WorldWideScience

Sample records for solid lithium-ion electrolyte

  1. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  2. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  3. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  4. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  5. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  6. Review on solid electrolytes for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li

    2018-06-01

    All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.

  7. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  8. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.; Ruffo, Riccardo; Hong, Seung Sae; Cui, Yi

    2009-01-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte

  9. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  10. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  11. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  12. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  13. Cathode solid electrolyte interface’s function originated from salt type additives in lithium ion batteries

    International Nuclear Information System (INIS)

    Kaneko, Yu; Park, Juyeon; Yokotsuji, Hokuto; Odawara, Makoto; Takase, Hironari; Ue, Makoto; Lee, Maeng-Eun

    2016-01-01

    Highlights: • Our chemical analysis determines the important functional groups of cathode’s solid electrolyte interface originated from salt type additives. • Our quantum chemical calculation reveals the redox character of the additives and their candidate chemical components of the solid electrolyte interface. • Our molecular dynamics simulation reproduces the selective lithium ion translocation and protective layer formation as the solid electrolyte interface function. - Abstract: This is the study about the cathode’s solid electrolyte interface (SEI) formation mechanism of salt type additives (STAs) and its function. To address this issue, we performed several types of chemical analysis and computer simulation techniques. In order to reveal the redox nature and oxidative decomposition dynamics, the electrolyte (EL) solution dynamics by Quantum mechanics and Molecular mechanics (QM/MM) method was applied. The estimation of SEI chemical components agrees with our chemical analyses data and other group’s reports. The molecular dynamics simulation of sub micro second sampling indicates that the SEI phase induced from STAs functions as a lithium ion selective translocation media and protective coating layer against the degradation of the solvent molecules. The results give us an insight how to design additive’s chemical structure to improve longevity of the cell in the high voltage regime.

  14. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  15. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  16. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  17. A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties

    International Nuclear Information System (INIS)

    Wang, Ailian; Xu, Hao; Zhou, Qian; Liu, Xu; Li, Zhengyao; Gao, Rui; Wu, Na; Guo, Yuguo; Li, Huayi; Zhang, Liaoyun

    2016-01-01

    Highlights: • A new hyperbranched multi-arm star polymer was successfully synthesized. • The star polymer electrolyte has good thermal stability and forming-film property. • The ion conductivity electrolyte can reach 8.3 × 10"−"5 S cm"−"1 at room temperature. • The star polymer electrolyte has wide electrochemical windows of 4.7 V. - Abstract: A new hyperbranched multi-arm star polymer with hyperbranched polystyrene (HBPS) as core and polymethyl methacrylate-block-poly(ethylene glycol) methyl ether methacrylate(PMMA-b-PPEGMA) as arms was firstly synthesized by atom transfer radical polymerization. The obtained hyperbranched multi-arm star polymer (HBPS-(PMMA-b-PPEGMA)_x) exhibited good thermal stability with a thermal decomposition temperature of 372 °C. The transparent, free-standing, flexible polymer electrolyte film of the blending of HBPS-(PMMA-b-PPEGMA)_x and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was successfully fabricated by a solution casting method. The ionic conductivity of the hyperbranched star polymer electrolyte with a molar ratio of [EO]/[Li] of 30 could reach 8.3 × 10"−"5 S cm"−"1 at 30 °C (with the content of PPEGMA of 83.7%), and 2.0 × 10"−"4 S cm"−"1 at 80 °C (with the content of PPEGMA of 51.6%). The effect of the concentration of lithium salts on ionic conductivity was also investigated. The obtained all-solid-state polymer electrolyte possessed a wide electrochemical stability window of 4.7 V (vs. Li"+/Li), and a lithium-ion transference number (t_L_i"+) up to 0.31. The interfacial impedance of the fabricated LiÔöépolymer electrolyteÔöéLi symmetric cell based on hyperbranched star multi-arm polymer electrolyte exhibited good interfacial compatibility between all-solid-state polymer electrolyte and electrodes. The excellent properties of the hyperbranched star polymer electrolyte made it attractive as solid-state polymer electrolyte for lithium-ion batteries.

  18. Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    International Nuclear Information System (INIS)

    Shoji, Mao; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-01-01

    All-solid-state lithium-ion batteries using Li + -ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of the promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D) structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li 6.25 Al 0.25 La 3 Zr 2 O 12 (LLZAl), which is a Al-doped Li 7 La 3 Zr 2 O 12 (LLZ) with Li + -ion conductivity of ~10 –4 S ⋅cm −1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 μm depth holes in 700 μm × 700 μm area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO 2 /LLZAl/lithium-metal configuration. It is expected that the LiCoO 2 –LLZAl interface is formed by point-to-point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, Li 3 BO 3 , which is a mechanically soft solid electrolyte with a low melting point at around 700

  19. Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film

    International Nuclear Information System (INIS)

    Xu, Jingjing; Xia, Qingbo; Chen, Fangyuan; Liu, Tao; Li, Li; Cheng, Xueyuan; Lu, Wei; Wu, Xiaodong

    2016-01-01

    The cathode/electrolyte interface stability is the key factor for the cyclic performance and the safety performance of lithium ion batteries. Suppression of consuming key elements in the electrode materials is essential in this concern. In this purpose, we investigate a facile strategy to solve interfacial issue for high-voltage lithium ion batteries by adding an oxidable fluorinated phosphate, Bis(2,2,2-trifluoroethyl) Phosphite (BTFEP), as a sacrificial additive in electrolyte. We demonstrate that BTFEP additive could be oxidized at slightly above 4.28 V which is a relatively lower voltage than that of solvents, and the oxidative products facilitate in-situ forming a stable solid electrolyte interphase (SEI) film on the cathode surface. The results manifest the SEI film validly restrains the generation of HF and the interfacial side reaction between high-voltage charged LiNi 0.5 Mn 1.5 O 4 (LNMO) and electrolyte, hence, the dissolution of Mn and Ni is effectively suppressed. Finally, the cyclic performance of LNMO after 200 cycles was remarkably improved from 68.4% in blank electrolyte to 95% in 1 wt% BTFEP-adding electrolyte.

  20. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  1. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

    Science.gov (United States)

    Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue

    2018-03-01

    A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

  2. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  3. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    Science.gov (United States)

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  5. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  6. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    Science.gov (United States)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  7. Electrolyte compositions for lithium ion batteries

    Science.gov (United States)

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  8. Artificial Solid Electrolyte Interphase-Protected LixSi Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Jie; Lu, Zhenda; Wang, Haotian; Liu, Wei; Lee, Hyun-Wook; Yan, Kai; Zhuo, Denys; Lin, Dingchang; Liu, Nian; Cui, Yi

    2015-07-08

    Prelithiation is an important strategy to compensate for lithium loss in lithium-ion batteries, particularly during the formation of the solid electrolyte interphase (SEI) from reduced electrolytes in the first charging cycle. We recently demonstrated that LixSi nanoparticles (NPs) synthesized by thermal alloying can serve as a high-capacity prelithiation reagent, although their chemical stability in the battery processing environment remained to be improved. Here we successfully developed a surface modification method to enhance the stability of LixSi NPs by exploiting the reduction of 1-fluorodecane on the LixSi surface to form a continuous and dense coating through a reaction process similar to SEI formation. The coating, consisting of LiF and lithium alkyl carbonate with long hydrophobic carbon chains, serves as an effective passivation layer in the ambient environment. Remarkably, artificial-SEI-protected LixSi NPs show a high prelithiation capacity of 2100 mA h g(-1) with negligible capacity decay in dry air after 5 days and maintain a high capacity of 1600 mA h g(-1) in humid air (∼10% relative humidity). Silicon, tin, and graphite were successfully prelithiated with these NPs to eliminate the irreversible first-cycle capacity loss. The use of prelithiation reagents offers a new approach to realize next-generation high-energy-density lithium-ion batteries.

  9. Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Mao; Munakata, Hirokazu; Kanamura, Kiyoshi, E-mail: kanamura@tmu.ac.jp [Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo (Japan)

    2016-08-30

    All-solid-state lithium-ion batteries using Li{sup +}-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of the promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D) structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li{sub 6.25}Al{sub 0.25}La{sub 3}Zr{sub 2}O{sub 12} (LLZAl), which is a Al-doped Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZ) with Li{sup +}-ion conductivity of ~10{sup –4} S ⋅cm{sup −1} at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 μm depth holes in 700 μm × 700 μm area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO{sub 2}/LLZAl/lithium-metal configuration. It is expected that the LiCoO{sub 2}–LLZAl interface is formed by point-to-point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, Li{sub 3}BO{sub 3}, which is a

  10. Structure and properties of solid polymer electrolyte based on chitosan and ZrO{sub 2} nanoparticle for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id [Center for Sains and Technology Advanced Materials – BATAN Kawasan Puspiptek Serpong, Tangerang Selatan, BantenV 15314 (Indonesia); Patimatuzzohrah, E-mail: pzohrah@yahoo.com [Department Of Physics, Mataram University, Jl. Majapahit 62, Mataram, NTB 83125 (Indonesia)

    2016-02-08

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ion transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.

  11. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery

    International Nuclear Information System (INIS)

    Haregewoin, Atetegeb Meazah; Leggesse, Ermias Girma; Jiang, Jyh-Chiang; Wang, Fu-Ming; Hwang, Bing-Joe; Lin, Shawn D.

