Sample records for solid materials final

  1. [Origin of Lewis acidity in solid materials]. DOE Final Report for Grant DE-FG02-90ER14130

    Fripiat, J. J.


    The aim of the research undertaken within the framework of this DOE grant was to further understanding of the origin of the Lewis acidity in solid materials. The study centered around aluminas and alumino-silicates. The main tools for investigation of this phenomenon were high-resolution solid state {sub 27}Al NMR, complemented by EPR and the chemical determination of catalytic activity.

  2. A rheometer for measuring the material moduli for granular solids. Final report, August 7, 1990--February 6, 1995

    Rajagopal, K.R.


    A great many industrial processes involve interaction between solids and fluids (i.e. gases or liquids). Combustion, gasification of solid fuels, shales or solid wastes, drying of particles, calcining, particle heating, regenerative heat exchangers, oxidation or reduction of ores, metal surface treatments and catalytic and thermal cracking are some of such processes. Solids and fluids serve different roles and several combinations of solids and fluids can arise in a practical situation. Thus, when considering processes or plants it is necessary to be clear as to the particular purpose served by the fluids and the solids. Heating and drying of solids, for example, involve heat and mass transfer only, whereas combustors, gasifiers etc. have the additional complication of chemical reactions which have to be carried out simultaneously with heat and mass transfer. Again, there are many processes where just the flow of granular particles take place, for example, the flow of food grain, coal or sand particles through bin, silo, hoppers, chutes, conveyor belts, inclined planes etc. In most of these cases, a theoretical modeling of the process requires a complete and thorough understanding of the phenomena involved and constitutive modeling of the constituents along with the usual balance laws. In a process, where both a fluid and a solid constituents are involved, it is essential to model both the constituents such that the models accurately describes the characteristics of the constituent concerned. While there are many different models available for fluids, the models for granular materials lack from an understanding of the material parameters.

  3. Development of materials for solid state electrochemical sensors and fuel cell applications. Final report, September 30, 1995--December 30, 1995

    Bobba, R.; Hormes, J.; Young, V.; Baker, J.A.


    The intent of this project was two fold: (1) to develop new ionically conducting materials for solid state gas phase sensors and fuel cells and (2) to train students and create an environment conducive to Solid State Ionics research at Southern University. The authors have investigated the electrode-electrolyte interfacial reactions, defect structure and defect stability in some perovoskite type solid electrolyte materials and the effect of electrocatalyst and electrolyte on direct hydrocarbon and methanol/air fuel cell performance using synchrotron radiation based Extended X-ray Absorption Spectroscopy (EXAFS), surface analytical and Impedance Spectroscopic techniques. They have measured the AC impedance and K edge EXAFS of the entire family of rare earth dopants in Cerium Oxide to understand the effect of dopants on the conductivity and its impact on the structural properties of Cerium Oxide. All of the systems showed an increase in the conductivity over undoped ceria with ceria doped Gd, Sm and Y showing the highest values. The conductivity increased with increasing ionic radius of the dopant cation. The authors have measured the K edge of the EXAFS of these dopants to determine the local structural environment and also to understand the nature of the defect clustering between oxygen vacancies and trivalent ions. The analysis and the data reduction of these complex EXAFS spectra is in progress. Where as in the DOWCs, the authors have attempted to explore the impact of catalyst loadings on the performance of direct oxidation of methanol fuel cells. Their initial measurements on fuel cell performance characteristics and EXAFS are made on commercial membranes Pt/Ru/Nafion 115, 117 and 112.

  4. Sheared solid materials

    Akira Onuki; Akira Furukawa; Akihiko Minami


    We present a time-dependent Ginzburg–Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume . For very small the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing , accumulation of around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.

  5. Solid State Reactor Final Report

    Mays, G.T.


    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  6. Distilling solid carbonaceous materials

    Ainscow, J.W.H.


    Carbonaceous materials such as coal or oil shale are distilled by being passed in a continuous stream through a retort heated externally and at temperatures increasing from the inlet to the outlet end, the distillates being taken off through openings in the retort wall.

  7. Nanoprobes, nanostructured materials and solid state materials

    Yin, Houping


    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  8. Solid electrolytes general principles, characterization, materials, applications

    Hagenmuller, Paul


    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  9. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Collin Broholm


    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  10. Fluid bed solids heater. Final technical report

    Preuit, L. C.


    A solids heater which operates at up to 2000 F was designed, fabricated, installed and operated through checkout at the Morgantown Energy Technology Center at Morgantown, West Virginia. The system, designated the 2000 F Fluid Bed Solids Heater (FBSH) uses a fluidized bed to heat limestone to 600 F and aluminium oxide or silicon carbide to 2000 F and discharges heated solids upon demand. The FBSH with added valve handling and pressurization equipment is known as the Valve Hot Solids Test Unit and is intended for use by the US Department of Energy for testing of valves for severe service applications in coal conversion and utilization processes. The FBSH as designed and supplied by Combustion Power Company includes process equipment, controls, the enclosing building and other associated equipment. In the 600 F range of operation it can circulate limestone through two valve test trains simultaneously on a continuous basis. Only one valve test train is used for 2000 F solids and operation in that range is also continuous. Limestone, crushed to minus 5/16 size, is heated, discharged, and recycled at a maximum average rate of 250 lb/min while aluminum oxide or silicon carbide, No. 8 grit, is circulated at rates up to 167 lb/min. The FBSH control system is designed for automatic operation, and capability is included for external computerized data acquisition and/or supervisory control. An operating and maintenance manual and as-built drawings have been submitted. This report describes the FBSH equipment, its design basis, and its operation. It has been prepared and submitted in fulfillment of Contract Number DIAC05-77ET10499.

  11. Structural engineering, mechanics and materials: Final report


    This report on structural engineering, mechanics and materials is divided into three parts: a discussion on using Lanczos vectors and Ritz vectors for computing dynamic responses: solution of viscously damped linear systems using a finite element displacement formulation; and vibration analysis of fluid-solid systems using a finite element displacement formulation. (JF)

  12. Improved radiant burner material. Final report

    Milewski, J.V.; Shoultz, R.A.; Bourque, M.M.; Milewski, E.B. [and others


    Under DOE/ERIP funds were made available to Superkinetic, Inc. for the development of an improved radiant burner material. Three single crystal ceramic fibers were produced and two fiber materials were made into felt for testing as radiant burner screens. The materials were alpha alumina and alpha silicon nitride. These fibers were bonded with a high temperature ceramic and made into a structurally sound trusswork like screen composed of million psi fiber members. These screens were about 5% solid for 95 porosity as needed to permit the flow of combustable natural gas and air mixture. Combustion test proved that they performed very satisfactory and better than the current state of art screen and showed no visable degrade after testing. It is recommended that more time and money be put into expanding this technology and test these new materials for their maximum temperature and durability for production applications that require better burner material.


    Dmitrenko D. V.


    Full Text Available The article is dedicated to the determination of conditions for solid bodies’ fragmentation, providing minimal size of particles by means of their mechanical dispersion through the example of powders of titanium carbide (TiC, cubic boron nitride – borazon (CBN and boron carbide (B4C. The theoretical and practical aspects of the process of mechanical fragmentation of particles of solid powder materials in ball mill for their further utilization in furnace charge for high-speed gas-flame sputtering of wear-resistant composite materials are examined in the article. Methods of preliminary calculation of minimum allowable size of solid particles of powder materials during mechanical fragmentation, based upon Griffiths’ mechanical theory of rapture using experimental data for hardness of material and its yield are proposed and theoretically substantiated. There we have the results of experiments on mechanical fragmentation of titanium carbide in attritor, boron carbide and cubic boron nitride in centrifugal planetary mill, confirming correctness of theoretical propositions and calculations are set out. Recommendations on mechanical fragmentation of solid powder materials in ball mills are formulated as well

  14. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)


    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  15. Cellular Automata Model for Elastic Solid Material

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao


    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  16. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne


    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  17. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter


    and electronic conductor (MIEC) the electrode is. Selected examples of literature studies of specific electrodes in solid oxide cells (SOC) are discussed. The reported effects of impurities - both impurities in the electrode materials and in the gases – point to high reactivity and mobility of materials...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  18. ITER solid breeder blanket materials database

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique


    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  19. Solid materials for removing arsenic and method thereof

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.


    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  20. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter


    and electronic conductor (MIEC) the electrode is. Selected examples of literature studies of specific electrodes in solid oxide cells (SOC) are discussed. The reported effects of impurities - both impurities in the electrode materials and in the gases – point to high reactivity and mobility of materials...... place. The length of the TPB is a key factor even though the width and depth of the zone, in which the rate limiting reactions take place, may vary depending of the degree of the electrode materials ability to conduct both electrons and ions, i.e. the TPB zone volume depends on how good a mixed ionic...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  1. Comparison of solid highlighter materials for thermography

    Genest, M.; Forsyth, D.S. [National Research Council of Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail:; Maldague, X. [Univ. Laval, Electrical and Computing Engienering Dept., Quebec, Quebec (Canada)


    Bare metal surfaces are difficult to inspect with flash thermography due to the high reflectivity and low emissivity of metal surfaces. Often black paint is used to prepare these surfaces for inspection. The additional time required to apply, dry, and then remove paint after inspection can be a significant barrier to using thermographic inspection techniques in these applications. This paper examines the use of solid 'highlighter' materials instead of paint to provide desirable surface characteristics and ease of use. Both positive pressure and vacuum methods were used to apply a variety of materials to metal test specimens, which were then inspected with a commercial pulsed flash thermography system. A vacuum-applied black latex material provided surface performance close to that of black paint without the extra burden of paint application and removal. (author)

  2. Evaluation of advanced materials. Final report

    Wright, I.G.; Clauer, A.H.; Shetty, D.K.; Tucker, T.R.; Stropki, J.T.


    Cemented tungsten carbides with a binder level in the range of 5 to 6 percent exhibited the best resistance to erosion for this class of materials. Other practical cermet meterials were diamond - Si/SiC, Al/sub 2/O/sub 3/-B/sub 4/C-Cr, and B/sub 4/C-Co. SiAlON exhibited erosion resistance equivalent to the best WC-cermet. The only coating system to show promise of improved erosion resistance was CVD TiB/sub 2/ on cemented TiB/sub 2/-Ni. Cracking and/or spalling of a TiC coating and a proprietary TMT coating occurred in the standard slurry erosion test. Ranking of cemented tungsten carbide materials in the laboratory erosion test was the same as that found in service in the Wilsonville pilot plant. Specimens from the Fort Lewis pilot plant which performed well in service exhibited low erosion in the laboratory test. A substitute slurry, was found to be 2 to 4 times more erosive than the coal-derived slurry 8 wt% solids. Ranking of materials in the substitute slurry was nearly identical to that in the coal-derived slurry. Three modes of erosion were: ductile cutting; elastic-plastic indentation and fracture; and intergranular fracture. Erosion of a given material was closely related to its microstructure. In the substitute slurry, the angle-dependence of erosion of two forms of SiC, hot-pressed and sintered, were similar, but the sintered material eroded slower. Laser fusing of preplaced powder mixtures can produce cermet-like structures with potential for erosive and sliding wear resistance. TiC particles in Stellite 6 matrix proved less prone to cracking than WC particles in the same matrix. 74 figures, 14 tables.

  3. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    Charles M. Falco


    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  4. Energy implications of integrated solid waste management systems. Final report

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.


    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  5. Solid freeform fabrication of biological materials

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  6. Sealing materials for solid oxide fuel cells

    Larsen, P.H.


    A major obstacle in the achievement of high electrical efficiency for planar solid oxide fuel cell stacks (SOFC) is the need for long term stable seals at the operational temperature between 850 and 1000 deg. C. In the present work the formation and properties of sealing materials for SOFC stacks that fulfil the necessary requirements were investigated. The work comprises analysis of sealing material properties independently, in simple systems as well as tests in real SOFC stacks. The analysed sealing materials were based on pure glasses or glass-ceramic composites having B{sub 2}O{sub 3}, P{sub 2}O{sub 5} or siO{sub 2} as glass formers, and the following four glass systems were investigated: MgO/caO/Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SiO{sub 2} and BaO/Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}. (au) 32 tabs., 106 ills., 107 refs.

  7. Applied solid state science advances in materials and device research

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  8. Advanced Materials and Solids Analysis Research Core (AMSARC)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  9. Advanced Materials and Solids Analysis Research Core (AMSARC)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  10. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail


    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  11. Metallic materials in solid oxide fuel cells

    Willem Joseph Quadakkers


    Full Text Available Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC. Recently, a new type of FeCrMn(Ti/La based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated.

  12. Obtaining cementitious material from municipal solid waste

    Macías, A.


    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  13. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)] [and others


    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  14. Nanophase materials in solid freeform fabrication

    Manthiram, A.; Bourell, D. L.; Marcus, H. L.


    Solid freeform fabrication (SFF) is a manufacturing technology that produces parts directly from computer-aided design databases. Examples of the SFF approach are selective laser sintering (SLS) and selective laser reactive sintering (SLRS), both of which have the potential to directly produce structurally sound metallic or ceramic parts. The development of suitable materials systems that can optimize the SLS or SLRS processes are critical to this technology. For instance, nanocomposites, in which the constituents are mixed on a nanometer scale, have the potential to provide important advantages in the SLS and SLRS processes. One strategy is to design and develop nanocomposites in which one nanosize component has a lower melting point than the other nanosize component, either of which can serve as the matrix phase. The nanoscale dispersion of the low-melting component can aid the sintering process during SLS or SLRS. In this article, the philosophical basis for SLS and SLRS of nanocomposites is discussed. Conceptual design of nanocomposite systems and the SLS/SLRS results of a few exploratory systems are presented.

  15. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    Mehrer, Helmut


    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  16. Materials for diode pumped solid state lasers

    Chase, L. L.; Davis, L. E.; Krupke, W. F.; Payne, S. A.


    The advantages of semiconductor diode lasers and laser arrays as pump sources for solid state lasers are reviewed. The properties that are desirable in solid state laser media for various diode pumping applications are discussed, and the characteristics of several promising media are summarized.

  17. Youth Solid Waste Educational Materials List, November 1991.

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  18. Buried waste containment system materials. Final Report

    Weidner, J.R.; Shaw, P.G.


    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  19. 78 FR 67335 - Solid Urea From the Russian Federation: Final Results of Antidumping Duty Administrative Review...


    ... International Trade Administration Solid Urea From the Russian Federation: Final Results of Antidumping Duty... duty order on solid urea from the Russian Federation (Russia). For the final results, we continue to... solid urea from Russia.\\1\\ We invited interested parties to comment on the Preliminary Results....

  20. Energy Materials Center at Cornell: Final Report

    Abruña, Héctor [Cornell Univ., Ithaca, NY (United States); Mutolo, Paul F [Cornell Univ., Ithaca, NY (United States)


    The mission of the Energy Materials Center at Cornell (emc2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods for structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.

  1. Packaging Materials Outgassing Study Final Report

    Smith, R. A. [Oak Ridge Y-12 Plant (Y-12), Oak Ridge, TN (United States)


    An outgassing study was conducted on two polyurethane packaging foams, two polymer bottles (polytetrafluoroethylene and polyethylene), and two polymer lids. The purpose was to measure the volume of gases that diffuse from these packaging materials at a maximum of 400-degrees F when stored in ambient air within sealed containers.

  2. Quantum Materials at the Nanoscale - Final Report

    Cooper, Stephen Lance [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics


    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the funding period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16

  3. Ultrafast laser spectroscopy in complex solid state materials

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)


    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  4. Stability of solid oxide fuel cell materials

    Armstrong, T.R.; Pederson, L.R.; Stevenson, J.W.; Raney, P.E. [Pacific Northwest Lab., Richland, WA (United States)


    The phase stability and sintering behavior of materials used in SOFCs has been evaluated. The sintering behavior of Ca and Sr doped lanthanum. manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. Ca and Sr doped lanthanum chromite (the preferred interconnect material) have been shown to rapidly expand in reducing atmospheres at temperatures as low as 700{degrees}C. This expansion is due to the reduction of Cr{sup 4+} to Cr{sup 3+} in reducing environments.

  5. Electrical conduction in solid materials physicochemical bases and possible applications

    Suchet, J P


    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  6. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Brinkman, Kyle S


    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  7. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter


    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  8. Material for Point Design (final summary of DIME material)

    Bradley, Paul A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  9. Solid electrolyte material manufacturable by polymer processing methods

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez


    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  10. 75 FR 51440 - Solid Urea from the Russian Federation: Final Results of Antidumping Duty Administrative Review


    ... International Trade Administration Solid Urea from the Russian Federation: Final Results of Antidumping Duty... of the administrative review of the antidumping duty order on solid urea from the Russian Federation. The solid urea subject to this review was produced and exported by MCC EuroChem (EuroChem). The...

  11. 76 FR 66690 - Solid Urea From the Russian Federation: Final Results of Antidumping Duty Administrative Review


    ... International Trade Administration Solid Urea From the Russian Federation: Final Results of Antidumping Duty... of the administrative review of the antidumping duty order on solid urea from the Russian Federation. The solid urea subject to this review was produced and exported by MCC EuroChem (EuroChem). The...

  12. 76 FR 39847 - Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation; Final Results of the...


    ... International Trade Administration Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation; Final... investigation on solid fertilizer grade ammonium nitrate (``ammonium nitrate'') from the Russian Federation...: Solid Fertilizer Grade Ammonium Nitrate From the Russian Federation, 64 FR 45236 (August 19, 1999)....

  13. Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.

    Zhao, Kunpeng; Duan, Haozhi; Raghavendra, Nunna; Qiu, Pengfei; Zeng, Yi; Zhang, Wenqing; Yang, Jihui; Shi, Xun; Chen, Lidong


    High-performance thermoelectric materials require ultralow lattice thermal conductivity typically through either shortening the phonon mean free path or reducing the specific heat. Beyond these two approaches, a new unique, simple, yet ultrafast solid-state explosive reaction is proposed to fabricate nanoporous bulk thermoelectric materials with well-controlled pore sizes and distributions to suppress thermal conductivity. By investigating a wide variety of functional materials, general criteria for solid-state explosive reactions are built upon both thermodynamics and kinetics, and then successfully used to tailor material's microstructures and porosity. A drastic decrease in lattice thermal conductivity down below the minimum value of the fully densified materials and enhancement in thermoelectric figure of merit are achieved in porous bulk materials. This work demonstrates that controlling materials' porosity is a very effective strategy and is easy to be combined with other approaches for optimizing thermoelectric performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Understanding solids: the science of materials

    Tilley, Richard J. D.


    This edition contains new sections on the use of computing methods to solve materials problems and has been thoroughly updated to include the many developments and advances made in the past 10 years, e.g.  batteries, solar cells, lighting technology, laser...

  15. Sandis irradiator for dried sewage solids. Final safety analysis report

    Morris, M.


    Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

  16. Soft solids a primer to the theoretical mechanics of materials

    Freed, Alan D


    This textbook presents the physical principles pertinent to the mathematical modeling of soft materials used in engineering practice, including both man-made materials and biological tissues. It is intended for seniors and masters-level graduate students in engineering, physics, or applied mathematics. It will also be a valuable resource for researchers working in mechanics, biomechanics, and other fields where the mechanical response of soft solids is relevant.   Soft Solids: A Primer to the Theoretical Mechanics of Materials is divided into two parts. Part I introduces the basic concepts needed to give both Eulerian and Lagrangian descriptions of the mechanical response of soft solids. Part II presents two distinct theories of elasticity and their associated theories of viscoelasticity. Seven boundary-value problems are studied over the course of the book, each pertaining to an experiment used to characterize materials. These problems are discussed at the end of each chapter, giving students the opportunit...

  17. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry.

    Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xiao, Chong; Xie, Yi


    . Then, after the properties of the individual ultrathin two-dimensional materials or their assembled highly oriented thin film-based nanodevices are measured, the explicit relationship between atomic, defect, and electronic structure and intrinsic properties could be established. In this Account, we focus on our recent advances in the field of solid state nanochemistry, including atomic structure characterization of ultrathin two-dimensional inorganic materials by X-ray absorption fine structure spectroscopy, characterization of their different types of structural defects by positron annihilation spectra and electron spin resonance, and investigation of their electronic structure by density-functional calculations. In addition, we summarize the close correlation between atomic, defect, and electronic structure variations and the optoelectronic, electrical, magnetic, and thermal properties of ultrathin two-dimensional materials. Finally, we also propose the major challenges and opportunities that face solid state nanochemistry. We believe that all the past achievements in ultrathin two-dimensional materials could bring new opportunities for solid state nanochemistry.

  18. Electroceramic functional gradient materials. Final report 1995 - 1998

    Toft Soerensen, O. [ed.


    In this programme the research and development is focused on electroceramic materials, which are of direct interest for the Danish producers of electronic components (AMP Danmark) and ceramic gas sensors (PBI-Dansensor) as well as companies involved in development of fuel cells (Haldor Topsoee). The R and D work has been focused on strategic materials research, both application oriented and more basic research, and on development of new techniques for fabrication of EFGM (Electroceramic Functional Gradient Materials) of three types: LC circuit materials (electronic noise filters), oxides for electrochemical reactors and solid oxide fuel cell applications (SOFC) and materials (semiconductors, oxygen ion conductors) for oxygen sensors. This work has been carried out in five projects: 1) Integrated filter components; 2) Electrochemical reactor materials; 3) Oxygen sensors based on semiconductors and oxygen ion conductors; 4) Interface models - synthesis and characterisation; 5) Suppression of cracking in multilayered ceramic materials. (EHS)

  19. Understanding solids the science of materials

    Tilley, Richard J D


    A modern introduction to the subject taking a unique integrated approach designed to appeal to both science and engineering students. Covering a broad spectrum of topics, this book includes numerous up-to-date examples of real materials with relevant applications and a modern treatment of key concepts. The science bias allows this book to be equally accessible to engineers, chemists and physicists. * Carefully structured into self-contained bite-sized chapters to enhance student understanding * Questions have been designed to reinforce the concepts presented * Includes coverage of radioactivit

  20. Applied solid state science advances in materials and device research

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies


    Davorin Kovačić


    Full Text Available The paper deals with the selection of materials for the sea¬ling layer in the final cover of sanitary landfills. The sealing la¬yer is the most critical component of the final cover. Its role is to minimize percolation of water through the final cover. Ma¬terials used for the construction of the sealing layer are either of mineral origin (compacted clay or geosynthetic (geomem¬brane. They are most often used in combination creating com¬posite liners. Recently alternative materials are also used like paper mill sludge or discarded swelling clay.

  2. Homogeneity studies in reference materials with Zeeman solid sampling GFAAS

    Mohl, C.; Stoeppler, M.; Grobecker, K.H.


    The homogeneity of lead and cadmium in reference materials was investigated by solid sampling GFAAS. The following materials were comparatively analyzed: Standard reference materials from NBS, Washington 1567 wheat flour, 1568 rice flour and 1577a bovine liver, certified reference materials from BCR, Brussels, No 63 milk powder, No 184 bovine muscle, No 185 bovine liver, No 186 pig kidney, No 189 wholemeal flour, No 191 brown bread and a whole fish (dab) homogenate from the environmental specimen bank in the FRG. The results are remarkably different for the investigated materials.

  3. SRM (Solid Rocket Motor) propellant and polymer materials structural modeling

    Moore, Carleton J.


    The following investigation reviews and evaluates the use of stress relaxation test data for the structural analysis of Solid Rocket Motor (SRM) propellants and other polymer materials used for liners, insulators, inhibitors, and seals. The stress relaxation data is examined and a new mathematical structural model is proposed. This model has potentially wide application to structural analysis of polymer materials and other materials generally characterized as being made of viscoelastic materials. A dynamic modulus is derived from the new model for stress relaxation modulus and is compared to the old viscoelastic model and experimental data.

  4. Method of investigation of deformations of solids of incompressible materials

    Abdrakhmanova, A. I.; Garifullin, I. R.; Sultanov, L. U.


    The aim of this work is development mathematical models, algorithm for the investigation stress-strain state of elastic solids, taking into account the incompressibility materials. The constitutive equations are received using a potential energy of deformations. The system of the linear algebraic equations is received by linearization of a resolving equation. The penalty method is applied for a modelling of the incompressibility of the material. The finite element method is used for numerical solution of the problems.

  5. PVD materials for electrochromic all-solid-state devices

    Ottermann, Clemens R.; Segner, Johannes G.; Bange, Klaus


    The electrochromic properties of all solid state devices (ASSDs) are strongly defined by thin film materials used as well as the method of deposition. Various thin film materials deposited by evaporation and sputtering are described serving as electrode, reflector, electrolyte, storage medium, or electrochromic film in ASSD. The impact of process parameters upon the device functionality is shown. In addition, the long-term stability of ASSDs for the different thin film systems is reported.

  6. Organic Materials Degradation in Solid State Lighting Applications

    Yazdan Mehr, M.


    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology i

  7. Introduction of Materials Science Through Solid State Chemistry.

    Mueller, William M.

    Presented is a report of a program of the American Society for Metals, designed to introduce materials science principles via solid state chemistry into high school chemistry courses. At the time of the inception of this program in the mid-sixties, it was felt that high school students were not being adequately exposed to career opportunities in…

  8. Organic Materials Degradation in Solid State Lighting Applications

    Yazdan Mehr, M.


    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology

  9. Development of Ceramic Solid-State Laser Host Material

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra


    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  10. Triggerless vacuum shunting plasma by metallic and solid materials

    Yukimura, Ken; Tani, Yuuji; Masamune, Sadao


    Shunting discharge is an alternating capacitor discharge through a rod of solid-state or metallic materials. Optimization of the discharge condition has realized self-ignition of the arc discharge with low input power to the rod, leading to a much longer rod life time than in conventional shunting arc or peripheral arc. The shunting-arc-produced plasma contains mainly the ions of the solid-state material, and ion extraction from the plasma has also been demonstrated. Thus, the shunting arc works as a pulsed ion source for solid-state materials for plasma-based ion implantation (PBII) and ion processing. This article describes the characteristics of pulsed shunting arc, using the materials of carbon, niobium and silicon. The capacitor of 10 nF of which charging voltage is 10 to 25 kV using a thyratron as a closing switch. Glow discharge is firstly produced after the heat of the materials and then the plasma changes the style to the arc discharge. A negative high voltage pulse of -5 to -10 kV was applied to a target which was located at 30 cm away from the electrodes. We will discuss the ion species of the shunting plasma and ion extraction from the plasma using the time evolution of target current.

  11. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    Tanigawa, Takayuki [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Maruta, Akito; Machida, Masahiro N., E-mail: [Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 812-8581 (Japan)


    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  12. Solid waste sampling and distribution project. Final technical report


    The United States Department of Energy (DOE) established a Waste Management Program within the Office of Fossil Energy. A key goal of this program is to ensure that waste management issues do not become obstacles to the commercialization of advanced coal utilization technologies. In achieving this goal, the Waste Management Program identifies various emerging coal utilization technologies and performs comprehensive characterizations of the waste streams and products. The characterizations include engineering assessments to define waste streams of interest/potential concern, field studies to collect samples of the waste, and complete chemical analysis of the collected samples. Energy and Environmental Research Corporation (EER) was selected to perform the site selection and the sampling aspects of five (5) of these facilities. The current EER contract consists of two interrelated efforts: site selection and waste sampling. Detailed sample analysis is being conducted under another DOE contract. The primary objectives of the site selection and sampling effort are listed: (1) Survey sites at which advanced fossil energy combustion technologies are being operated, and identify five sites for sampling. Priority should be given to DOE Clean Coal Technology (CCT) Program Sites. (2) Identify candidate solid waste streams in advanced coal utilization processes likely to present disposal problems and prioritized them for sampling at selected sites. (3) Contact site personnel for site access, sample the streams representatively and document them according to established methodology and known process conditions; and (4) Distribute the samples to DOE`s Morgantown Energy Technology Center or their representatives for analysis and report on the site visit.

  13. Transport phenomena and drying of solids and particulate materials

    Lima, AG


    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  14. Exploring Magnetic Elastocaloric Materials for Solid-State Cooling

    Liu, Jian; Zhao, Dewei; Li, Yang


    In the past decade, there has been an increased surge in the research on elastocaloric materials for solid-state refrigerators. The strong coupling between structure and magnetism inspires the discovery of new multi-field driven elastocaloric alloys. This work is devoted to magnetic shape memory alloys suitable for mechanical cooling applications. Some novel characteristics in magnetostructural transition materials other than conventional shape memory alloys are overviewed. From the physical and engineering points of view, we have put forward general strategies to maximize elastocaloric temperature change to increase performance reversibility and to improve mechanical properties. The barocaloric effect as a sister-cooling alternative is also discussed.

  15. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.


    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  16. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Wojda Marta


    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  17. Calorimetry study of microwave absorption of some solid materials.

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi


    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber.

  18. Micro solid oxide fuel cell on the chip. Final report

    Stutz, M.; Hotz, N.; Bieri, N.; Poulikakos, D.


