an effort to understand the basic mechanism of the action of charged particles in solid radiation dosimeters, we extend our Monte-Carlo code (MC4) to condensed media (liquids/solids) and present new track-structure calculations for electrons and protons. Modeling the energy dissipation process is based on a model dielectric function, which accounts in a semi-empirical and self-consistent way for condensed-phase effects which are computationally intractable. Importantly, these effects mostly influence track-structure characteristics at the nano-meter scale, which is the focus of radiation action models. Since the event-by-event scheme for electron transport is impractical above several kilo-electron volts, a condensed-history random-walk scheme has been implemented to transport the energetic delta rays produced by energetic ions. Based on the above developments, new track-structure calculations are presented for two representative dosimetric materials, namely, liquid water and silicon. Results include radial dose distributions in cylindrical and spherical geometries, as well as, clustering distributions, which, among other things, are important in predicting irreparable damage in biological systems and prompt electric-fields in microelectronics. (authors)

  19. Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state

    International Nuclear Information System (INIS)

    Thompson, S.L.; Lauson, H.S.

    1974-03-01

    A revised set of in-line equation-of-state subroutines for the CHART D hydrodynamic code is described. The information generated is thermodynamically complete and self-consistent. The temperature and density range of validity is large. Solids, liquids, vapors, plasmas, and all types of phase mixtures are treated. Energy transport properties are calculated. The set of subroutines form a package which can easily be included in other hydrodynamic codes. (20 figures) (U.S.)

  20. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  1. The Role of Code-Switching in Bilingual Creativity

    Science.gov (United States)

    Kharkhurin, Anatoliy V.; Wei, Li

    2015-01-01

    This study further explores the theme of bilingual creativity with the present focus on code-switching. Specifically, it investigates whether code-switching practice has an impact on creativity. In line with the previous research, selective attention was proposed as a potential cognitive mechanism, which on the one hand would benefit from…

  2. The ZPIC educational code suite

    Science.gov (United States)

    Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.

    2017-10-01

    Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.

  3. Liquid plugs bouncing against a solid basis, comparison of SIMMER-III and PLEXUS results

    International Nuclear Information System (INIS)

    Maschek, W.; Arnecke, G.; Flad, M.

    1995-01-01

    The SIMMER III code is being tested by application to problems of reactor accidents. The fluid dynamics/thermohydraulics part of the code can be applied also to evaporation/condensation, melt, and freezing phenomena. For a liquid plug bouncing against a solid basis, the momentum transfer is calculated. PLEXUS results turn out to be in significant disagreement with the SIMMER calculations. (orig.)

  4. Solid state synthesis of stoichiometric LiCoO2 from mechanically activated Co-Li2CO3 mixtures

    International Nuclear Information System (INIS)

    Berbenni, Vittorio; Milanese, Chiara; Bruni, Giovanna; Marini, Amedeo

    2006-01-01

    Stoichiometric lithium cobalt oxide (LiCoO 2 ) has been synthesized by solid state reaction of mixtures of the system Co-0.5Li 2 CO 3 after mechanical activation by high energy milling. The differences in the reaction mechanism and in product stoichiometry with respect to what happens when starting from the non activated (physical) system have been brought into evidence by TG analysis. Furthermore it has been shown that stoichiometric LiCoO 2 is obtained by a 200 h annealing of the activated mixture at temperatures as low as 400 deg. C. Finally, it has been revealed that longer activation times (150 h) result in Co oxidation to Co 3 O 4 that, in turn, hampers the formation of stoichiometric LiCoO 2

  5. ADREA-I: A transient three dimensional transport code for atmospheric and other applications - some preliminary results

    International Nuclear Information System (INIS)

    Bartzis, G.