    2014-01-01

    Mixed alkyl carbonates are widely used as solvent for a various lithium-ion battery applications. Understanding the behavior of each solvent in the mixed system is crucial for controlling the electrolyte composition. In this paper, we report a systematic electrochemical and spectroscopic comparison of the reduction of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) when used as single (PC), binary (EC/PC, EC/DEC), and ternary (EC/PC/DEC) solvent systems. The reduction products are identified based on Fourier transform infrared spectroscopy (FTIR) after employing linear sweep voltammetry to certain potential regions and their possible formation mechanisms are discussed. FTIR analyses revealed that the reduction of EC and PC was not considerably influenced by the presence of other alkyl carbonates. However, DEC exhibited a different reduction product when used in EC/DEC and EC/PC/DEC solvent systems. The reduction of EC occurred before that of PC and DEC and produced a passivating surface film that prevented carbon exfoliation caused by PC. Battery performance test, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscope is employed to study the surface films formed. The binary EC/DEC solvent system demonstrated more favorable performance, smaller impedance, and higher Li + ion diffusivity than did the other solvent systems used in this study

  12. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  13. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  14. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  15. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan Jian; Zhang Jian; Su Yuchang; Zhang Xigui; Xia Baojia

    2010-01-01

    In this paper, we describe how the mechanism of formation of a protective film [the solid electrolyte interphase (or interface) (SEI)] on a graphite electrode for Li-ion batteries was investigated from the novel perspective of precipitation of the final decomposition products that arise from the reduction of a nonaqueous electrolyte solution in contact with the graphite electrode. Within the framework of this new perspective, we can elegantly account for the compositional and structural differences between the basal-plane and edge-plane SEIs and for the origins of the multi-layer structure and the parabolic growth law of the SEIs on both the edge-plane and basal-plane surfaces of the graphite electrode.

  16. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    Science.gov (United States)

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Non-aqueous electrolyte for lithium-ion battery

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  18. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  19. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  20. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    Science.gov (United States)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  1. Functional electrolyte for lithium-ion batteries

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  2. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  3. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives.

    Science.gov (United States)

    Jackson, Everett D; Prieto, Amy L

    2016-11-09

    Nanowires of electrochemically active electrode materials for lithium ion batteries represent a unique system that allows for intensive investigations of surface phenomena. In particular, highly ordered nanowire arrays produced by electrodeposition into anodic aluminum oxide templates can lead to new insights into a material's electrochemical performance by providing a high-surface-area electrode with negligible volume expansion induced pulverization. Here we show that for the Li-Cu x Sb ternary system, stabilizing the surface chemistry is the most critical factor for promoting long electrode life. The resulting solid electrolyte interphase is analyzed using a mix of electron microscopy, X-ray photoelectron spectroscopy, and lithium ion battery half-cell testing to provide a better understanding of the importance of electrolyte composition on this multicomponent alloy anode material.

  4. Realization of entirely solid lithium ion batteries; Realisation d`accumulateurs a ions lithium entierement solides

    Energy Technology Data Exchange (ETDEWEB)

    Brousse, T.; Marchand, R.; Fragnaud, P.; Schleich, D.M. [Laboratoire de Genie des Materiaux, ISITEM, 44 - Nantes (France); Bohnke, O. [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures; West, K. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemistry

    1996-12-31

    This paper presents a prototype of an entirely inorganic lithium ions battery cell. LiCoO{sub 2} thin film cathodes and Li{sub 4/3}Ti{sub 5/3}O{sub 4} thin film anodes have been deposited on Li{sub 3x}La{sub 2/3-x}TiO{sub 3} sintered solid electrolyte pellets and the performances of these battery cells have been tested. (J.S.) 5 refs.

  5. Realization of entirely solid lithium ion batteries; Realisation d`accumulateurs a ions lithium entierement solides

    Energy Technology Data Exchange (ETDEWEB)

    Brousse, T; Marchand, R; Fragnaud, P; Schleich, D M [Laboratoire de Genie des Materiaux, ISITEM, 44 - Nantes (France); Bohnke, O [Universite du Maine, 72 - Le Mans (France). Laboratoire des Fluorures; West, K [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemistry

    1997-12-31

    This paper presents a prototype of an entirely inorganic lithium ions battery cell. LiCoO{sub 2} thin film cathodes and Li{sub 4/3}Ti{sub 5/3}O{sub 4} thin film anodes have been deposited on Li{sub 3x}La{sub 2/3-x}TiO{sub 3} sintered solid electrolyte pellets and the performances of these battery cells have been tested. (J.S.) 5 refs.

  6. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid lithium ion conductors for battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Weppner, W.

    1985-01-15

    The phase equilibria and conductivities of the LiF-LiH, LiF-LiOH, LiF-Li/sub 2/O, Li/sub 2/S-Li/sub 2/O, Li/sub 2/S-LiCl and Li/sub 2/S-LiBr systems were investigated. All ternary single phases and two-phase mixtures are solid electrolytes which are thermodynamically stable in respect of reaction with elemental lithium (anode) and at practically useful, low lithium activities (cathode). The conductivity normally increases with decreasing thermodynamic stability and vice versa. The conductivity may be optimized in the case of solid solutions by selecting a composition with a decomposition voltage just above the value required by the cathode material employed. All materials are isotropic in structure and no dendrite formation was observed. This allows their use in rechargeable, thin film electrolyte batteries.

  8. Assessment of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.

    2018-07-01

    All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.

  9. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  10. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  11. Non-Flammable, High Voltage Electrolytes for Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrolyte will be demonstrated for lithium ion batteries with increased range of charge and discharge voltages and with improved fire safety. Experimental...

  12. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  13. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  14. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    Energy Technology Data Exchange (ETDEWEB)

    Oladeji, I. [Planar Energy Devices, Inc.; Wood, D. L. [ORNL; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  15. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    Science.gov (United States)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  16. Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes

    International Nuclear Information System (INIS)

    Wang Lishi; Huang Yudai; Jia Dianzeng

    2006-01-01

    Triethyl orthoformate (TEOF) as a new solvent used in propylene carbonate (PC)-based electrolytes together with graphitic anodes in lithium-ion batteries has been investigated. It can be observed that TEOF was capable of suppressing the co-intercalation of PC solvated lithium-ions into the graphite layer during the first lithiation process and the irreversible discharge capacity of the first cycle is the smallest when using 1.0 M LiPF 6 in PC and TEOF at solvent ratio of 1:1 as the electrolytes. The CV, FTIR, EIS, SEM results show that the PC-based electrolytes containing the solvent TEOF can generate an effective solid electrolytes interphase (SEI) film during the first cycling process, and the film is probably mainly composed of ROCO 2 Li, ROLi, Li 2 CO 3 , etc. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance. All these results show that TEOF possesses a promising performance for use as an effective film-forming electrolytes solvent in lithium-ion batteries with graphitic anodes

  17. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  18. solid solutions for lithium ion battery

    Indian Academy of Sciences (India)

    the electrolyte, lattice instability and particle size distribution. [9–12]. ... a drop of NMP solvent to form uniform slurry. This slurry ... system between 3.5 and 4.9 V at C/10 rate. 3. Results and .... Galvanostatic voltage vs. capacity profile for a cell.

  19. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  20. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

    Science.gov (United States)

    Hallopeau, Leopold; Bregiroux, Damien; Rousse, Gwenaëlle; Portehault, David; Stevens, Philippe; Toussaint, Gwenaëlle; Laberty-Robert, Christel

    2018-02-01

    Li1.3Al0.3Ti1.7(PO4)3 (LATP) materials are made of a three-dimensional framework of TiO6 octahedra and PO4 tetrahedra, which provides several positions for Li+ ions. The resulting high ionic conductivity is promising to yield electrolytes for all-solid-state Li-ion batteries. In order to elaborate dense ceramics, conventional sintering methods often use high temperature (≥1000 °C) with long dwelling times (several hours) to achieve high relative density (∼90%). In this work, an innovative synthesis and processing approach is proposed. A fast and easy processing technique called microwave-assisted reactive sintering is used to both synthesize and sinter LATP ceramics with suitable properties in one single step. Pure and crystalline LATP ceramics can be achieved in only 10 min at 890 °C starting from amorphous, compacted LATP's precursors powders. Despite a relative density of 88%, the ionic conductivity measured at ambient temperature (3.15 × 10-4 S cm-1) is among the best reported so far. The study of the activation energy for Li+ conduction confirms the high quality of the ceramic (purity and crystallinity) achieved by using this new approach, thus emphasizing its interest for making ion-conducting ceramics in a simple and fast way.

  1. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  2. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Gao, Tao; Olguin, Marco; Ho, Janet; Fan, Xiulin; Luo, Chao; Wang, Chunsheng; Xu, Kang

    2015-11-20

    Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte interphase. A full lithium-ion battery of 2.3 volts using such an aqueous electrolyte was demonstrated to cycle up to 1000 times, with nearly 100% coulombic efficiency at both low (0.15 coulomb) and high (4.5 coulombs) discharge and charge rates. Copyright © 2015, American Association for the Advancement of Science.