    The aim of this project is the numerical and experimental investigation of hydrocarbon-to-syngas reforming in micro reformers for incorporation into an entire micro fuel cell system. Numerical simulations are used to achieve deeper understanding of several determining aspects in such a micro reformer. These insights are used to optimize the reforming performance by proper choice of operational and geometrical parameters of a reformer. These numerical results are continued by comprehensive experimental studies. In the first chapter, the effect of wall conduction of a tubular methane micro reformer is investigated numerically. Methane is used as the representative hydrocarbon because its detailed surface reaction mechanism is known. It is found that the axial wall conduction can strongly influence the performance of the microreactor and should not be neglected without a careful a priori investigation of its impact. In the second chapter, the effect of the catalyst amount and reactor geometry on the reforming process was investigated. It was found that the hydrogen selectivity changes significantly with varying catalyst loading. Thus, the reaction path leading to higher hydrogen production becomes more important by increasing the catalyst surface site density on the active surface. Another unexpected result is the presence of optimum channel geometry and optimum catalyst amount. In the third chapter of this project, the capability of flame-made Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles catalyzing the reforming of butane to H{sub 2}- and CO-rich syngas was investigated experimentally in a packed bed reactor. The main goal of this study was the efficient reforming of butane at temperatures between 500 and 600 {sup o}C for a micro intermediate-temperature SOFC system. Our results showed that Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles proved to be a very promising material for butane-to-syngas reforming with complete butane conversion and a hydrogen yield of 77

  19. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  20. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  1. Final recommendations for reference materials in black carbon analysis

    Schmidt, Michael W. I.; Masiello, Caroline A.; Skjemstad, Jan O.

    Last summer, a symposium was held to discuss aspects of global biogeochemical cycles, including organic matter cycling in soils, rivers, and marine environments; black carbon particle fluxes and the biological pump; dissolved organic matter; and organic matter preservation. Seventy scientists from various disciplines, including oceanography, soil science, geology, and chemistry attended the 3-day meeting at the Friday Harbor Laboratories, a research station of the University of Washington.“New Approaches in Marine Organic Biogeochemistry” commemorated the life and science of a colleague and friend, John I. Hedges, who was also involved in several groups developing chemical reference materials. Part of this symposium included a workshop on chemical reference materials, where final recommendations of the Steering Committee for Black Carbon Reference Materials were presented.

  2. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    MacKenzie, Kenneth J D


    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  3. Molecular dynamics of gases and vapors in nanoporous solids. Final LDRD project report

    Pohl, P.I.


    This report provides a study of gases in microporous solids using molecular modeling. The theory of gas transport in porous materials as well as the molecular modeling literature is briefly reviewed. Work complete is described and analyzed with retard to the prevailing theory. The work covers two simple subjects, construction of porous solid models and diffusion of He, H{sub 2}, Ar and CH{sub 4} down a pressure gradient across the material models as in typical membrane permeation experiments. The broader objective is to enhance our capability to efficiently and accurately develop, produce and apply microporous materials.

  4. The influence of composition and final pyrolysis temperature variations on global kinetics of combustion of segregated municipal solid waste

    Pranoto; Himawanto, D. A.; Arifin, N. A.


    The combustion of segregated municipal solid waste (MSW) and the resulted char from the pyrolysis process were investigated in this research. The segregated MSW that was collected and used can be divided into organic and inorganic waste materials. The organic materials were bamboo and banana leaves and the inorganic materials were Styrofoam and snack wrappings. The composition ratio of the waste was based on the percentage of weight of each sample. The thermal behaviour of the segregated MSW was investigated by thermo gravimetric analysis. For the pyrolysis process the prepared samples of 200gram were heated from ambient temperature until a variance of final pyrolysis temperature of 550°C, 650°C and 750°C at a constant heating rate of 25°C/min. It was found that the highest activation energy of the raw materials is achieved from sample CC1 (Char with 100% inorganic materials). The activation energy of the raw materials is relatively lower than that of the char. The higher the final pyrolysis temperature, the lower the calorific value of char. The calorific value gradually increases with the amount of inorganic materials.

  5. Characteristics of tritium release behavior from solid breeder materials

    Kinjyo, T.; Nishikawa, M.; Yamashita, N.; Koyama, T.; Suematsu, K.; Fukada, S. [Graduate School of Engineering Science, Kyushu Univ., Fukuoka 812-8581 (Japan); Enoeda, M. [Naka Establishment, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan)


    A tritium release model has been developed by the present authors. The tritium release curves estimated by this tritium model give good agreement with experimental curves for Li {sub 4}SiO{sub 4}, Li{sub 2}TiO{sub 3}, Li{sub 2}ZrO{sub 3} or LiAlO{sub 2} under various purge gas conditions in our out-of-pile bred tritium release. The characteristics of tritium release behavior from various solid breeder materials carried out by us and in EXOTIC experiments at Petten are discussed in this study. (authors)

  6. Production behavior of irradiation defects in solid breeder materials

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)


    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  7. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)


    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  8. Oxide anode materials for solid oxide fuel cells

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)


    A major advantage of solid oxide fuel cells (SOFCs) over polymer electrolyte membrane (PEM) fuel cells is their tolerance for the type and purity of fuel. This fuel flexibility is due in large part to the high operating temperature of SOFCs, but also relies on the selection and development of appropriate materials - particularly for the anode where the fuel reaction occurs. This paper reviews the oxide materials being investigated as alternatives to the most commonly used nickel-YSZ cermet anodes for SOFCs. The majority of these oxides form the perovskite structure, which provides good flexibility in doping for control of the transport properties. However, oxides that form other crystal structures, such as the cubic fluorite structure, have also shown promise for use as SOFC anodes. In this paper, oxides are compared primarily in terms of their transport properties, but other properties relative to SOFC anode performance are also discussed. (author)

  9. Crystal-Field Engineering of Solid-State Laser Materials

    Henderson, Brian; Bartram, Ralph H.


    This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.

  10. Resilient Sealing Materials for Solid Oxide Fuel Cells

    Signo T. Reis; Richard K. Brow


    This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.

  11. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Uday B. Pal; Srikanth Gopalan


    The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

  12. Ferroelectromagnetic solid solutions on the base piezoelectric ceramic materials for components of micromechatronics

    Bochenek, Dariusz; Zachariasz, Radosław; Niemiec, Przemysław; Ilczuk, Jan; Bartkowska, Joanna; Brzezińska, Dagmara


    In the presented work, a ferroelectromagnetic solid solutions based on PZT and ferrite powders have been obtained. The main aim of combination of ferroelectric and magnetic powders was to obtain material showing both electric and magnetic properties. Ferroelectric ceramic powder (in amount of 90%) was based on the doped PZT type solid solution while magnetic component was nickel-zinc ferrite Ni1-xZnxFe2O4 (in amount of 10%). The synthesis of components of ferroelectromagnetic solid solutions was performed using the solid phase sintering. Final densification of synthesized powder has been done using free sintering. The aim of the work was to obtain and examine in the first multicomponent PZT type ceramics admixed with chromium with the following chemical composition Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3 and next ferroelectromagnetic solid solution based on a PZT type ferroelectric powder (Pb0.94Sr0.06(Zr0.46Ti0.54)O3+0.25 at% Cr2O3) and nickel-zinc ferrite (Ni0.64Zn0.36Fe2O4), from the point of view of their mechanical and electric properties, such as: electric permittivity, ε; dielectric loss, tanδ; mechanical losses, Q-1; and Young modulus, E.

  13. The solid lubricating material experiment device for Shenzhou-7 Spaceship


    A solid lubricating material exposure experiment in space is one of the missions during the seventh manned spaceflight of China,and the key is to develop a device which can be fixed reliably outside of the orbital module and can be fetched conveniently by an astronaut during space walk.The solid lubricating material experiment device needs to be locked reliably in a vibrating and impacting environment during the launch phase,and should meet the requirement that it can be unlocked and fetched reliably by the astronaut wearing an extravehicular spacesuit via simple operations in orbit in an environment of high and low temperature.As for the device we developed,the environmental characteristic of the mission was analyzed,the mechanical analysis and thermal analysis were carried out,and then a mechanism with functions of mechanical locking,structural self-locking and manual unlocking was designed.The device was verified by a sequence of experiments and was fetched by the astronaut during the flight of the Shenzhou-7 Spaceship.

  14. Materials Development for All-Solid-State Battery Electrolytes

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  15. Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials

    Clayton, J. Louie


    Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  16. The Role of Solid Lubricants for Brake Friction Materials

    Werner Österle


    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  17. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.


    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  18. Novel Materials and Devices for Solid-State Neutron Detection

    Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    There is a need in many fields, such as nuclear medicine, non-proliferation, energy exploration, national security, homeland security, nuclear energy, etc, for miniature, thermal neutron detectors. Until recently, thermal neutron detection has required physically large devices to provide sufficient neutron interaction and transduction signal. Miniaturization would allow broader use in the fields just mentioned and open up other applications potentially. Recent research shows promise in creating smaller neutron detectors through the combination of high-neutron-cross-section converter materials and solid-state devices. Yet, till recently it is difficult to measure low neutron fluxes by solidstate means given the need for optimized converter materials (purity, chemical composition and thickness) and a lack of designs capable of efficient transduction of the neutron conversion products (x-rays, electrons, gamma rays). Gadolinium-based semiconductor heterojunctions have detected electrons produced by Gd-neutron reactions but only at high neutron fluxes. One of the main limitations to this type of approach is the use of thin converter layers and the inability to utilize all the conversion products. In this LDRD we have optimized the converter material thickness and chemical composition to improve capture of conversion electrons and have detected thermal neutrons with high fidelity at low flux. We are also examining different semiconductor materials and converter materials to attempt to capture a greater percentage of the conversion electrons, both low and higher energy varieties. We have studied detector size and bias scaling, and cross-sensitivity to xrays and shown that we can detect low fluxes of thermal neutrons in less than 30 minutes with high selectivity by our approach. We are currently studying improvements in performance with direct placement of the Gd converter on the detector. The advancement of sensitive, miniature neutron detectors will have benefits in

  19. Materials System for Intermediate Temperature Solid Oxide Fuel Cell

    Uday B. Pal; Srikanth Gopalan


    AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

  20. Solid State Ionics Advanced Materials for Emerging Technologies

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.


    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  1. 76 FR 19747 - Solid Urea From the Russian Federation and Ukraine: Final Results of the Expedited Sunset Reviews...


    ... International Trade Administration Solid Urea From the Russian Federation and Ukraine: Final Results of the...) initiated the third sunset reviews of the antidumping duty orders on solid urea from the Russian Federation... the notice of initiation of the sunset reviews of the antidumping duty orders \\1\\ on solid urea...

  2. New Materials for Electric Drive Vehicles - Final CRADA Report

    Carter, J. David [Argonne National Lab. (ANL), Argonne, IL (United States)


    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy

  3. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A


    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  4. Laser (cooling) refrigeration in erbium based solid state materials

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature


    Frederick S. Pettit; Gerald H. Meier


    This report describes the result of the first eight months of effort on a project directed at improving metallic interconnect materials for solid oxide fuel cells (SOFCs). The results include cyclic oxidation studies of a group of ferritic alloys, which are candidate interconnect materials. The exposures have been carried out in simulated fuel cell atmospheres. The oxidation morphologies have been characterized and the ASR has been measured for the oxide scales. The effect of fuel cell electric current density on chromia growth rates has been considered The thermomechanical behavior of the scales has been investigated by stress measurements using x-ray diffraction and interfacial fracture toughness measurements using indentation. The ultimate goal of this thrust is to use knowledge of changes in oxide thickness, stress and adhesion to develop accelerated testing methods for evaluating SOFC interconnect alloys. Finally a theoretical assessment of the potential for use of ''new'' metallic materials as interconnect materials has been conducted and is presented in this report. Alloys being considered include materials based on pure nickel, materials based on the ''Invar'' concept, and coated materials to optimize properties in both the anode and cathode gases.

  6. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)


    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  7. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...

  8. Solid State NMR Studies of Energy Conversion and Storage Materials

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  9. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas


    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  10. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods.

    Calvo, Natalia L; Maggio, Rubén M; Kaufman, Teodoro S


    The understanding of materials and processes is a requirement when it comes to build quality into pharmaceutical products. This can be achieved through the development of rapid, efficient and versatile analytical methods able to perform qualification or quantification tasks along the manufacturing and control process. Process monitoring, capable of providing reliable real-time insights into the processes performance during the manufacturing of solid dosage forms, are the key to improve such understanding. In response to these demands, in recent times multivariate chemometrics algorithms have been increasingly associated to different analytical techniques, mainly vibrational spectroscopies [Raman, mid-infrared (MIR), near-infrared (NIR)], but also ultraviolet-visible (UV-vis) spectroscopy, X-ray powder diffraction and other methodologies. The resulting associations have been applied to the characterization and evaluation of different aspects of pharmaceutical materials at the solid state. This review examines the different scenarios where these methodological marriages have been successful. The list of analytical problems and regulatory demands solved by chemometrics analysis of solid-state multivariate data covers the whole manufacturing and control processes of both, active pharmaceutical ingredients in bulk and in their drug products. Hence, these combinations have found use in monitoring the crystallization processes of drugs and supramolecular drug associations (co-crystals, co-amorphous and salts), to access the correct crystal morphology, particle size, solubility and dissolution properties. In addition, they have been applied to identify and quantitate specific compounds, mainly active pharmaceutical ingredients in complex solid state mixtures. This included drug stability against different stimuli, solid-state transformations, or detection of adulterated or fraudulent medicines. The use of chemometrics-assisted analytical methods as part of the modern

  11. 10 CFR 51.97 - Final environmental impact statement-materials license.


    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51...-Regulations Implementing Section 102(2) Final Environmental Impact Statements-Materials Licenses § 51.97 Final environmental impact statement—materials license. (a) Independent spent fuel storage installation (ISFSI...

  12. Application of solid waste containing lead for gamma ray shielding material



    Abstract. The basic strategies to decrease solid waste disposal problems have focused on the reduction of waste production and recovery of usable materials using waste and making raw materials. Generally, various materials have been used for radiation shielding in different areas and situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead has been analyzed in order to make a shielding material against gamma radiation. The photon total mass...

  13. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10(3) tonnes in 2007 to 437×10(3) tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10(3) and 7×10(3) tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10(3) to 253×10(6) tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10(3) to 158×10(3) tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  14. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Allan J. Jacobson


    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  15. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity


    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression


    Aziz I. Abdullah


    Full Text Available Solid Detergent is one of  the Economic materials and Environmentally friendly method towards enhancing properties of concrete. Lightweight, slow reaction and anti acid concrete can achieving by using this materials, so many test made to validate the advantage and disadvantage ; initial and final hardening time  for cement mortar and compressive strength of concrete, also anti acid test made for cement mortar.The results of tests show this materials are suitable for achieving the purpose to lightweight, slow reaction additional  anti acid concrete.

  17. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...


    ... and steel scrap, other metals, paper fiber) sustainability; C&D materials; and zero waste. Topic 3... AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about...

  18. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Ruiz Morales, J. C.


    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  19. 75 FR 64585 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...


    ... nonsubstantive changes, however, to correct grammar, internal paragraph references, and a temperature conversion... means the English version of the ``International Maritime Solid Bulk Cargoes Code'' published by...

  20. Organic materials for second harmonic generation. Final report

    Twieg, R.J. (comp.)


    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  1. Armed Services Materials Conversion. A Documentation. Final Report.

    Organization and Human Resources Development Associates, Inc., Austin, TX.

    This report discusses Phase 1 of a project to convert armed services dental and medical curriculum materials into separate curricula for dental and physician assistant for civilian education use. The first two sections focus on project tasks and acquisition of existing military materials in dental and physician assistant training. Samples of…

  2. Nanostructured materials: A novel approach to enhanced performance. Final report

    Korth, G.E.; Froes, F.H.; Suryanarayana, C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)] [and others


    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a view to increase their ductilities. The major findings of this project are reported.

  3. Materials Technology Support for Radioisotope Power Systems Final Report

    Daniel P. Kramer; Chadwick D. Barklay


    Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.


    Willi Pabst


    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  5. Characterizaticr of Solid State Laser and Nonlinear Optical Materials.


    materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated

  6. Technical Report (Final): Development of Solid State Reagents for Preparing Radiolabeled Imaging Agents

    Kabalka, George W


    The goal of this research was on the development of new, rapid, and efficient synthetic methods for incorporating short-lived radionuclides into agents of use in measuring dynamic processes. The initial project period (Year 1) was focused on the preparation of stable, solid state precursors that could be used to efficiently incorporate short-lived radioisotopes into small molecules of use in biological applications (environmental, plant, and animal). The investigation included development and evaluation of new methods for preparing carbon-carbon and carbon-halogen bonds for use in constructing the substrates to be radiolabeled. The second phase (Year 2) was focused on developing isotope incorporation techniques using the stable, boronated polymeric precursors. The final phase (Year 3), was focused on the preparation of specific radiolabeled agents and evaluation of their biodistribution using micro-PET and micro-SPECT. In addition, we began the development of a new series of polymeric borane reagents based on polyethylene glycol backbones.

  7. Materials Degradation and Detection (MD2): Deep Dive Final Report

    McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.


    An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

  8. Relationships between fracture toughness and other material properties. Final report

    Perra, M.; Finnie, I.


    The key experimental and analytical studies which have led to our present understanding of the mechanisms of ductile fracture are reviewed. It is concluded that insufficient progress has been made in the quantitative description of ductile separation mechanisms on a microscale to allow the realistic prediction of fracture toughness from material properties and microstructure. An experimental study of ductile fracture is underway which has the aim of determining the growth rate of voids in known plastic deformation fields as a function of triaxiality of stress and material work-hardening. Novel specimens of particularly well characterized microstructure are utilized.

  9. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    Searcy, K; Bltyhe, G M; Steen, W A


    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agents to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.

  10. Textbooks and Learning Materials Program: Zambia. Final Report

    US Agency for International Development, 2009


    The Mississippi Consortium for International Development's (MCID's) intervention involved the development, publication and distribution of an Integrated Foundations of Learning Kit, focused on numeracy. This intervention was aligned with Zambia's priorities and strategies and matched the requirements of the Textbooks and Learning Materials Program…

  11. Glazing materials for solar and architectural applications. Final report

    Lampert, C.M. [ed.


    This report summarizes five collaborative research projects on glazings performed by participants in Subtask C of IEA Solar Heating and Cooling Programme (SHC) Task 10, Materials Research and Testing. The projects include materials characterization, optical and thermal measurements, and durability testing of several types of new glazings Three studies were completed on electrochromic and dispersed liquid crystals for smart windows, and two were completed for low-E coatings and transparent insulation materials for more conventional window and wall applications. In the area of optical switching materials for smart windows, the group developed more uniform characterization parameters that are useful to determine lifetime and performance of electrochromics. The detailed optical properties of an Asahi (Japan) prototype electrochromic window were measured in several laboratories. A one square meter array of prototype devices was tested outdoors and demonstrated significant cooling savings compared to tinted static glazing. Three dispersed liquid crystal window devices from Taliq (USA) were evaluated. In the off state, these liquid crystal windows scatter light greatly. When a voltage of about 100 V ac is applied, these windows become transparent. Undyed devices reduce total visible light transmittance by only .25 when switched, but this can be increased to .50 with the use of dyed liquid crystals. A wide range of solar-optical and emittance measurements were made on low-E coated glass and plastic. Samples of pyrolytic tin oxide from Ford glass (USA) and multilayer metal-dielectric coatings from Interpane (Germany) and Southwall (USA) were evaluated. In addition to optical characterization, the samples were exposure-tested in Switzerland. The thermal and optimal properties of two different types of transparent insulation materials were measured.

  12. From waste biomass to solid support: lignosulfonate as a cost-effective and renewable supporting material for catalysis.

    Sun, Shaohuan; Bai, Rongxian; Gu, Yanlong


    Lignosulfonate (LS) is an organic waste generated as a byproduct of the cooking process in sulfite pulping in the manufacture of paper. In this paper, LS was used as an anionic supporting material for immobilizing cationic species, which can then be used as heterogeneous catalysts in some organic transformations. With this strategy, three lignin-supported catalysts were prepared including 1) lignin-SO3 Sc(OTf)2 , 2) lignin-SO3 Cu(OTf), and 3) lignin-IL@NH2 (IL=ionic liquid). These solid materials were then examined in many organic transformations. It was finally found that, compared with its homogeneous counterpart as well as some other solid catalysts that are prepared by using different supports with the same metal or catalytically active species, the lignin-supported catalysts showed better performance in these reactions not only in terms of activity but also with regard to recyclability.

  13. Jet engine with electromagnetic field excitation of expendable solid-state material

    Tsybin, O. Yu.; Makarov, S. B.; Ostapenko, O. N.


    Electromagnetic field action on a solid-state natural raw material is considered here in the context of producing a mechanical reactive momentum. We suggest the development of a jet engine that possesses fast control and low thrust based on desorption or sputtering of particles flow from a solid surface.

  14. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source... management, recycling, measurement, data, data collection, construction and demolition (C&D)...


    V. A. Okovity


    Full Text Available The paper presents an oxide ceramic material with addition of solid lubricant which has good technological characteristics and which is able to form high wear-resistant plasma coatings with low friction coefficient.

  16. Hazardous material minimization for radar assembly. Final report

    Biggs, P.M.


    The Clean Air Act Amendment, enacted in November 1990, empowered the Environmental Protection Agency (EPA) to completely eliminate the production and usage of chlorofluorocarbons (CFCs) by January 2000. A reduction schedule for methyl chloroform beginning in 1993 with complete elimination by January 2002 was also mandated. In order to meet the mandates, the processes, equipment, and materials used to solder and clean electronic assemblies were investigated. A vapor-containing cleaning system was developed. The system can be used with trichloroethylene or d-Limonene. The solvent can be collected for recycling if desired. Fluxless and no-clean soldering were investigated, and the variables for a laser soldering process were identified.

  17. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    Sean M. McDeavitt


    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at

  18. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Guan, Jie; Minh, Nguyen


    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  19. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    Jiao, Zhujie [Univ. of Michigan, Ann Arbor, MI (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Bartels, David [Univ. of Notre Dame, IN (United States)


    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  20. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    Sun, Sam


    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  1. Anodic materials for the electrolysis of water. Final report

    Fiori, G.; Mari, C.M.; Perra, B.; Vago, L.; Vitali, P.


    Research was conducted in two areas: preparation and characterization of various catalytic materials, similar to NiLa/sub 2/O/sub 4/, in order to verify the possibility of improving the catalytic activity; and optimization of the catalytic film deposition conditions on a cheap substrate and tests at high temperature (110 to 120/sup 0/C) and high current densities (1 A/cm/sup 2/). The modified catalytic materials can be classified in three different groups: NiLa/sub 2/O/sub 4/ mixed oxides doped with different low quantities of cations of various valencies (Li/sup +/, Mg/sup 2 +/, Fe/sup 3 +/); mixed oxides in which Ni has been replaced totally or partially with Co; and NiLa/sub 2/O/sub 3/ mixed oxides in which some sulfur has been substituted for reticular oxygen. The best electrode tested is the mixed Ni-Co non-stoichiometric oxide deposited on Ni. This electrode at 110/sup 0/C and 1 A/cm/sup 2/ shows an E/sub rhe/ potential lower than 1.45 v after more than 400 hr of uninterrupted work as anode in the water decomposition reaction.

  2. Applied solid state science advances in materials and device research 3

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 3 covers reviews that are directly related to the two devices which are the epitome of applied solid state science - the transistor and the laser. The book discusses the physics of multilayer-gate IGFET memories; the application of the transient charge technique in drift velocity; and trapping in semiconductors and in materials used in xerography, nuclear particle detectors, and space-charge-limited devices; as well as thin film transistors. The text describes the manipulation of laser beams in solids and discusses

  3. Final Report: Nanoscale Dynamical Heterogeneity in Complex Magnetic Materials

    Kevan, Stephen [Univ. of Oregon, Eugene, OR (United States)


    A magnetic object can be demagnetized by dropping it on a hard surface, but what does ‘demagnetized’ actually mean? In 1919 Heinrich Barkhausen proved the existence of magnetic domains, which are regions of uniform magnetization that are much larger than atoms but much smaller than a macroscopic object. A material is fully magnetized when domain magnetizations are aligned, while it is demagnetized when the domain magnetizations are randomly oriented and the net magnetization is zero. The heterogeneity of a demagnetized object leads to interesting questions. Magnets are unstable when their poles align, and stable when their poles anti-align, so why is the magnetized state ever stable? What do domains look like? What is the structure of a domain wall? How does the magnetized state transform to the demagnetized state? How do domains appear and disappear? What are the statistical properties of domains and how do these vary as the domain pattern evolves? Some of these questions remain the focus of intense study nearly a century after Barkhausen’s discovery. For example, just a few years ago a new kind of magnetic texture called a skyrmion was discovered. A skyrmion is a magnetic domain that is a nanometer-scale, topologically protected vortex. ‘Topologically protected’ means that skyrmions are hard to destroy and so are stable for extended periods. Skyrmions are characterized by integral quantum numbers and are observed to move with little dissipation and so could store and process information with very low power input. Our research project uses soft x-rays, which offer very high magnetic contrast, to probe magnetic heterogeneity and to measure how it evolves in time under external influences. We will condition a soft x-ray beam so that the wave fronts will be coherent, that is, they will be smooth and well-defined. When coherent soft x-ray beam interacts with a magnetic material, the magnetic heterogeneity is imprinted onto the wave fronts and projected into

  4. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu


    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  5. Electronic processes in thin-film PV materials. Final report

    Taylor, P.C.; Chen, D.; Chen, S.L. [and others


    The electronic and optical processes in an important class of thin-film PV materials, hydrogenated amorphous silicon (a-Si:H) and related alloys, have been investigated using several experimental techniques designed for thin-film geometries. The experimental techniques include various magnetic resonance and optical spectroscopies and combinations of these two spectroscopies. Two-step optical excitation processes through the manifold of silicon dangling bond states have been identifies as important at low excitation energies. Local hydrogen motion has been studied using nuclear magnetic resonance techniques and found to be much more rapid than long range diffusion as measured by secondary ion mass spectroscopy. A new metastable effect has been found in a-Si:H films alloyed with sulfur. Spin-one optically excited states have been unambiguously identified using optically detected electron spin resonance. Local hydrogen bonding in microcrystalline silicon films has been studied using NMR.

  6. Radiation effects on organic materials in nuclear plants. Final report

    Bruce, M B; Davis, M V


    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  7. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications

    Yunqi Yang


    Full Text Available Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields.

  8. Femtosecond laser induced phenomena in transparent solid materials

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng


    The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been...... solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  9. Materials corrosion in ammonia/solid heat pump working media

    Wilson, D.F.; Howell, M.; DeVan, J.H.


    Salt/ammonia complexes will undergo thermal cycles during use as working media for heat pumps. The interaction between container materials and complexes under thermal cyclic conditions was assessed to screen possible containment materials. Aluminum alloys 3003, 1100, and 6063 and carbon steel A214 were tested against possible heat pump working media SrCl{sub 2}/NH{sub 3}, CaBr{sub 2}/NH{sub 3}, and CaCl{sub 2}/NH{sub 3}. None of the containment materials showed susceptibility to stress corrosion cracking. While all the materials demonstrated excellent general corrosion resistance to SrCl{sub 2}/NH{sub 3}, only A214 displayed good general corrosion resistance to CaCl{sub 2}/NH{sub 3}. The complex CaBr{sub 2}/NH{sub 3} was found to be subject to thermal cyclic instability and should not be used as a heat pump working medium.


    Uday B. Pal; Srikanth Gopalan


    AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

  11. Fabrication, properties, and tritium recovery from solid breeder materials

    Johnson, C.E. (Argonne National Lab., IL (USA)); Kondo, T. (Japan Atomic Energy Research Inst., Tokyo (Japan)); Roux, N. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Tanaka, S. (Tokyo Univ. (Japan)); Vollath, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.))


    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  12. Biochemical methane potential (BMP) of solid organic materials

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.


    and experimental conditions were reported. The study was performed using 4 samples: 3 reference substrates (starch, cellulose and gelatine), and 1 raw material (mung bean). The BMP of mung bean was carried out at two inoculum to substrate ratios (ISR), specifically 2 and 1. The methane yields of reference......L CH4/g VSadded and 86±8%, respectively. In addition, the anaerobic digestion of the raw material elected did not show influence on the ISR in the extent of the biotransformation....

  13. Final disposal of low- and medium-level radioactive materials; Endlagerung von schwach- und mittelradioaktiven Stoffen



    The contribution on the final disposal of low- and medium-level radioactive materials describes the responsibilities according to the atomic law and the mining law, the licensing requirements and the licensing procedures. The costs for the final disposal have to be financed by the waste producer, 40% are publicly owned institutions. The licensed final repository Konrad for low- and medium-level radioactive materials is described in detail. The research mine Asse is obviously not appropriate for final disposal, the stored containers with low- and medium-level radioactive materials have to be retrieved, supposedly after 2033. The final repository for low- and medium-level radioactive materials was installed by the former DDR, in 1998 the repository was closed.Germany has decided to dispose the radioactive waste in deep geological facilities, other countries have near-surface repositories.