    1985-02-01

    In this work a general description of the ADREA-I code is presented and some preliminary results are discussed. The ADREA-I is a transient three dimensional computer code aimed at transport analysis with particular emphasis on atmospheric dispersion under any realistic terrain conditions (complex or not) applicable to the planetary boundary layer in a distance extending up to a hundred kilometers or more. The complex geometry applications and the reasonable results obtained constitute a solid indication of the broad capability of the code. (author)

  6. An efficient adaptive arithmetic coding image compression technology

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Yun Jiao-Jiao; Zhang Yong-Lei

    2011-01-01

    This paper proposes an efficient lossless image compression scheme for still images based on an adaptive arithmetic coding compression algorithm. The algorithm increases the image coding compression rate and ensures the quality of the decoded image combined with the adaptive probability model and predictive coding. The use of adaptive models for each encoded image block dynamically estimates the probability of the relevant image block. The decoded image block can accurately recover the encoded image according to the code book information. We adopt an adaptive arithmetic coding algorithm for image compression that greatly improves the image compression rate. The results show that it is an effective compression technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  8. FEM investigation and thermo-mechanic tests of the new solid tungsten divertor tile for ASDEX Upgrade

    International Nuclear Information System (INIS)

    Jaksic, Nikola; Greuner, Henri; Herrmann, Albrecht

    2013-01-01

    Highlights: • New solid tungsten divertor for fusion experiment ASDEX Upgrade. • Design validation in the high heat flux (HHF) test facility GLADIS (Garching Large Divertor Sample Test Facility). • FEA simulation. -- Abstract: A new solid tungsten divertor for the fusion experiment ASDEX Upgrade is under construction at present. A new divertor tile design has been developed to improve the thermal performance of the current divertor made of tungsten coated fine grain graphite. Compared to thin tungsten coatings, divertor tiles made of massive tungsten allow to extend the operational range and to study the plasma material interaction of tungsten in more detail. The improved design for the solid tungsten divertor was tested on different full scale prototypes with a hydrogen ion beam. The influence of a possible material degradation due to thermal cracking or recrystallization can be studied. Furthermore, intensive Finite Element Method (FEM) numerical analysis with the respective test parameters has been performed. The elastic–plastic calculation was applied to analyze thermal stress and the observed elastic and plastic deformation during the heat loading. Additionally, the knowledge gained by the tests and especially by the numerical analysis has been used to optimize the shape of the divertor tiles and the accompanying divertor support structure. This paper discusses the main results of the high heat flux tests and their numerical simulations. In addition, results from some special structural mechanic analysis by means of FEM tools are presented. Finally, first results from the numerical lifecycle analysis of the current tungsten tiles will be reported

  9. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  10. The Influence of Solid-State Drawing on Mechanical Properties and Hydrolytic Degradation of Melt-Spun Poly(Lactic Acid (PLA Tapes

    Directory of Open Access Journals (Sweden)

    Fang Mai

    2015-12-01

    Full Text Available The influence of solid-state drawing on the morphology of melt-spun poly(l-lactic acid (PLLA tapes, and the accompanying changes in mechanical and degradation behaviour have been studied. Mechanical properties are found to be strongly dependent on both applied draw ratio and drawing temperature. Moduli of these highly oriented tapes are significantly increased compared to as-extruded tapes at both ambient and elevated temperatures. Interestingly, drawing leads to a significant increase in elongation to break (~3 times and toughness (~13 times compared to as-extruded tapes. Structural and morphological characterization indicates strain-induced crystallization as well as an increase in orientation of the crystalline phase at small strains. Upon further stretching, an “overdrawing” regime is observed, with decreased crystalline orientation due to the breakage of existing crystals. For fixed draw ratios, a significant increase in Young’s modulus and tensile strength is observed with increasing drawing temperature, due to a higher crystallinity and orientation obtained for tapes drawn at higher temperatures. FT-IR results indicate no crystal transformation after drawing, with the α-form being observed in all tapes. Hydrolytic degradability of PLLA was significantly reduced by solid-state drawing.

  11. A Life-Cycle Risk-Informed Systems Structured Nuclear Code

    International Nuclear Information System (INIS)

    Hill, Ralph S. III

    2002-01-01

    Current American Society of Mechanical Engineers (ASME) nuclear codes and standards rely primarily on deterministic and mechanistic approaches to design. The design code is a separate volume from the code for inservice inspections and both are separate from the standards for operations and maintenance. The ASME code for inservice inspections and code for nuclear plant operations and maintenance have adopted risk-informed methodologies for inservice inspection, preventive maintenance, and repair and replacement decisions. The American Institute of Steel Construction and the American Concrete Institute have incorporated risk-informed probabilistic methodologies into their design codes. It is proposed that the ASME nuclear code should undergo a planned evolution that integrates the various nuclear codes and standards and adopts a risk-informed approach across a facility life-cycle - encompassing design, construction, operation, maintenance and closure. (author)

  12. Processing of the GALILEO fuel rod code model uncertainties within the AREVA LWR realistic thermal-mechanical analysis methodology

    International Nuclear Information System (INIS)

    Mailhe, P.; Barbier, B.; Garnier, C.; Landskron, H.; Sedlacek, R.; Arimescu, I.; Smith, M.; Bellanger, P.