  3. Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries

    Science.gov (United States)

    Hördemann, C.; Anand, H.; Gillner, A.

    2017-08-01

    Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.

  4. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  5. A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte

    Science.gov (United States)

    Ito, Seitaro; Fujiki, Satoshi; Yamada, Takanobu; Aihara, Yuichi; Park, Youngsin; Kim, Tae Young; Baek, Seung-Wook; Lee, Jae-Myung; Doo, Seokgwang; Machida, Nobuya

    2014-02-01

    An all-solid-state lithium-ion battery (ASSB) using non-flammable solid electrolytes is a candidate for a next-generation battery. Although the excellent cycle performance and its high energy density are suggested in the literature, a practical size battery has not been appeared yet. In this paper, we have adopted a sulfide based electrolyte, Li2S-P2S5 (80:20 mol%) to a rocking chair type lithium ion battery. The electrochemical cell consists of a Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 (NCA) cathode, an artificial graphite anode and the sulfide based electrolyte without any organic and inorganic liquids. The cathode charge transfer resistance is significantly reduced by the Li2O-ZrO2 coating. The total cell resistance of the Li2O-ZrO2 (LZO) coated NCA adopted cell is approximately one quarter of non-treated one. A standard type single cell with the nominal capacity of 100 mAh at 25 °C is fabricated by wet printing process, and its capacity retention is approximately 80% at 100 cycles. Also, a 1 Ah class battery was constructed by stacking the single cells, and demonstrated.

  6. PC based electrolytes with LiDFOB as an alternative salt for lithium-ion batteries

    Science.gov (United States)

    Knight, Brandon M.

    Lithium-ion batteries (LIBs) have been greatly sought after as a source of renewable energy storage. LIBs have a wide range of applications including but not limited portable electronic devices, electric vehicles, and power tools. As a direct result of their commercial viability an insatiable hunger for knowledge, advancement within the field of LIBs has been omnipresent for the last two decades. However, there are set backs evident within the LIB field; most notably the limitations of standard electrolyte formulations and LiPF6 lithium salt. The standard primary carbonate of ethylene carbonate (EC) has a very limited operating range due to its innate physical properties, and the LiPF6 salt is known to readily decompose to form HF which can further degrade LIB longevity. The goal of our research is to explore the use of a new primary salt LiDFOB in conjunction with a propylene carbonate based electrolyte to establish a more flexible electrolyte formulation by constructing coin cells and cycling them under various conditions to give a clear understanding of each formulation inherent performance capabilities. Our studies show that 1.2M LiDFOB in 3:7 PC/EMC + 1.5% VC is capable of performing comparably to the standard 1.2M LiPF6 in 3:7 EC/EMC at 25°C and the PC electrolyte also illustrates performance superior to the standard at 55°C. The degradation of lithium manganese spinel electrodes, including LiNi 0.5Mn1.5O4, is an area of great concern within the field of lithium ion batteries (LIBs). Manganese containing cathode materials frequently have problems associated with Mn dissolution which significantly reduces the cycle life of LIB. Thus the stability of the cathode material is paramount to the performance of Mn spinel cathode materials in LIBs. In an effort to gain a better understanding of the stability of LiNi0.5 Mn1.5O4 in common LiPF6/carbonate electrolytes, samples were stored at elevated temperature in the presence of electrolyte. Then after storage both

  7. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  8. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  9. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  10. Perfluoroalkyl-substituted ethylene carbonates: Novel electrolyte additives for high-voltage lithium-ion batteries

    Science.gov (United States)

    Zhu, Ye; Casselman, Matthew D.; Li, Yan; Wei, Alexander; Abraham, Daniel P.

    2014-01-01

    A new family of polyfluoroalkyl-substituted ethylene carbonates is synthesized and tested as additives in lithium-ion cells containing EC:EMC + LiPF6-based electrolyte. The influence of these compounds is investigated in Li1.2Ni0.15Mn0.55Co0.1O2//graphite cells via a combination of galvanostatic cycling and electrochemical impedance spectroscopy (EIS) tests. Among the four additives studied in this work (4-(trifluoromethyl)-1,3-dioxolan-2-one (TFM-EC), 4-(perfluorobutyl)-1,3-dioxolan-2-one (PFB-EC), 4-(perfluorohexyl)-1,3-dioxolan-2-one (PFH-EC), and 4-(perfluorooctyl)-1,3-dioxolan-2-one (PFO-EC)), small amounts (0.5 wt%) of PFO-EC is found to be most effective in lessening cell performance degradation during extended cycling. Linear sweep voltammetry (LSV), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy are used to further characterize the effects of PFO-EC on the positive and negative electrodes. LSV data from the electrolyte, and XPS analyses of electrodes harvested after cycling, suggest that PFO-EC is oxidized on the cathode forming surface films that slow electrode/cell impedance rise. Differential capacity (dQ/dV) plots from graphite//Li cells suggest that PFO-EC is involved in solid electrolyte interphase (SEI) formation. Raman data from anodes after cycling suggest that structural disordering of graphite is reduced by the addition of PFO-EC, which may explain the improved cell capacity retention.

  11. Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gładka, Dorota; Krajewski, Mariusz; Młynarska, Sandra; Galińska, Justyna; Zygadło-Monikowska, Ewa

    2017-01-01

    Bis(carboxytrifluoroborate lithium) salts [R(CH 2 COOBF 3 Li) 2 ] with oxyethylene groups R of oligomeric molar masses [R = O(CH 2 CH 2 O) n , where n = 3 or 11, BCB3 and BCB11, respectively] were synthesized via reaction of carboxylates salts with boron fluoride. The new salts were characterized by spectroscopic analysis. The physical properties of the salts were determined by oxyethylene chain length. For n = 3 the salt was crystalline with m p = 197 °C and for n = 11 it showed properties of an ionic liquid at ambient temperature. Their thermal stability was at least 250 °C. The values of lithium-ion transference numbers (T + ) of the solutions in polar aprotic solvents, determined by a well established steady-state technique, were in the range of 0.2–0.6. Electrochemical impedance spectroscopy analysis of solid polymer electrolytes (SPEs) based on PEO and studied salts with different concentration (from 24 to 94 wt %) was carried out. The ionic conductivity of SPEs was in the order of 10 −8 –10 −7 S cm −1 at room temperature and 10 −4 S cm −1 at 80 °C. A distinguishing feature of SPEs with the studied new salts is the high immobilization of anions, which causes almost a monoconducting character of charge transport. Lithium transference numbers (T + ) exceed 0.9.

  12. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  13. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  14. Wide-Temperature Electrolytes for Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-06-07

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.

  15. Wide-Temperature Electrolytes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S.; Zheng, Jianming; Cartmell, Samuel S.; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-05-26

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.

  16. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  17. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    Science.gov (United States)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  18. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  19. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  20. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  1. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  2. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    Science.gov (United States)

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  3. The Role of Sub- and Supercritical CO2 as “Processing Solvent” for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Sascha Nowak

    2017-03-01

    Full Text Available Quantitative electrolyte extraction from lithium ion batteries (LIB is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently “dry” LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  4. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  5. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries

    Science.gov (United States)

    Li, Xi; Li, Weikang; Chen, Lai; Lu, Yun; Su, Yuefeng; Bao, Liying; Wang, Jing; Chen, Renjie; Chen, Shi; Wu, Feng

    2018-02-01

    With the wide application of lithium-ion batteries (LiBs), safety performance is an important constraint on the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolyte of LiBs is highly flammable, especially under high temperature and high voltage. It is an effective method to improve the safety of cells by mixing flame retardant with conventional electrolyte comprising of LiPF6 and carbonates. Herein, ethoxy (pentafluoro) cyclotriphosphazene (PFPN) is studied as a high efficiency flame retardant. Adding 5 vol% of PFPN results in a non-flammable electrolyte with self-extinguishing time (SET) of 12.38 s g-1 and critical oxygen index (COI) of 22.9, without compromising the capacity of cathode material. The initial discharge capacity of the LiCoO2 electrode with 5% PFPN is 150.7 mAh g-1, with a capacity retention of 99.14% after 30 cycles at 0.1 C. The results show that 5 vol% is the best adding amount of PFPN for electrolyte, which can modify the solid electrolyte interface (SEI). Moreover, PFPN reduces charge transfer resistance of the cells, resulting decreased electrode polarization and enhanced electrochemistry performances at low temperature. These results have confirmed that PFPN has the potential to be a multi-function additive for commercial LIBs production.

  6. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    Science.gov (United States)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  7. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  8. All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production

    Science.gov (United States)

    Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther

    2018-04-01

    Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.

  9. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.

    Science.gov (United States)

    Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb

    2015-10-01

    Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gelled Electrolyte Containing Phosphonium Ionic Liquids for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mélody Leclère

    2018-06-01

    Full Text Available In this work, new gelled electrolytes were prepared based on a mixture containing phosphonium ionic liquid (IL composed of trihexyl(tetradecylphosphonium cation combined with bis(trifluoromethanesulfonimide [TFSI] counter anions and lithium salt, confined in a host network made from an epoxy prepolymer and amine hardener. We have demonstrated that the addition of electrolyte plays a key role on the kinetics of polymerization but also on the final properties of epoxy networks, especially thermal, thermo-mechanical, transport, and electrochemical properties. Thus, polymer electrolytes with excellent thermal stability (>300 °C combined with good thermo-mechanical properties have been prepared. In addition, an ionic conductivity of 0.13 Ms·cm−1 at 100 °C was reached. Its electrochemical stability was 3.95 V vs. Li0/Li+ and the assembled cell consisting in Li|LiFePO4 exhibited stable cycle properties even after 30 cycles. These results highlight a promising gelled electrolyte for future lithium ion batteries.