  14. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others


    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  15. Alternate electrode materials for the SP100 reactor. Final report

    Randich, E.


    This work was performed in response to a request by the Astro-Space Division of the General Electric Co. to develop alternate electrodes materials for the electrodes of the PD2 modules to be used in the SP100 thermoelectric power conversion system. Initially, the project consisted of four tasks: (1) development of a ZrB{sub 2} (C) CVD coating on SiMo substrates, (2) development of a ZrB{sub 2} (C) CVD coating on SiGe substrates, (3) development of CVI W for porous graphite electrodes, and (4) technology transfer of pertinent developed processes. The project evolved initially into developing only ZrB{sub 2} coatings on SiGe and graphite substrates, and later into developing ZrB{sub 2} coatings only on graphite substrates. Several sizes of graphite and pyrolytic carbon-coated graphite substrates were coated with ZrB{sub 2} during the project. For budgetary reasons, the project was terminated after half the allotted time had passed. Apart from the production of coated specimens for evaluation, the major accomplishment of the project was the development of the CVD processing to produce the desired coatings.

  16. Compatibility tests between Jarytherm DBT synthetic oil and solid materials from wastes

    Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Flamant, Gilles; Walker, Jérémie


    Direct thermocline thermal energy storage is the cheapest sensible thermal energy storage configuration. Indeed, a thermocline tank consists in one tank instead of two and reduces costs. Thermocline thermal energy storages are often filled with cheap solid materials which could react with the heat transfer fluid in the case of incompatibility. PROMES laboratory is building a pilot-scale parabolic trough solar loop including a direct thermocline thermal energy storage system. The working fluid will be a synthetic oil, the Jarytherm® DBT, and the thermal energy storage tank will be filled with stabilized solid materials elaborated from vitrified wastes. Compatibility tests have been conducted in order to check on one hand if the thermo-mechanical properties and life time of the energy storage medium are not affected by the contact with oil and, on the other hand, if the thermal oil performances are not degraded by the solid filler. These experiments consisted in putting in contact the oil and the solid materials in small tanks. In order to discriminate the solid materials tested in the shortest time, accelerating aging conditions at 330 °C for 500 hours were used. The measurements consisted in X-Ray Diffraction and Scanning Electron Microscopy for the solids, and thermo-physical and chemical properties measurements for the oil. Regarding the solid samples, their crystalline structure did not change during the test, but it is difficult to conclude about their elementary composition and they seem to absorb oil. While thermal properties still makes Jarytherm® DBT a good heat transfer fluid after the accelerated aging tests, this study results in differentiating most compatible materials. Thus according to our study, Jarytherm® DBT can be used in direct thermocline thermal energy storage applications when compatibility of the solid material has been demonstrated.

  17. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Atsushi eSakuda


    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  18. Pressure effect on hysteresis in spin-crossover solid materials

    Gudyma, Iurii, E-mail: [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)


    A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.

  19. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...


    ... Bulk MSDS Material Safety Data Sheet NCB National Cargo Bureau NEPA National Environmental Policy Act... material safety data sheet (MSDS) address some portions of proposed Sec. 148.60. We agree with the comment... in the form of an MSDS. e. One comment observed that, as proposed in the 1994 NPRM, Sec. 148.60(d...

  20. A novel shielding material prepared from solid waste containing lead for gamma ray

    Erdem, Mehmet; Baykara, Oktay; Doğru, Mahmut; Kuluöztürk, Fatih


    Human beings are continuously exposed to cosmogenic radiation and its products in the atmosphere from naturally occurring radioactive materials (NORM) within Earth, their bodies, houses and foods. Especially, for the radiation protection environments where high ionizing radiation levels appear should be shielded. Generally, different materials are used for the radiation shielding in different areas and for different situations. In this study, a novel shielding material produced by a metallurgical solid waste containing lead was analyzed as shielding material for gamma radiation. The photon total mass attenuation coefficients ( μ/ ρ) were measured and calculated using WinXCom computer code for the novel shielding material, concrete and lead. Theoretical and experimental values of total mass attenuation coefficient of the each studied sample were compared. Consequently, a new shielding material prepared from the solid waste containing lead could be preferred for buildings as shielding materials against gamma radiation.

  1. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg


    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation wa...

  2. Development of high temperature materials for solid propellant rocket nozzle applications

    Manning, C. R., Jr.; Lineback, L. D.


    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.

  3. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Warner, C.L. (comp.)


    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  4. Utilization of ash from municipal solid waste combustion. Final report, Phase I

    Jones, C.M.; Hartman, R.M.; Kort, D.; Rapues, N.


    This ash study investigates several aspects of Municipal Waste Combustion (MWC) ash utilization to develop an alternative to the present disposal practice of landfilling in a lined monofill. Ash was investigated as a daily or final cover for municipal waste in the landfill to prevent erosion and as a road construction aggregate. Samples of eight mixtures of ash and other materials, and one sample of soil were analyzed for chemical constituents. Biological tests on these mixters were conducted, along with erosion tests and sieve analyses. A chemical analysis of each sieve size was conducted. Geotechnical properties of the most promising materials were made. Findings to this point include: all ash samples take have passed the EPA TCLP testing; chemical analysis of bottom and combined ash samples indicate less than expected variability; selected ash mixtures exhibited very low coefficients of hydraulic conductivity; all but one of the ash mixtures exhibited greater erosion resistance than the currently used landfill cover material; MWC combined analysis indicates this is a viable alternative for landfill cover; MWC ash size reactions and chemical analysis show bottom and combined ash to be a viable alternative for road construction.

  5. Alternative anode materials for solid oxide fuel cells

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)


    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  6. A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion

    Kim, Kyung-Hoon; Choi, Duk-Hyun; Kim, Hyung-Joon [Kyung Hee University, Yongin (Korea, Republic of)


    Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.

  7. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Sacchetti, Mark


    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance.

  8. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Jairo F. Pereira


    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  9. Rheorefining process. Semi-solid processing available for reuse of materials; Reorifuain ho. Zairyo saisei no tameno semi solid kako

    Ichikawa, K.; Kato, S.; Asuke, T.; Nakazawa, K. [Mechanical Engineering Laboratory, Tsukuba (Japan). Agency of Industrial Science and Technology


    Rheorefining process is one of methodologies of the rheocasting process produces high-purity material by using the temperature region of solid-liquid coexistence of alloy, but still remains in a stage of basic investigation. The authors have paid attention to the fact that deterioration of metallic products is caused by impurity invading and accumulating mainly in crystal grain boundary or solid crystal gaps from the surrounding environment during the use and have investigated the development of a technique to recover effectively reusable metallic materials from spent products through the rheorefining process. A test piece of Al-50 wt% Sn alloy is evacuated by a vacuum pump followed by heating, maintained isothermally in the temperature region of solid-liquid coexistence, pressurized with a plunger and filtered through a filter. By selecting a proper temperature and plunger speed, Sn can be remover efficiently to afford Al with 98% purity. Rheorefining experiments on Al-2, 1, 0.5 and 0.2 wt% Ni alloys show reduction of the Ni contents and reduction of the amount of eutectic crystals is observed. 10 refs., 6 figs., 1 tab.

  10. Preparation QTi3.5-3.5 Graphite Lubricant Material with Semi-solid Casting Technology

    Peng ZHANG; Yunhui DU; Daben ZENG; Jianzhong CUI; Limin BA


    For the first time, the distribution of graphite particles in QTi3.5-3.5 graphite ingot was studied by using semi-solid casting technology. The results show that: the relationship between solid fraction and stirring temperature of QTi3.5-3.5 graphite slurry is y=759.4-0.711x (where y is solid fraction, x is stirring temperature). With the increasing of solid fraction of QTi3.5-3.5 graphite slurry, the agglomeration of graphite particles in ingot reduces gradually. The condition to prepare QTi3.5-3.5 graphite lubricant material with even distribution of graphite particles is that the solid fraction of QTi3.5-3.5 graphite slurry is larger than 40%.

  11. Steel silos for particulate solid materials : part 2 - membrane forces at filling and discharge.

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan


    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  12. Steel silos for particulate solid materials. Part 1, Actions at filling and discharge.

    Petrovčič, Simon; Guggenberger, Werner; Brank, Boštjan


    In the paper, the expressions for membrane forces in an axisymmetric steel silo structure at filling and discharge with a particulate solid material are presented. Graphical plots of these expressions are given. They can be used for a quick and easy estimate of membrane forces distribution in all parts of a silo structure. The plots are valid for any silo geometry and for any material stored. The influence of silo geometry and stored material properties on the size and distribution of membran...

  13. Biochemical methane potential (BMP) of solid organic materials

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.


    and experimental conditions were reported. The study was performed using 4 samples: 3 reference substrates (starch, cellulose and gelatine), and 1 raw material (mung bean). The BMP of mung bean was carried out at two inoculum to substrate ratios (ISR), specifically 2 and 1. The methane yields of reference...... substrates for starch, cellulose and gelatine were 352±33, 353±29 and 382±42 mL/g VSadded, respectively. The percentages of biotransformation of these substrates into methane were 85±8, 85±7 and 88±10%, respectively. On the other hand, the values of methane yields and biodegradability for MB were 373±35 m...

  14. Exploratory development on laser and optical materials. Final report 1 Dec 1972-15 Aug 1974

    O' Hare, J.M.; Detrio, J.A.; Petty, R.D.; Yaney, P.P.


    Topics include analytical solid state material studies--(Theoretical and experimental investigations of the optical Stark spectra of rare earth ions, Judd-Ofelt theory, Quantum efficiencies); Laser materials evaluation; Studies of rare-earth doped CdF/sub 2/, SrF/sub 2/, and BaF/sub 2/--(Electroluminescence of semiconducting CdF/sub 2/, Analyses of the optical spectra of Gd/sup 3 +/ and Ce/sup 3 +/).

  15. Numerical simulation of mechanical deformation of semi-solid material using a level-set based finite element method

    Sun, Zhidan; Bernacki, Marc; Logé, Roland; Gu, Guochao


    In this work, a level-set based finite element method was used to numerically evaluate the mechanical behavior in a small deformation range of semi-solid materials with different microstructure configurations. For this purpose, a finite element model of the semi-solid phase was built based on Voronoï diagram. Interfaces between the solid and the liquid phases were implicitly described by level-set functions coupled to an anisotropic meshing technique. The liquid phase was considered as a Newtonian fluid, whereas the behavior of the solid phase was described by a viscoplastic law. Simulations were performed to study the effect of different parameters such as solid phase fraction and solid bridging. Results show that the macroscopic mechanical behavior of semi-solid material strongly depends on the solid fraction and the local microstructure which play important roles in the formation of hot tearing. These results could provide valuable information for the processing of semi-solid materials.

  16. Applied solid state science advances in materials and device research 2

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 2 covers topics about complex oxide materials such as the garnets, which dominate the field of magnetoelasticity and are among the most important laser hosts, and sodalite, which is one of the classic photochromic materials. The book discusses the physics of the interactions of electromagnetic, elastic, and spin waves in single crystal magnetic insulators. The text then describes the mechanism on which inorganic photochromic materials are based, as observed in a variety of materials in single crystal, powder, and gl

  17. Characterisation of Materials used in Flex Bearings of Large Solid Rocket Motors

    CH.V. Ram Mohan


    Full Text Available Solid rocket motors are propulsion devices for both satellite launchers and missiles, which require guidance and steering to fly along a programmed trajectory and to compensate for flight disturbances. A typical solid rocket motor consists of motor case, solid propellant grain, motor insulation, igniter and nozzle. In most solid rocket motors, thrust vector control (TVC is required. One of the most efficient methods of TVC is by flex nozzle system. The flex nozzle consists of a flexible bearing made of an elastomeric material alternating with reinforcement rings of metallic or composite material. The material characterisation of AFNOR 15CDV6 steel and the natural rubber-based elastomer developed for use in flex nozzle are discussed. This includes testing, modelling of the material, selection of a material model suitable for analysis, and the validation of material model.Defence Science Journal, 2011, 61(3, pp.264-269, DOI:

  18. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro


    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. New Lithium Solid Electrolytes, Thio-Lisicon Materials Design Concept and Application to Solid State Battery

    Kanno, Ryoji; Murayama, Masahiro; Sakamoto, Kazuyuki


    Materials design concept of the new crystalline 'thio-LlSICON' (LIthium Superlonic CONductor) family was discussed. The thio-LISICON was found in the ternary systems, Li2S-MS2-M'xSy (M=Si, Ge, M'=P, Sb, Al, Zn, etc), and showed the highest conductivity of 2.2 × 10-3 Scm-1 at 25°C of any sintered ceramic, together with negligible electronic conductivity, high electrochemical stability, no reaction with lithium metal, and no phase transition up to 300°C. The advantage and disadvantage of the crystalline materials were discussed based on the ionic conduction, chemical stability and electrochemical potential window.

  20. 36 CFR 1206.86 - What additional materials must I submit with the final narrative report?


    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What additional materials must I submit with the final narrative report? 1206.86 Section 1206.86 Parks, Forests, and Public... narrative report? You must submit the materials determined by the Commission as found in the NHPRC...

  1. Final Report for "Solid State Voltammetry and Other Experiments in Molecular Melts" Semi-Solid Nanoparticles, and Biomolecule Polyether Hybrids"

    Royce W. Murray


    Since the technical progress report of the previous renewal proposal, my students and I have published or have in press 13 papers (5 in JACS). Another is under review; several others are in draft form. This Final Report is an updated version of the Performance Report submitted with the renewal proposal for this project.

  2. Material growth and characterization for solid state devices

    Collis, Ward J.; Abul-Fadl, A.; Iyer, S.


    During this period InGaAs and InGaAsP were grown on (100)InP by liquid phase electroepitaxy (LPEE). Results of the epitaxial growth of InGaAs on sputtered quartz masked substrates are presented. The resulting surface morphology can be related to the current density distribution near the edges of a masked pattern. The quaternary InGaAs was grown with compositions corresponding to 1.3 micron and 1.5 micron emission wavelengths. Growth rates were found to be linearly dependent upon current density, and a strong dependence upon composition was noted. These compositions lie in the miscibility gap region of the alloy phase diagram at the 645 C growth temperature. Growths were performed at 685 C to avoid the miscibility gap. Epilayers were characterized by photoluminescence, X-ray diffraction, secondary ion mass spectrometry, and Hall effect measurements. Aluminum oxide was deposited on silicon and InGaAs substrates for the characterization of this material as an insulator in a field effect transistor structure. It was determined that the results did not warrant further work with the deposition from an aluminum isopropoxide source. A metallographic vapor phase epitaxy system installation is nearing completion for use in hybrid III-V semiconductor epilayer growths.

  3. Scaling similarities of multiple fracturing of solid materials

    P. G. Kapiris


    Full Text Available It has recently reported that electromagnetic flashes of low-energy -rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002. The neutron starquakes may release strain energies up to erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998.

  4. Optimization of Structure and Material Properties for Solids Composed of Softening Material

    Bendsøe, Martin P.; Guedes, J.M.; J.M., Plaxton;


    Recent results on the design of material properties in the context of global structural optimization provide, in analytical form, a prediction of the optimal material tensor distributions for two or three dimensional continuum structures. The model developed for that purpose is extended here...... to cover the design of a structure and associated material properties for a system composed of a generic form of nonlinear softening material. As was established in the earlier study on design with linear materials, the formulation for combined 'material and structure' design with softening materials can...

  5. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies



    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  6. Fundamental Studies of the Durability of Materials for Interconnects in Solid Oxide Fuel Cells

    Frederick S. Pettit; Gerald H. Meier


    Ferritic stainless steels are a leading candidate material for use as an SOFC interconnect, but have the problem of forming volatile chromia species that lead to cathode poisoning. This project has focused both on optimization of ferritic alloys for SOFC applications and evaluating the possibility of using alternative materials. The initial efforts involved studying the oxidation behavior of a variety of chromia-forming ferritic stainless steels in the temperature range 700-900 C in atmospheres relevant to solid oxide fuel cell operation. The alloys exhibited a wide variety of oxidation behavior based on composition. A method for reducing the vaporization is to add alloying elements that lead to the formation of a thermally grown oxide layer over the protective chromia. Several commercial steels form manganese chromate on the surface. This same approach, combined with observations of TiO{sub 2} overlayer formation on the chromia forming, Ni-based superalloy IN 738, has resulted in the development of a series of Fe-22 Cr-X Ti alloys (X=0-4 wt%). Oxidation testing has indicated that this approach results in significant reduction in chromia evaporation. Unfortunately, the Ti also results in accelerated chromia scale growth. Fundamental thermo-mechanical aspects of the durability of solid oxide fuel cell (SOFC) interconnect alloys have also been investigated. A key failure mechanism for interconnects is the spallation of the chromia scale that forms on the alloy, as it is exposed to fuel cell environments. Indentation testing methods to measure the critical energy release rate (Gc) associated with the spallation of chromia scale/alloy systems have been evaluated. This approach has been used to evaluate the thermomechanical stability of chromia films as a function of oxidation exposure. The oxidation of pure nickel in SOFC environments was evaluated using thermogravimetric analysis (TGA) to determine the NiO scaling kinetics and a four-point probe was used to measure

  7. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    Galli, Giulia [Univ. of California, Davis, CA (United States); Bai, Zhaojun [Univ. of California, Davis, CA (United States); Ceperley, David [Univ. of Illinois, Urbana, IL (United States); Cai, Wei [Stanford Univ., CA (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Marzari, Nicola [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pickett, Warren [Univ. of California, Davis, CA (United States); Spaldin, Nicola [Univ. of California, Santa Barbara, CA (United States); Fattebert, Jean-Luc [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  8. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials.

    May, Michael; Paul, Elizabeth; Katovic, Vladimir


    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  9. Collection-efficient, axisymmetric vacuum sublimation module for the purification of solid materials

    May, Michael; Paul, Elizabeth; Katovic, Vladimir


    A vacuum sublimation module of axisymmetric geometry was developed and employed to purify solid-phase materials. The module provides certain practical advantages and it comprises: a metering valve, glass collector, glass lower body, main seal, threaded bushing, and glass internal cartridge (the latter to contain starting material). A complementary process was developed to de-solvate, sublime, weigh, and collect solid chemical materials exemplified by oxalic acid, ferrocene, pentachlorobenzene, chrysene, and urea. The oxalic acid sublimate was analyzed by titration, melting range, Fourier Transform Infrared (FT-IR) Spectroscopy, cyclic voltammetry, and its (aqueous phase) electrolytically generated gas. The analytical data were consistent with a high-purity, anhydrous oxalic acid sublimate. Cyclic voltammograms of 0.11 mol. % oxalic acid in water displayed a 2.1 V window on glassy carbon electrode beyond which electrolytic decomposition occurs. During module testing, fifteen relatively pure materials were sublimed with (energy efficient) passive cooling and the solid-phase recovery averaged 95 mass %. Key module design features include: compact vertical geometry, low-angle conical collector, uniformly compressed main seal, modest power consumption, transparency, glovebox compatibility, cooling options, and preferential conductive heat transfer. To help evaluate the structural (module) heat transfer, vertical temperature profiles along the dynamically evacuated lower body were measured versus electric heater power: for example, an input of 18.6 W generated a temperature 443-K at the bottom. Experimental results and engineering calculations indicate that during sublimation, solid conduction is the primary mode of heat transfer to the starting material.

  10. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    Dickinson, J. T. [Washington State University


    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  11. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Youhua Jia; Biao Zhong; Jianping Yin


    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  12. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)


    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  13. Material efficient production of complex (hybrid) components using semi solid forming processes

    Riedmüller, Kim Rouven; Liewald, Mathias


    By means of lightweight design and lightweight material structures, weight of single components and of resulting component assemblies should be reduced and, additionally, existing functionalities, reliabilities and material properties should be preserved. Therefore, on the one hand novel materials and hybrid material combinations are investigated and on the other hand weight reduction is realized by material efficient component designs. With regard to the manufacturing of such complex component geometries with high dimensional accuracy and relating to the realization of hybrid material concepts, semi solid forming technology offers promising prospects. This paper deals with two research projects recently conducted at the Institute for Metal Forming Technology (IFU, University of Stuttgart) in the field of this forming technology. First project is concerned with the manufacturing of hybrid components with integrated sensor and/or actuator functions and second project is in the field of material efficient manufacturing.

  14. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;


    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  15. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    Fromm, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hauch, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  16. Solid waste containing persistent organic pollutants in Serbia: From precautionary measures to the final treatment (case study).

    Stevanovic-Carapina, Hristina; Milic, Jelena; Curcic, Marijana; Randjelovic, Jasminka; Krinulovic, Katarina; Jovovic, Aleksandar; Brnjas, Zvonko


    Sustainable solid waste management needs more dedicated attention in respect of environmental and human health protection. Solid waste containing persistent organic pollutants is of special concern, since persistent organic pollutants are persistent, toxic and of high risk to human health and the environment. The objective of this investigation was to identify critical points in the Serbian system of solid waste and persistent organic pollutants management, to assure the life cycle management of persistent organic pollutants and products containing these chemicals, including prevention and final destruction. Data were collected from the Serbian competent authorities, and led us to identify preventive actions for solid waste management that should reduce or minimise release of persistent organic pollutants into the environment, and to propose actions necessary for persistent organic pollutants solid waste. The adverse impact of persistent organic pollutants is multidimensional. Owing to the lack of treatment or disposal plants for hazardous waste in Serbia, the only option at the moment to manage persistent organic pollutants waste is to keep it in temporary storage and when conditions are created (primarily financial), such waste should be exported for destruction in hazardous waste incinerators. Meanwhile, it needs to be assured that any persistent organic pollutants management activity does not negatively impact recycling flows or disturb progress towards a more circular economy in Serbia.

  17. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Renju Zacharia


    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  18. Solid-State Thermal Reaction of a Molecular Material and Solventless Synthesis of Iron Oxide

    Roy, Debasis; Roy, Madhusudan; Zubko, Maciej; Kusz, Joachim; Bhattacharjee, Ashis


    Solid-state thermal decomposition reaction of a molecular material {As}({C}6{H}5)4[{Fe}^{II}{Fe}^{III} ({C}2{O}4)3]}n has been studied using non-isothermal thermogravimetry (TG) in an inert atmosphere. By analyzing the TG data collected at multiple heating rates in 300 K-1300 K range, the kinetic parameters (activation energy, most probable reaction mechanism function and frequency factor) are determined using different multi-heating rate analysis programs. Activation energy and the frequency factor are found to be strongly dependent on the extent of decomposition. The decomposed material has been characterized to be hematite using physical techniques (FT-IR and powder XRD). Particle morphology has been checked by TEM. A solid-state reaction pathway leading the molecular precursor to hematite has been proposed illustrating an example of solventless synthesis of iron oxides utilizing thermal decomposition as a technique using innocuous materials.

  19. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    D. Radhika


    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  20. Fluorescent material concentration dependency: Förster resonance energy transfer in quasi-solid state DSSCs

    Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong


    Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density (J SC ) of 4.32 mA/cm-2, and an open-circuit voltage (V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.

  1. High Speed Lapping of SiC Ceramic Material with Solid (Fixed) Abrasives

    ZHANG Wei; YANG Xin-hong; SHANG Chun-min; HU Xiao-yong; HU Zhong-hui


    An experimental investigation is carried out to machine SiC ceramic material through the method of high speed plane lapping with solid(fixed) abrasives after the critical condition of brittle-ductile transition is theoretically analyzed. The results show that the material removal mechanism and the surface roughness are chiefly related to the granularity of abrasives for brittle materials such as SiC ceramic. It is easily realized to machine SiC ceramic in the ductile mode using W3.5 grit and a high efficiency, low cost and smooth surface with a surface roughness of Ra 2.4nm can be achieved.

  2. Applied solid state science advances in materials and device research 6

    Wolfe, Raymond


    Applied Solid State Science: Advances in Materials and Device Research, Volume 6 covers the application of composites in electronic systems. The book discusses different types of composite-composite materials consisting of finely dispersed mixtures of metals and insulators; composite devices in which two distinct semiconductor devices are combined in one package; and composite glass fibers with the core and cladding differing in their optical properties. The text describes articles dealing with properties that can be achieved in versatile materials; light-emitting diodes and photodetectors th

  3. Modelling of Physical, Chemical, and Material Properties of Solid Oxide Fuel Cells

    Jakub Kupecki


    Full Text Available This paper provides a review of modelling techniques applicable for system-level studies to account for physical, chemical, and material properties of solid oxide fuel cells. Functionality of 0D to 3D models is discussed and selected examples are given. Author provides information on typical length scales in evaluation of power systems with solid oxide fuel cells. In each section, proper examples of previous studies done in the field of 0D–3D modelling are recalled and discussed.

  4. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    Kabadi, V.N.


    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  5. Electrical, optical, and magnetic properties of organic solid-state materials IV. Materials Research Society, symposium proceedings Volume 488

    Reynolds, J.R.; Jen, A.K.Y.; Rubner, M.F.; Chiang, L.Y.; Dalton, L.R. [eds.


    The symposium, Electrical, Optical, and Magnetic Properties of Organic Solid-State Materials IV, was sponsored by the Materials Research Society and held December 1--5, 1997, in Boston, Massachusetts. Early studies of charge transport in conducting polymers have evolved from the elucidation of fundamental structure/function relationships to applications as batteries, simple electrical devices such as diodes, chemical sensors, antistatic coatings, microwave and millimeter wave-absorbing materials, and photochromic devices. A particularly exciting evolution has been the discovery and development of organic light-emitting diodes (OLEDs) which appear to be nearing commercialization in an amazingly short period of time. This application is of particular interest because both electrical and optical properties must be considered, and these have been important parallel themes of the conference. Moreover, nanostructure control is important for OLEDs, and nanoscale architectural engineering has been an increasingly important theme of the conference. Indeed, not only has the study of conjugated (quasidelocalized) electrons in organic solid-state materials resulted in interesting physical properties and device applications, but the desire to exploit these properties has promoted the development of new synthesis and processing methodologies to achieve special nanoscale and microscale structures. One hundred five papers have been processed separately for inclusion on the data base.

  6. Design finalization and material qualification towards procurement of the ITER vacuum vessel

    Ioki, K., E-mail: [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Barabash, V.; Bachmann, C.; Chappuis, P.; Choi, C.H.; Cordier, J-J.; Giraud, B.; Gribov, Y. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Heitzenroeder, Ph. [PPPL MS41, Princeton University, PO Box 451, Princeton, NJ 08543 (United States); Her, N.; Johnson, G. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Jun, C. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Loesser, D. [PPPL MS41, Princeton University, PO Box 451, Princeton, NJ 08543 (United States); Martin, A.; Merola, M. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France); Pathak, H. [IPR, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Readman, P. [ITER Organization, CS 90 046, 13067 St. Paul-lez-Durance CEDEX (France)


    Procurement arrangements for ITER key components including the vacuum vessel (VV) have been signed and the ITER activities are now fully devoted towards construction. Final design reviews have been carried out for the main vessel and ports. One of the design review topics is the selection of materials, material procurement, and assessment of material performance during operation. The width of the inner shell splice plates was increased from 120 mm to 160 mm to minimize risk during the assembly of the Thermal shields and the VV. Instead of facet shaping, 3D shaping was introduced for the outboard inner shell. The material qualification procedures have been started for VV structural materials such as 316L(N) IG for licensing as a nuclear pressure equipment component. In accordance with the regulatory requirements and quality requirements for operation, common material specifications have been prepared in collaboration with the domestic agencies.

  7. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology


    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  8. Solid waste and the water environment in the new European Union perspective. Process analysis related to storage and final disposal

    Marques, Marcia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology


    Processes that occur during storage and final disposal of solid waste were studied, with emphasis on physical and chemical aspects and their effects on the water environment, within the New European Union perspective for landfilling (Council Directive 1999/31/EC of 26 April 1999). In the new scenario, landfilling is largely restricted; waste treatments such as incineration, composting, recycling, storage and transportation of materials are intensified. Landfill sites are seen as industrial facilities rather than merely final disposal sites. Four main issues were investigated within this new scenario, in field- and full-scale, mostly at Spillepeng site, southern Sweden. (1) Adequacy of storage piles: Regarding the increasing demand for waste storage as fuel, the adequacy of storage in piles was investigated by monitoring industrial waste (IND) fuel compacted piles. Intense biodegradation activity, which raised the temperature into the optimum range for chemical oxidation reactions, was noticed during the first weeks. After about six months of storage, self-ignition occurred in one IND pile and one refuse derived fuel (RDF) pile. Heat, O{sub 2} and CO{sub 2} distribution at different depths of the monitored IND pile suggested that natural convection plays an important role in the degradation process by supplying oxygen and releasing heat. Storage techniques that achieve a higher degree of compaction, such as baling, are preferable to storage in piles. ( 2) Discharge from landfill for special waste: Regarding changes in the composition of the waste sent to landfills and the consequences for its hydrological performance in active and capped landfills, discharge from a full-scale landfill for special/hazardous waste (predominantly fly ash from municipal solid waste (MSW) incineration) was modelled using the U.S. EPA HELP model. Hydraulic properties of the special waste were compared with those from MSW. Lower practical field capacity and higher hydraulic conductivity at

  9. Optimization of solid-state synthesis process of advanced ceramics materials: influence of mixing conditions.

    Sakri Adel


    Full Text Available In this paper, the effect of mixing process on solid state reaction of solid oxide material mixture was studied. Lead piezoelectric ceramic specimens 0.5 Pb(Zn1/3,Sb2/3O3-0.5 Pb0.98La0.02(Zr0.48,Ti0.52O3 prepared by different mixing procedures, were conducted under different conditions such as order, combination and mixing time. The phase formation, composition nature, structural properties of powder mixture was analyzed by X-ray diffraction. The obtained results for different mixing processes make the solid state reaction method more selective, taking into consideration the attraction forces between the reactants and the electronegativity of oxide reactants.