    2013-01-01

    The availability of reliable tools and associated methodology able to accurately predict the LWR fuel behavior in all conditions is of great importance for safe and economic fuel usage. For that purpose, AREVA has developed its new global fuel rod performance code GALILEO along with its associated realistic thermal-mechanical analysis methodology. This realistic methodology is based on a Monte Carlo type random sampling of all relevant input variables. After having outlined the AREVA realistic methodology, this paper will be focused on the GALILEO code benchmarking process, on its extended experimental database and on the GALILEO model uncertainties assessment. The propagation of these model uncertainties through the AREVA realistic methodology is also presented. This GALILEO model uncertainties processing is of the utmost importance for accurate fuel design margin evaluation as illustrated on some application examples. With the submittal of Topical Report GALILEO to the U.S. NRC in 2013, GALILEO and its methodology are on the way to be industrially used in a wide range of irradiation conditions. (authors)

  13. Thermal hydraulics and mechanics core design programs

    International Nuclear Information System (INIS)

    Heinecke, J.

    1992-10-01

    The report documents the work performed within the Research and Development Task T hermal hydraulics and mechanics core design programs , funded by the German government. It contains the development of new codes, the extension of existing codes, the qualification and verification of codes and the development of a code library. The overall goal of this work was to adapt the system of thermal hydraulics and mechanics codes to the permanently growing requirements of the status of science and technology

  14. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    International Nuclear Information System (INIS)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the data in predicting the time for a solid skin to form on the molten material

  15. TRANGE: computer code to calculate the energy beam degradation in target stack

    International Nuclear Information System (INIS)

    Bellido, Luis F.

    1995-07-01

    A computer code to calculate the projectile energy degradation along a target stack was developed for an IBM or compatible personal microcomputer. A comparison of protons and deuterons bombarding uranium and aluminium targets was made. The results showed that the data obtained with TRANGE were in agreement with other computers code such as TRIM, EDP and also using Williamsom and Janni range and stopping power tables. TRANGE can be used for any charged particle ion, for energies between 1 to 100 MeV, in metal foils and solid compounds targets. (author). 8 refs., 2 tabs

  16. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  17. Efficient DS-UWB MUD Algorithm Using Code Mapping and RVM

    Directory of Open Access Journals (Sweden)

    Pingyan Shi

    2016-01-01

    Full Text Available A hybrid multiuser detection (MUD using code mapping and a wrong code recognition based on relevance vector machine (RVM for direct sequence ultra wide band (DS-UWB system is developed to cope with the multiple access interference (MAI and the computational efficiency. A new MAI suppression mechanism is studied in the following steps: firstly, code mapping, an optimal decision function, is constructed and the output candidate code of the matched filter is mapped to a feature space by the function. In the feature space, simulation results show that the error codes caused by MAI and the single user mapped codes can be classified by a threshold which is related to SNR of the receiver. Then, on the base of code mapping, use RVM to distinguish the wrong codes from the right ones and finally correct them. Compared with the traditional MUD approaches, the proposed method can considerably improve the bit error ratio (BER performance due to its special MAI suppression mechanism. Simulation results also show that the proposed method can approximately achieve the BER performance of optimal multiuser detection (OMD and the computational complexity approximately equals the matched filter. Moreover, the proposed method is less sensitive to the number of users.

  18. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A.T. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Ferrandini, P.L. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil); Costa, C.A.R. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Goncalves, M.C. [Institute of Chemistry, State University of Campinas, P.O. Box 6154, Campinas 13083-970, SP (Brazil); Caram, R. [Department of Materials Engineering, State University of Campinas, P.O. Box 6122, Campinas 13083-970, SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2005-08-16

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni{sub 3}Si. This paper deals with the directional solidification of Ni-Ni{sub 3}Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni{sub 3}Si phase. It could be noticed that the solid/solid transformations by which Ni{sub 3}Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface.