  11. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    Science.gov (United States)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  12. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  13. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Han [Chemical; Maglia, Filippo [BMW Group, Munich 80788, Germany; Lamp, Peter [BMW Group, Munich 80788, Germany; Amine, Khalil [Chemical; Chen, Zonghai [Chemical

    2017-12-13

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.

  14. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  15. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  16. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  17. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    Science.gov (United States)

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  18. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun

    2016-08-15

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy of integrating a redox species-based electrolyte in batteries to boost their performance. Taking the olivine LiFePO4-based battery as an example, the incorporation of redox species (i.e., polysulfide of Li2S8) in the electrolyte results in much lower polarization and superior stability, where the dissociated Li+/Sx2– can significantly speed up the lithium diffusion. More importantly, the presence of the S82–/S2– redox reaction further contributes extra capacity, making a completely new LiFePO4/Li2Sx hybrid battery with a high energy density of 1124 Wh kgcathode–1 and a capacity of 442 mAh gcathode–1. The marriage of appropriate redox species in an electrolyte for a rechargeable battery is an efficient and scalable approach for obtaining higher energy density storage devices.

  19. Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

    Science.gov (United States)

    Nagasubramanian, Ganesan; Orendorff, Christopher J.

    2011-10-01

    The optimum combination of high energy density at the desired power sets lithium-ion battery technology apart from the other well known secondary battery chemistries. However, this is besieged by thermal instability of the electrolyte. This "Achilles heel" still remains a significant safety issue and unless this propensity is improved the promise of widespread adoption of Li-ion batteries for Transportation application may not be realized. With this in mind we launched a systematic study to evaluate fluoro solvents that are known to be nonflammable, for thermal and electrochemical performances. We investigated hydro-fluoro-ethers (HFE) (1) 2-trifluoromethyl-3-methoxyperfluoropentane {TMMP} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {TPTP} in Sandia-built cells. Thermal properties under near abuse conditions that exist in thermal runaway environment and the electrochemical characteristics for these electrolytes were measured. In the thermal ramp (TR) measurement, EC:DEC:TPTP-1 M LiBETI (or TFSI or LiPF6) electrolytes exhibited no ignition/fire. Similar behavior was observed for the EC:DEC:TMMP-1 M LiBETI. Further, in ARC studies the HFE electrolytes generated less gas by 50% compared to the EC:EMC-1.2 M LiPF6 {CAR-1} electrolyte. Although in all cases the HFEs generated less gas, the onset of gas generation appears to depend on the salt. For the LiBETI and TFSI containing HFEs the onset is pushed out by ∼80 °C and for the LiPF6 the onset is comparable to that of the CAR-1. The solution ionic conductivity of these HFE electrolytes was lower (4-5 times) than that of the CAR-1 electrolyte however, the electrochemical performance was comparable. For example, full cells in 2032 type coin cells containing LiMN0.33Ni0.33Co0.33O2 cathode and carbon anode showed around 5 mA h capacity and the computed specific capacity was ∼154 mA h for all the electrolytes. In half-cells against lithium the cathode and anode gave specific

  20. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range.

    Science.gov (United States)

    Cai, Weiwei; Zhang, Yunfeng; Li, Jing; Sun, Yubao; Cheng, Hansong

    2014-04-01

    Conductive processes involving lithium ions are analyzed in detail from a mechanistic perspective, and demonstrate that single ion polymeric electrolyte (SIPE) membranes can be used in lithium-ion batteries with a wide operating temperature range (25-80 °C) through systematic optimization of electrodes and electrode/electrolyte interfaces, in sharp contrast to other batteries equipped with SIPE membranes that display appreciable operability only at elevated temperatures (>60 °C). The performance is comparable to that of batteries using liquid electrolyte of inorganic salt, and the batteries exhibit excellent cycle life and rate performance. This significant widening of battery operation temperatures coupled with the inherent flexibility and robustness of the SIPE membranes makes it possible to develop thin and flexible Li-ion batteries for a broad range of applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode

    International Nuclear Information System (INIS)

    Jin, Ying; McGinn, Paul J.

    2013-01-01

    A simple, low-temperature route was developed to process bulk solid-state Li-ion batteries employing Al-doped Li 7 La 3 Zr 2 O 12 solid electrolyte (thickness: ∼ 0.5 mm; 25 °C conductivity: ∼ 2 × 10 −4 S cm −1 ). A composite Cu 0.1 V 2 O 5 –based slurry was directly painted on Li 7 La 3 Zr 2 O 12 and dried at 120 °C to prepare the cathode film. The opposite side of the electrolyte was subsequently exposed to molten Li to form the anode. The discharge capacity of the solid state battery was 53 mAh g −1 (calculated based on the weight of active cathode material) at room temperature with 5 μA cm −2 discharging current. Severe capacity decay occurred after the initial discharging. A comparable liquid electrolyte battery was tested at room temperature for comparison and had a much slower decay rate. However, when the operating temperature of the solid state battery was increased to 50 °C, the cell performance significantly improved. At 50 °C, the battery exhibited 176 mAh g −1 initial discharging capacity at 5 μA cm −2 current density and 93 mAh g −1 initial capacity under a 10 μA cm −2 discharging current density. After 20 cycles, the capacity decayed to 68.6 mAh g −1 when cycled at a 10 μA cm −2 current density. Impedance spectroscopy was used to investigate the interface resistance of the battery at different temperatures. The results indicated that both the cathode and anode interface resistance were dramatically reduced at 50 °C. The decrease in interface resistances at elevated temperature is proposed as the main reason for the observed battery performance enhancement

  2. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  3. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  4. Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries

    International Nuclear Information System (INIS)

    Li Shiyou; Zhao Yangyu; Shi Xinming; Li Bucheng; Xu Xiaoli; Zhao Wei; Cui Xiaoling

    2012-01-01

    Highlights: ► High purity of LiBOB is obtained by the compressing dry granulation method. ► LiBOB-SL/DEC electrolyte is an excellent candidate electrolyte for lithium ion batteries. ► It shows high oxidation potentials (>5.3 V) and satisfactory conductivities. ► In Li/MCMB cells, this novel electrolyte exhibits excellent film-forming characteristics and low impedances of the interface films. ► In LiFePO 4 /Li cells, this novel electrolyte exhibits stable cycle performance and high discharge voltage plateau (>3.35 V). - Abstract: Lithium bis(oxalato)borate (LiBOB) is a promising salt for lithium ion batteries. However, before applying in lithium ion batteries, it is necessary to prepare high purity LiBOB with a simple method, and find more appropriate solvent systems to exert the perfect electrochemical performance of LiBOB. In this paper, LiBOB is synthesized by the compressing dry granulation method, with the yield of 97%. Moreover, the electrochemical performances of LiBOB-sulfolane (SL)/diethyl carbonate (DEC) electrolyte are investigated. It shows high oxidation potentials (>5.3 V) and satisfactory conductivities, also the temperature dependence of the conductivity is well in accord with the Vogel–Tamman–Fulcher (VTF) behavior. When used in Li/MCMB (mesophase carbon microbeads) cells, this novel electrolyte exhibits not only excellent film-forming characteristics, but also low impedances of the interface films. When used in LiFePO 4 /Li cells, compared to the cell with the electrolyte system of LiBOB-EC/DEC electrolyte, LiBOB-SL/DEC electrolyte exhibit several advantages, such as more stable cycle performance, and higher discharge voltage plateau (>3.35 V).

  5. Numerical Study of Electrolyte Wetting Phenomena in the Electrode of Lithium Ion Battery Using Lattice Boltzmann Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Gun [Seoul Nat' l Univ., Seoul (Korea, Republic of); Jeon, Dong Hyup [Dongguk Univ., Seoul (Korea, Republic of)

    2014-04-15

    The electrolyte wetting phenomena in the electrode of lithium ion battery is studied numerically using a multiphase lattice Boltzmann method (LBM). When a porous electrode is compressed during roll-pressing process, the porosity and thickness of the compressed electrode are changed, which can affect its wettability. In this study, the change in electrolyte distribution and degree of saturation as a result of varying the compression ratio are investigated with two-dimensional LBM approach. We found that changes in the electrolyte transport path are caused by a reduction in through-plane pore size and result in a decrease in the wettability of the compressed electrode.

  6. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  7. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  8. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  9. Conjugated polymer energy level shifts in lithium-ion battery electrolytes.

    Science.gov (United States)

    Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J

    2014-11-12

    The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.

  10. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  11. Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries

    KAUST Repository

    Ming, Jun; Li, Mengliu; Kumar, Pushpendra; Lu, Ang-Yu; Wahyudi, Wandi; Li, Lain-Jong

    2016-01-01

    Seeking high-capacity cathodes has become an intensive effort in lithium ion battery research; however, the low energy density still remains a major issue for sustainable handheld devices and vehicles. Herein, we present a new strategy

  12. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Ly, Nguyen Vu; Won, Jung Ha; Lee, Young-Gi; Cho, Won Il; Ko, Jang Myoun; Kaner, Richard B.