  10. Study of Solid-Liquid Ratio of Fly Ash Geopolymer as Water Absorbent Material

    Angga Prasetya Fandi


    Full Text Available Geopolymer has been synthesized from fly ash to be applicated as water absorbent material. This research conducted to determine the ability of geopolymer to abrsop water by variation of solid – liquid ratio at optimum molarity of NaOH; 3 M. In this research, the synthesis of geopolymer was conducted at the variation of solid-liquid ratio; 60:40, 65:35, 70:30, and 75:25. Result of the treatment were characterized by XRD and SEM to compare the geopolymer structure. Water absorption capacity was measured by immersing the geopolymer specimens in water for 24 hours. Based on the result, solid – liquid ratio with maximum water absorbed was 70:30 with 13,04 wt%.

  11. Second sphere coordination of hybrid metal-organic materials: solid state reactivity.

    Guo, Fang; Martí-Rujas, Javier


    When compared to other hybrid metal organic materials such as metal-organic frameworks, hydrogen bonded materials self-assembled by metals and organic molecules using second sphere interactions have been poorly investigated. Consequently, their solid-sate properties are also scarce. In this perspective, earlier research mainly on host-guest chemistry and its evolution towards more extended structures by applying crystal engineering principles using second sphere coordination is described. Crystal-to-crystal guest exchange reactions, permanently porous hybrid metal organic materials, mechanochemical reactivity, thermally induced phase transformations as well as some examples of functional technological applications using second sphere adducts such as gas adsorption, separation and non-linear optical phenomena are also reported. Although some tutorial reviews on second sphere adducts have been conducted mainly in the solution state focusing on metal based anion receptors, to the best of our knowledge, an overview on relevant works that focus on the solid-state properties has not been carried out. The aim of this article is to highlight from some of the early fundamental work to the latest reports on hybrid metal-organic materials self-assembled via second sphere interactions with a focus on solid-state chemistry.

  12. Vertical transportation system of solid material for backfilling coal mining technology

    Ju Feng; Zhang Jixiong; Zhang Qiang


    For transportation of solid backfill material such as waste and fly ash from the surface to the bottom of the shaft in a fully mechanized backfilling coal backfilling coal mining technology,we developed a new vertical transportation system to transport this type of solid backfill material.Given the demands imposed on safely in feeding this material,we also investigated the structure and basic parameter of this system.For a mine in the Xingtai mining area the results show that:(1) a vertical transportation system should include three main parts,i.e.,a feeding borehole,a maintenance chamber and a storage silo; (2) we determined that 486 mm is a suitable diameter for bore holes,the diameter of the storage silo is 6 m and its height 30 m in this vertical transportation system; (3) a conical buffer was developed to absorb the impact during the feeding process.To ensure normal implementation of fully mechanized backfilling coal mining technology and the safety of underground personnel,we propose a series of security technologies for anti-blockage,storage silo cleaning.high pressure air release and aspiration.This vertical transporting system has been applied in one this particular mine,which has fed about 4 million tons solid material with a feeding depth of 350 m and safely exploited 3 million tons of coal.

  13. 77 FR 23713 - Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for...


    ... relationship between EPA-approved labels for pesticides registered under the Federal Insecticide, Fungicide... AGENCY Pesticides; Final Guidance on Material Safety Data Sheets as Pesticide Labeling; Request for.... SUMMARY: The Agency is announcing the availability of a Pesticide Registration Notice (PR Notice)...

  14. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    Padilla, Willie [Boston College, Chestnut Hill, MA (United States)


    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  15. Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials Final Report

    James W. Allen


    This document is the final report of research performed under U.S. DOE Award Number DE-FG02-07ER46379, entitled Synchrotron Studies of Quantum Emergence in Non-Low Dimensional Materials. It covers the full period of the award, from June 1, 2007 through May 31, 2011.

  16. Qualitative Analysis of Relationship between Refractive Index and Atomic Parameters of Solid Materials

    罗遵度; 黄艺东


    The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r-/F=r-/(r+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r+ and r- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.

  17. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas


    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay.

  18. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Lee, Yueh-Lin


    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  19. Demonstration of a stable high ionic conductivity solid oxide electrolyte. Final report, November 1993-January 1995

    Wachsman, E.D.; Pound, B.G.; Jayaweera, P.; Jiang, N.; Lowe, D.


    The overall objective of this project is to develop a novel, low-cost, intermediate temperature, solid oxide fuel cell (SOFC) using currently available highly conducting CeO2 electrolytes. The specific technical objective is to demonstrate that a ceria electrolyte can be modified to obtain stability against reduction by H2 at the anode, as evident by a stable open circuit potential that is higher than could be obtained with an unmodifed ceria electrolyte.

  20. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.


    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  1. Palynological Investigation of Post-Flight Solid Rocket Booster Foreign Material

    Nelson, Linda; Jarzen, David


    Investigations of foreign material in a drain tube, from the Solid Rocket Booster (SRB) of a recent Space Shuttle mission, was identified as pollen. The source of the pollen is from deposits made by bees, collecting pollen from plants found at the Kennedy Space Center, Cape Canaveral, Florida. The pollen is determined to have been present in the frustum drain tubes before the shuttle flight. During the flight the pollen did not undergo thermal maturation.

  2. Solid-fluid mixture microstructure design of composite materials with application to tissue engineering scaffold design

    Lin, Cheng-Yu

    The ability to design the material microstructure brings the use of composite materials into the next generation. In this paper, we report pioneering research to implement the computational material microstructure design into the internal architecture design for a tissue engineering scaffold. A tissue engineering design postulate is that scaffolds should match specified healthy tissue stiffness, while concurrently providing sufficient porosity for cell migration and tissue regeneration. Employing the inverse homogenization method and the adaptive topology optimization method, a complex 3D microstructure can be designed to perform with the anisotropic elastic stiffness and porosities analogous to a native bone specimen. Besides the elastic stiffness from its solid part, fluid in the porous region also plays an important role in tissue engineering. The flow of fluid through the pores brings nutrients to cells in the tissue matrix and also removes their waste. Fluid permeability of cylinderical trabecular bone grafts was found to predict clinical success. Deriving from Darcy's Law, we developed software to calculate the homogenized fluid permeability of 3D cancellous voxel models, which were directly reconstructed from micro-CT images. Furthermore, an Evolutionary Structural Optimization (ESO) algorithm was utilized to maximize fluid permeability in the microstructure. The fluid optimization scheme was then collaborated with solid phase optimization through Multidisciplinary Design Optimization (MDO) to create an integrated solid-fluid mixture microstructure design. In addition, to ensure the fabrication feasibility, we also implemented a post-optimization process to enhance design results by improving the dynamic stiffness to eliminate weak connections and checkerboard pattern. The design scaffolds were then built by an indirect solid freeform fabrication (SFF) technique using various bio-compatible materials and ready for further investment. This computational

  3. Synthesis and characterization by solid-state impedance spectroscopy of semiconductor Cu2ZnSnS4 material for photovoltaic technologies

    Muñoz, M.; Vera-López, E.; Gómez-Cuaspud, J. A.; Pineda-Triana, Y.


    Current work is focused on the synthesis and characterization of a Cu2ZnSnS4 material (Abbreviated CZTS), identified as a potential candidate for the manufacture of photovoltaic cells. The material was obtained by means of a hydrothermal route which permits a simple and economical alternative to synthesize advanced materials for photovoltaic applications. The synthesis of a solid started from corresponding metal nitrates of Cu(NO3)2.6H2O, Zn(NO3)2, Sn(NO3)4.6H2O and thiourea as S source, which were dissolved in deionized water until complete a 1.0mol L-1 concentration. The solution was kept in a Teflon lined steel vessel with magnetic stirring (150 rpm) and treated at 300°C for 12 hours to form the crystalline phase. The initial characterization of solid was done using UV spectroscopy to validate the chemical process and identify the corresponding Band-gap around (1.43eV). The structural characterization by X-ray diffraction, confirmed the presence of nanometric solids (140-260nm). The morphological characterization by SEM analysis evidenced a homogeneous material in the form of micrometric aggregates, by a related synthesis method. Finally, the electrical characterization by means of solid state impedance spectroscopy demonstrated a semiconductor behaviour which evidenced the transport phenomena associated with a Warburg resistance.

  4. Pectina: da matéria-prima ao produto final Pectin: from raw material to the final product

    Maria H. G. Canteri


    Full Text Available A pectina, provavelmente a mais complexa macromolécula natural, é um heteropolissacarídeo contendo predominantemente resíduos de ácido galacturônico. Este polímero, do grupo das fibras dietéticas, é amplamente utilizado como geleificante e estabilizante na indústria de alimentos. O principal processo industrial para obtenção de pectina está baseado na solubilização da protopectina do bagaço de maçã e casca de frutos cítricos, realizada em condições levemente ácidas sob aquecimento. Estudos recentes têm reportado a extração de pectina de novas matérias-primas sob diferentes condições, com influência sobre a qualidade e sobre o rendimento do produto final, para aumentar sua qualidade reológica. Esta revisão descreve a estrutura, as fontes, as aplicações, o processo de extração industrial assim como as principais técnicas de caracterização da pectina.Pectin, probably the most complex macromolecule in nature is a hetero-polysaccharide containing predominantly residues of galacturonic acid (GalA. This polymer, which belongs to a group of dietary fibers, is widely used as a gelling agent and stabilizer in the food industry. The main industrial processing to obtain pectin is based on the solubilization of protopectin from apple pomace and citrus peels, which is done under low acidity and heated conditions. Recent studies have reported the extraction of pectin from new raw materials and using different extraction conditions, which influence the yield and quality of the final product, and may improve the rheological properties. This review describes the structure, sources, applications and industrial extraction processes, as well as the analysis methods of physicochemical characterization of pectin.

  5. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    Busca, Guido


    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  6. Solid-State Lasers for Bathymetry and Communications. Studies of Four Rare-Earth Materials.


    The envelope was cerium -doped quartz, to reduce UV emission. The lamp was operated in simmer mode. The pulse forming network contained a 50-PF...class of solid state lasing materials called rare-earth fluorides . In these materials, the host lattice is LiYF4 (often called YLF), and the active...1971-1973 in which terbium-doped rare-earth fluorides were grown, and spectroscopy and lasing measurements conducted. A sample of Tb:LiGdF4 was lased

  7. General approach of the photothermoelectric technique for thermal characterization of solid thermoelectric materials

    Touati, Karim; Depriester, Michael; Guilmeau, Emmanuel; Sotelo, Andrés; Madre, Maria A.; Gascoin, Franck; Sahraoui, Abdelhak Hadj


    This work focuses on the photothermoelectric (PTE) technique allowing the thermal characterization of solid-state thermoelectric (TE) materials. Previously, this technique was restricted to TE materials having low electrical conductivities. Here, the PTE technique is extended and generalized to all solid-state TE materials with low or high electrical conductivities. This is achieved by taking into account the Gaussian shape of the thermal excitation source. The formalism of this new methodology is developed and the procedure for extracting thermal parameters is proposed. For illustration, two different TE materials are studied: with relatively high electrical conductivity (Bi2Te2.4Se0.6) and relatively low electrical conductivity (Bi2Ca2Co1.7O x ). The thermal properties of these two materials (thermal diffusivity, effusivity and conductivity) are found and compared to those obtained by the photothermal radiometry which is a well established technique. The good concordance between the results obtained by these two techniques demonstrates the relevance of the generalized PTE technique. One of the main advantages of this technique is its non use of an external sensor.

  8. High reliability solid refractive index matching materials for field installable connections in FTTH network

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio


    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  9. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J. C.


    We show that a combined application of Mössbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In Sn S system. We show that Li insertion in In16Sn4S32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl Sb S system. We show that variations of the 121Sb Mössbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb LIII edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl Sn Te system. The formal oxidation numbers of the Te atoms are determined from 125Te Mössbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl Sn Te compounds.

  10. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Murray, R. W.


    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  11. Solid-matrix luminescence analysis. Final technical report, June 15, 1986--June 14, 1995

    Hurtubise, R.J.


    In this report, the major results and conclusions of the research over the last two years and five months will be considered. The report discusses the physicochemical interactions discovered that are important for solid-matrix luminescence (SML), and the development of new interaction models which are very useful for the understanding the phenomena that are relevant for SML. The SML of 4-phenylphenol and 2-phenyl phenol adsorbed on filter paper is described. In addition, some new analytical methodology and applications are discussed.

  12. Low severity upgrading of F-T waxes with solid superacids. Final report

    Wender, I.; Tierney, J.W.


    The use of solid acids, especially Pt/ZrO{sub 2}/SO{sub 4}, to convert long chain alkanes and Fischer-Tropsch waxes to liquid fuels under mild reaction conditions was explored in this work. Anion and/or hydrogenation metal modified zirconium oxides were synthesized, characterized, and tested for hydrocracking and hydroisomerization. of model compounds, chiefly with n-hexadecane. The relationship between catalytic activity and acidic character of the bifunctional Pt/ZrO{sub 2}/SO{sub 4} catalyst was investigated.

  13. Canadian society of transplantation consensus workshop on cytomegalovirus management in solid organ transplantation final report.

    Preiksaitis, Jutta K; Brennan, Daniel C; Fishman, Jay; Allen, Upton


    The Canadian Society of Transplantation sponsored a Cytomegalovirus (CMV) Consensus Working Group that met on March 19, 2003. The objectives of this group were to determine the current burden of CMV-associated disease in the setting of solid organ transplantation in Canada, make recommendations regarding optimal strategies for the diagnosis, treatment and prevention of CMV infection and disease, highlight gaps in knowledge and outline priorities for research and other initiatives that might further reduce the burden of CMV-associated effects in this setting. This report summarizes the recommendations of the working group including ratings of the strength of evidence supporting the recommendations.

  14. Solid-state ultracapacitors for electric vehicles and consumer electronics. Final report

    Dr. Brian G. Dixon


    Advanced ultracapacitors are described that are based upon conducting polymer technology. Both Type I and Type II capacitors were constructed in single cell and stacked arrays that had superior electrochemical properties. More specifically nanophase clay electrode supports were fabricated and the conducting polymers solvent deposited upon them. Both liquid phase and solid polymer electrolytes were evaluated as well. Both single cell and multiple cell capacitors were prepared that exceeded the 15Wh/kg, 1500W/kg goals set by the United States Department of Energy. In addition, it was shown that different conducting polymer electrode configurations could be constructed that showed promise.

  15. Comparative analysis of the efficiencies of hydrogen storage systems utilising solid state H storage materials

    Lototskyy, M., E-mail: [South African Institute for Advanced Materials Chemistry, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Yartys, V.A., E-mail: [Institute for Energy Technology, P.O. Box 40, Kjeller NO-2027 (Norway); Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)


    Highlights: • Performance evaluation of H stores with various solid H storage materials was done. • Volumetric and gravimetric H storage densities and energy consumption were evaluated. • Effects of H storage containment and heat exchanger were estimated. • Pressure–temperature conditions of H storage strongly affect the overall performance. • Material’s packing density influences safety of operation and efficiency of H stores. - Abstract: Evaluation of the performances of hydrogen storage systems accommodating solid H storage materials should include characteristics on their reversible hydrogen storage capacity, operating pressures and temperatures, packing densities, and heat effects of hydrogen uptake and release. We have conducted a performance evaluation of the systems accumulating 5 kg of hydrogen in a containment of cylindrical geometry filled with a solid H storage material including such hydrides and reactive hydride composites as AlH{sub 3}, MgH{sub 2}, “low-temperature” (inter)metallic hydrides, NaAlH{sub 4}, Na{sub 3}AlH{sub 6}, LiBH{sub 4} + MgH{sub 2}, and MOFs. The analysis yielded gravimetric and volumetric H storage capacities, and energy efficiencies of hydrogen stores. We conclude that the weight efficiency of hydrogen stores, apart from the gravimetric H storage capacity of the material, is greatly affected by its packing density, and by the pressure–temperature conditions which determine type and dimensions of the containment. The materials with low heat effects of H exchange, operating close to the ambient conditions, should be targeted in the course of the development of new hydrogen stores as offering the best energy efficiency of their operation.

  16. The first stage of BFS integrated system for nuclear materials control and accounting. Final report



    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  17. Solid state sintering of silicon nitride ARL-CR-114. Final report

    Mangels, J.; Mikijelj, B. [Ceradyne, Inc., Costa Mesa, CA (United States)


    This report describes the development of Si{sub 3}N{sub 4}material compositions in the Si{sub 3}N{sub 4}-Y{sub 2}O{sub 3}-SiO{sub 2}-Mo{sub 2}C system with good high temperature stress rupture properties which could be used in engine components. Two distinct processing routes were examined in the course of the program: SSN and SRBSN. SRBSN was chosen for material property optimization. After characterization of two optimized compositions in the above system, demonstration engine components (exhaust valve blanks) were manufactured using the established processing procedures. Dimensional tolerance capabilities of the process were established and material properties of the components were shown to be comparable to those established during material development.

  18. Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report

    Suitor, J.W.; Clark, D.J.; Losey, R.W.


    The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)

  19. Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report

    Suitor, J.W.; Clark, D.J.; Losey, R.W.


    The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)

  20. Composting as Final Alternative to Solid Waste from Ceasa Curitiba/PR

    Cleverson V. Andreoli


    Full Text Available Solids waste (SW have been a municipal government concern. Centrais de Abastecimento (CEASA, the wholesale markets, are examples of SW potential generators. The CEASA localized in Curitiba city generates about 25 ton of SW per day corresponding to 20 ton of organic solid waste, consisting mainly of leftover or surplus of products marketed in the unit. The alternatives for this waste class are landfill, incineration, biodigesters and composting. The aim of the present work was to evaluate the composting as an alternative to disposal of waste based on the diagnosis made previously in the Program of Waste Management. It was found the composting is the cheaper solution available, ranging form U$ 6 to U$ 10 for natural method and U$ 20 to U$ 90 per ton for the accelerated method. It has suggested the compost from the composting method should be sold at CEASA with the objective to decrease the value paid by storekeeper to form a cycle: The farmer produces foods to market at CEASA and receive the compost to be applied partial or overall to substitute the chemical additives in his fields and turn to CEASA as foods and son on, encouraging the farmers to use natural nutrients and reduce their dependence on artificial inputs.


    Ana Karolina Tanaka Seara


    Full Text Available The article studies public sanitation services - in as much as solid domestic waste is concerned - within the municipality of São Paulo and employs as base year, that of 2010. Highlights include issues related to the current waste management model in the region and solutions are proposed to those deemed most critical, utilizing as benchmarks, adequate treatments conducted at other globalized cities. The bibliographical review seeks to elucidate concepts that are most aligned with the theme under study. Information concerning the management of solid domestic waste and reverse logistics in the private sector was gathered, whilst findings as to impairments observed in the municipality are listed. Local and international success cases concerning waste disposal were studied with views to encountering sources of potential improvements. It is understood that the adequate destination of residues, by means of recycling, composting or generation of fuels, calls for the population´s commitment in terms of developing separation and waste disposal habits, municipal administration involvement - in as much as supplying the required resources is concerned to ensure progress of alternatives - and finally, cannot do without reverse logistics actions undertaken by producing companies, in full compliance with existing federal rulings. In the quest to expand discussions concerning solid waste, the article attempts to include this matter - in a more effective manner - within strategic and investment decisions taken by both the public and private sectors.

  2. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Todorov, Evgueni Iordanov


    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  3. Development of a new solid-state absorber material for dye-sensitized solar cell (DSSC)

    Swapna Lilly Cyriac; B Deepika; Bhaskaran Pillai; S V Nair; K R V Subramanian


    In contrast to the conventional DSSC systems, where the dye molecules are used as light harvesting material, here a solid-state absorber was used as a sensitizer in conjunction with the dye. The materials like ZnO and Al2O3 : C, which will show optically stimulated luminescence (OSL) upon irradiation were used as extremely thin absorber layers. This novel architecture allows broader spectral absorption, an increase in photocurrent, and hence, an improved efficiency because of the mobility of the trapped electrons in the absorber material after irradiation, to the TiO2 conduction band. Nanocrystalline mesoporous TiO2 photoanodes were fabricated using these solid-state absorber materials and after irradiation, a few number of samples were co-sensitized with N719 dye. On comparing both the dye loaded photoanodes (ZnO/TiO2 and Al2O3 : C/TiO2), it can be concluded from the present studies that, the Al2O3 : C is superior to ZnO under photon irradiation. Al2O3 : C is more sensitive to photon irradiation than ZnO and hence there can be more trap centres produced in Al2O3 : C.

  4. Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials

    Clayton, J. Louie


    Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.

  5. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y


    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  6. Studies in new materials for intermediate temperature solid oxide fuel cells

    Skinner, Alex W.

    Ceramic materials have historically been of interest for their thermal and mechanical properties. However, certain ceramic materials can have very interesting electrical, magnetic and optical properties, leading to a new subclass, the electroceramics. Perovskites, in particular, have become the subject of intense research in this field. Specifically, doped barium zirconates have shown high proton conductivity in the intermediate temperature range (600--800°C), making them advantageous for use in solid oxide fuel cells. Solid oxide fuel cells (SOFCs) are electrochemical devices that convert chemical energy into electricity using ion-conducting oxide ceramics as electrolytes. The anode component of the cell is also of interest. Cermets or ceramic metals can serve a dual role as substrates for thin film electrolytes and anodes in the cell. Thin films of gadolinium and ytterbium doped barium zirconate were deposited using pulsed laser deposition (KrF; 1--3 J/cm2) on several substrates, including cermets developed in our lab, in a 10--400 mTorr oxygen environment with various substrate temperatures. Crystalline structure and chemical composition was determined by X-ray diffraction (XRD) and energy dispersive x-ray analysis, respectively. Preliminary electrical measurements of the electrolyte/cermet structure were taken using electrochemical impedance spectroscopy. Keywords: solid oxide fuel cells (SOFCs), perovskites, proton conductors, electroceramics, gadolinium-doped barium zirconate (BZG).

  7. Study of transport of laser-driven relativistic electrons in solid materials

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  8. Assessment of Bacterial Spores in Solid Materials: Curriculum Improvements Partnership Award for the Integration of Research (CIPAIR)

    Lavallee, Richard J.


    This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.

  9. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.


    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  10. Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report

    Alan Ludwiszewski


    LSI’s fuel cell uses efficient Solid Oxide Fuel Cell (“SOFC”) technology, is manufactured using Micro Electrical Mechanical System (“MEMS”) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The company’s Fuel Cell on a Chip™ technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

  11. Effective utilization of incinerated municipal solid waste incineration ash: zeolitic material synthesis and silica extraction.

    Bac, Bui Hoang; Song, Yungoo; Moon, Yonghee; Kim, Myung Hun; Kang, Il Mo


    In this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes. An increase in the reaction time improved the quantity of synthesized zeolitic materials. The reaction temperature determined the type of zeolite. An increase in the NaOH concentration can be an essential factor to improve zeolitic material synthesis, but it significantly reduced the yield of SiO(2) extraction. In conclusion, suitable conditions for obtaining both SiO(2) extraction and synthesized zeolites from the ashes of the incinerated solid waste materials should be: 200 degrees C reaction temperature; a 1 : 30 (g : mL) value for the sample : NaOH ratio; 2 mol L(-1) NaOH concentration; and a reaction time of more than 24 h.

  12. City of Raleigh, Wilders Grove Service Center, Solid Waste Services Facility. Final Report

    Cox, Robert [Jacobs Engineering, NC (United States); Black, Bill [City of Raleigh, NC (United States); Battle, Fred [City of Raleigh, NC (United States)


    Final Report for DOE Grant EE0002808. Grant award was for technology demonstration of geothermal energy systems. One of the major objectives identified for the demonstration portion of the grant was to prove the viability of Ground Source Heat Pump (GSHP) systems in significantly reducing energy usage of HVAC and domestic water heating systems compared to traditional systems. Data were monitored and conclusions drawn, including estimating payback timeframes and documenting lessons learned.

  13. Transformation plasticity in ductile solids. Final report, August 1, 1988--November 30, 1995

    Olson, G.B.


    Throughout history, the development of stronger materials has enabled the realization of countless technological advances. Unfortunately, any increase in strength is rarely achieved without concomitant decreases in toughness and ductility: a fact which severely limits the utility of materials such as ultrahigh-strength alloy steels. Typical precipitation-strengthened stainless steels have very little toughness at high strength levels. In the last decade, however, several investigators have reported exceptionally large fracture toughness values in high-strength precipitation-hardened metastable austenitic steels. This remarkable achievement is directly attributable to the process of transformation toughening. This report describes studies on tranformations and enhancement of plane-strain ductility in high strength steels.

  14. Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage.

    Wang, Ping


    Ammonia borane (NH(3)BH(3), AB) is a unique molecular crystal containing an intriguingly high density of hydrogen. In the past several years, AB has received extensive attention as a promising hydrogen storage medium. Several strategies have been successfully developed for promoting H(2) release and for suppressing the evolution of volatile by-products from the solid-state thermolysis of AB. Several potentially cost-effective and energy-efficient routes for regenerating AB from the spent fuels have been experimentally demonstrated. These remarkable technological advances offer a promising prospect of using AB-based materials as viable H(2) carriers for on-board application. In this perspective, the recent progresses in promoting H(2) release from the solid-state thermolysis of AB and in developing regeneration technologies are briefly reviewed.

  15. Thermal stability of the solid DNA as a novel optical material

    Nizioł, Jacek; Makyła-Juzak, Katarzyna; Marzec, Mateusz M.; Ekiert, Robert; Marzec, Monika; Gondek, Ewa


    Deoxyribonucleic acid (DNA) has been extensively exploited for the past decade as the matrix material in organic electronics and nonlinear optics. In this work thermal stability of DNA in solid form was thoroughly studied, mainly by optical methods. Solid samples of low molecular mass DNA were subjected to heating according to different protocols and dissolved. The temperature effect was observed in the evolution of UV absorption and circular dichroism spectra. Thin films of DNA were deposited on polished silicon wafers. They were conditioned at consecutively raised temperature and simultaneously measured by spectroscopic ellipsometry. Changes in chemical composition of thermally treated films were studied by XPS. Below 100 °C all thermal effects were reversible. Melting occurred at c.a.140 °C. Irreversible chemical changes probably occurred at 170-180 °C.

  16. Solid-State Physics An Introduction to Principles of Materials Science

    Ibach, Harald


    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. From a review of the original edition �...

  17. Creation and destruction of C{sub 60} and other fullerene solids. Final report

    Huffman, D.R.


    The 1990 announcement of the Huffman-Kratschmer fullerene-production technique set off a world-wide explosion of research into the properties and potential applications of C{sub 60} and C{sub 70}. In the last five years, 4,000+ fullerene articles have appeared in the scientific literature dealing with these fascinating molecules and their condensed phases. They possess a complex chemistry reminiscent of the alkenes, and this has led to the syntheses of numerous new compounds and fullerene-based materials, with suggested applications ranging from medicine to photo-conducting polymers to rocket fuel. The work summarized in this report focused on the creation and destruction of fullerene-based materials, for the purpose of producing new materials of interest. This three year project was supported by a grant from the Advanced Energy Projects Division, Office of Basic Energy Sciences, U.S. Department of Energy (DE-FG03-93ER12133). Following are outlines of the work completed in each of the three years, a section devoted to the professional and educational development of those involved, a brief section on the outlook for fullerene-based materials, and an appendix listing the publications resulting from this project.

  18. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...


    ... American Society for Testing and Materials ATCM Air Toxic Control Measure Btu British thermal unit CAA... measured level Mg milligram Mn manganese MACT maximum achievable control technology MDL method detection... tera British thermal unit TEOM Tapered Element Oscillating Microbalance TEQ Toxic Equivalency The...