  19. Growth and solid/solid transformation in a Ni-Si eutectic alloy

    International Nuclear Information System (INIS)

    Dutra, A.T.; Ferrandini, P.L.; Costa, C.A.R.; Goncalves, M.C.; Caram, R.

    2005-01-01

    High temperature structural components demand materials that maintain satisfactory mechanical and chemical characteristics. These needs may be met by applying some eutectic alloys, including Ni-Ni 3 Si. This paper deals with the directional solidification of Ni-Ni 3 Si grown under several growth rates. The analysis of the eutectic microstructure was carried out using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The results obtained provided a precise analysis of the Ni 3 Si phase. It could be noticed that the solid/solid transformations by which Ni 3 Si phase goes through, deeply affects its morphology. In addition, quantitative information on the eutectic structure was obtained. It was confirmed that the growth rate variation deeply affects the final microstructure as it influences the efficiency of atomic diffusion along the solid/liquid interface

  20. ARKAS: A three-dimensional finite element code for the analysis of core distortions and mechanical behaviour

    International Nuclear Information System (INIS)

    Nakagawa, M.

    1984-01-01

    Computer program ARKAS has been developed for the purpose of predicting core distortions and mechanical behaviour in a cluster of subassemblies under steady state conditions in LMFBR cores. This report describes the analytical models and numerical procedures employed in the code together with some typical results of the analysis made on large LMFBR cores. ARKAS is programmed in the FORTRAN-IV language and is capable of treating up to 260 assemblies in a cluster with flexible boundary conditions including mirror and rotational symmetry. The nonlinearity of the problem due to contact and separation is solved by the step iterative procedure based on the Newton-Raphson method. In each step iterative procedure, the linear matrix equation must be reconstructed and then solved directly. To save computer time and memory, the substructure method is adopted in the step of reconstructing the linear matrix equation, and in the step of solving the linear matrix equation, the block successive over-relaxation method is adopted. The program ARKAS computes, at every time step, 3-dimensional displacements and rotations of the subassemblies in the core and the interduct forces including at the nozzle tips and nozzle bases with friction effects. The code also has an ability to deal with the refueling and shuffling of subassemblies and to calculate the values of withdrawal forces. For the qualitative validation of the code, sample calculations were performed on the several bundle arrays. In these calculations, contact and separation processes under the influences of friction forces, off-center loading, duct rotations and torsion, thermal expansion and irradiation induced swelling and creep were analyzed. These results are quite reasonable in the light of the expected behaviour. This work was performed under the sponsorship of Toshiba Corporation

  1. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  2. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent

    International Nuclear Information System (INIS)

    Al-Ghouti, Mohammad A.; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N.M.

    2010-01-01

    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu 2+ ), and cadmium ion (Cd 2+ ) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu 2+ , and Cd 2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu 2+ and Cd 2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g -1 , respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu 2+ , and Cd 2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu 2+ and Cd 2+ . For Cu 2+ , binding two cellulose/lignin units together is the predominant mechanism. For Cd 2+ , the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit.

  3. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  4. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  5. Thyc, a 3D thermal-hydraulic code for rod bundles. Recent developments and validation tests

    International Nuclear Information System (INIS)

    Caremoli, C.; Rascle, P.; Aubry, S.; Olive, J.

    1993-09-01

    PWR or LMFBR cores or fuel assemblies, PWR steam generators, condensers, tubular heat exchangers, are basic components of a nuclear power plant involving two-phase flows in tube or rod bundles. A deep knowledge of the detailed flow patterns on the shell side is necessary to evaluate DNB margins in reactor cores, singularity effects (grids, wire spacers, support plates, baffles), corrosion on steam generator tube sheet, bypass effects and vibration risks. For that purpose, Electricite de France has developed, since 1986, a general purpose code named THYC (Thermal HYdraulic Code) designed to study three-dimensional single and two phase flows in rod or tube bundles (pressurized water reactor cores, steam generators, condensers, heat exchangers). It considers the three-dimensional domain to contain two kinds of components: fluid and solids. The THYC model is obtained by space-time averaging of the instantaneous equations (mass, momentum and energy) of each phase over control volumes including fluid and solids. This paper briefly presents the physical model and the numerical method used in THYC. Then, validation tests (comparison with experiments) and applications (coupling with three-dimensional neutronics code and DNB predictions) are presented. They emphasize the last developments and new capabilities of the code. (authors). 10 figs., 3 tabs., 21 refs