    2014-01-01

    Three kinds of polydimethylsiloxane (PDMS)-based grafted and ungrafted copolymers such as poly[dimethylsiloxane-co-(siloxane-g-acrylate)] (PDMS-A), poly(dimethylsiloxane-co-phenylsiloxane) (PDMS-P), and poly[dimethylsiloxane-co-(siloxane-g-ethylene oxide)] (PDMS-EO) are used as additives to standard liquid electrolyte solutions to enhance the lithium-ion battery performance at low temperatures. Liquid electrolyte solutions with PDMS-based additives are electrochemically stable under 5.0 V and have adequate ionic conductivities of 10 −4 S cm −1 at -20 °C. Particularly, liquid electrolytes with PDMS-P and PDMS-EO exhibit higher ionic conductivities of around 5 × 10 −4 S cm −1 at -20 °C, indicating a specific resisting property against the freezing of the liquid electrolyte components. As a result, the addition of PDMS-based additives to liquid electrolytes improves the capacity retention ratio and rate-capability of lithium-ion batteries at low temperatures

  13. The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes

    Science.gov (United States)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Prakash, G. K. S.; Ratnakumar, B. V.

    2011-01-01

    With the intent of improving the safety characteristics of lithium ion cells, electrolytes containing flame retardant additives have been investigated. A number of triphenyl phosphate-containing electrolytes were evaluated in both coin cells and experimental three electrode lithium-ion cells (containing reference electrodes). A number of chemistries were investigated, including MCMB carbon/LiNi(0.8)Co(0.2)O2 (NCO), graphite/LiNi(0.8)Co(0.15)Al(0.05)O2 (NCA), Li/Li(Li(0.17)Ni(0.25)Mn(0.58))O2, Li/LiNiMnCoO2 (NMC) and graphite/LiNiMnCoO2 (NMC), to study the effect that different electrolyte compositions have upon performance. A wide range of TPP-containing electrolytes were demonstrated to have good compatibility with the C/NCO, C/NCA, and Li/NMC systems, however, poor performance was initially observed with the high voltage C/NMC system. This necessitated the development of improved electrolytes with stabilizing additives, leading to formulations containing lithium bis(oxalato)borate (LiBOB) that displayed substantially improved performance.

  14. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  15. PEO nanocomposite polymer electrolyte for solid state symmetric ...

    Indian Academy of Sciences (India)

    cells/supercapacitors) to electro-chromic displays, smart windows and ... electrolytes and their usage in lithium ion rechargeable solid state batteries are well .... the experimental plot using the Arrhenius relationship σ = σ0exp(−Ea/kT) where ...

  16. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  17. Power and Thermal Technologies for Air and Space. Delivery Order 0001: Single Ionic Conducting Solid-State Electrolyte

    National Research Council Canada - National Science Library

    Turner, Allen

    2005-01-01

    This report focuses on the development of a lithium-ion conducting channel as a solid-state electrolyte for rechargeable lithium batteries through the use of thin films of dilithium phthalocyanine (Li2Pc...

  18. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries

    International Nuclear Information System (INIS)

    Pohl, Benjamin; Grünebaum, Mariano; Drews, Mathias; Passerini, Stefano; Winter, Martin; Wiemhöfer, Hans‑Dieter

    2015-01-01

    Highlights: • A new electrolyte based on a nitrile-silyl ether solvent and LiTFSI as lithium salt was successfully tested. • This electrolyte shows higher ionic conductivities as compared to earlier published silicon based solvents. • Due to the absence of ether groups, the electrochemical stability is extended to 5.4 V vs. Li/Li + . • With LiTFSI, the electrolyte can be cycled up to 4.15 V vs. Li/Li + without causing anodic aluminum dissolution. - Abstract: 3-((Trimethylsilyl) oxy) propionitrile is introduced as non-volatile solvent for lithium-ion battery electrolytes using LiTFSI as lithium salt. The thermal and chemical stability of the electrolytes offer an enhanced safety as compared to conventional volatile carbonate electrolytes. In cell tests, the investigated LiTFSI nitrile silyl ether electrolyte shows compatibility with LiFePO 4 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 and graphite active materials.

  19. Dynamic NMR studies of polymer electrolyte materials for application to lithium-ion batteries and fuel cells

    Science.gov (United States)

    Khalfan, Amish N.

    This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the

  20. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  1. Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure.

    Science.gov (United States)

    Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin

    2013-04-28

    Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.

  2. Quantitative Visualization of Salt Concentration Distributions in Lithium-Ion Battery Electrolytes during Battery Operation Using X-ray Phase Imaging.

    Science.gov (United States)

    Takamatsu, Daiko; Yoneyama, Akio; Asari, Yusuke; Hirano, Tatsumi

    2018-02-07

    A fundamental understanding of concentrations of salts in lithium-ion battery electrolytes during battery operation is important for optimal operation and design of lithium-ion batteries. However, there are few techniques that can be used to quantitatively characterize salt concentration distributions in the electrolytes during battery operation. In this paper, we demonstrate that in operando X-ray phase imaging can quantitatively visualize the salt concentration distributions that arise in electrolytes during battery operation. From quantitative evaluation of the concentration distributions at steady states, we obtained the salt diffusivities in electrolytes with different initial salt concentrations. Because of no restriction on samples and high temporal and spatial resolutions, X-ray phase imaging will be a versatile technique for evaluating electrolytes, both aqueous and nonaqueous, of many electrochemical systems.

  3. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  4. The effects of LiBOB additive for stable SEI formation of PP13TFSI-organic mixed electrolyte in lithium ion batteries

    International Nuclear Information System (INIS)

    An Yongxin; Zuo Pengjian; Cheng Xinqun; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → LiBOB as the additive of SEI formation. → LiBOB containing mixed electrolyte shows well thermal stability and safety. → LiBOB improves the electrochemical performance of PP13TFSI-organic mixture. - Abstract: A safe electrolyte system is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13TFSI), organic electrolyte (1 mol L -1 LiPF 6 /EC-DEC) and lithium bis (oxalato) borate (LiBOB). The additive of LiBOB enhances the stability of interface between electrolyte and anode. The LiBOB-containing mixed electrolytes show non-flammability and good compatibility with active materials. The performance of anode for lithium ion battery is successfully improved by LiBOB-containing mixed electrolytes, which shows 200 mA h g -1 reversible capacities at 0.3 C rate. The ionic conductivity and the lithium ion transference number in LiBOB-containing mixed electrolytes system also suits to application for lithium ion battery.

  5. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  6. Negative electrode materials for lithium-ion solid-state microbatteries

    NARCIS (Netherlands)

    Baggetto, L.

    2010-01-01

    Electronic portable devices are becoming more and more important in our daily life. Many portable types of electronic equipment rely on rechargeable lithium-ion batteries as they can reversibly deliver the highest gravimetric and volumetric energy densities. Lithium-ion batteries are currently

  7. Pengaruh Konsentrasi Karbon Terhadap Performa Elektrokimia Katoda Lifepo4 Untuk Aplikasi Baterai Lithium Ion Tipe Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Ade Okta Yurwendra

    2014-09-01

    Full Text Available Baterai lithium ion rechargeable telah dipertimbangkan sebagai sebuah sumber tenaga listrik yang digunakan untuk berbagai aplikasi. LiFePO4 yang digunakan sebagai katoda, dipilih karena memiliki sifat yang ramah lingkungan tetapi memiliki konduktivitas yang lemah. LiFePO4 dilakukan proses konduktif coating menggunakan sukrosa dengan pemanasan 600oC selama 3 jam didalam atmosfer argon untuk membentuk karbon coating LiFePO4 (LiFePO4/C dengan variasi persentase berat karbon 9%, 14.5%, dan 17.8% karbon. Dari analisis cyclic voltammetry penambahan karbon coating dapat meningkatkan stabilitas didalam aqueous electrolyte. Hasil galvanostatic charge/discharge didapatkan hasil terbaik pada LiFePO4/C dengan persentase berat karbon 9% dengan kapasitas discharge 13.3 mAhg-1 dan mengalami penurunan kapasitas sebesar 2.2% setelah cycle ke 100. Penambahan karbon yang berlebihan menurunkan kapasitas LiFePO4

  8. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    power sources because of its higher energy density, shape and design flexibility, lower-self discharge rate, no memory effect and ... tissue engineering and permeable membranes for separation ... Both PVA and PVP are soluble in DMSO and.