  19. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin


    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  20. Analysis of temperatures during the firing bricks and final properties solid

    Gustavo Guerrero Gómez


    Full Text Available Context: Since the estructural behavior of the walls in a building directly depends on the properties of the blocks used, these properties are very important. In particular, the final properties of a ceramic block (often used in masonry depend on the cooking temperature of the pulp. Objective: The purpose of this research is to determine the relationship between the final properties of a ceramic block and the temperature at which it was cooked. Additionally, it is wroth considering how quickly these temperatures vary in the kiln. Method: In first place, a system based on Labview was used to record the temperatures in the oven. In second place, it was considered the temperature increasing rate according to the ideal curve for baking blocks, which was classified inside the oven. In third place, samples of the product were taken according to the technical norms NTC 4017 and NTC 4205 in order to determine the properties of the block. Results: According to the samples, we determined: the Initial absorption of water (TIA, the absorption rate at 24 hours of immersion, the compressive strength, and the Modulus of Rupture (MR. Additionally, applying a multiple linear regression analysis, it was found a relationship between the TIA, the temperature increase rate, and the MR. Conclusions: From the results in the research, it is possible to conclude that: blocks baked at more than 1000 °C have the highest modulus of rupture (1.54 MPa; however, it was found that blocks baked at lower temperature presented the highest initial absorption rate (0.37 gr/cm2/min and the best compressive strength (7.28 MPa. Finally, since the temperature and time are not controlled during the baking process, it is difficult for properties to be the most suitable.

  1. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut


    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  2. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.


    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  3. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.


    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  4. A rheometer for measuring the material moduli for granular solids. Quarterly progress report, December 1, 1992--February 28, 1993

    Rajajopal, K.R.


    The design of an orthogonal rheometer for measuring the properties of granular solids is described. A section is presented on the constitutive modeling of granular materials based on continuum theory.

  5. An investigation of lithium solid electrolyte materials with first principles calculations

    Lepley, Nicholas

    Inorganic solid electrolyte materials have recently become the focus of considerable interest due to the discovery of novel compounds with high ionic conductivities (> 1e-4 S/cm ). Sulfur based solid electrolytes are particularly notable in this regard, as well as for their compatibility for Li-S electrode systems. This work applies compu- tational methods based on density functional theory to the problem of identifying and characterizing novel electrolyte materials, with an emphasis on the Li2S-P2S5 system. In addition to a broad overview of likely materials, two compounds are studied in depth, Li7P3S11 and Li3PS4 . For Li7P3 S11 the results show excellent agreement with respect to migration energetics, and good agreement with the experimentally described structure and observed stability. For Li3PS4 , in addition to structure, stability, and migration energetics, the properties of the interface between the electrolyte and vacuum and the electrolyte and lithium metal are considered.

  6. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    Lee, Jonathan A.


    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  7. Laser-material interactions: A study of laser energy coupling with solids

    Shannon, M A [Lawrence Berkeley Lab., CA (United States)


    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  8. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Del Angel S, A.


    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  9. Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report

    Musiol, W.F. Jr.; Czuczwa, J.M.


    The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

  10. Effect of the Freshness of Starting Material on the Final Product Quality of Dried Salted Shark

    Ponnerassery Sukumaran Sudheesh


    Full Text Available This study describes the relationship between the freshness of the starting raw material (fish and the final product quality in experimentally dried shark fish. Sharks were stored at room temperature (25ºC for 0, 24 and 48 h and then salted, processed and sun dried at ambient temperatures ranging from 35 to 42ºC. There was marked difference in sensory and microbiological quality of fresh fish stored to different time periods, but, after drying, the quality difference was negligible. The results of this study show that storage of fish up to 48 h under experimental conditions at room temperature does not affect major microbiological quality and proximate composition of the final dried product.

  11. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    J. D. Ludowise


    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  12. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa


    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  13. Achieving "Final Storage Quality" of municipal solid waste in pilot scale bioreactor landfills.

    Valencia, R; van der Zon, W; Woelders, H; Lubberding, H J; Gijzen, H J


    Entombed waste in current sanitary landfills will generate biogas and leachate when physical barriers fail in the future, allowing the intrusion of moisture into the waste mass contradicting the precepts of the sustainability concept. Bioreactor landfills are suggested as a sustainable option to achieve Final Storage Quality (FSQ) status of waste residues; however, it is not clear what characteristics the residues should have in order to stop operation and after-care monitoring schemes. An experiment was conducted to determine the feasibility to achieve FSQ status (Waste Acceptance Criteria of the European Landfill Directive) of residues in a pilot scale bioreactor landfill. The results of the leaching test were very encouraging due to their proximity to achieve the proposed stringent FSQ criterion after 2 years of operation. Furthermore, residues have the same characteristics of alternative waste stabilisation parameters (low BMP, BOD/COD ratio, VS content, SO4(2-)/Cl- ratio) established by other researchers. Mass balances showed that the bioreactor landfill simulator was capable of practically achieving biological stabilisation after 2 years of operation, while releasing approximately 45% of the total available (organic and inorganic) carbon and nitrogen into the liquid and gas phases.

  14. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Heinonen, O.; Tiihonen, J. [Imatran Voima Oy, Vantaa (Finland). R and D Section


    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  15. Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing.

    Tsai, Candace S J; Dysart, Arthur D; Beltz, Jay H; Pol, Vilas G


    A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.

  16. Rational design of novel cathode materials in solid oxide fuel cells using first-principles simulations

    Choi, YongMan; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, N.W., Atlanta, GA 30332 (United States); Lin, M.C. [Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (United States); Center for Interdisciplinary Molecular Science, National Chiao Tung University, Hsinchu 30010 (China)


    The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La{sub 0.5}Sr{sub 0.5}BO{sub 2.75} (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs. (author)

  17. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria


    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  18. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    Korucu, M Kemal; Karademir, Aykan


    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  19. Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors

    Leroy, W. P.; Detavernier, C.; Van Meirhaeghe, R. L.; Lavoie, C.


    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin films. The solid-state reaction was examined between 11 transition metals (W, Mo, Fe, Cr, V, Nb, Mn, Ti, Ta, Zr, and Hf) and an amorphous carbon layer. Capping layers (C or TiN) of different thicknesses were applied to prevent oxidation. Carbide formation is evidenced for nine metals and the phases formed have been identified (for a temperature ranging from 100to1100°C). W first forms W2C and then WC; Mo forms Mo2C; Fe forms Fe3C; Cr first forms metastable phases Cr2C and Cr3C2-x, and finally forms Cr3C2; V forms VCx; Nb transforms into Nb2C followed by NbC; Ti forms TiC; Ta first forms Ta2C and then TaC; and Hf transforms into HfC. The activation energy for the formation of the various carbide phases has been obtained by in situ x-ray diffraction.

  20. Final Technical Report: Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Lattanzi, Aaron [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States)


    feedback on the efficiency and feasibility of various designs. Namely, a prototype design consisting of an array of heated hexagonal tubes was later supplanted by a vertical conduit with internal baffles. Due to low solids heat transfer on the bottom faces of the hexagonal tubes in the prototype, the predicted wall temperature gradients exceeded the design limitations. By contrast, the vertical conduit can be constructed to continually force particle-wall contacts, and thus, result in more desirable solids heat transfer and wall temperature gradients. Finally, a new heat flux boundary condition was developed for DEM simulations to assess the aforementioned wall temperature gradients. The new boundary condition advances current state-of-the-art techniques by allowing the heat fluxes to each phase to vary with space and time while the total flux remains constant. Simulations with the new boundary condition show that the total boundary heat flux is in good agreement with the imposed total boundary heat flux. While the methods we have utilized here are primarily numerical and fundamental by nature, they offer some key advantages of: (i) being robust and valid over a large range of conditions, (ii) able to quickly explore large parameter spaces, and (iii) aid in the construction of experiments. We have ultimately leveraged our computational capabilities to provide feedback on the design of a CSP which possesses great potential to become a cost effective source of clean and renewable electricity. Overall, ensuring that future energy demands are met in a responsible and efficient manner has far reaching impacts that span both ecologic and economic concerns. Regarding logistics, the project was successfully re-negotiated after the go/no-decisions of Years 1 and 2. All milestones were successfully completed.

  1. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae


    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  2. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material

    Li, Wei-Dong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Ding, En-Yong [Key Laboratory of Cellulose and Lignocellulosics Chemistry, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650 (China)


    Phase change materials (PCMs) are a series of functional materials with storing and releasing energy properties. PCMs can impact small environment around them through storing and releasing energy during phase change process. Phase change latent heat of PCMs has two main characters: one is high enthalpy and capacity of per unit volume and the other is that the temperature over phase change process keeps constant or changes slightly. PCMs have been widely used in lots of fields such as solar energy storing, smart housing, thermo-regulated fibers and agricultural greenhouse. In this article, a novel solid-solid phase change heat storage material was synthesized via the two-step condensation reaction of high molecule weight polyethylene glycol (PEG10000) with pentaerythritol (PE) and 4,4'-diphenylmethane diisocyanate (MDI). To characterize the resulting product in comparison with pristine PEG10000, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), polarization optical microscopy (POM) and wide-angle X-ray diffraction (WAXD) measurements were employed to investigate their ingredients, thermal properties and crystalline behaviors. The results indicated that the cross-linking PCM showed typical solid-solid phase transition property, and its phase change enthalpy and crystallinity reached 152.97 kJ/kg and 81.76%, respectively. (author)

  3. First Solid Evidence for a Rocky Exoplanet - Mass and density of smallest exoplanet finally measured


    The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. Combined with CoRoT-7b's known radius, which is less than twice that of our terrestrial home, this tells us that the exoplanet's density is quite similar to the Earth's, suggesting a solid, rocky world. The extensive dataset also reveals the presence of another so-called super-Earth in this alien solar system. "This is science at its thrilling and amazing best," says Didier Queloz, leader of the team that made the observations. "We did everything we could to learn what the object discovered by the CoRoT satellite looks like and we found a unique system." In February 2009, the discovery by the CoRoT satellite [1] of a small exoplanet around a rather unremarkable star named TYC 4799-1733-1 was announced one year after its detection and after several months of painstaking measurements with many telescopes on the ground, including several from ESO. The star, now known as CoRoT-7, is located towards the constellation of Monoceros (the Unicorn) at a distance of about 500 light-years. Slightly smaller and cooler than our Sun, CoRoT-7 is also thought to be younger, with an age of about 1.5 billion years. Every 20.4 hours, the planet eclipses a small fraction of the light of the star for a little over one hour by one part in 3000 [2]. This planet, designated CoRoT-7b, is only 2.5 million kilometres away from its host star, or 23 times closer than Mercury is to the Sun. It has a radius that is about 80% greater than the Earth's. The initial set of measurements, however, could not provide the mass of the exoplanet. Such a result requires extremely precise measurements of the velocity of the star, which is pulled a tiny amount by the gravitational tug of the orbiting exoplanet. The problem with CoRoT-7b is that these tiny signals are blurred by stellar activity in the form of

  4. Analysis of optimization processses for solid state fabrication of olivine cathode materials

    Oladimeji, Charles

    Lithium ion battery discovered since the 1980s has become pivotal to our energy needs. With the need for a shift to renewable energy and increased use of portable devices, energy storage has become a very important aspect of modern day life and technology. In the thesis, optimization techniques for solid state calcination of lithium olivine batteries are characterized and analyzed. A brief introduction into lithium ion battery is discussed, the chemistry and physics of the materials is studied in details. Emphasis is placed on the olivine structure, industrially utilized synthesis method and the performance of olivine lithium ion batteries are also discussed in details. Olivine structure LiFePO4 (LFP) was synthesized via solid state processes, using Li2CO3, NH4H 2PO4 and FeC2O4˙H2O and C12H22O11 as precursor materials. The effects of calendaring in terms of charge/discharge capacity, cycle life performance, surface morphology, and ac impedance was analyzed. The resulting LFP electrode was divided in part, Part A was left as is and Part B was calendared. The calendared electrode exhibited lower impedance under electrochemical impedance test. The calendared electrode also exhibited a higher discharge capacity of about 130 mAh/g at 0.1C compared to the as-is electrode with discharge capacity of about 120mAh/g. Olivine structure LiMnPO4 (LMP) was also synthesized via solid state processes, using Li2CO3, NH4H 2PO4, MnCO3 and C12H22O 11 as precursor materials. Comparison of the carbon addition process was done by adding sucrose to the initial precursor mix and carbon black at the later stages of fabrication. The 3 step carbon addition exhibited the highest specific capacity of about 72mAh/g, 1 step carbon addition possessed the least capacity of about 45mAh/g, while the 2 step process had a capacity of about 65mA/g.

  5. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Palmqvist Benny


    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  6. Final Report: Photo-Directed Molecular Assembly of Multifunctional Inorganic Materials

    B.G. Potter, Jr.


    This final report details results, conclusions, and opportunities for future effort derived from the study. The work involved combining the molecular engineering of photoactive Ti-alkoxide systems and the optical excitation of hydrolysis and condensation reactions to influence the development of the metal-oxygen-metal network at the onset of material formation. Selective excitation of the heteroleptic alkoxides, coupled with control of alkoxide local chemical environment, enabled network connectivity to be influenced and formed the basis for direct deposition and patterning of Ti-oxide-based materials. The research provided new insights into the intrinsic photoresponse and assembly of these complex, alkoxide molecules. Using a suite of electronic, vibrational, and nuclear spectroscopic probes, coupled with quantum chemical computation, the excitation wavelength and fluence dependence of molecular photoresponse and the nature of subsequent hydrolysis and condensation processes were probed in pyridine-carbinol-based Ti-alkoxides with varied counter ligand groups. Several methods for the patterning of oxide material formation were demonstrated, including the integration of this photoprocessing approach with conventional, dip-coating methodologies.

  7. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    Huang, Lei; Fantke, Peter; Jolliet, Olivier


    Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  8. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I


    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed.




    In the investigation of outbreaks of plague it is frequently more satisfactory to send specimens of suspected material collected in the field to a central laboratory, where usually better facilities for their more detailed examination are available. In the present study the authors have investigated the suitability of solid CO(2) (dry-ice) for the preservation of such material during transit. Three types of preparation were tested: broth suspensions of Pasteurella pestis, the livers and spleens of guinea-pigs dying after being infected with two different strains of P. pestis, and whole carcasses of mice and ground-squirrels infected with the organism. An additional test to ascertain the rate at which animal specimens became frozen and thawed was also carried out.These studies showed that (1) organisms in the various tissues frozen in dry-ice were not adversely affected by such treatment; (2) the survival of P. pestis cells did not depend on the number of organisms present in broth cultures or tissue suspensions, small numbers surviving equally well as large; and (3) plague bacilli contained in whole carcasses, even when present in small numbers, were also successfully preserved. It is concluded from these results, and also from the authors' practical use of the method over several years, that for the transport of plague-suspect materials from the field to the laboratory freezing with dry-ice can be confidently recommended.

  10. Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method

    Carlos Bueno


    Full Text Available Microtubes and rods with nanopipes of transparent conductive oxides (TCO, such as SnO2, TiO2, ZnO and In2O3, have been fabricated following a vapor-solid method which avoids the use of catalyst or templates. The morphology of the as-grown tubular structures varies as a function of the precursor powder and the parameters employed during the thermal treatments carried out under a controlled argon flow. These materials have been also doped with different elements of technological interest (Cr, Er, Li, Zn, Sn. Energy Dispersive X-ray Spectroscopy (EDS measurements show that the concentration of the dopants achieved by the vapor-solid method ranges from 0.5 to 3 at.%. Luminescence of the tubes has been analyzed, with special attention paid to the influence of the dopants on their optical properties. In this work, we summarize and discuss some of the processes involved not only in the anisotropic growth of these hollow micro and nanostructures, but also in their doping.


    Pytko-Polończyk, Jolanta; Antosik, Agata; Zajac, Magdalena; Szlósarczyk, Marek; Krywult, Agnieszka; Jachowicz, Renata; Opoka, Włodzimierz


    Caries is the most popular problem affecting teeth and this is the reason why so many temporary dental filling materials are being developed. An example of such filling is zinc oxide paste mixed with eugenol, Thymodentin and Coltosol F®. Zinc-oxide eugenol is used in dentistry because of its multiplied values: it improves heeling of the pulp by dentine bridge formation; has antiseptic properties; is hygroscopic. Because of these advantages compouds of zinc oxide are used as temporary fillings, especially in deep caries lesions when treatment is oriented on support of vital pulp. Temporary dental fillings based on zinc oxide are prepared ex tempone by simple mixing powder (Thymodentin) and eugenol liqiud together or a ready to use paste Coltosol F®. Quantitative composition depends mainly on experience of person who is preparing it, therefore, exact qualitative composition of dental fillings is not replicable. The main goal of the study was to develop appropriate dental fillings in solid form containing set amount of zinc oxide. Within the study, the influence of preparation method on solid dental fillings properties like mechanical properties and zinc ions release were examined.

  12. Method of treating oils derived by thermal treatment of solid carbonaceous materials

    Culbertson, W.J.; Nevens, T.D.; Schnackenberg, W.D.


    A method for treating a heavy fraction separated under substantially non-cracking conditions from a crude oil derived by thermal treatment of solid carbonaceous material in order to produce a heavy fraction and a light fraction consists of heat treating the separated heavy fraction at a temperature above about 600$F. This temperature is below the point of incipient thermal decomposition of the heavy fraction. The heat treatment takes place for a period of time which is inversely proportional to the temperature to produce a product which, when combined with at least part of a light fraction, results in an oil having a pour point lower than that of the original crude oil. The heat treatment produces substantially no non-condensible hydrocarbons and substantially no elemental carbon. (21 claims)

  13. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.


    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  14. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    Saowadee, Nath

    in solid oxide fuel cell and electrolysis cell. Conductivity of STN is one of the important properties that researchers desire to improve. Grin boundary conductivity contributes to the overall conductivity of the STN. Grain boundary density controlled by mainly grain growth in material processing. Grain...... boundary migration in grain growth involves grain boundary mobility and net pressure on it. Thus grain boundary energy and pressure of STN were calculated in this work. Secondary phase is undesired in STN and YSZ synthesis. The secondary phase in ceramics with the same compounds can have different lattice...... the lattice constant. Both 2D and 3D EBSD were used in acquiring microstructure and crystallographic information of STN and YSZ. Prior to EBSD data collection, effect of FIB milling on STN and YSZ was investigated to optimize EBSD data quality and acquisition time for 3D-EBSD experiments by FIB serial...

  15. Shock-Driven Hydrodynamic Instability Growth Near Phase Boundaries and Material Property Transitions: Final Report

    Peralta, Pedro [Arizona State Univ., Tempe, AZ (United States); Fortin, Elizabeth [Arizona State Univ., Tempe, AZ (United States); Opie, Saul [Arizona State Univ., Tempe, AZ (United States); Gautam, Sudrishti [Arizona State Univ., Tempe, AZ (United States); Gopalakrishnan, Ashish [Arizona State Univ., Tempe, AZ (United States); Lynch, Jenna [Arizona State Univ., Tempe, AZ (United States); Chen, Yan [Arizona State Univ., Tempe, AZ (United States); Loomis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong and repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 105 s-1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity

  16. Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

    Cetin, Deniz

    The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being

  17. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B


    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  18. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Ruiz-Morales, J. C.


    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  19. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Freeze, Ronald [Iowa State Univ., Ames, IA (United States)


    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  20. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Sahoo S


    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  1. Application of results of geological exploration of deposits of solid mineral raw materials in mining

    Ilić Miloje M.


    Full Text Available Important application in mining have the results of geological exploration of the deposits of solid mineral raw materials, before all geological data obtained (including their interpretations regarding basic properties of the deposts and their changeability, and regarding quantity and quality (i.e. resources and reserves of the belonging mineral raw material which have an essential significance for mineral projects. The geological data, together with the other relevant data (in the first place technical and economic ones are applied as basic parameters in documentation of mineral projects. Since the successfulness of the projects is dependent upon the confidence of the data, a special attention is dedicated to the acts that contribute to attaining of an adequate level of confidence of the data, as follows: a a gradual realization of the projects through two phases (geological and mining ones having seven development stages (reconnaissance, prospecting, preliminary exploration and detailed exploration stages of the geological phase and mine design, mine construction and mine production stages of the mining phase; b finding out optimal solutions in drawing up a plan of exploratory workings and its carrying out in accordance with basic properties of a deposit and their changeability; c a realistic estimation of mineral resources/reserves as a predominantly geological task (not 'calculation' of the resources/reserves as a mathematical task; d an objective evaluation of the successfulness of a project at the end of every geological stage ‒ presented in corresponding geological analyses and technical-economic studies.

  2. The physics of solid-state neutron detector materials and geometries.

    Caruso, A N


    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  3. Material development for waste-to-energy plants. Refractory linings. Final report

    Hede Larsen, O.


    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  4. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan


    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion.

  5. Using Arrested Solid-Solid Multiphase Reactions in Geological Materials to Deduce the Rate of Crustal Uplift

    Glassley, W.E.; Meike, A.


    The history geological terrains experience can be traced as a series of temperature and pressure changes. Each change drives the system toward a new state of thermodynamic equilibrium. The resultant overprinted rock fabrics, textures and chemical heterogeneities can be difficult to interpret. However, if carefully chosen, features from the scale of kilometers to nanometers can be used to reconstruct the history of mountain systems. Uplift of the Sri Lankan Central Highlands was rapid enough to preserve well-developed symplectite textures, some of which represent arrested solid-state diffusion-controlled reactions of garnet + O{sub 2} to form orthopyroxene + plagioclase + magnetite, as the rocks were exhumed from over 30 km in the earth's crust. Our objective has been to determine the reaction mechanisms responsible for symplectite development, and to establish the time interval over which these reactions occurred, to constrain the rate of mountain uplift. Considering that the most rapid mechanism is solid state grain-boundary diffusion of oxygen, the reaction time can be constrained by bounding the rate of oxygen supply to the reaction site. The solid state grain boundary diffusion rate of oxygen has been inferred to be ca. 10{sup -14}m{sup 2}-sec (Farver and Yund, 1991), but is sensitive to inferred grain boundary width. The range of rates thus determined allows the distinction between rapid uplift similar to that of the Himalayan Mountains, and the slow and progressive erosion of a less dramatic terrain. Further constraints on diffusion control and energetic relationships are determined from crystallographic relationships between the reactant and product phases, and submicron scale microstructure.

  6. Synthesis and structural characterization of some Pb(B$^{'}_{1/3}$Nb2/3)O3 type materials by two-stage solid-state route

    Mukul Pastor; P K Bajpai; R N P Choudhary


    Two-stage columbite solid state reaction route has been used for the preparation of Pb (B$^{'}_{1/3}$Nb2/3)O3 materials (B′ = Mg, Ni and Cd). The columbite precursor phase was structurally characterized using diffraction data. MgNb2O6, NiNb2O6 and CdNb2O6 show orthorhombic structures i.e. pure columbite phase. Final phase materials get stabilized in mixed phase. The diffraction pattern shows that it is a mixture of cubic pyrochlore and perovskite phase. Percentage of perovskite phase was calculated using the band intensities of (110) perovskite and (222) pyrochlore peaks. The calculated percentages show the dominant perovskite phase. Possible reasons for mixed phase are discussed.

  7. Real-Time Time-Frequency Two-Dimensional Imaging of Ultrafast Transient Signals in Solid-State Organic Materials

    Jun Takeda


    Full Text Available In this review, we demonstrate a real-time time-frequency two-dimensional (2D pump-probe imaging spectroscopy implemented on a single shot basis applicable to excited-state dynamics in solid-state organic and biological materials. Using this technique, we could successfully map ultrafast time-frequency 2D transient absorption signals of β-carotene in solid films with wide temporal and spectral ranges having very short accumulation time of 20 ms per unit frame. The results obtained indicate the high potential of this technique as a powerful and unique spectroscopic tool to observe ultrafast excited-state dynamics of organic and biological materials in solid-state, which undergo rapid photodegradation.

  8. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Krumpelt, M.


    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  9. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf


    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  10. Quasi-Solid-State Dye-Sensitized Solar Cells based on Mesoporous Silica SBA-15 Framework Materials

    YANG Hong; CHENG Yun-Fei; LI Fu-You; ZHOU Zhi-Guo; YI Tao; HUANG Chun-Hui; JIA Neng-Qin


    @@ We develop a novel and efficient quasi-solid-state electrolyte based on the mesoporous silica SBA-15 as a framework material for a dye sensitized nanocrystalline TiO2 solar cell. A solar energy-to-electricity conversion efficiency of 4.34% is achieved under AM 1.5 illumination (100mW/cm2).

  11. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  12. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.


    ... in Packing Group I. 173.211 Section 173.211 Transportation Other Regulations Relating to... materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I...

  13. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.


    ... in Packing Group III. 173.213 Section 173.213 Transportation Other Regulations Relating to... materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I, II or...

  14. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.


    ... in Packing Group II. 173.212 Section 173.212 Transportation Other Regulations Relating to... materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous... of part 173, to the requirements of part 178 of this subchapter at the Packing Group I or...

  15. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Pal, Nabanita; Bhaumik, Asim


    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places.

  16. Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf


    to protonconducting solid acids or transition metal phosphates as electrolytes. It was shown that Au is subject to corrosion in molten KH 2PO4 during polarisation. However, Ni and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as a construction material for bipolar...

  17. Metal hydride-based materials towards high performance negative electrodes for all-solid-state lithium-ion batteries.

    Zeng, Liang; Kawahito, Koji; Ikeda, Suguru; Ichikawa, Takayuki; Miyaoka, Hiroki; Kojima, Yoshitsugu


    Electrode performances of MgH2-LiBH4 composite materials for lithium-ion batteries have been studied using LiBH4 as the solid-state electrolyte, which shows a high reversible capacity of 1650 mA h g(-1) with an extremely low polarization of 0.05 V, durable cyclability and robust rate capability.

  18. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells

    Mai, Andreas; Haanappel, Vincent A.C.; Uhlenbruck, Sven; Tietz, Frank; Stoever, Detlev [Institute for Materials and Processes in Energy Systems, Forschungszentrum Juelich, IWV-1, D-52425 Juelich (Germany)


    The properties and the applicability of iron- and cobalt-containing perovskites were evaluated as cathodes for solid oxide fuel cells (SOFCs) in comparison to state-of-the-art manganite-based perovskites. The materials examined were La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (x=0.2 and 0.4; y=0-0.05), La{sub 0.8}Sr{sub 0.2}FeO{sub 3-{delta}}, La{sub 0.7}Ba{sub 0.3}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and Ce{sub 0.05}Sr{sub 0.95}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}. The main emphasis was placed on the electrochemical properties of the materials, which were investigated on planar anode-supported SOFCs with 8 mol% yttria-stabilised zirconia (8YSZ) electrolytes. An interlayer of the composition Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} was placed between the electrolyte and the cathode to prevent undesired chemical reactions between the materials. The sintering temperatures of the cathodes were adapted for each of the materials to obtain similar microstructures. In comparison to the SOFCs with state-of-the-art manganite-based cathodes, SOFCs with La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes achieved much higher current densities. Small A-site deficiency and high strontium content had a particularly positive effect on cell performance. The measured current densities of cells with these cathodes were as high as 1.76 A/cm{sup 2} at 800 {sup o}C and 0.7 V, which is about twice the current density of cells with LSM/YSZ cathodes. SOFCs with La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes have been operated for more than 5000 h in endurance tests with a degradation of 1.0-1.5% per 1000 h.

  19. Grid Connected Integrated Community Energy System. Volume 4. Integrated solid waste management systems. Final report: Phase I, February 1, 1977-May 31, 1977


    The cities of Minneapolis and Saint Paul represent the hub of commercial activity for the Twin Cities Metropolitan Region (TCMR). A Metropolitan Council has been charged with a continuous program of research and study concerning the acquisition of necessary facilities for the disposal of solid material for the metropolitan area and the means of financing such facilities. The region is defined; management of solid waste in the region is discussed. The region ranks high in the number of health care units and some data on the facilities are complied. The solid waste input that would result from the health care units is evaluated. Aspects of collection and transportation of solid wastes from the facilities and pyrolysis facility selection are described. A report is provided for the conceptual design, preliminary energy analysis, and preliminary financial analysis for a 132 US TPD Andco-Torrax slagging pyrolysis system.

  20. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur


    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  1. Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A. [Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion


    This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

  2. Exploiting Novel Radiation-Induced Electromagnetic Material Changes for Remote Detection and Monitoring: Final Progress Report


    semiconductors ) or optical photons ( scintillators ) resulting from ionization events occurring in the materials. The requirement of co-located detector material...low coercivity oxide magnets, spin glass magnets, core- shell nanoparticles, and magnetic semiconductor chalcogenide materials. Working in parallel...resonator testing. Commercial materials were obtained spanning obvious materials classes for consideration: semiconductors (high resistivity Si

  3. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng


    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.

  4. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu


    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  5. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.