  6. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  7. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  8. Projection of Patient Condition Code Distributions Based on Mechanism of Injury

    National Research Council Canada - National Science Library

    Zouris, James M; Walker, G. J; Blood, Christopher G

    2003-01-01

    The Medical Readiness and Strategic Plan 1998-2004 requires that the military services develop a method for linking real world patient load data with modern patient condition codes to enable planners...

  9. From text to codings: intercoder reliability assessment in qualitative content analysis.

    Science.gov (United States)

    Burla, Laila; Knierim, Birte; Barth, Jurgen; Liewald, Katharina; Duetz, Margreet; Abel, Thomas

    2008-01-01

    High intercoder reliability (ICR) is required in qualitative content analysis for assuring quality when more than one coder is involved in data analysis. The literature is short of standardized procedures for ICR procedures in qualitative content analysis. To illustrate how ICR assessment can be used to improve codings in qualitative content analysis. Key steps of the procedure are presented, drawing on data from a qualitative study on patients' perspectives on low back pain. First, a coding scheme was developed using a comprehensive inductive and deductive approach. Second, 10 transcripts were coded independently by two researchers, and ICR was calculated. A resulting kappa value of .67 can be regarded as satisfactory to solid. Moreover, varying agreement rates helped to identify problems in the coding scheme. Low agreement rates, for instance, indicated that respective codes were defined too broadly and would need clarification. In a third step, the results of the analysis were used to improve the coding scheme, leading to consistent and high-quality results. The quantitative approach of ICR assessment is a viable instrument for quality assurance in qualitative content analysis. Kappa values and close inspection of agreement rates help to estimate and increase quality of codings. This approach facilitates good practice in coding and enhances credibility of analysis, especially when large samples are interviewed, different coders are involved, and quantitative results are presented.

  10. Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells.

    Science.gov (United States)

    Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng

    2017-07-13

    Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.

  11. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  12. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  13. Fast sampling calorimetry with solid argon ionization chambers

    International Nuclear Information System (INIS)

    Clark, E.; Linn, S.; Piekarz, H.; Wahl, H.; Womersley, J.; Hansen, S.; Hurh, P.; Rivetta, C.; Sanders, R.; Schmitt, R.; Stanek, R.; Stefanik, A.

    1992-01-01

    A proposal for the fast sampling calorimetry with solid argon as active medium and the preliminary results from the solid argon test cell are presented. The proposed test calorimeter module structure, the signal routing and the mechanical and cryogenic arrangements are also discussed

  14. Modelling of the thermomechanical and physical processes in FR fuel pins using the GERMINAL code

    International Nuclear Information System (INIS)

    Roche, L.; Pelletier, M.

    2000-01-01

    In the frame of the R and D on Fast Reactor mixed oxide fuels, CEA/DEC has developed the computer code GERMINAL for studying fuel pin thermal and mechanical behaviour, both during steady-state and incidental conditions, up to high burn-up (25 at%). The first part of this paper is devoted to the description of the main models: fuel evolution (central hole and porosity evolution, Plutonium redistribution, O/M radial profile, transient gas swelling, melting fuel behaviour, minor actinides production), high burn-up models (fission gas, volatile fission products and JOG formation), fuel-cladding heat transfer, fuel-cladding mechanical interaction. The second part gives some examples of calculation results taken from the GERMINAL validation data base (more than 40 experiments from PHENIX, PFR, CABRI reactors), with special emphasis on: local fission gas retention and global release, fuel geometry evolution, radial redistribution of plutonium for high burn-up fuels, solid and annular fuel behaviour during power ramps including fuel melting, helium formation from MA (Am and Np) doped homogeneous fuels. (author)

  15. Retraction of 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus'

    International Nuclear Information System (INIS)