  9. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    Science.gov (United States)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  10. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  11. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries

    Science.gov (United States)

    Noelle, Daniel J.; Shi, Yang; Wang, Meng; Le, Anh V.; Qiao, Yu

    2018-04-01

    Electrolyte poisons comprised of diols and diamines are investigated for the intended function of exacerbating internal resistance in lithium-ion batteries upon short circuit failure, to quickly arrest uncontrolled joule heat generation in the earliest stages. The competing dynamics of powerful short circuit currents and electrolyte poisoning interactions are evaluated via simultaneous nail penetration and poison injection of LIR2450 format LiCoO2/graphite 120 mAh coin cells. To forcibly increase electrolyte impedance, diols serve to hinder charge-carrying ion mobility by raising solution viscosity, while diamines disrupt solvent permittivity by rapidly polymerizing the ethylene carbonate solvent. Diamines demonstrate great potency, and are suitable for integration into battery cells within chemically-inert, breakable containers, rigged for release upon mechanical activation. Mixtures of 1,2-ethanediol and 1,2-ethanediamine show synergistic poisoning effects, decreasing peak temperature accrued by 70% when introduced simultaneously upon nail penetration. With the innate presence and abundance of diols and diamines in electric vehicle heat exchangers, they may be employed for multifunctional applications.

  12. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference number and ideally

  13. Measurement of lithium ion transference numbers of electrolytes for lithium-ion batteries. A comparative study with five various methods.; Messung von Lithium-Ionen Ueberfuehrungszahlen an Elektrolyten fuer Lithium-Ionen Batterien. Eine vergleichende Studie mit fuenf verschiedenen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Zugmann, Sandra

    2011-03-30

    Transference numbers are decisive transport properties to characterize electrolytes. They state the fraction of a certain species at charge transport and are defined by the ratio of current Ii that is transported by the ionic species i to the total current I. They are very important for lithium-ion batteries, because they give information about the real lithium transport and the efficiency of the battery. If the transference number has a too small value, for example, the lithium cannot be ''delivered'' fast enough in the discharge process. This can lead to precipitation of the salt at the anode and to depletion of the electrolyte at the cathode. Currently only a few adequate measurement methods for non-aqueous lithium electrolytes exist. The aim of this work was the installation of measurement devices and the comparison of different methods of transference numbers for electrolytes in lithium-ion batteries. The advantages and disadvantages for every method should be analyzed and transference numbers of new electrolyte be measured. In this work a detailed comparison of different methods with electrochemical and spectroscopic factors was presented for the first time. The galvanostatic polarization, the potentiostatic polarization, the emf method, the determination by NMR and the determination by conductivity measurements were tested for their practical application and used for different lithium salts in several solvents. The results show clearly that the assumptions made for every method affect the measured transference number a lot. They can have different values depending on the used method and the concentration dependence can even have contrary tendencies for methods with electrochemical or spectroscopic aspects. The influence of ion pairs is the determining factor at the measurements. For a full characterization of electrolytes a complete set of transport parameters is necessary, including diffusion coefficients, conductivity, transference

  14. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min-Jen [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Jen-Teh Junior College of Medicine, Nursing and Management, Taiwan (China); Tsai, Du-Cheng [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ho, Wen-Hsien [Taiwan Textile Research Institute, Taipei 23674, Taiwan (China); Li, Ching-Fei, E-mail: chingfei.li@gmail.com [Phoenix Silicon International Corporation, Hsinchu 30094, Taiwan (China); Shieu, Fuh-Sheng, E-mail: fsshieu@dragon.nchu.edu.tw [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2013-11-15

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO{sub 4} solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  15. Electrolytic deposition of Sn-coated mesocarbon microbeads as anode material for lithium ion battery

    International Nuclear Information System (INIS)

    Deng, Min-Jen; Tsai, Du-Cheng; Ho, Wen-Hsien; Li, Ching-Fei; Shieu, Fuh-Sheng

    2013-01-01

    Deposited of crystalline tin (Sn) coatings on mesocarbon microbead (MCMB) powder as anodes of lithium ion (Li-ion) battery was conducted in the SnSO 4 solution by a cathodic electrochemical synthesis. The Sn-coated MCMB specimens were characterized by X-ray diffraction, scanning electron microscopy, and charge/discharge tests. The synthesis condition of Sn-coated MCMB was optimized by considering the agglomeration, size, and adhesion of the samples to the current collectors in the battery. The Sn-coated MCMB electrodes exhibit increased reversible capacity without sacrificing its cycling behavior, compared with bare MCMB electrodes. It is concluded that electrolysis-deposited Sn-coated MCMB electrodes may emerge as a practical and promising anode material for secondary Li-ion batteries.

  16. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-03-01

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of the Deposit Layer from Electrolyte Side Reaction on the Anode of the Pouch Type Lithium Ion Polymer Batteries: The Effect of State of Charge and Charge Rate

    International Nuclear Information System (INIS)

    Agubra, Victor A.; Fergus, Jeffrey W.; Fu, Rujian; Choe, Song-yul

    2014-01-01

    Highlights: • Raising the battery cycling potential increased the rate of side reaction. • Growth of deposit layer thickness at the electrode/electrolyte interface at high SOC. • A significant amount of lithium was consumed in forming the deposit layer. • Some of the lithium were “trapped” in the graphite after the discharge cycle. - Abstract: The formation of the solid electrolyte interface (SEI) layer on the surface of the anode electrode of a lithium ion battery prevents further electrolyte decomposition reaction. However, at certain battery operating conditions, the SEI breakdown leading to more electrolyte decomposition reactions that form several species on the anode electrode surface. This paper focuses on the effect of battery potential and charge rate on the decomposition side reaction on the anode electrode of a lithium ion polymer battery, as a result of the breakdown of the SEI layer. The results from this study indicate that raising the state of charge (SOC) increases the rate of the electrolyte decomposition side reaction that resulted in formation of a thick deposit layer at the electrolyte/electrolyte interface. This deposit layer contains lithium that can no longer participate in the reversible electrochemical reaction. In addition, at high cycling potential and charge rates the amount of lithium in the graphite after complete cell discharge increased due to the entrapment of lithium in the graphite. The amount of irreversible capacity loss for the batteries cycled at high potential and current correlates with the amount of trapped lithium in the graphite and the growth of the deposit layer thickness at the electrode/electrolyte interface

  18. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  19. Recent advances in solid polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Qingqing Zhang; Kai Liu; Fei Ding; Xingjiang Liu

    2017-01-01

    Solid polymer electrolytes are light-weight,flexible,and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes.Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries.Herein,we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments.In particular,we discuss the different molecular structures of the solid polymer matrices,including polyether,polyester,polyacrylonitrile,and polysiloxane,and their interfacial compatibility with lithium,as well as the factors that govern the properties of the polymer electrolytes.The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes,and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

  20. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  1. Aging investigations of a lithium-ion battery electrolyte from a field-tested hybrid electric vehicle

    Science.gov (United States)

    Grützke, Martin; Kraft, Vadim; Hoffmann, Björn; Klamor, Sebastian; Diekmann, Jan; Kwade, Arno; Winter, Martin; Nowak, Sascha

    2015-01-01

    The electrolyte of a used lithium-ion battery from a hybrid electric vehicle (HEV) was investigated. The liquid electrolyte was collected through the pressure valve of these 5 Ah cells. It consists of (29.8 ± 0.2) wt.% dimethyl carbonate (DMC), (21.7 ± 0.1) wt.% ethyl methyl carbonate (EMC), (30.3 ± 0.3) wt.% ethylene carbonate (EC) and (2.2 ± 0.1) wt.% cyclohexyl benzene (CHB) which were identified with GC-MS and quantified with GC-FID. Li+ (1.29 ± 0.04) mol L-1 and PF6- were determined with IC as the main ionic species in the solution. Furthermore, BF4- was clearly identified with IC-ESI-MS, IC-ICP-MS and 11B NMR and quantified to a concentration of (120.8 ± 8.3) mg L-1 with ICP-OES. The presence of POF3 (detected with GC-MS), F-, PO2F2-, HPO3F- and H2PO4- (determined with IC-ESI-MS) can be attributed to the reaction of the conducting salt LiPF6 via PF5 with traces of water. HPO3F- and H2PO4- could only be observed in cells which were opened in a laboratory hood under exposure of air humidity. This experiment was done to simulate escaping electrolyte from an HEV battery pack. Furthermore, several alkyl phosphates (identified with GC-MS and IC-ESI-MS) are present in the solution due to further reaction of the different fluorinated phosphates with organic carbonates.

  2. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  3. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  4. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.H.; Zhou, D.Y.; Rao, M.M.; Cai, Z.P.; Liang, Y. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Tan, C.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2009-04-01

    Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)). The copolymer P(MMA-AN-VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond C=C in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 C, its thermal stability is as high as 310 C, and its mechanical strength is improved compared with P(MMA-AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li{sup +}) and its conductivity is 3.48 x 10{sup -3} S cm{sup -1} at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel-Tamman-Fulcher (VTF) equation. (author)

  5. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  6. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  7. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  8. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  9. To immobilize polyethylene glycol-borate ester/lithium fluoride in graphene oxide/poly(vinyl alcohol for synthesizing new polymer electrolyte membrane of lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Y. F. Huang

    2017-01-01

    Full Text Available Polymer electrolyte membranes (PEMs are potentially applicable in lithium-ion batteries with high safety, low cost and good performance. Here, to take advantages of ionic conductivity and selectivity of borate ester-functionalized small molecules as well as structural properties of polymer nanocomposite, a strategy of immobilizing as-synthesized polyethylene glycol-borate ester/lithium fluoride (B-PEG/LiF in graphene oxide/poly(vinyl alcohol (GO/PVA to prepare a PEM is put forward. Chemical structure of the PEM is firstly characterized by 1H-, 11B- and 19F-nuclear magnetic resonance spectra, and Fourier transform infrared spectroscopy spectra, respectively, and then is further investigated under consideration of the interactions among PVA, B-PEG and LiF components. The immobilization of B-PEG/LiF in PVA-based structure is confirmed. As the interactions within electrolyte components can be further tuned by GO, ionic conductivity (~10–3 S·cm–1, lithium-ion transfer number (~0.49, and thermal (~273 °C/electrochemical (>4 V stabilities of the PEM can be obtained, and the feasibility of PEMs applied in a lithium-ion battery is also confirmed. It is believed that such PEM is a promising candidate as a new battery separator.