    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  6. Apparatus for Measuring Spectral Emissivity of Solid Materials at Elevated Temperatures

    Ren, Dengfeng; Tan, Hong; Xuan, Yimin; Han, Yuge; Li, Qiang


    Spectral emissivity measurements at high temperature are of great importance for both scientific research and industrial applications. A method to perform spectral emissivity measurements is presented based on two sample heating methods, the flat plate and tubular furnace. An apparatus is developed to measure the normal spectral emissivity of solid material at elevated temperatures from 1073 K to 1873 K and wavelengths from 2 \\upmu hbox {m} to 25 \\upmu hbox {m}. Sample heating is accomplished by a torch flame or a high temperature furnace. Two different variable temperature blackbody sources are used as standard references and the radiance is measured by a FTIR spectrometer. Following calibration of the spectral response and background radiance of the spectrometer, the effect of the blackbody temperature interval on calibration results is discussed. Measurements are performed of the normal spectral emissivity of SiC and graphite over the prescribed temperature and wavelength range. The emissivity of SiC at high temperatures is compared with the emissivity at room temperature, and the influence of an oxide layer formed at the surface of SiC on the emissivity is studied. The effect of temperature on the emissivity of graphite is also investigated. Furthermore, a thorough analysis of the uncertainty components of the emissivity measurement is performed.

  7. Selected Application of Electron Beams in Solid State Materials and Devies Technology

    S. C. Jain


    Full Text Available Experimental work on electron beam annealing of implanted or diffused semiconductor layers is reviewed. In the pulsed beam annealing technique, the top layer of the semiconductor melts and regrows epitaxially. All dopant atoms are frozen in electrically active state during this process. The point defects and clusters caused by radiation damage are completely annealed out. The bulk of the material remains unaffected as its temperature does not rise by more than a few degrees. In the CW electron beam annealing, the layer does not melt but due to sharp temperature gradient and high temperature of the layer, the growth of solid phase epitaxial layer is induced. However, a part of the dopant atoms may remain electrically inactive in this process of annealing. The pulsed beam annealing has also been used for growing high quality single crystal layers of germanium on silicon substrate. Recently, a new technology has been developed to grow silicon single crystal layers on amorphous substrates. Recent advances in the method of determination of lifetime using electron beams are also discussed.

  8. Chaotic exchange of solid material between planetary systems: implications for lithopanspermia

    Belbruno, Edward; Malhotra, Renu; Savransky, Dmitry


    We examine a low energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we find that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology as it addresses whether life on Earth could have been transferred to other planetary systems in the solar system's birth cluster and whether life on Earth could have been transferred here from beyond the solar system. In the solar system, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (~100-500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. ...

  9. Study of non aqueous reprocessing methods. Final progress report. [Container materials for pyrochemical processes

    Teitel, R. J.; Luderer, J. E.; Henderson, T. M.


    The problems associated with container materials for selected pyrochemical processes and process containment conditions are reviewed. A rationale for container materials selection is developed. Candidate process container materials are presented, and areas warranting further development are identified. 14 tables.

  10. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank


    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a "solid" solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  11. Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology

    Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew


    Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.

  12. Development of switchable hygroscopic materials. Final technical report FY 1980-1981



    The following are covered: current considerations in desiccant dehumidification materials, switchable desiccant theory, candidate materials, test methods, test results, product design considerations, and future research.

  13. Material synthesis and fabrication method development for intermediate temperature solid oxide fuel cells

    Ding, Hanping

    Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 °C). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 °C). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides as novel cathode materials to minimize the potential electrode polarization on oxygen reduction reaction resulting from the unique crystal structure. The high performance of such perovskites under lower temperatures lies in the fact that a simple cubic perovskite with randomly occupied A-sites transforming into a layered compound with ordered lanthanide and alkali-earth cations may reduce the oxygen bonding strength and provide disorder-free channels for oxygen ion migrations. In order to compromise the cell performance and chemical and mechanical stability, the substitution of Fe in B site was comprehensively investigated to explore the effects of Fe doping on the crystal structure, thermal and electrical properties, as well as electrochemical performance. Furthermore, a platinum nanowire network was successfully developed as an ultrathin electrochemically efficient current collector for SOFCs. The unique platinum network on cathode surface can connect the oxygen reduction reaction (ORR) sites at the nano-scale to the external circuit while being able to substantially avoid blocking the open pores of the cathode. The superior electrochemical performance was exhibited, including the highly reduced electrode polarization resistance

  14. New directions for high-performance materials via postextrusion solid state polymerization

    Almonacil, Celine

    Solid state polymerization (SSP) usually consists of heating condensation polymers to temperatures below their melting point and holding there for a significant time to raise their molecular weight. The process is common in the polymer industry for the production of high molecular weight polyesters and polyamides for industrial fibers and molded products. Recent research has shown that post-extrusion SSP, where polymerization is performed on extruded products such as thin films or fibers, has the potential to lead to high performance materials. Although literature on SSP is abundant, the mechanisms and possible morphological consequences have remained largely unexplored. The purpose of this work is to explore the potential for generating high performance oriented polymer morphologies by performing a fundamental analysis of the mechanisms and morphological consequences of post-extrusion SSP in oriented polymers. It is based on recent research that has shown that interchange reactions can play a fundamental role during many solid state polymerizations by providing the primary mechanism for migration of functionality. It is also based on the recent recognition that these reactions can cause profound changes in the morphology of the polymer. A coarse-grained model which can be used to explore quantitatively the effect of interchange reactions on the topological distribution of chains in inter-crystalline regions is presented here. It includes a novel thermodynamic scheme, coupled with Monte Carlo Rotational Isomeric State simulations, to determine quantitatively the relative probabilities of morphologically different reaction pathways. The results show the role of intrinsic molecular rigidity on interconversions of bridges and loops during SSP of different polymers. The generalized scheme presented here can serve to identify, via gedanken experiments, appropriate semi-rigid systems to explore through real synthesis and processing of high mechanical performance polymers

  15. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households.

    Hensgen, F; Richter, F; Wachendorf, M


    Green cut material is a potential source of renewable energy which is not fully exploited through conventional energy recovery systems. A new energy conversion process, the integrated generation of solid fuel and biogas from biomass (IFBB), which includes mechanical separation after hydro-thermal conditioning, was investigated. Ash softening temperature and lower heating value of the solid fuel were increased through the IFFB process in comparison to the untreated raw material. The net energy yield of IFBB at 40 °C conditioning temperature ranged between 1.96 and 2.85 kWh kg(-1) dry matter (DM) and for the direct combustion between 1.75 and 2.65 kWh kg(-1) DM. Conversion efficiencies for the IFBB system were 0.42-0.68 and for direct combustion 0.42-0.63. The IFBB system produces storable energy from material which is nowadays not used for energy conversion.

  16. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Bin Hassan, Oskar Hasdinor


    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  17. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Bin Hassan, Oskar Hasdinor


    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  18. Networks of recyclable material waste-picker's cooperatives: an alternative for the solid waste management in the city of Rio de Janeiro.

    Tirado-Soto, Magda Martina; Zamberlan, Fabio Luiz


    The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city's main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers' cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  19. New methods and materials for solid phase extraction and high performance liquid chromatography

    Dumont, Philip John [Iowa State Univ., Ames, IA (United States)


    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  20. CO2-Doped Diamond: A Potential Solid-State CO2 Laser Material?

    Tratt, D.


    This paper describes a novel concept for a solid-state CO subscript 2 laser medium which, by eschewing the gas-phase approach, may offer prospects for a compact, robust 9 - 11 (micro)m coherent source, coupled with the potentially superior frequency stability characteristics afforded by monolithic solid-state construction.

  1. Thermodynamic study of semiconducting related materials by use of EMF method with solid electrolyte

    Katayama Iwao


    Full Text Available Electromotive force method with solid electrolyte is briefly explained, and a thermodynamic study of semi conducting compound solid solution ZnTe-CdTe is picked up to show the way how thermodynamic functions of this system are obtained by several experimental methods based on our published papers and recently published data are added for comparison.

  2. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  3. Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

    Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph; Chow, Weng Wah Dr.; Myers, Samuel Maxwell, Jr.; Thoma, Steven George; Gee, James Martin; Coltrin, Michael Elliott; Burdick, Brent A.; Salamone, Angelo, L., Jr.; Hadley, G. Ronald; Elliott, Russell D.; Campbell, Jonathan M.; Abrams, Billie Lynn; Wendt, Joel Robert; Pawlowski, Roger Patrick; Simpson, Regina Lynn; Kurtz, Steven Ross; Cole, Phillip James; Fullmer, Kristine Wanta; Seager, Carleton Hoover; Bogart, Katherine Huderle Andersen; Biefeld, Robert Malcolm; Kerley, Thomas M.; Norman, Adam K.; Tallant, David Robert; Woessner, Stephen Matthew; Figiel, Jeffrey James; Moffat, Harry K.; Provencio, Paula Polyak; Emerson, John Allen; Kaplar, Robert James; Wilcoxon, Jess Patrick; Waldrip, Karen Elizabeth; Rohwer, Lauren Elizabeth Shea; Cross, Karen Charlene; Wright, Alan Francis; Gonzales, Rene Marie; Salinger, Andrew Gerhard; Crawford, Mary Hagerott; Garcia, Marie L.; Allen, Mark S.; Southwell, Edwin T. (Perspectives, Sedona, AZ); Bauer, Tom M.; Monson, Mary Ann; Tsao, Jeffrey Yeenien; Creighton, James Randall; Allerman, Andrew Alan; Simmons, Jerry A.; Boyack, Kevin W.; Jones, Eric Daniel; Moran, Michael P.; Pinzon, Marcia J. (Perspectives, Sedona, AZ); Pinson, Ariane O. (Perspectives, Sedona, AZ); Miksovic, Ann E. (Perspectives, Sedona, AZ); Wang, George T.; Ashby, Carol Iris Hill; Missert, Nancy A.; Koleske, Daniel David; Rahal, Nabeel M.


    This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology

  4. Novel materials and methods for solid-phase extraction and liquid chromatography

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)


    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  5. Cluster-Expanded Solids: A Strategy for Assembling Functional Porous Materials

    Long, Jeffrey R.


    This grant provided (partial) support for the research efforts of three graduate students and two undergraduate students. The intention of the program was to explore the use of molecular precursors in generating functional porous materials with precisely tailored structures and properties. Prior work in our laboratory had demonstrated the feasibility of employing face-capped octahedral clusters of the type [Re{sub 6}Q{sub 8}(CN){sub 6}]{sup 3-/4-} (Q = S, Se, Te) in the expansion of known metal-cyanide frameworks. For example, the use of [Re{sub 6}Se{sub 8}(CN){sub 6}]{sup 4-} as a reactant in place of [Fe(CN){sub 6}]{sup 4-} resulted in formation of Fe{sub 4}[Re{sub 6}Se{sub 8}(CN){sub 6}]{sub 3}·36H{sub 2}O, featuring an expanded form of the porous three-dimensional framework of Prussian blue (Fe{sub 4}[Fe(CN){sub 6}]{sub 3}·14H{sub 2}O). This compound could be dehydrated without loss of integrity, and the increase in void volume significantly enhances its capacity as a molecular sieve, enabling absorption of larger molecules. For this project, we continued with our efforts to devise new routes to microporous coordination solids that function as molecular sieves, sensors, or catalysts. In particular, our focus was on: (i) the synthesis of new molecular precursors of specific utility for such purposes, and (ii) attempts to incorporate these and existing molecular precursors into new coordination solids. Investigations of the terminal ligand substitution chemistry of the carbon-centered, trigonal prismatic cluster [W{sub 6}CCl{sub 18}]{sup 2-} generated the solvated species [W{sub 6}CCl{sub 12}(DMF){sub 6}]{sup 2+} and [W{sub 6}CCl{sub 12}(py){sub 6}]{sup 2+}, as well as the potential framework building units [W{sub 6}C(CN){sub 18}]{sup 3-}, [W6CCl{sub 12}(pyrazine){sub 6}]{sup 2+}, [W6CCl{sub 12}(4-cyanopyridine){sub 6}]{sup 2+}, and [W{sub 6}CCl{sub12}(4,4-bipyridine){sub 6}]{sup 2+}. Efforts to produce microporous magnets capable of performing magnetic

  6. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  7. Anisotropic intermolecular interactions and rotational ordering in hydrogen containing solids. Final report, January 1, 1972--June 30, 1978

    White, D.


    Thermodynamic properties, order-disorder phenomena, optical, electric and magnetic properties of hydrogen-containing molecular solids have been investigated. A summary of the findings of this 6 year research program is presented here. The approach in these studies was (a) thermodynamic and transport studies extending to very low temperatures, (b) pulsed NMR studies for determination of structural parameters important to spin-lattice relaxation, and (c) pulsed laser studies for the investigation of excitations and energy transfer mechanisms in solids. (GHT)

  8. Temperature and final characteristics of composting process of the Municipal solid wastes; Evolucion de la temperatura y caracteristicas finales del co-compostaje de residuos solidos urbanos

    Porcel, O.; Leon, J.J. de; Revilla, J.; Dobao, M.M.; Ruiz, J.L. [Departamento de Quimica Agricola y Edafologia, Universidad de Cordoba, cordoba (Spain)


    In this paper it has been studied the evolution of temperature in two depth of three piles during the composting process using the organic matter of the Municipal Solid Waste from Cordoba (Spain) from the selective harvest. The cited mixtures were composed of organic matter (<50 mm), sludge from the water treatment plant, pruning garden and bark of pine (bunking). Almost it has been obtained the yield of the composting piles and the agronomic quality of the compost obtained. The mixture organic matter <50 mm+pruning arden+bunking (M.P.B.) shoved the best index. (Author) 15 refs.

  9. Hydrophilic solid-phase extraction of melamine with ampholine-modified hybrid organic-inorganic silica material.

    Wang, Tingting; Zhu, Yiming; Ma, Junfeng; Xuan, Rongrong; Gao, Haoqi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui


    In this work, an ampholine-functionalized hybrid organic-inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid-phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid-phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1-9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid-phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.

  10. Photo-physical Characterisation of Novel Organic Dye-doped Solid-state Laser Materials

    A.Penzkofer; A.Tyagi; T.Susdorf; D.del; Agua; O.García; R.Sastre; A.Costela; I.García-Moreno


    1 Results The development of tuneable solid-state organic dye lasers is a subject of considerable interest and research activity.Compared to conventional liquid dye lasers they have the advantage of being free of solvent handling,having small size,and being easy to operate.For high-performance solid-state dye lasers highly photo-stable dyes with low quantum yield of triplet formation and low triplet-triplet absorption cross-section in the lasing wavelength region are required.For solid state dye lasers ...

  11. Novel restricted access materials combined to molecularly imprinted polymers for selective solid-phase extraction of organophosphorus pesticides from honey.

    He, Juan; Song, Lixin; Chen, Si; Li, Yuanyuan; Wei, Hongliang; Zhao, Dongxin; Gu, Keren; Zhang, Shusheng


    A novel restricted access materials (RAM) combined to molecularly imprinted polymers (MIPs), using malathion as template molecule and glycidilmethacrylate (GMA) as pro-hydrophilic co-monomer, were prepared for the first time. RAM-MIPs with hydrophilic external layer were characterized by scanning electron microscopy and recognition and selectivity properties were compared with the restricted access materials-non-molecularly imprinted polymers (RAM-NIPs) and unmodified MIPs. RAM-MIPs were used as the adsorbent enclosed in solid phase extraction column and several important extraction parameters were comprehensively optimized to evaluate the extraction performance. Under the optimum extraction conditions, RAM-MIPs exhibited comparable or even higher selectivity with greater extraction capacity toward six kinds of organophosphorus pesticides (including malathion, ethoprophos, phorate, terbufos, dimethoate, and fenamiphos) compared with the MIPs and commercial solid phase extraction columns. The RAM-MIPs solid phase extraction coupled with gas chromatography was successfully applied to simultaneously determine six kinds of organophosphorus pesticides from honey sample. The new established method showed good linearity in the range of 0.01-1.0 μg mL(-1), low limits of detection (0.0005-0.0019 μg mL(-1)), acceptable reproducibility (RSD, 2.26-4.81%, n = 6), and satisfactory relative recoveries (90.9-97.6%). It was demonstrated that RAM-MIPs solid phase extraction with excellent selectivity and restricted access function was a simple, rapid, selective, and effective sample pretreatment method.

  12. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Bui Thanh-Tuan


    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  13. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    Ding, I-Kang


    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  14. Graphene-Based Materials as Solid Phase Extraction Sorbent for Trace Metal Ions, Organic Compounds, and Biological Sample Preparation.

    Ibrahim, Wan Aini Wan; Nodeh, Hamid Rashidi; Sanagi, Mohd Marsin


    Graphene is a new carbon-based material that is of interest in separation science. Graphene has extraordinary properties including nano size, high surface area, thermal and chemical stability, and excellent adsorption affinity to pollutants. Its adsorption mechanisms are through non-covalent interactions (π-π stacking, electrostatic interactions, and H-bonding) for organic compounds and covalent interactions for metal ions. These properties have led to graphene-based material becoming a desirable adsorbent in a popular sample preparation technique known as solid phase extraction (SPE). Numerous studies have been published on graphene applications in recent years, but few review papers have focused on its applications in analytical chemistry. This article focuses on recent preconcentration of trace elements, organic compounds, and biological species using SPE-based graphene, graphene oxide, and their modified forms. Solid phase microextraction and micro SPE (µSPE) methods based on graphene are discussed.

  15. Bulk and surface acoustic waves in solid-fluid Fibonacci layered materials.

    Quotane, I; El Boudouti, E H; Djafari-Rouhani, B; El Hassouani, Y; Velasco, V R


    We study theoretically the propagation and localization of acoustic waves in quasi-periodic structures made of solid and fluid layers arranged according to a Fibonacci sequence. We consider two types of structures: either a given Fibonacci sequence or a periodic repetition of a given sequence called Fibonacci superlattice. Various properties of these systems such as: the scaling law and the self-similarity of the transmission spectra or the power law behavior of the measure of the energy spectrum have been highlighted for waves of sagittal polarization in normal and oblique incidence. In addition to the allowed modes which propagate along the system, we study surface modes induced by the surface of the Fibonacci superlattice. In comparison with solid-solid layered structures, the solid-fluid systems exhibit transmission zeros which can break the self-similarity behavior in the transmission spectra for a given sequence or induce additional gaps other than Bragg gaps in a periodic structure.

  16. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  17. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 (L4ST) to 161 -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦ 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  18. Molecularly imprinted polymers: New molecular recognition materials for selective solid-phase extraction of organic compounds

    Martín Esteban, A.


    During the last few years molecularly imprinted polymers have appeared as new selective sorbents for solid-phase extraction of organic compounds in different samples. Molecular imprinting technology involves the preparation of a polymer with specific recognition sites for certain molecules. Once the polymer has been obtained, it can be used in solid-phase extraction protocols, where a careful selection of the most appropriate solvents to be used in the different steps (sample loading, washing...

  19. Characterization of dielectric constant of solid materials (Leather belt at X-Band

    Ambika Singh


    Full Text Available This paper discusses the experimental measurement technique for dielectric constant (i.e.permittivity of leather belt at X-band. This measurement play selection of dielectric constant for antenna substrate. This leather can be used as flexible substrate of wearable microstrip antenna. This measurement system consist of solid state klystron power supply, isolator, VSWR meter, frequency meter, solid dielectric cell (XC-501. This data may be interested in flexibility wearable microstrip antenna studies.

  20. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)


    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  1. Networks of recyclable material waste-picker’s cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    Tirado-Soto, Magda Martina, E-mail: [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil); Zamberlan, Fabio Luiz, E-mail: [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil)


    Highlights: ► In the marketing of recyclable materials, the waste-pickers are the least wins. ► It is proposed creating a network of recycling cooperatives to achieve viability. ► The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the city’s main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers’ cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  2. An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems

    Sarikaya, A.; Ladisch, M.R. [Purdue Univ., West Lafayette, IN (United States)


    Inedible plant material, generated in a Controlled Ecological Life Support System (CELSS), should be recycled preferably by bioregenerative methods that utilize enzymes or micro-organisms. This material consists of hemicellulose, cellulose, and lignin with the lignin fraction representing a recalcitrant component that is not readily treated by enzymatic methods. Consequently, the white-rot fungus, Pleurotus ostreatus, is attractive since it effectively degrades lignin and produces edible mushrooms. This work describes an unstructured model for the growth of P. ostreatus in a solid-state fermentation system using lignocellulosic plant materials from Brassica napus (rapeseed) as a substrate at three different particle sizes. A logistic function model based on area was found to fit the surface growth of the mycelium on the solid substrate with respect to time, whereas a model based on diameter, alone, did not fit the data as well. The difference between the two measures of growth was also evident for mycelial growth in a bioreactor designed to facilitate a slow flowrate of air through the 1.5 cm thick mat of lignocellulosic biomass particles. The result is consistent with the concept of competition of the mycelium for the substrate that surrounds it, rather than just substrate that is immediately available to single cells. This approach provides a quantitative measure of P. ostreatus growth on lignocellulosic biomass in a solid-state fermentation system. The experimental data show that the best growth is obtained for the largest particles (1 cm) of the lignocellulosic substrate. 13 refs., 6 figs., 2 tabs.

  3. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Sedigheh Sina


    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  4. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.


    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  5. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.


    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  6. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  7. Assessing the presence of enrofloxacin and ciprofloxacin in piggery wastewater and their adsorption behaviour onto solid materials, with a newly developed chromatographic method.

    Parpounas, Andreas; Litskas, Vassilis; Hapeshi, Evroula; Michael, Costas; Fatta-Kassinos, Despo


    Veterinary antibiotics could enter the environment after the application of manure or farm wastewater on soil as fertilizer. In this study, a UPLC-MS/MS analytical method was developed and validated for the simultaneous determination of enrofloxacin (ENR) and ciprofloxacin (CIP) at environmental relevant concentrations in piggery wastewater, piggery wastewater solids, agricultural soil and ground water with good performance characteristics. The method recovery for ENR and CIP was 94.2 and 89.9% in the filtered piggery wastewater, 81.3 and 82% in the wastewater solid material, 78.1 and 76.8% in the soil and 95.6 and 97.3% in the ground water. The Limit of Detection (LOD) and Limit of Quantification (LOQ) for ENR were 21 and 64 ng L(-1) and for CIP was 18 and 54 ng L(-1), respectively. The method was implemented to monitor ENR and CIP in the wastewater of a piggery facility in Cyprus which applied anaerobic treatment before the final disposal of the reclaimed water. The highest antibiotic concentrations were measured in the wastewater samples collected from the nursery, where ENR is continuously used, with average concentration 31.4 μg L(-1) for ENR and 16.0 μg L(-1) for CIP. After the anaerobic digester, the two antibiotics were found only on the solid matter of the treated wastewater with an average concentration of 1.7 μg kg(-1) for ENR and 1.0 μg kg(-1) for CIP. The antibiotics adsorption at pH = 7 on clay soil, quartz sand and on solid matter isolated from the piggery wastewater was found to be higher than 95% for all solid materials. The concentration of the antibiotics in soil samples taken from a field where reclaimed piggery wastewater was applied for 10 years and in samples of groundwater from a nearby well was found for all samples below the LOD.

  8. Energetic Materials Hazard Initiation: DoD Assessment Team Final Report


    a aluminized, plasticized hydroxy-terminated ( HTPB ) or carboxyl-terminated polybutadiene (CTPB) propellant grains. Because of this, Kent and Rat (1982...330, Vol. 1, pp. 105-130. Cantey, D. (1964), " Solid Propellant Structural Integrity Investigations. Dynamic Response and Failure Mechanics ," RPL-TDR...oversimplify the issues of mechanical I properties and/or crystal imperfections (from Butcher et al. as cited by Bernecker, 1984) ................... 19 vi I 8

  9. Use of gas chromatography-mass spectrometry/solid phase microextraction for the identification of MVOCs from moldy building materials.

    Wady, Loay; Bunte, Annicka; Pehrson, Christina; Larsson, Lennart


    Gas chromatography-mass spectrometry/solid phase microextraction (GC-MS/SPME) was applied to identify microbial volatile organic compounds (MVOCs) in water-damaged, mold-infested building materials (gypsum board papers (n=2), mineral wool, and masonite) and in cultivated molds (Aspergillus penicillioides, Stachybotrys chartarum, and Chaetomium globosum). Three SPME fibers (65-microm PDMS-DVB, 75-microm Carboxen-PDMS, and 70-microm Carbowax-stableflex) designed for automated injection were used of which the latter showed best performance. A number of previously reported MVOCs were detected both in the building materials and the cultivated molds. In addition, methyl benzoate was identified both in the S. chartarum and A. penicillioides cultures and in the building materials. SPME combined with GC-MS may be a useful method for the determination of MVOCs emitted from mold-infested building materials.

  10. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K


    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017. Published by Elsevier Ltd.

  11. Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.

    Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui


    Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.

  12. Final versions of the initial package of classroom materials and guidelines

    Doorman, Michiel; Jonker, Vincent


    The main aim of the mascil Work Package 3 ‘classroom materials’ is to present guidelines and an online collection of teaching materials that encourage and support teachers to design their own classroom materials that connect IBL and the WoW in mathematics and science education.The collection present

  13. Development of radiative-cooling materials. Final technical report: FY 1980-1981


    Work on research and development on glazing and selective emitter materials that will enhance day and night sky radiative cooling is described. The emphasis is on glazing development with a secondary interest in the appropriate selective emitter. The testing focused on the individual material properties. (MHR)

  14. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report



    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  15. Analysis and forecast of electrical distribution system materials. Final report. Volume III. Appendix

    Love, C G


    These appendixes are referenced in Volume II of this report. They contain the detailed electrical distribution equipment requirements and input material requirements forecasts. Forecasts are given for three electric energy usage scenarios. Also included are data on worldwide reserves and demand for 30 raw materials required for the manufacture of electrical distribution equipment.

  16. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report

    Akpalu, Yvonne A


    Polyhydroxyalkanotes (PHAs), a group of newly developed, commercially available biopolymers, and their composites have the potential to replace petroleum-based amorphous and semicrystalline polymers currently in use for consumer packaging, adhesives, and coating applications and to have significant advantages in medical applications such as tissue engineering. While the potential of PHAs is recognized in the literature and has even been realized in some cases, knowledge of these systems is decades behind that of synthetic polymers. Composites based on PHAs, furthermore, are just emerging in the research community. We argue that widespread adoption of nano-enhanced PHA materials can only be achieved through a proper characterization of the nanofiller morphology and its impact on the polymer matrix. Our goal is to build a robust understanding of the structure-processing relationships of PHAs to make it possible to achieve fundamental control over the final properties of these biopolymers and their bionanocomposites and to develop cost-effective manufacturing technologies for them. With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have performed a systematic study of the influence of cooling rate on the thermal properties and morphology of linear PHAs (PHB Mw = 690,000 g/mol; PHBV Mw = 407,000 g/mol, 8 mol % HV) and branched (PHBHx, Mw = 903, 000 g/mol, 7.2 mol % Hx) copolymers. Structure-property relations for silica/PHBHx nanocomposites were also investigated. Our studies show that simple two-phase composite models do not account for the molecular weight dependent enhancement in the modulus. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Since the mechanical properties of polymer nanocomposites can be affected by many factors

  17. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report

    Akpalu, Yvonne A


    Polyhydroxyalkanotes (PHAs), a group of newly developed, commercially available biopolymers, and their composites have the potential to replace petroleum-based amorphous and semicrystalline polymers currently in use for consumer packaging, adhesives, and coating applications and to have significant advantages in medical applications such as tissue engineering. While the potential of PHAs is recognized in the literature and has even been realized in some cases, knowledge of these systems is decades behind that of synthetic polymers. Composites based on PHAs, furthermore, are just emerging in the research community. We argue that widespread adoption of nano-enhanced PHA materials can only be achieved through a proper characterization of the nanofiller morphology and its impact on the polymer matrix. Our goal is to build a robust understanding of the structure-processing relationships of PHAs to make it possible to achieve fundamental control over the final properties of these biopolymers and their bionanocomposites and to develop cost-effective manufacturing technologies for them. With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have performed a systematic study of the influence of cooling rate on the thermal properties and morphology of linear PHAs (PHB Mw = 690,000 g/mol; PHBV Mw = 407,000 g/mol, 8 mol % HV) and branched (PHBHx, Mw = 903, 000 g/mol, 7.2 mol % Hx) copolymers. Structure-property relations for silica/PHBHx nanocomposites were also investigated. Our studies show that simple two-phase composite models do not account for the molecular weight dependent enhancement in the modulus. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Since the mechanical properties of polymer nanocomposites can be affected by many factors


    Pasternak Ia.M.