    Tulugan, Keli Mu; Park, Cheol Hong; Park, Won Jo; Qing, Wang

    2012-01-01

    The article 'Composition design and mechanical properties of BCC Ti solid solution alloys with low Young's modulus' has been retracted upon the request of the third author (Prof. Wang Qing, the first author's former advisor during his internship at DaLian University of Technology). The article was published without the third author's knowledge and consent. The corresponding author (Prof. Wonjo Park) apologizes to the third author, to the readers, and to the editorial staff of the JMST. The JMST editorial board does not tolerate such actions from authors and we will take appropriate action to prevent this from happening in the future

  16. Fuel disruption mechanisms determined in-pile in the ACRR

    International Nuclear Information System (INIS)

    Wright, S.A.; Fischer, E.A.

    1984-09-01

    Over thirty in-pile experiments were performed to investigate fuel disruption behavior for LMFBR loss of flow (LOF) accidents. These experiments reproduced the heating transients for a variety of accidents ranging from slow LOF accidents to rapid LOF-driven-TOP accidents. In all experiments the timing and mode of the fuel disruption were observed with a high speed camera, enabling detailed comparisons with a fuel pin code, SANDPIN. This code transient intra- and inter-granular fission gas behavior to predict the macroscopic fuel behavior, such as fission gas induced swelling and frothing, cracking and breakup of solid fuel, and fuel vapor pressure driven dispersal. This report reviews the different modes of fuel disruption as seen in the experiments and then describes the mechanism responsible for the disruption. An analysis is presented that describes a set of conditions specifying the mode of fuel disruption and the heating conditions required to produce the disruption. The heating conditions are described in terms of heating rate (K/s), temperature gradient, and fuel temperature. A fuel disruption map is presented which plots heating rate as a function of fuel temperature to illustrate the different criteria for disruption. Although this approach to describing fuel disruption oversimplifies the fission gas processes modeled by SANDPIN, it does illustrate the criteria used to determine which fuel disruption mechanism is dominant and on what major fission gas parameters it depends

  17. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is

  18. Analysis of the sodium concrete interactions with the NABE code

    International Nuclear Information System (INIS)

    Soule, N.

    1989-01-01

    Experimental studies have been performed in France to investigate sodium-concrete interactions: thermal decomposition of concrete, specific chemical reactions, experimentation in liquid and vapour phase, sodium-concrete interaction without liner protection. Simultaneously computer codes have been developed in order to study the response of the containment building of a liquid metal fast breeder reactor to a sodium pool fire worsened by a sodium-concrete interaction: the NABE code. This code takes into account: a) sodium combustion; b) thermal decomposition of concrete with associated chemical reactions: (liquid sodium-vapour water reaction, liquid sodium-carbon dioxide reaction, liquid sodium-solid compounds of concrete, hydrogen combustion); c) chemical reactions in vapour phase; d) decay heat; e) gas aerosol inlets/outlets; f) aerosol behaviour (sedimentation, diffusion, leak); g) thermal exchanges. An example of a situation, typical of assessment of beyond design basis situations in LMFBR, is given. (author)

  19. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  20. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  1. ???????????? SolidWorks/SolidWorks Flow Simulation/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???

    OpenAIRE

    ????????????, ?. ?.; ????????, ?. ?.; ?????, ?. ?.

    2012-01-01

    ? ?????? ???????? ??????? ??????? ???????? ?? ???????????? ??????????? ????????? SolidWorks/SolidWorks Flow Simulation (COSMOSFloWorks)/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???. ??? ???????? ????????? ???????? ?????????? ?? ?????? ???????? ??????? ? ????????????? ?????? ? ????????????? ????????????? ?????????? ???????????? SolidWorks Flow Simulation (COSMOSFloWorks). ??? ???????????? ??????????? ????????????? ?????? ?? ????????? ??????????? ??????? ?? ??????????? ...

  2. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  3. Interactive QR code beautification with full background image embedding

    Science.gov (United States)

    Lin, Lijian; Wu, Song; Liu, Sijiang; Jiang, Bo

    2017-06-01

    QR (Quick Response) code is a kind of two dimensional barcode that was first developed in automotive industry. Nowadays, QR code has been widely used in commercial applications like product promotion, mobile payment, product information management, etc. Traditional QR codes in accordance with the international standard are reliable and fast to decode, but are lack of aesthetic appearance to demonstrate visual information to customers. In this work, we present a novel interactive method to generate aesthetic QR code. By given information to be encoded and an image to be decorated as full QR code background, our method accepts interactive user's strokes as hints to remove undesired parts of QR code modules based on the support of QR code error correction mechanism and background color thresholds. Compared to previous approaches, our method follows the intention of the QR code designer, thus can achieve more user pleasant result, while keeping high machine readability.