  10. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    Energy Technology Data Exchange (ETDEWEB)

    Sunstrom, Joseph [Daikin America, Inc., Orangeburg, NY (United States); Hendershot, Ron E. [Daikin America, Inc., Orangeburg, NY (United States)

    2017-03-06

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. The results are promising for future advanced battery development for vehicles as well as other applications.

  11. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

    Science.gov (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin

    2018-02-14

    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  12. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    Science.gov (United States)

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  13. On the role of saturation in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NARCIS (Netherlands)

    Salvadori, A.; Grazioli, D.; Magri, M.; Geers, M.G.D.; Danilov, D.L.; Notten, P.H.L.

    2015-01-01

    Recent computational simulations of ionic conductivity across the electrolyte of commercial batteries by Salvadori et al. (2015) have shown that the concentration of ions exceeds half the saturation limit near the electrodes. This observation, which is in agreement with other approaches by Danilov

  14. A multiscale-compatible approach in modeling ionic transport in the electrolyte of (Lithium ion) batteries

    NARCIS (Netherlands)

    Salvadori, A.; Grazioli, D.; Geers, M.G.D.; Danilov, D.L.; Notten, P.H.L.

    2015-01-01

    A novel approach in modeling the ionic transport in the electrolyte of Li-ion batteries is here resented. Diffusion and migration processes govern the transport of ions in solution in the absence of onvection. In the porous electrode theory [1] it is common to model these processes via mass balance

  15. 4.4 V lithium-ion polymer batteries with a chemical stable gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takeru; Hara, Tomitaro; Akashi, Hiroyuki [Sony Corporation, Energy Business Group, R and D Division, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan); Segawa, Ken; Honda, Kazuo [Sony Energy Device Corporation, PB Technology Center, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan)

    2007-12-06

    We tested 4.2 V Li-ion polymer batteries (LIPB) with physical gel electrolyte, poly(vinylidene fluoride) (PVDF), 4.4 V LIPB and 4.4 V Li-ion batteries (LIB) with a liquid electrolyte. The discharge capacity of the 4.4 V LIPB reached 520 Wh l{sup -1} which was 9% higher than that of the 4.2 V LIPB. The 4.4 V LIPB had a high capacity retention ratio of 91.4% at 3 C because of the excellent ion conductivity of the PVDF gel. The capacity retention ratio of the 4.4 V LIPB was 82% after 500 cycles, which is comparable to those of some commercial LIBs. The 4.4 V LIPB retained its original thickness even after many cycles and after being stored at 90 C, whereas the 4.4 V LIB swelled by over 20%. Peaks in the FT-IR spectrum of the discolored separator in the 4.4 V LIB after storage were assigned to C=C double bonds, suggesting that the separator in direct contact with the 4.4 V cathode had been oxidized. The PVDF gel electrolyte not only had a high ionic conductivity but also completely suppressed oxidation. The 4.4 V LIPB with PVDF gel electrolyte has properties suitable for practical cells, namely, high energy density, high permanence and it is safe to use. (author)

  16. Radiation effects on the electrode and electrolyte of a lithium-ion battery

    Science.gov (United States)

    Tan, Chuting; Lyons, Daniel J.; Pan, Ke; Leung, Kwan Yee; Chuirazzi, William C.; Canova, Marcello; Co, Anne C.; Cao, Lei R.

    2016-06-01

    The performance degradation and durability of a Li-ion battery is a major concern when it is operated under radiation conditions, for instance, in deep space exploration, in high radiation field, or rescuing or sampling equipment in a post-nuclear accident scenario. This paper examines the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase. A60Co irradiator (34.3 krad/h) was used to provide 0.8, 4.1, and 9.8 Mrad dose to LiFePO4 electrodes and 0.8, 1.6, and 5.7 Mrad to 1 M LiPF6 in 1:1 wt% EC:DMC electrolytes. This study shows that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca. 14%). A significant battery capacity fade post irradiation was observed. The electrolyte also shows a darkened color a few weeks or months after irradiation. The discovery of this latent effect may be significant because a battery may degrade significantly even showing no sign of degradation immediately after exposure. We investigated electrolyte composition by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy prior and post irradiation. Polymerization reactions and HF formation are considered as the cause of the discoloration.

  17. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  18. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  19. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  20. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    Science.gov (United States)

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dielectric and impedance analysis of Li0.5La0.5Ti1-xZrxO3(x = 0.05 and 0.1 ceramics as improved electrolyte material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Babu K. Vijaya

    2016-09-01

    Full Text Available The most attractive property of Li0.5La0.5TiO3 (LLTO electrolytes is their high ionic conductivity. Studies have shown that LLTO is capable of existing in a state with an ionic conductivity of 10-3 S/cm, which is comparable to liquid electrolytes. In addition to the high ionic conductivity of the material, LLTO is electrochemically stable and able to withstand hundreds of cycles. So, the studies of the solid electrolyte material are very important for the development of lithium-ion batteries. In the present paper, Li0.5La0.5Ti1-xZrxO3 (x = 0.05 and 0.1 have been prepared by a solid-state reaction method at 1300 °C for 6 hours to improve electrolyte materials for lithium-ion batteries. The phase identified by X-ray diffractometry and crystal structure corresponds to pm3m (2 2 1 space group (Z = 1. The frequency and temperature dependence of impedance, dielectric permittivity, dielectric loss and electric modulus of the Li0.5La0.5Ti1-xZrxO3 (x = 0.05 and 0.1 have been investigated. The dielectric and impedance properties have been studied over a range of frequency (42 Hz to 5 MHz and temperatures (30 °C to 100 °C. The frequency dependent plot of modulus shows that the conductivity relaxation is of non-Debye type.

  2. Functionality Selection Principle for High Voltage Lithium-ion Battery Electrolyte Additives

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung; He, Meinan [Department; Peebles, Cameron; Zeng, Li; Tornheim, Adam; Liao, Chen; Zhang, Lu; Wang, Jie; Wang, Yan [Department; Zhang, Zhengcheng

    2017-08-30

    A new class of electrolyte additives based on cyclic fluorinated phosphate esters was rationally designed and identified as being able to stabilize the surface of a LiNi0.5Mn0.3Co0.2O2 (NMC532) cathode when cycled at potentials higher than 4.6 V vs Li+/Li. Cyclic fluorinated phosphates were designed to incorporate functionalities of various existing additives to maximize their utilization. The synthesis and characterization of these new additives are described and their electrochemical performance in a NMC532/graphite cell cycled between 4.6 and 3.0 V are investigated. With 1.0 wt % 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane 2-oxide (TFEOP) in the conventional electrolyte the NMC532/graphite cell exhibited much improved capacity retention compared to that without any additive. The additive is believed to form a passivation layer on the surface of the cathode via a sacrificial polymerization reaction as evidenced by X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonsance (NMR) analysis results. The rational pathway of a cathode-electrolyte-interface formation was proposed for this type of additive. Both experimental results and the mechanism hypothesis suggest the effectiveness of the additive stems from both the polymerizable cyclic ring and the electron-withdrawing fluorinated alkyl group in the phosphate molecular structure. The successful development of cyclic fluorinated phosphate additives demonstrated that this new functionality selection principle, by incorporating useful functionalities of various additives into one molecule, is an effective approach for the development of new additives.

  3. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  4. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  6. Tracking Lithium Ions via Widefield Fluorescence Microscopy for Battery Diagnostics.

    Science.gov (United States)

    Padilla, Nicolas A; Rea, Morgan T; Foy, Michael; Upadhyay, Sunil P; Desrochers, Kyle A; Derus, Tyler; Knapper, Kassandra A; Hunter, Nathanael H; Wood, Sharla; Hinton, Daniel A; Cavell, Andrew C; Masias, Alvaro G; Goldsmith, Randall H

    2017-07-28

    Direct tracking of lithium ions with time and spatial resolution can provide an important diagnostic tool for understanding mechanisms in lithium ion batteries. A fluorescent indicator of lithium ions, 2-(2-hydroxyphenyl)naphthoxazole, was synthesized and used for real-time tracking of lithium ions via widefield fluorescence microscopy. The fluorophore can be excited with visible light and was shown to enable quantitative determination of the lithium ion diffusion constant in a microfluidic model system for a plasticized polymer electrolyte lithium battery. The use of widefield fluorescence microscopy for in situ tracking of lithium ions in batteries is discussed.