    Full Text Available The paper presents a review on the recent advances in the theoretical and experimental studies of functional (smart materials and structures. Particular attention is paid to piezoelectric and magnetoelectroelastic materials, which internally couple mechanical, electric and magnetic fields and can operate as sensors or actuators. Modern smart magnetoelectroelastic materials consisting of piezoelectric and piezomagnetic phases are widely used due to the effect of electromagnetic coupling, which is hundred or even thousand times larger than that of a single crystal magnetoelectroelastic materials. The highest electromagnetic coupling due to the regular arrangement of phases is possessed by ferrite-piezoelectric nanostructures, in particular self-assembled nanocomposite thin films. Ferroelectric materials are widely used in modern technologies, especially precise devices, due to the highest values of electro-mechanical coupling among other piezoelectric materials. In turn, all ferroelectric materials are pyroelectric ones, thus, polarize when heated or cooled. The presence of different defects (e.g. cracks or inclusions can additionally cause high stress and electric displacement intensity under the applied thermal load, especially, when the pyroelectric material is not homogeneous, or consists of homogeneous parts bonded together. The paper presents a comprehensive review on the methods, especially numeric and analytic ones, used to study the influence of different fields on stress concentration at defects and fibers. The questions on fracture of defective solids with thin inclusions are also examined.

  19. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.


    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  20. Crystallization and solid-state reaction as a route to asymmetric synthesis from achiral starting materials.

    Green, B S; Lahav, M


    Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left-handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.

  1. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Lee Kyoung-Jin; Choe Yeong-Ju; Hwang Hae-Jin


    Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1) powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2) resulted in the increased electrical conductivity and decreased polarization resista...

  2. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph


    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  3. Milling of organic solids in a jet mill. Part 1 : Determination of the selection function and related mechanical material properties

    de Vegt, O; Vromans, H; Faassen, F; Maarschalk, KV


    The particle size distribution of pharmaceutically active materials and other fine chemicals determines the performance of the final product to a large extent. Often milling of these particles is necessary. It is not possible to determine the milling conditions solely on the basis of the particle si

  4. Computation of single solid particle impact on the target of ductile material to study the rebound characteristics of particle

    Yeuan, Jian Jong


    The objective of this research work is to simulate a single solid particle impact on a solid target using elastic-plastic theory. The entire impact process involves the adhesion, deformation and rebound process interacting between the solid particle and the target. The governing equations for two dimensional elastic-plastic flow are formulated in Lagrangian coordinates. The equation of state in the elastic region is the time rate of change of Hooke's law. In the plastic region, the experimental Hugoniot equation of state and the yield condition of R. von Mises are used. The effect of strain rate on the material strength is considered using a semi-empirical formulation. The developed computer program employs a finite volume numerical technique and two step explicit MacCormack scheme, which is second order accurate in time, allowing finer resolution of the transient phenomena of impact. Results are presented for a hard tool steel particle impacting on a mild steel target at impact angles of 20 to 90 degrees. The computational results are compared with experimental data for a range of impacting velocities up to 350 m/sec. The effect of particle in the particle rebound characteristics are also investigated. In the previous research, the particle rebound characteristics obtained from experiments were correlated and used in the calculation of particle trajectories in turbomachinery flows. Here, the computational results are applied to predict solid particle trajectories in a highly loaded axial flow turbine.

  5. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)


    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  6. Materials for high-temperature hydrogen fluorine environments. Final report, June 1976-December 1978

    Holcombe, C.E. Jr.; Kovach, L.


    A determination has been made of the stability of 35 materials under high-temperature, fluorine rich, hydrogen fluoride torch testing. Refractory materials tested included 4 borides, 3 carbides, 3 nitrides, 12 oxides, 1 oxynitride, 1 sulfide, 10 metals, and carbon (10 types). Three materials distinctly performed better than nickel: lanthanum hexaboride, calcium hexaboride, and lanthanum silicon oxynitride. Of these, lanthanum hexaboride is the best candidate tested since it has an estimated upper use temperature > 1726 K, which is above the melting point and more than 300 K above the upper use temperature of nickel.


    Jie Guan; Nguyen Minh


    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} (SSC) has been developed. Polarization of {approx}0.23 ohm-cm{sup 2} has been achieved at 600 C with Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3}cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte.

  8. Radon diffusion studies in some building materials using solid state nuclear track detectors

    Singh, S; Singh, B; Singh, J


    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  9. Adaptive Back Sheet Material for Acoustic Liner Applications-ARMD Seedling Fund Phase I Final Report

    Gerhold, Carl H.; Jones, Michael G.; Farrar, Dawnielle


    A recently developed piezo-electric composite film is evaluated for its usefulness in application in acoustic liners. Researchers at the NASA Langley Research Center Liner Technology Facility developed experiments to measure the electrical response of the material to acoustic excitation and the vibrational response of the material to electrical excitation. The robustness of the piezo-electric film was also assessed. The material's electrical response to acoustic excitation is found to be comparable to a commercial microphone in the range of frequencies from 500 to 3000 Hz. However, the vibrational response to electrical excitation in the frequency range of interest is an order of magnitude less than may be necessary for application to acoustic liners. Nevertheless, experimental results indicate that the potential exists for the material to produce a measurable change in the impedance spectrum of a liner. Work continues to improve the authority of the piezo-electric film.

  10. Solar-collector-materials exposure to the IPH site environment. Volume 1. Final report

    Morris, V.L.


    In-situ environmental exposure tests were conducted at nine proposed intermediate-temperature Industrial Process Heat (IPH) sites. Three types of reflector materials were evaluated for survivability at the nine sites: second-surface silvered glass, aluminized acrylic FEK-244 film on aluminumsubstrate and Alzak (electropolished aluminum) on aluminium substrate. Black chrome absorber material and low-iron float glass were evaluated for thermal, photochemical, and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material was evaluated for changes in solar absorptivity and emissivity, and the float glass was monitored for changes in transmissivity. Surface and subsurface defects on all materials were examined microscopically and, where deemed of note, were documented photographically.

  11. Solar-collector materials exposure to the IPH site environment. Final report

    Morris, V.L.


    In-situ environmental exposure tests were conducted at nine proposed intermediate-temperature Industrial Process Heat (IPH) sites. Three types of reflector materials were evaluated for survivability at the nine sites: second-surface silvered glass, aluminized acrylic FEK-244 film on aluminum substrate, and Alzak (electropolished aluminum) on aluminum substrate. Black chrome absorber material and low-iron float glass were evaluated for thermal, photochemical, and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material was evaluated for changes in solar absorptivity and emissivity, and the float glass was monitored for changes in transmissivity. Surface and subsurface defects on all materials were examined microscopically and, where deemed of note, were documented photographically.

  12. Efficient insulation material for furnaces. Final report. Effektivare isolermaterial i ugnar. Slutrapport

    Rensgard, A.


    The project aim has been to test and analyze alternatives for the improvement of heat insulation and faster regulation of temperature by utilizing light ceramic insulation materials such as ceramic fibres.

  13. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    McFarland, Eric W


    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  14. Suitability of dredged material for reclamation of surface-mined land. Final report

    Harrison, W.; Van Luik, A.


    Eroding ridges of acidic coal-mine spoil in La Salle County, Illinois, were leveled to form a gently-sloped raised plateau. Four test plots were constructed: a control plot and three treatment plots that received a 0.9-m-thick cover of dredged material obtained from the Metropolitan Sanitary District of Greater Chicago. Two treatment plots received lime applications and all plots were seeded with a mixture of grasses. Pressure-vacuum soil water samplers were installed, in duplicate, at two levels in the control plot and at three levels in each treatment plot. The three levels in the treatment plots coincided with dredged material, the dredged-material mine-spoil interface, and the underlying mine spoil. Surface water, soil water, and groundwater were monitored for 29 water-quality parameters for one year. Rainfall, air temperature, runoff, and water-level elevation data were collected also. Detailed analysis of the data indicates that the dredged material used in this study does not adversely affect water quality; it supports abundant plant growth, lessens groundwater contamination, and controls acid runoff. The dredged material is judged to be a suitable material for use in reclamation of surface-mined land.

  15. Chemometrics-assisted solid-state characterization of pharmaceutically relevant materials. Polymorphic substances.

    Calvo, Natalia L; Maggio, Rubén M; Kaufman, Teodoro S


    Current regulations command to properly characterize pharmaceutically relevant solid systems. Chemometrics comprise a range of valuable tools, suitable to process large amounts of data and extract valuable information hidden in their structure. This review aims to detail the results of the fruitful association between analytical techniques and chemometrics methods, focusing on those which help to gain insight into the characteristics of drug polymorphism as an important aspect of the solid state of bulk drugs and drug products. Hence, the combination of Raman, terahertz, mid- and near- infrared spectroscopies, as well as instrumental signals resulting from X-ray powder diffraction, (13)C solid state nuclear magnetic resonance spectroscopy and thermal methods with quali-and quantitative chemometrics methodologies are examined. The main issues reviewed, concerning pharmaceutical drug polymorphism, include the use of chemometrics-based approaches to perform polymorph classification and assignment of polymorphic identity, as well as the determination of given polymorphs in simple mixtures and complex systems. Aspects such as the solvation/desolvation of solids, phase transformation, crystallinity and the recrystallization from the amorphous state are also discussed. A brief perspective of the field for the next future is provided, based on the developments of the last decade and the current state of the art of analytical instrumentation and chemometrics methodologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    Sharma, Prabhakar; Poulsen, Tjalfe G


    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  17. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.

    Miles, Benjamin N; Ivanov, Aleksandar P; Wilson, Kerry A; Doğan, Fatma; Japrung, Deanpen; Edel, Joshua B


    This tutorial review will introduce and explore the fundamental aspects of nanopore (bio)sensing, fabrication, modification, and the emerging technologies and applications that both intrigue and inspire those working in and around the field. Although nanopores can be classified into two categories, solid-state and biological, they are essentially two sides of the same coin. For instance, both garner popularity due to their ability to confine analytes of interest to a nanoscale volume. Due to the vast diversity of nanopore platforms and applications, no single review can cover the entire landscape of published work in the field. Therefore, in this article focus will be placed on recent advancements and developments taking place in the field of solid-state nanopores. It should be stated that the intention of this tutorial review is not to cite all articles relating to solid-state nanopores, but rather to highlight recent, select developments that will hopefully benefit the new and seasoned scientist alike. Initially we begin with the fundamentals of solid-state nanopore sensing. Then the spotlight is shone on the sophisticated fabrication methods that have their origins in the semiconductor industry. One inherent advantage of solid-state nanopores is in the ease of functionalizing the surface with a range of molecules carrying functional groups. Therefore, an entire section is devoted to highlighting various chemical and bio-molecular modifications and explores how these permit the development of novel sensors with specific targets and functions. The review is completed with a discussion on novel detection strategies using nanopores. Although the most popular mode of nanopore sensing is based upon what has come to be known as ionic-current blockade sensing, there is a vast, growing literature based around exploring alternative detection techniques to further expand on the versatility of the sensors. Such techniques include optical, electronic, and force based methods

  18. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value


    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack......NOVELTY - The end plate is made of material whose thermal expansion coefficient is corresponding to that of material of a cell (103). The thermal expansion coefficient of material is 9asterisk10-6 K-1 to 14asterisk10-6 K11. The thickness of the end plate is within the range of 0.001-1 mm and 0...


    Jie Guan; Nguyen Minh


    This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.

  20. The municipal solid waste and the quality of life of collectors of recyclable materials in Juiz de Fora, Minas Gerais.

    de Barros Pimenta, Aline; Santos, Sueli Maria dos Reis; de Jesus, Maria Cristina Pinto; Borges, Marcos Mantins; de Oliveira Marques, Geraldo Luciano; Abdalla, E José Gustavo Francis


    The generation growing and diversified of Municipal Solid Waste is configured as an environmental problem, economic and social deterioration, especially, by application of inappropriate management of them. Faced with this urban context, the research in development presents as specific objective assessment of the quality of life of the gatherers of recyclable materials were active in the city of Juiz de Fora, in the brazilian state of Minas Gerais. In addition, the objective is, still, the recognition of the activity of sorting performed by "scavengers" in order to maximize the reduction, reuse and recycling energy and material waste daily. The proposed methodology is based on the application of the questionnaire Word Health Organization Quality of Life (WHOQOL-100), prepared by the World Health Organization, in order to value the quality of life of the gatherers of recyclable materials, involved, even in educational workshops in order to discuss and organize strategies of health care and scouting to the basement to public policies.

  1. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.


    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  2. Coupled fluid and solid mechanics study for improved permeability estimation of fines' invaded porous materials

    Mirabolghasemi, M.; Prodanovic, M.


    destruction of particle bridges. Finally, depending on the material and fluids that penetrate into the porous medium, the ionic forces might play a significant role in the filtration process. We thus also report on influence of particle attachment (and detachment) on the type of clogging mechanisms. Pore scale simulations allow for visualization and understanding of fundamental processes, and, further, the velocity fields are integrated into a distinctly non-monotonic permeability-porosity/(depth of penetration) relationship.

  3. Solid-state synthesis and electrochemical properties of SmVO4 cathode materials for low temperature SOFCs

    SUN Xueli; LI Song; SUN Juncai


    A new cathode material fabricated by solid state reaction method was reported. The SmVO4 powder was obtained by firing the mixture of Sm2O3 and V2O5 powders in the temperature range of 700-1200 ℃. Its structure was identified by X-ray diffraction method and the electrochemical properties of SmVO4 as cathodes for solid oxide fuel cells (SOFCs) were investigated in single unit cell at the temperature ranged from 450-550 ℃. The results of the single fuel cell unit show that the maximum current densities are 641, 797, 688 mA·cm-2 and the maximum power output are 165, 268, 303 mW·cm-2 and the open circuit voltage are 1.04,0.96,0.92Vat 450, 500 and 550 ℃, respectively.

  4. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M


    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  5. Capacity Titration Technique for Determining the Solid Diffusion Coefficient of Intercalary Species within Insertion-host Materials

    Xin Cun TANG; Tian Duo LI


    In this paper, the capacity titration technique (CT technique) was developed on basis of the RPG (ratio of potentio-charge capacity to galvano-charge capacity) method to continuously determine the solid diffusion coefficient D of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs. q (value of ratio of the potentio-charge capacity to the galvano-charge capacity) were given in different range of q. By the CT technique,the Li+ solid diffusion coefficients D within LiMn2O4 at different voltages were determined. The results showed that the values of D varied from 3.447× 10-9 cm2/s to 7.60× 10-11cm2/s in the voltage range of charge from 3.3V to 4.3V as a function of voltage with "W" shape.

  6. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials

    Ashton, Michael; Paul, Joshua; Sinnott, Susan B.; Hennig, Richard G.


    The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structure's unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials that are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory was used to calculate the exfoliation energy of each material and 680 monolayers emerge with exfoliation energies below those of already-existent two-dimensional materials. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other calculated data for all 826 monolayers are provided at our database (

  7. Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume 1

    Doerr, R.G.; Waite, T.D. [The Trane Company, La Crosse, WI (United States)


    Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours. The original refrigerants and the Alternatives tested for retrofit were as follows: Most motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) were compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant. This was attributed to solution of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) found in Mylar and Melinex sheet and sleeving insulations was initially observed, but subsequent tests under dry conditions showed that embrittlement of the PET materials was caused by moisture present during the exposure. Compatibility tests of elastomers with R-245ca, retrofitted from R-11 and R-123, showed that the nitrile was compatible with both R-11 and R-245ca, but not with R-123. The neoprene was unsatisfactory because of shrinkage in the R-245ca.

  8. FY96 materials and processes technology area plan (TAP). Final report



    The Materials and Processes Technology Area Plan (MP TAP) describes the research and development activities performed by the Wright-Laboratory`s Materials Directorate (WL/XL) at WPAFB, OH. WL/ML is responsible for developing MP technologies for all Air Force aircraft, spacecraft, and missiles systems. MP for Structures, Propulsion, and Subsystems thrust of the MP TAP describes the development of technologies utilizing advanced composite materials, lightweight - aluminum and titanium alloys, high temperature intermetallics, and improved fluids, lubricants, and coatings. Applications include airframe and engine retrofits, high speed aircraft, spacelift, missiles and satellites. The MP for Electronics, Optics, and Survivability thrust of the MP TAP describes the development of materials for high temperature semiconductors and superconductors, advanced infrared detectors, non-linear optical devices, and laser hardening. Applications include high power radar and avionic systems, infrared countermeasures, and sensor and aircrew laser protection. The MP for Systems and Operational Support thrust of the MP TAP describes the development of nondestructive inspection (NDI) techniques and repair of composite and LO materials. It also describes ML`s interface with all Air Force fielded systems through logistic centers and system project offices (SPOs) and by conducting electronic and structural failure analysis.

  9. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    Chelikowsky, James R. [University of Texas at Austin


    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plus Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.

  10. Neutron Spectrometry for Identification of filler material in UXO - Final Report

    Bliss, Mary


    Unexploded ordnance (UXO)-contaminated sites often include ordnance filled with inert substances that were used in dummy rounds. During UXO surveys, it is difficult to determine whether ordnance is filled with explosives or inert material (e.g., concrete, plaster-of-paris, wax, etc.) or is empty. Without verification of the filler material, handling procedures often necessitate that the object be blown in place, which has potential impacts to the environment, personnel, communities and survey costs. The Department of Defense (DoD) needs a reliable, timely, non-intrusive and cost-effective way to identify filler material before a removal action. A new technology that serves this purpose would minimize environmental impacts, personnel safety risks and removal costs; and, thus, would be especially beneficial to remediation activities.

  11. Materials science studies of high-temperature superconducting ceramic oxides. Final report, May 1988-March 1993

    Vezzoli, G.C.; Chen, M.F.; Craver, F.; Katz, R.N.


    Herein is presented the results of a comprehensive program of research aimed at understanding the materials science and the mechanistic physics of high-temperature superconducting oxides. This comprehensive research program has identified the materials properties that are consistently associated with high-Tc superconductors and has shown that the mechanism that gives rise to the phenomenon of high-Tc superconductivity is associated with bound holes that are due to charge-transfer excitations at high frequency. The latter are a result of the high internal electric field present in high-Tc materials, owing to the asymmetry of the crystal structure. The interaction of bound holes with free electrons and the interaction of local spin fluctuations with the spin of free electrons generate a charge density wave and a spin density wave that cause Cooper pairing.

  12. Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report


    Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

  13. Final report on CCQM-K80: Comparison of value-assigned CRMs and PT materials: Creatinine in human serum

    Camara, Johanna E.; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza


    regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the wide range of creatinine mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). On the basis of leave-one-out cross-validation, the assigned values for 16 of the 17 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. The excluded material was identified as having a marginally underestimated assigned uncertainty, giving it large and potentially anomalous influence on the KCRF. However, this material's %d of 1.4 +/- 1.5 indicates that it is equivalent with the other materials at the 95% level of confidence. The median |%d| for all 17 of the materials is 0.3 with a median U95(%d) of 1.9. All of these higher-order CRMs for creatinine in human serum are equivalent within their assigned uncertainties. The median |%D| for the participating NMIs is 0.3 with a median U95(%D) of 2.1. These results demonstrate that all participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for creatinine in human serum and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. Quantitative Contact Resonance Force Microscopy for Viscoelastic Measurement of Soft Materials at the Solid-Liquid Interface.

    Churnside, Allison B; Tung, Ryan C; Killgore, Jason P


    Viscoelastic property measurements made at the solid-liquid interface are key to characterizing materials for a variety of biological and industrial applications. Further, nanostructured materials require nanoscale measurements. Here, material loss tangents (tan δ) were extracted from confounding liquid effects in nanoscale contact resonance force microscopy (CR-FM), an atomic force microscope based technique for observing mechanical properties of surfaces. Obtaining reliable CR-FM viscoelastic measurements in liquid is complicated by two effects. First, in liquid, spurious signals arise during cantilever excitation. Second, it is challenging to separate changes to cantilever behavior due to the sample from changes due to environmental damping and added mass effects. We overcame these challenges by applying photothermal cantilever excitation in multiple resonance modes and a predictive model for the hydrodynamic effects. We demonstrated quantitative, nanoscale viscoelastic CR-FM measurements of polymers at the solid-liquid interface. The technique is demonstrated on a point-by-point basis on polymer samples and while imaging in contact mode on a fixed plant cell wall. Values of tan δ for measurements made in water agreed with the values for measurements in air for some experimental conditions on polystyrene and for all examined conditions on polypropylene.

  15. Progress in Solid Tritium Breeder Materials%固态氚增殖剂研究进展

    赵林杰; 肖成建; 陈晓军; 龚宇; 彭述明; 龙兴贵


    增殖包层作为实现可控核聚变燃料“自持”的关键,不仅能实现氚的增殖,而且起着能量转换的作用,氚增殖剂是其中最重要的功能材料。本文从材料体系的制备、性能以及改性总结了固态氚增殖剂的发展趋势。同时,基于当前的研究现状对固态氚增殖剂的发展进行了展望。%The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction.Tritium breeding material is one of the most important functional materials.Herein,we reviewed the trends in solid tritium breeder development,including the fabrication,properties and modification.Meanwhile,the focus of the solid tritium breeder materials were prospected based on the current research situa-tion.

  16. Homogeneous Diffusion Solid Model as a Realistic Approach to Describe Adsorption onto Materials with Different Geometries

    Sabio, E.; Zamora, F.; González-García, C. M.; Ledesma, B.; Álvarez-Murillo, A.; Román, S.


    In this work, the adsorption kinetics of p-nitrophenol (PNP) onto several commercial activated carbons (ACs) with different textural and geometrical characteristics was studied. For this aim, a homogeneous diffusion solid model (HDSM) was used, which does take the adsorbent shape into account. The HDSM was solved by means of the finite element method (FEM) using the commercial software COMSOL. The different kinetic patterns observed in the experiments carried out can be described by the developed model, which shows that the sharp drop of adsorption rate observed in some samples is caused by the formation of a concentration wave. The model allows one to visualize the changes in concentration taking place in both liquid and solid phases, which enables us to link the kinetic behaviour with the main features of the carbon samples.

  17. Neutron cross sections of cryogenic materials: a synthetic kernel for molecular solids

    Granada, J.R.; Gillette, V.H.; Petriw, S. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Inst. Balseiro (Argentina); Cantargi, F.; Pepe, M.E.; Sbaffoni, M.M. [Comision Nacional de Energia Atomica, Centro Atomico Constituyentes (Argentina)


    A new synthetic scattering function aimed at the description of the interaction of thermal neutrons with molecular solids has been developed. At low incident neutron energies, both lattice modes and molecular rotations are specifically accounted for, through an expansion of the scattering law in few phonon terms. Simple representations of the molecular dynamical modes are used, in order to produce a fairly accurate description of neutron scattering kernels and cross sections with a minimum set of input data. As the neutron energies become much larger than that corresponding to the characteristic Debye temperature and to the rotational energies of the molecular solid, the 'phonon formulation' transforms into the traditional description for molecular gases. (orig.)

  18. Secondary materials: Engineering properties, environmental consequences, and social and economic impacts. Final report

    Breslin, V.; Reaven, S.; Schwartz, M.; Swanson, L.; Zweig, M.; Bortman, M.; Schubel, J.


    This report investigates two secondary materials, plastic lumber made from mixed plastic waste, and cement blocks and structures made with incinerator ash. Engineering properties, environmental impacts, and energy costs and savings of these secondary materials are compared to standard lumber products and cement blocks. Market capacity and social acceptance of plastic lumber and stabilized ash products are analyzed. These secondary materials apparently have potential markets; however, their economic value is primarily that they will not take up landfill space. For plastic lumber and stabilized incinerator ash products, marine and highway construction seem ideal public works applications. Incinerator ash may be suitable to use in seawalls, jetties, fishing reefs, highway barriers, and roadbed applications. Docks, piers, highway sound barriers, parking stops, and park furniture may all be made from plastic lumber. To encourage public acceptance and improve the market potential of secondary materials, these activities could be beneficial: industry should emphasize developing useful, long-lived products; industry and governments should create product performance criteria; government should provide rigorous testing and demonstration programs; and government and industry should cooperate to improve public outreach and educational programs.

  19. A Model for Producing and Sharing Instructional Materials in Veterinary Medicine. Final Report.

    Ward, Billy C.; Niec, Alphonsus P.

    This report describes a study of factors which appear to influence the "shareability" of audiovisual materials in the field of veterinary medicine. Specific factors addressed are content quality, instructional effectiveness, technical quality, institutional support, organization, logistics, and personal attitudes toward audiovisuals. (Author/CO)

  20. Dendrimers-modified solid supports: towards nanostructures materials for clinical diagnostic

    Vida, Y.; Collado, D; Najera, F.; Montañe, M I; Perez-Inestrosa, E.; Ruiz-Sanchez, A


    The design and synthesis of new materials for biomedical applications is a high-priority research topic in a number of biomedical areas. The rapid development of nanotechnology over the past few decades has created wide prospects for using nano- and micro-scale materials in such areas, where careful control of interactions between particles and biosystems is essential for effective use of these materials in biomedicine. Worth special note in this respect is the use of nanoparticles in diagnos...

  1. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Nash, Stephen G.


    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  2. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul


    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  3. High efficiency light source using solid-state emitter and down-conversion material

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul


    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  4. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL


    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  5. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    Johnson, Francis


    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy

  6. Hazardous Material Storage Facilities and Sites - WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN: Active Permitted Solid Waste Sites in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    NSGIC GIS Inventory (aka Ramona) — WASTE_SOLID_ACTIVE_PERMITTED_IDEM_IN is a point shapefile that contains active permitted solid waste site locations in Indiana, provided by personnel of Indiana...

  7. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.


    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  8. A process for treatment of residues from dry/semidry APC systems at municipal solid waste incinerators. Final report

    Hjelmar, O. [VKI, Hoersholm (Denmark)] Holland, D. [FLS miljoe a/s, Valby (Denmark)] Poulsen, B. [KARA, Roskilde (Denmark)


    The main objective of the project has been to establish and test a process for treatment of residues from the semidry (and dry) lime injection based APC processes at MSWIs, which will ensure that the residues can be managed in an environmentally safe manner. In pursuit of this goal, the following activities have been carried out: Performance of pilot scale extractions (approximately 50 kg of residue per batch) at the KARA MSWI in Roskilde of semidry APC system residues in order to establish and optimize process conditions. The optimization includes consideration of the possibilities for subsequent treatment/stabilization of the extracted solid phase as well as the possibility of treatment and safe discharge/utilization of the extract; Performance of chemical characterization, hydrogeochemical model calculations and experimental work in order to improve the understanding of the mechanisms and factors which for several contaminants control the equilibrium between the solid and liquid phases, both in the short and the long germ, and to use this information to obtain an environmentally acceptable method for stabilization/treatment of the extracted residues while at the same time minimizing the necessary amount of additives; production of treated residues and performance of leaching tests on these to assess and demonstrate the effectiveness of the entire process (extraction + stabilization/treatment); Evaluation of the technical, economical and environmental consequences of full scale implementation of the process. (EG) EFP-94. 19 refs.

  9. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen


    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  10. Thermo-inelastic Response of Polymeric Solids


    Public Release; Distribution Unlimited Final Report: Thermo -inelastic Response of Polymeric Solids The views, opinions and/or findings contained in non peer-reviewed journals: Final Report: Thermo -inelastic Response of Polymeric Solids Report Title We the study the impact response of a large...none) Challenges and opportunities in the modeling of thermo -viscoelastic materials, Society of Experimental Mechanics, Greenville, North, Carolina

  11. Solid Warehouse Material Management System Based on ERP and Bar Code Technology

    ZHANG Cheng; WANG Jie; YUAN Bing; WU Chao; HU Qiao-dan


    This paper presents a manufacturing material management system based on ERP, which is combined with industrial bar code information collection and material management, and carries out extensive research on the system structure and function model, as well as a detailed application scheme.

  12. 75 FR 31843 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste


    ... avoided extraction and processing emissions 0.006 MTCO 2 E/ MMBtu for coal, the total avoided GHG is 0.019.../MMBtu of PM associated with extraction and processing of the coal. Please see the Materials... (fly ash, bottom ash, and boiler slag); foundry sand; silica fume; and secondary glass material....

  13. Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays. Final report

    Carmichael, D.C.; Gaines, G.B.; Sliemers, F.A.; Kistler, C.W.; Igou, R.D.


    Available information defining the state of the art of encapsulation materials and processes for terrestrial photovoltaic devices and related applications were collected and analyzed. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for low-cost, long-life terrestrial photovoltaic arrays manufactured by automated, high-volume processes. The criteria for consideration of the encapsulation systems were based on the goals for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total array price less than $500/kW, and a production capacity of 5 x 10/sup 5/ kW/yr. (WDM)

  14. Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.

    Corral, Erica L. (University of Arizona, Tucson, AZ); Miller, James Edward; Walker, Luke S. (University of Arizona, Tucson, AZ); Evans, Lindsey R.


    This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

  15. Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

    Voyles, Paul [University of Wisconsin, Madison


    We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.

  16. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials.