  4. Rheology and Fracture Mechanics of Foods

    NARCIS (Netherlands)

    Vliet, van T.

    2013-01-01

    The mechanical properties of food play an important role during manufacturing, storage, handling, and last but not least, during consumption. For an adequate understanding of the mechanical properties of liquid, liquid-like, soft solid, and solid foods, a basic understanding of relevant aspects of

  5. Artus code. Calculation of the energy transfer from neutrons to a solid; Programme Artus. Calcul des quantites d'energie cedees par des neutrons a un solide

    Energy Technology Data Exchange (ETDEWEB)

    Barre, B

    1967-07-01

    The described codes have been realized for a particular study concerning the ionization influence of the CO{sub 2} by neutrons on the reaction: CO{sub 2} - graphite. The code hypothesis and formulation are presented and the application to more general physical problems is proposed. (A.L.B.)

  6. Automatic coding method of the ACR Code

    International Nuclear Information System (INIS)

    Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi

    1993-01-01

    The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology

  7. Safety standards, legislation and codes of practice for fuel cell manufacture and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.P.

    1999-07-01

    This report examines safety standards, legislation and codes of practice for fuel cell manufacture and operation in the UK, Europe and internationally. Management of health and safety in the UK is discussed, and the characteristics of phosphoric acid (PAFC), proton exchange membrane (PEM), molten carbonate (MCFC), solid oxide (SOFC) fuel cells are described. Fuel cell power plant standards and manufacture in the UK, design and operational considerations, end of life disposal, automotive fuel cell system, and fuelling and vehicular concerns are explored, and standards, legislation and codes of practice are explained in the appendix.

  8. GAMERA - The New Magnetospheric Code

    Science.gov (United States)

    Lyon, J.; Sorathia, K.; Zhang, B.; Merkin, V. G.; Wiltberger, M. J.; Daldorff, L. K. S.

    2017-12-01

    The Lyon-Fedder-Mobarry (LFM) code has been a main-line magnetospheric simulation code for 30 years. The code base, designed in the age of memory to memory vector ma- chines,is still in wide use for science production but needs upgrading to ensure the long term sustainability. In this presentation, we will discuss our recent efforts to update and improve that code base and also highlight some recent results. The new project GAM- ERA, Grid Agnostic MHD for Extended Research Applications, has kept the original design characteristics of the LFM and made significant improvements. The original de- sign included high order numerical differencing with very aggressive limiting, the ability to use arbitrary, but logically rectangular, grids, and maintenance of div B = 0 through the use of the Yee grid. Significant improvements include high-order upwinding and a non-clipping limiter. One other improvement with wider applicability is an im- proved averaging technique for the singularities in polar and spherical grids. The new code adopts a hybrid structure - multi-threaded OpenMP with an overarching MPI layer for large scale and coupled applications. The MPI layer uses a combination of standard MPI and the Global Array Toolkit from PNL to provide a lightweight mechanism for coupling codes together concurrently. The single processor code is highly efficient and can run magnetospheric simulations at the default CCMC resolution faster than real time on a MacBook pro. We have run the new code through the Athena suite of tests, and the results compare favorably with the codes available to the astrophysics community. LFM/GAMERA has been applied to many different situations ranging from the inner and outer heliosphere and magnetospheres of Venus, the Earth, Jupiter and Saturn. We present example results the Earth's magnetosphere including a coupled ring current (RCM), the magnetospheres of Jupiter and Saturn, and the inner heliosphere.

  9. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  10. Development of a computer code 'CRACK' for elastic and elastoplastic fracture mechanics analysis of 2-D structures by finite element technique

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kakodkar, A.; Maiti, S.K.

    1986-01-01

    The fracture mechanics analysis of nuclear components is required to ensure prevention of sudden failure due to dynamic loadings. The linear elastic analysis near to a crack tip shows presence of stress singularity at the crack tip. The simulation of this singularity in numerical methods enhance covergence capability. In finite element technique this can be achieved by placing mid nodes of 8 noded or 6 noded isoparametric elements, at one fourth ditance from crack tip. Present report details this characteristic of finite element, implementation of this element in a code 'CRACK', implementation of J-integral to compute stress intensity factor and solution of number of cases for elastic and elastoplastic fracture mechanics analysis. 6 refs., 6 figures. (author)

  11. Application of nuclear air cleaning and treatment codes

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1995-01-01

    All modifications to existing ventilation systems, as well as any new ventilation systems used on the Hanford Site are required to meet both American Society of Mechanical Engineers (ASME) codes N509 and N510. Difficulties encountered when applying code N509 at the Hanford Site include the composition of the ventilation air stream and requirements related to ventilation equipment procurement. Also, the existing ventilation systems for the waste tanks at the Hanford Site cannot be tested in accordance with code N510 because of the current configuration of these systems

  12. Synaptic E-I Balance Underlies Efficient Neural Coding.

    Science.gov (United States)

    Zhou, Shanglin; Yu, Yuguo

    2018-01-01

    Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.

  13. Application of nuclear air cleaning and treatment codes

    Energy Technology Data Exchange (ETDEWEB)

    Kriskovich, J.R. [Westinghouse Hanford Company, Richland, WA (United States)

    1995-02-01

    All modifications to existing ventilation systems, as well as any new ventilation systems used on the Hanford Site are required to meet both American Society of Mechanical Engineers (ASME) codes N509 and N510. Difficulties encountered when applying code N509 at the Hanford Site include the composition of the ventilation air stream and requirements related to ventilation equipment procurement. Also, the existing ventilation systems for the waste tanks at the Hanford Site cannot be tested in accordance with code N510 because of the current configuration of these systems.

  14. Foundational development of an advanced nuclear reactor integrated safety code

    International Nuclear Information System (INIS)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-01-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  15. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  16. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  17. Securing optical code-division multiple-access networks with a postswitching coding scheme of signature reconfiguration

    Science.gov (United States)

    Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen

    2014-11-01

    The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.

  18. Application of the French codes to the pressurized thermal shocks assessment

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin [Suzhou Nuclear Power Research Institute, Life Management Center, Suzhou (China); Qian, Guian [Paul Scherrer Institute, Nuclear Energy and Safety Department, Villigen (Switzerland); Shi, Jinhua [Amec Foster Wheeler, Clean Energy Department, Gloucester (United Kingdom)

    2016-12-15

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  19. Application of the French Codes to the Pressurized Thermal Shocks Assessment

    Directory of Open Access Journals (Sweden)

    Mingya Chen

    2016-12-01

    Full Text Available The integrity of a reactor pressure vessel (RPV related to pressurized thermal shocks (PTSs has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the “screening criterion” for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no “screening criterion”. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed.

  20. Application of the French codes to the pressurized thermal shocks assessment

    International Nuclear Information System (INIS)

    Chen, Mingya; Wang, Rong Shan; Yu, Weiwei; Lu, Feng; Zhang, Guo Dong; Xue, Fei; Chen, Zhilin; Qian, Guian; Shi, Jinhua

    2016-01-01

    The integrity of a reactor pressure vessel (RPV) related to pressurized thermal shocks (PTSs) has been extensively studied. This paper introduces an integrity assessment of an RPV subjected to a PTS transient based on the French codes. In the USA, the 'screening criterion' for maximum allowable embrittlement of RPV material is developed based on the probabilistic fracture mechanics. However, in the French RCC-M and RSE-M codes, which are developed based on the deterministic fracture mechanics, there is no 'screening criterion'. In this paper, the methodology in the RCC-M and RSE-M codes, which are used for PTS analysis, are firstly discussed. The bases of the French codes are compared with ASME and FAVOR codes. A case study is also presented. The results show that the method in the RCC-M code that accounts for the influence of cladding on the stress intensity factor (SIF) may be nonconservative. The SIF almost doubles if the weld residual stress is considered. The approaches included in the codes differ in many aspects, which may result in significant differences in the assessment results. Therefore, homogenization of the codes in the long time operation of nuclear power plants is needed