    Robbins, Joshua; Dingreville, Remi Philippe Michel; Voth, Thomas Eugene; Furnish, Michael David


    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  17. Nuclear materials transportation workshops: USDOE outreach to local governments. Final report


    To provide direct outreach to local governments, the Transportation Management Division of the United States Department of Energy asked the Urban Consortium and its Energy Task Force to assemble representatives for two workshops focusing on the transport of nuclear materials. The first session, for jurisdictions east of the Mississippi River, was held in New Orleans on May 5--6, 1988; the second was conducted on June 6--7, 1988 in Denver for jurisdictions to the west. Twenty local government professionals with management or operational responsibility for hazardous materials transportation within their jurisdictions were selected to attend each workshop. The discussions identified five major areas of concern to local government professionals; coordination; training; information resources; marking and placarding; and responder resources. Integrated federal, state, and local levels of government emerged as a priority coordination issue along with the need for expanded availability of training and training resources for first-reponders.

  18. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)


    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  19. Final report on CCQM-K79: Comparison of value-assigned CRMs and PT materials: Ethanol in aqueous matrix

    Hein, Sebastian; Philipp, Rosemarie; Duewer, David L.; Gasca Aragon, Hugo; Lippa, Katrice A.; Toman, Blaza


    -weighted generalized distance regression was used to establish the key comparison reference function (KCRF) relating the assigned values to the repeatability measurements. On the basis of leave-one-out cross-validation, all of the assigned values for all 27 materials were deemed equivalent at the 95% level of confidence. These materials were used to define the KCRF. Parametric bootstrap Monte Carlo was used to estimate 95% level-of-confidence coverage intervals for the degrees of equivalence of materials, d +/- U95(d), and of the participating NMIs, D +/- U95(D). Because of the very wide range of ethanol mass fraction in the materials, these degrees of equivalence are expressed in percent relative form: %d +/- U95(%d) and %D +/- U95(%D). The median of the absolute values of the %D for the participating NMIs is less than 0.05% with a median U95(%D) of less than 1%. These results demonstrate that the participating NMIs have the ability to correctly value-assign CRMs and proficiency test materials for ethanol in aqueous media and similar measurands. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Jerry L. Whitten


    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.

  1. Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

    Jerry L. Whitten


    This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.

  2. Materials, process, product analysis of coal process technology. Phase I final report

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.


    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  3. Solid state devices


    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  4. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.


    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

  5. Use of solid-state phase transitions for thermal energy storage. Final report, June 1, 1977--August 31, 1978

    Leffler, A.J.; Myers, J.; Weinstein, D.


    A study has been carried out on the feasibility of using solid-state phase transitions for thermal energy storage. As part of this study a literature search was made to identify the most promising types of compounds and a synthesis program was carried out to prepare certain of these substances. In addition a large number of compounds for testing were obtained from commercial sources. All of the compounds were screened for transitions using a Perkin Elmer DSC-1B differential scanning calorimeter. From this program seven compounds were found that have transition energies from 20-30 cal/g in the temperatre range of 335-405 K. The most promising compound found is 5-norbornene-2,3-dicarboxylic acid anhydride having a transition of 22.6 cal/g at 366 K and an estimated cost of peparation of $0.40/lb..

  6. Surface oxygen exchange properties of bismuth oxide-based solid electrolytes and electrode materials

    Boukamp, B.A.; Vinke, I.C.; Vries, de K.J.; Burggraaf, A.J.


    The surface oxygen exchange coefficient, ks, has been measured for the solid solution (Bi2O3)0.75(Er2O3)0.25 and (Bi2O3)0.6(Tb2O3)0.4 (abbreviated BE25 and BT40), using gas-phase 18O exchange techniques. The activation enth alpy of ks amounts to ΔE=110 kJ/molforBT40 andΔE=130 kJ/molforBE25. The magn

  7. Mass spectrometric methods for the direct elemental and isotopic analysis of solid material

    Ganeev, A. A.; Gubal, A. R.; Potapov, S. V.; Agafonova, N. N.; Nemets, V. M.


    Methods for the direct analysis of solids have a number of undeniable advantages over the methods that require preliminary dissolution of samples. High sensitivity and selectivity make the direct mass spectrometric techniques the most in-demand. The review concerns spark source mass spectrometry, laser ionization mass spectrometry, laser ablation inductively coupled plasma mass spectrometry, secondary ion mass spectrometry, secondary neutral mass spectrometry and glow discharge mass spectrometry. Basic principles, analytical characteristics and trends in the development of these techniques are discussed. Particular attention is given to applications of the techniques as well as to their competitive advantages and drawbacks. The bibliography includes 123 references.

  8. Solid State Raman Materials Characterization for High Average Power 1.3 micrometer Laser Frequency Shift


    reflectivity at 1067 rim wavelength. Solid state phototrop filter based on gallium -scandium- gadolinium garnet doped with chromium was used as a passive Q-switch... gadolinium tungstate, KGd(W0 4)2 exhibited efficient Raman properties . In spite of the fact that its Raman gain coefficient at 1064 nm (6 cm/GW) is twice less...studied by high- temperature Raman scattering (HTRS) technique. According to [1], the lattice cell of KGd(W04) 2 low - temperature modification is a base

  9. Directory of crystal growth and solid state materials production and research

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)


    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  10. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Pancoast, Justin; Garrett, William; Moe, Gulia


    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  11. Surfactant assisted solid-state synthesis and gas sensor application of a SWCNT/SnO2 nanocomposite material.

    Lu, Jun; Ma, Anson; Yang, Shihe; Ng, Ka Ming


    Although tin oxide has been the most widely investigated metal oxide material for gas detection, it suffers from the large resistance and high operating temperature. This could be overcome by hybridization with nanostructured carbon. In this work, tin oxide nanoparticles with ultrasmall sizes of 1-3 nm have been uniformly coated onto bundles of single-walled carbon nanotubes by a surfactant assisted solid state synthesis approach for the first time. Gas sensor properties of the as-synthesized nanocomposite material toward NO2 (from 5 to 60 ppm) are measured at 150 degrees C. Compared to the pure carbon tubes gas sensors, the nanocomposite gas sensor responds to NO2 in low concentrations with good linearity, high sensitivity, and fast recovery, while working at a relatively low temperature.

  12. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk


    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  13. Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C.

    Zhang, Yuan; Knibbe, Ruth; Sunarso, Jaka; Zhong, Yijun; Zhou, Wei; Shao, Zongping; Zhu, Zhonghua


    Solid-oxide fuel cells (SOFCs) are electricity generators that can convert the chemical energy in various fuels directly to the electric power with high efficiency. Recent advances in materials and related key components for SOFCs operating at ≈500 °C are summarized here, with a focus on the materials, structures, and techniques development for low-temperature SOFCs, including the analysis of most of the critical parameters affecting the electrochemical performance of the electrolyte, anode, and cathode. New strategies, such as thin-film deposition, exsolution of nanoparticles from perovskites, microwave plasma heating, and finger-like channeled electrodes, are discussed. These recent developments highlight the need for electrodes with higher activity and electrolytes with greater conductivity to generate a high electrochemical performance at lower temperatures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    Wu, Yue; Kleinhammes, Alfred


    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from

  15. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors.

    Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos


    The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes.

  16. Materials Development for Boron Phosphide Based Neutron Detectors: Final Technical Report

    Edgar, James Howard [Kansas State Univ., Manhattan, KS (United States)


    The project goal was to improve the quality of boron phosphide (BP) by optimizing its epitaxial growth on single crystal substrates and by producing bulk BP single crystals with low dislocation densities. BP is potentially a good semiconductor for high efficiency solid state neutron detectors by combining neutron capture and charge creation within the same volume. The project strategy was to use newly available single crystal substrates, silicon carbide and aluminum nitride, engineered to produce the best film properties. Substrate variables included the SiC polytype, crystallographic planes, misorientation of the substrate surface (tilt direction and magnitude) from the major crystallographic plane, and surface polarity (Si and C). The best films were (111)BP on silicon-face (0001) 4H-SiC misoriented 4° in the [1-100] direction, and BP on (100) and (111) 3C-SiC/Si; these substrates resulted in films that were free of in-plane twin defects, as determined by x-ray topography. The impact of the deposition temperature was also assessed: increasing the temperature from 1000 °C to 1200 °C produced films that were more ordered and more uniform, and the size of individual grains increased by more than a factor of twenty. The BP films were free of other compounds such as icosahedral boron phosphide (B12P2) over the entire temperature range, as established by Raman spectroscopy. The roughness of the BP films was reduced by increasing the phosphine to diborane ratio from 50 to 200. Bulk crystals were grown by reacting boron dissolved in nickel with phosphorus vapor to precipitate BP. Crystals with dimensions up to 2 mm were produced.

  17. Characterizing the emissivity of materials under dynamic compression (final report for LDRD project 79877).

    Dolan, Daniel H.


    Temperature measurements are crucial to equation of state development, but difficult to perform reliably. In the case of infrared pyrometry, a large uncertainty comes from the fact that sample emissivity (the deviation from a blackbody) is unknown. In this project, a method for characterizing the emissivity of shocked materials was developed. By coupling infrared radiation from the National Synchrotron Light Source to a gas gun system, broad spectrum emissivity changes were studied to a peak stress of 8 GPa. Emissivity measurements were performed on standard metals (Al, Cr, Cu, and Pt) as well as a high emissivity coating developed at Sandia.

  18. Nanomechanical analysis of high performance materials (solid mechanics and its applications)


    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in the i...

  19. Solid-State Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria Project

    National Aeronautics and Space Administration — In Phase II we will develop transparent Nd:Yttria ceramic laser materials that can operate at 914 nm and 946 nm suitable for applications in ozone LIDAR systems. We...

  20. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)


    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  1. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    Paul Guerry


    Full Text Available It has been shown previously that for magic angle spinning (MAS solid state NMR the refocused INADEQUATE spin-echo (REINE experiment can usefully quantify scalar (J couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ∼1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength, the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (∼1−10 %.

  2. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.


    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ˜1.1-2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2-1.0 Hz (˜1-10 %).

  3. A novel approach to engineer the microstructure of solid oxide fuel cell materials

    Ruiz-Morales, J.C.; Nunez, P.; Dominguez-Gonzalez, J.M. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200-La Laguna, Tenerife (Spain); Marrero-Lopez, D. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C. S. I. C.) Universidad de Malaga, 29071 Malaga (Spain); Canales-Vazquez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain)


    A novel and cost-effective process to accurately control the design of 3D structures of SOFC materials is proposed. A master mould is fabricated from a rubber-based material. Metallic meshes are used to transfer any type of patterns to the rubber-based material. The reusable master mould can then be filled with a slurry of inorganic materials made of single or complex oxides and other organic components commonly used in tape-casting technology. After drying at room temperature, the master-mould can be easily peeled-off and then a slow thermal process allows obtaining a sintered material with precisely controlled features such as the size and distribution of the pore holes in the structure, the thickness of the electrode and electrolyte layers, type of patterning, etc. The potential advantages of micro- and nanoengineering of materials for energy applications are also discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. GEO-TEP. Development of thermoelectric materials for geothermal energy conversion systems. Final report 2008

    Bocher, L.; Weidenkaff, A.


    Geothermal heat can be directly converted into electricity by using thermoelectric converters. Thermoelectric conversion relies on intrinsic materials properties which have to be optimised. In this work novel environmentally friendly and stable oxide ceramics were developed to fulfil this task. Thus, manganate phases were studied regarding their potential thermoelectric properties for converting geothermal heat into electricity. Perovskite-type phases were synthesized by applying different methods: the ceramic route, and innovative synthesis routes such as the 'chimie douce' method by bulk thermal decomposition of the citrate precursor or using an USC process, and also the polyol-mediated synthesis route. The crystal structures of the manganate phases are evaluated by XRPD, NPD, and ED techniques while specific microstructures such as twinned domains are highlighted by HRTEM imaging. Besides, the thermal stability of the Mn-oxide phases in air atmosphere are controlled over a wide temperature range (T < 1300 K). The thermoelectric figure of merit ZT was enhanced from 0.021 to 0.3 in a broad temperature range for the studied phases which makes these phases the best perovskitic candidates as n-type polycrystalline thermoelectric materials operating in air at high temperatures. (author)

  5. Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995

    Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.


    SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

  6. Water Resources Research Program. Abatement of malodors at diked, dredged-material disposal sites. Final report

    Harrison, W.; Dravnieks, A.; Zussman, R.; Goltz, R.


    Samples of malodorous air and dredged material were collected at diked disposal sites at the following locations: Buffalo, NY; Milwaukee, WI; Mobile, AL; York Harbor, ME; Houston, TX; Detroit, MI; and Anacortes, WA; during the period July--October, 1975. Odorous compounds in the air samples were identified by gas chromatography/mass spectrometry, while the detection threshold, intensity, and character of the various odors were determined by experienced panelists using a dynamic, forced-choice-triangle olfactometer. Although significant problems with malodors were not observed beyond the disposal-area dikes during site visits, noteworthy odor episodes had occurred at some sites. An odor-abatement strategy is presented for handling the expected range of odor conditions at dredged-material disposal sites. Its aim is to reduce to an acceptable level the intensity of malodors in an affected community. The main steps in the strategy cover selection of the disposal site, site preparation, odor characterization of sediments to be dredged, malodor abatement during dredging and disposal operations, malodor abatement after filling of the disposal site, and the handling of malodor complaints.

  7. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Black, Hayden T; Harrison, Katharine Lee


    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  8. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Vanessa Cascos


    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  9. Long term test of buffer material. Final Report on the pilot parcels

    Karnland, Ola; Sanden, Torbjoern; Johannesson, Lars-Erik [Clay Technology AB, Lund (Sweden); Eriksen, Trygve E; Jansson, Mats; Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden); Pedersen, Karsten; Motamedi, Mehrdad [Goeteborg Univ. (Sweden); Rosborg, Bo [Studsvik Material AB, Nykoeping (Sweden)


    The 'Long Term Test of Buffer Material' (LOT) series at the Aespoe HRL aims at checking models and hypotheses for a bentonite buffer material under conditions similar to those in a KBS3 repository. The test series comprises seven test parcels, which are exposed to repository conditions for 1, 5 and 20 years. This report concerns the two completed pilot tests (1-year tests) with respect to construction, field data and laboratory results. Four research groups were engaged in this part of the project working on physical properties - mineralogy, cation diffusion, bacteria and copper corrosion, respectively. The experimental layout was to place parcels containing heater, central copper tube, pre-compacted bentonite blocks and instruments in vertical boreholes in crystalline rock. The heaters were used for simulating the decay power from spent nuclear fuel at standard KBS3 conditions (S1 parcel, 90 deg C) and to give adverse conditions (A1 parcel, 130 deg C). The latter was used in order to accelerate possible processes. Temperature, total pressure, water pressure and water content were measured during the heating period. The two pilot tests were terminated after approximately 12 months of heating, and the parcels were extracted by overlapping core drilling outside the original borehole. The entire 4.5 m long S1-parcel with approximately 20 cm rock cover was successfully lifted in one piece from the rock, whereas the central part of the A1 parcel was lost during drilling. The upper and lower parts were however retrieved. Reference and exposed bentonite material were analysed with respect to physical properties (triaxial, beam and oedometer tests), and to mineralogical properties (XRD, CEC, ICP-AES and SEM analyses) according to a defined test program. Some precipitation, mainly gypsum, was found in the warmest part of the parcels, and the only unpredicted change was minor uptake of Cu into the clay matrix. An overarching conclusion is that no degrading

  10. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  11. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical

  12. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin


    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  13. Powder-based synthesis of nanocrystalline material components for structural application. Final report

    Ilyuschenko, A.F.; Ivashko, V.S.; Okovity, V.A. [Powder Metallurgy Research Inst., Minsk (Belarus)] [and others


    Hydroxiapate spray coatings and substrates for implant production as well as multilayered metal ceramic coatings from nanocrystalline materials are a subject of the investigation. The work aims at the improvement of quality of said objects. This study has investigated the processes of hydroxiapatite powder production. Sizes, shapes and relief of initial HA powder surface are analyzed using SEM and TEM. Modes of HA plasma spraying on a substrate from titanium and associated compositions of traditional and nanocrystalline structure are optimized. The quality of the sprayed samples are studied using X-ray phase analysis and metallographic analysis. The results of investigations of bioceramic coating spraying on titanium are theoretically generalized, taking into account obtained experimental data. The results of investigations of ion-beam technology are presented for spraying multilayered coatings consisting of alternating metal-ceramic layers of nanocrystalline structure.

  14. Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report

    Fenske, George [Argonne National Lab. (ANL), Argonne, IL (United States)


    Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry of the tribofilms produced during the tests.

  15. Investigations on deflagration to detonation transition in porous energetic materials. Final report

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States)


    The research carried out by this contract was part of a larger effort funded by LANL in the areas of deflagration to detonation in porous energetic materials (DDT) and detonation shock dynamics in high explosives (DSD). In the first three years of the contract the major focus was on DDT. However, some researchers were carried out on DSD theory and numerical implementation. In the last two years the principal focus of the contract was on DSD theory and numerical implementation. However, during the second period some work was also carried out on DDT. The paper discusses DDT modeling and DSD modeling. Abstracts are included on the following topics: modeling deflagration to detonation; DSD theory; DSD wave front tracking; and DSD program burn implementation.

  16. Studies of low temperature, low flux radiation embrittlement of nuclear reactor structural materials. Final report

    Odette, G.R.; Lucas, G.E.


    There are several existing research programs which have components pertinent to the issue of low flux/low temperature embrittlement; in particular, examination of the Shippingport shield tank which has been exposed to low flux and relatively low temperature is being performed by ANL, and evaluation of low temperature embrittlement in A508 and A533B steels in support of the HTGR is currently being performed by ORNL. However, these programs are not specifically directed at the broader issue of low flux/low temperature embrittlement in a range of structural steels. Hence, the authors coordinated their effort with these programs so that their investigations were complementary to existing programs, and they focused on a set of materials which expand the data base developed in these programs. In particular, the authors have investigated embrittlement phenomena in steels that are similar to those used in support structure.

  17. Solid Matter

    Angelo, Joseph A


    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  18. Influence of changing particle structure on the rate of gas-solid gasification reactions. Final report, July 1981-March 1984


    The objetive of this work is to determine the changes in the particle structure of coal as it undergoes the carbon/carbon dioxide reaction (C + CO/sub 2/ ..-->.. 2CO). Char was produced by heating the coal at a rate of 25/sup 0/C/min to the reaction temperatures of 800/sup 0/C, 900/sup 0/C, 1000/sup 0/C and 1100/sup 0/C. The changes in surface area and effective diffusivity as a result of devolitization were determined. Changes in effective diffusivity and surface area as a function of conversion have been measured for reactions conducted at 800, 900, 1000 and 1100/sup 0/C for Wyodak coal char. The surface areas exhibit a maximum as a function of conversion in all cases. For the reaction at 1000/sup 0/C the maximum in surface area is greater than the maxima determined at all other reaction temperatures. Thermogravimetric rate data were obtained for five coal chars; Wyodak, Wilcox, Cimmeron, Illinois number 6 and Pittsburgh number 6 over the temperature range 800-1100/sup 0/C. All coal chars exhibit a maximum in reaction rate. Five different models for gas-solid reactions were evaluated. The Bhatia/Perlmutter model seems to best represent the data. 129 references, 67 figures, 37 tables.

  19. Development of novel strategies for enhancing the cycle life of lithium solid polymer electrolyte batteries. Final report

    Macdonald, Digby D.; Urquidi-Macdonald, Mirna; Allcock, Harry; Engelhard, George; Bomberger, N.; Gao, L.; Olmeijer, D.


    Lithium/solid polymer electrolyte (Li/SPE) secondary batteries are under intense development as power sources for portable electronic devices as well as electric vehicles. These batteries offer high specific energy, high energy density, very low self-discharge rates, and flexibility in packaging; however, problems have inhibited their introduction into the marketplace. This report summarizes findings to examine processes that occur with Li/SPE secondary batteries upon cyclic charging/discharging. The report includes a detailed analysis of the impedance measured on the Li/SPE/IC and IC/SPE/IC systems. The SPE was a derivative of methoxyethoxyethoxyphosphazene (MEEP) with lithium triflate salt as the electrolyte, while the intercalated cathodes (IC) comprised mixtures of manganese dioxide, carbon powder, and MEEP as a binder. Studies on symmetrical Li/SPE/Li laminates show that cycling results in a significant expansion of the structure over the first few tens of cycles; however, no corresponding increase in the impedance was noted. The cycle life of the intercalation cathode was found to be very sensitive to the method of fabrication. Results indicate that the cycle life is due to the failure of the IC, not to the failure of the lithium/SPE interface. A pattern recognition neural network was developed to predict the cycle life of a battery from the charge/discharge characteristics.

  20. Optical characterization and crystal field calculations for some erbium based solid state materials for laser refrigeration

    Hasan, Z.; Qiu, Z.; Johnson, Jackie; Homerick, Uwe


    The potential of three erbium based solids hosts has been investigated for laser cooling. Absorption and emission spectra have been studied for the low lying IR transitions of erbium that are relevant to recent reports of cooling using the 4I15/2-4I9/2 and4I15/2 -4I13/2 transitions. Experimental studies have been performed for erbium in three hosts; ZBLAN glass and KPb2Cl5 and Cs2NaYCl6 crystals. In order to estimate the efficiencies of cooling, theoretical calculations have been performed for the cubic Elpasolite (Cs2NaYCl6 ) crystal. These calculations also provide a first principle insight into the cooling efficiency for non-cubic and glassy hosts where such calculations are not possible.

  1. III-nitride nanowires: novel materials for solid-state lighting

    Wang, George T.; Li, Qiming; Huang, Jianyu; Talin, A. Alec; Armstrong, Andrew; Upadhya, Prashanth C.; Prasankumar, Rohit P.


    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  2. III-nitride nanowires : novel materials for solid-state lighting.

    Wang, George T.; Upadhya, Prashanth C. (Los Alamos National Laboratory, Los Alamos, NM); Prasankumar, Rohit P. (Los Alamos National Laboratory, Los Alamos, NM); Armstrong, Andrew M.; Huang, Jian Yu; Li, Qiming; Talin, Albert Alec (NIST, Gaithersburg, MD)


    Although planar heterostructures dominate current solid-state lighting architectures (SSL), 1D nanowires have distinct and advantageous properties that may eventually enable higher efficiency, longer wavelength, and cheaper devices. However, in order to fully realize the potential of nanowire-based SSL, several challenges exist in the areas of controlled nanowire synthesis, nanowire device integration, and understanding and controlling the nanowire electrical, optical, and thermal properties. Here recent results are reported regarding the aligned growth of GaN and III-nitride core-shell nanowires, along with extensive results providing insights into the nanowire properties obtained using cutting-edge structural, electrical, thermal, and optical nanocharacterization techniques. A new top-down fabrication method for fabricating periodic arrays of GaN nanorods and subsequent nanorod LED fabrication is also presented.

  3. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed


    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Thunaipragasam Selvakumaran


    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  5. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura


    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%.

  6. Novel wide band gap materials for highly efficient thin film tandem solar cells. Final report

    Hardin, Brian E.; Connor, Stephen T.; Peters, Craig H.


    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949 mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV's goal in Phase I of the DOE SBIR was to (1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and (2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS

  7. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo


    The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in

  8. High-temperature cementing materials for completion of geothermal wells. Final report

    Kalyoncu, R.S.; Snyder, M.J.


    Several portland cement types, oil well cements, and various additives and admixtures were evaluated during the course of development of a number of promising compositions suitable for geothermal applications. Among the cements and various materials considered were portland cement Types I, III, and V; oil well cement Classes G, H, and J; and additives such as silica flour, blast furnace slags, pozzolan, hydrated lime, perlite, and aluminum phosphate. Properties of interest in the study were thickening time, compressive strength, cement-to-metal bond strength, and effects of the cements on the corrosion of steel well casings. Testing procedures and property data obtained on a number of compositions are presented and discussed. Several cementing compositions comprised of Class J oil well cement, pozzolan, blast furnace slags, and silica flour were found to possess properties which appear to make them suitable for use in geothermal well completions. Five of the promising cementing compositions have been submitted to the National Bureau of Standards for additional testing.

  9. Regulatory analysis on criteria for the release of patients administered radioactive material. Final report

    Schneider, S.; McGuire, S.A.


    This regulatory analysis was developed to respond to three petitions for rulemaking to amend 10 CFR parts 20 and 35 regarding release of patients administered radioactive material. The petitions requested revision of these regulations to remove the ambiguity that existed between the 1-millisievert (0.1-rem) total effective dose equivalent (TEDE) public dose limit in Part 20, adopted in 1991, and the activity-based release limit in 10 CFR 35.75 that, in some instances, would permit release of individuals in excess of the current public dose limit. Three alternatives for resolution of the petitions were evaluated. Under Alternative 1, NRC would amend its patient release criteria in 10 CFR 35.75 to match the annual public dose limit in Part 20 of 1 millisievert (0.1 rem) TEDE. Alternative 2 would maintain the status quo of using the activity-based release criteria currently found in 10 CFR 35.75. Under Alternative 3, the NRC would revise the release criteria in 10 CFR 35.75 to specify a dose limit of 5 millisieverts (0.5 rem) TEDE.

  10. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Lvov, Serguei


    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  11. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Wells, R.L. [Duke Univ., Durham, NC (United States)


    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  12. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia


    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals.

  13. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    Nicolaides, CP


    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  14. Glass-containing composite cathode contact materials for solid oxide fuel cells

    Tucker, Michael C.; Cheng, Lei; DeJonghe, Lutgard C.


    The feasibility of adding glass to conventional SOFC cathode contact materials in order to improve bonding to adjacent materials in the cell stack is assessed. A variety of candidate glass compositions are added to LSM and SSC. The important properties of the resulting composites, including conductivity, sintering behavior, coefficient of thermal expansion, and adhesion to LSCF and Mn1.5Co1.5O4-coated 441 stainless steel are used as screening parameters. Adhesion of LSM to LSCF improved from 3.9 to 5.3 MPa upon addition of SCZ-8 glass. Adhesion of LSM to coated stainless steel improved from 1.8 to 3.9 MPa upon addition of Schott GM31107 glass. The most promising cathode contact material/glass composites are coated onto Mn1.5Co1.5O4-coated 441 stainless steel substrates and subjected to area-specific resistance testing at 800 °C. In all cases, area-specific resistance is found to be in the range 2.5-7.5 mOhm cm2 and therefore acceptable. Indeed, addition of glass is found to improve bonding of the cathode contact material layer without sacrificing acceptable conductivity.

  15. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.


    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' struc

  16. Numerical Derivation of Strain Rate Effects on Material Properties of Masonry with Solid Clay Bricks

    WEI Xueying; HAO Hong


    In this paper,numerical method is used to study the strain rate effect on masonry materials.A typical unit of masonry is selected to serve as a representative volume element (RVE).Numerical model of RVE is established with detailed distinctive modeling of brick and mortar with their respective dynamic material properties obtained from laboratory tests.The behavior of brick and mortar are characterized by a dynamic damage model that accounts for rate-sensitive and pressuredependent properties of masonry materials.Dynamic loads of different loading rates are applied to RVE.The equivalent homogenized uniaxial compressive strength,threshold strain and elastic modulus in three directions of the masonry are derived from the simulated responses of the RVE.The strain rate effect on the masonry material with clay brick and mortar,such as the dynamic increase factor (DIF) of the ultimate strength and elastic modulus as a function of strain rate are derived from the numerical results.

  17. Solid state laser employing diamond having color centers as a laser active material

    Rand, S.C.; De Shazer, L.G.


    A laser is described comprising: resonant cavity means for supporting coherent radiation; a diamond containing color centers as a laser active material; means for exciting the color centers to emit coherent radiation; and optical path means for providing an exit path for the radiation from the resonant cavity means.

  18. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    Soloveichik, Grigorii [GE Global Research, Niskayuna, New York (United States)


    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  19. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report



    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.

  20. High temperature range recuperator. Phase II. Prototype demonstration and material and analytical studies. Final report



    A summary of the work performed to fully evaluate the commercial potential of a unique ceramic recuperator for use in recovering waste heat from high temperature furnace exhaust gases is presented. The recuperator concept being developed consists of a vertical cylindrical heat exchange column formed from modular sections. Within the column, the gasketed modules form two helical flow passages - one for high temperature exhaust gases and one for pre-heating combustion air. The column is operated in a counterflow mode, with the exhaust gas entering at the bottom and the combustion air entering at the top of the column. Activities included design and procurement of prototype recuperator modules, construction and testing of two prototype recuperator assemblies, exposure and mechanical properties testing of candidate materials, structural analysis of the modules, and assessment of the economic viability of the concept. The results of the project indicated that the proposed recuperator concept was feasible from a technical standpoint. Economic analysis based upon recuperator performance characteristics and module manufacturing costs defined during the program indicated that 3 to 10 years (depending upon pre-heat temperature) would be required to recover the capital cost of the system in combustion air preheat applications. At this stage in the development of the recuperator, many factors in the analysis had to be assumed. Significant changes in some of the assumptions could dramatically affect the economics. For example, utilizing $2.85 per mcf for the natural gas price (as opposed to $2.00 per mcf) could reduce the payback period by more than half in certain cases. In addition, future commercial application will depend upon ceramic component manufacturing technique advances and cost reduction.