  7. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  8. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hang; Tang, Zhiyong; Zhang, Kang; Wang, Lei; Shi, Huimin; Zhang, Guanhua; Duan, Huigao

    2017-01-01

    Ternary transition metal oxides have received intense research interest as electrode materials for lithium ion batteries, due to their high specific capacity originating from the synergic effects of multiple metal active sites. Reducing the size of metal oxides nanoparticles and dispersing these nanoparticles in carbon matrix are considering effective strategies to improve the electrochemical performance of transition metal oxides. Ternary CuCo 2 O 4 nanoclusters ultra-uniformly dispersed in carbon nanofiber matrix forming a pseudo-solid-solution structure are successfully synthesized by a facile electrospinning method followed by an appropriate annealing process. As the anodic electrode for lithium ion batteries, the pseudo-solid-solution CuCo 2 O 4 /C electrode exhibits a high reversible specific capacity, improved rate capacity and excellent cycling stability. A discharge capacity of 865 mAh g −1 is obtained at the current density of 200 mA g −1 after 400 cycles. Surprisingly, the electrode still retains about 610 mAh g −1 after 800 cycles even at the current density of 600 mA g −1 . The superior lithium storage performance of the pseudo-solid-solution CuCo 2 O 4 /C composites is mainly attributed to the unique amorphous structure. The ultrafine CuCo 2 O 4 nanoclusters uniformly dispersed in carbon matrix can buffer the volume change and improve the conductivity of the metal oxide based electrode, guaranteeing the structure stability and fast electron transfer.

  9. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  10. In situ growth of polymer electrolytes on lithium ion electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    El-Enany, Gaber; Lacey, Matthew J.; Johns, Phil A.; Owen, John R. [School of Chemistry, University of Southampton, SO17 1BJ Southampton, Hants (United Kingdom)

    2009-12-15

    Polyacrylonitrile (PAN) films were grown on glassy carbon, nickel foam and MnO{sub 2} substrates by cathodic electropolymerisation of acrylonitrile in acetonitrile with tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte. The electronic barrier properties of the films were confirmed by impedance spectroscopy of carbon vertical stroke PAN vertical stroke Hg cells while the ionic resistance of the films varied from 200 k{omega} cm{sup 2} in the dry state to 1.4 {omega} cm{sup 2} when plasticised with 1 M LiPF{sub 6} in propylene carbonate. A galvanic cell was prepared by successive electrodepositions of MnO{sub 2} and PAN on a carbon substrate, using liquid lithium amalgam as the top contact. The cell showed a stable open circuit potential and behaved normally under the galvanostatic intermittent titration technique (GITT). (author)

  11. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries

    Science.gov (United States)

    Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu

    2018-04-01

    To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.

  12. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  13. Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)_3:LiCF_3SO_3 Polymer Electrolytes

    International Nuclear Information System (INIS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel W.; Wang, Sanwu

    2017-01-01

    The PEO_3:LiCF_3SO_3 polymer electrolyte has attracted significant research due to high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline PEO salt complexes can conduct ions. As a result, further theoretical investigations are warranted to help clarify the issue. In this work, we use density functional theory with the climbing image nudged elastic band method to investigate the atomic-scale mechanism of lithium ion transport in the polymer electrolytes. We also use density functional theory and ab initio molecular dynamics simulations to obtain the amorphous structure of PEO_3:LiCF_3SO_3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO_3:LiCF_3SO_3 are determined. In crystalline PEO_3:LiCF_3SO_3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO_3:LiCF_3SO_3 has higher ionic conductivity than the crystalline phase.

  14. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  15. All-solid-state lithium-ion microbatteries: a review of various three-dimensional concepts

    Energy Technology Data Exchange (ETDEWEB)

    Oudenhoven, Jos F.M.; Baggetto, Loic; Notten, Peter H.L. [Eindhoven University of Technology, Department of Chemistry and Chemical Engineering, Postbus 513, 5600 MB Eindhoven (Netherlands)

    2011-01-01

    With the increasing importance of wireless microelectronic devices the need for on-board power supplies is evidently also increasing. Possible candidates for microenergy storage devices are planar all-solid-state Li-ion microbatteries, which are currently under development by several start-up companies. However, to increase the energy density of these microbatteries further and to ensure a high power delivery, three-dimensional (3D) designs are essential. Therefore, several concepts have been proposed for the design of 3D microbatteries and these are reviewed. In addition, an overview is given of the various electrode and electrolyte materials that are suitable for 3D all-solid-state microbatteries. Furthermore, methods are presented to produce films of these materials on a nano- and microscale. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value

    International Nuclear Information System (INIS)

    Gallus, Dennis Roman; Wagner, Ralf; Wiemers-Meyer, Simon; Winter, Martin; Cekic-Laskovic, Isidora

    2015-01-01

    In pursuit of higher energy density in lithium-ion batteries (LIBs), a most promising approach focuses on cathode materials that operate at higher potentials and exhibit even higher specific charges than present LIB cathodes charged up to only 3.8 to 4.3 V vs. Li/Li + . To enable a high-voltage (HV) application of the cathode, the “by-materials”, in particular the electrolyte components have to be either thermodynamically or kinetically stable. For this reason, the stability of the electrolyte components towards oxidation, in particular, depending on their HOMO energy levels, is crucial. The theoretical calculation of molecular orbital energies is a helpful and commonly used tool to predict electrochemical stability. Earlier studies demonstrated strong correlation between the HOMO energy and the pK a value, as both depend on electron affinity. Here we report on the first study referring to a pK a value based selection procedure on development of new electrolyte components for the application in lithium-ion batteries. The identified trimethylsilyl(TMS)-based additives, which are known to scavenge HF and show sufficient oxidation stability, enable the application of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) at an increased upper cut-off potential of 4.6 V vs. Li/Li + without severe degradation, leading to a 50% higher energy density. The use of pK a values is a simple, but highly effective methodology to select appropriate electrolyte components and thus helps to identify functional electrolytes beyond the typical trial and error approach or time-consuming theoretical calculations.

  17. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  18. Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics.

    Science.gov (United States)

    Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young

    2015-08-12

    Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell

  19. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Koeun; Park, Inbok; Ha, Se-Young; Kim, Yeonkyoung; Woo, Myung-Heuio; Jeong, Myung-Hwan; Shin, Woo Cheol; Ue, Makoto; Hong, Sung You; Choi, Nam-Soon

    2017-01-01

    Highlights: • The FEC in LiPF 6 -based electrolytes thermally decomposes at elevated temperatures. • Lewis acids in the electrolyte promote de-fluorination of the FEC to form HF. • The HF causes the SEI destruction and severe metal ion dissolution from the cathode. - Abstract: The cycling and storage performances of LiCoO 2 (LCO)-LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM)/pitch-coated silicon alloy-graphite (Si-C) full cells with ethylene carbonate (EC)–based and fluoroethylene carbonate (FEC)–based electrolytes are investigated at elevated temperatures. Excess FEC (used as a co-solvent in LiPF 6 -based electrolytes), which is not completely consumed during the formation of the solid electrolyte interphase (SEI) layer on the electrodes, is prone to defluorination in the presence of Lewis acids such as PF 5 ; this reaction can generate unwanted HF and various acids (H 3 OPF 6 , HPO 2 F 2 , H 2 PO 3 F, H 3 PO 4 ) at elevated temperatures. Our investigation reveals that the HF and acid compounds that are formed by FEC decomposition causes significant dissolution of transition metal ions (from the LCO-NCM cathode) into the electrolyte at elevated temperatures; as a result, the reversible capacity of the full cells reduces because of the deposition of the dissolved metal ions onto the anode. Moreover, we demonstrate possible mechanisms that account for the thermal instability of FEC in LiPF 6 -based electrolytes at elevated temperatures using model experiments.

  20. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  1. NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery

    Science.gov (United States)

    Battery Technology News Release: NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery increasingly demanding needs of any battery application. These lithium-ion batteries feature a hybrid solid further customized lithium-ion battery materials for high performance devices by utilizing our patented

  2. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Essehli, R.; El Bali, B.; Faik, A.; Naji, M.; Benmokhtar, S.; Zhong, Y.R.; Su, L.W.; Zhou, Z.; Kim, J.; Kang, K.; Dušek, Michal

    2014-01-01

    Roč. 585, FEB (2014), s. 434-441 ISSN 0925-8388 Institutional support: RVO:68378271 Keywords : crystal structure * electrolyte * nasicon * oxyphosphate * lithium -ion batteries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  3. Emerging applications of spark plasma sintering in all solid-state lithium-ion batteries and beyond

    Science.gov (United States)

    Zhu, Hongzheng; Liu, Jian

    2018-07-01

    Solid-state batteries have received increasing attention due to their high safety aspect and high energy and power densities. However, the development of solid-state batteries is hindered by inferior solid-solid interfaces between the solid-state electrolyte and electrode, which cause high interfacial resistance, reduced Li-ion and electron transfer rate, and limited battery performance. Recently, spark plasma sintering (SPS) is emerging as a promising technique for fabricating solid-state electrolyte and electrode pellets with clean and intimate solid-solid interfaces. During the SPS process, the unique reaction mechanism through the combination of current, pressure and high heating rate allow the formation of desirable solid-solid interfaces between active material particles. Herein, this work focuses on the overview of the application of SPS for fabricating solid-state electrolyte and electrode in all solid-state Li-ion batteries, and beyond, such as solid-state Li-S and Na-ion batteries. The correlations among SPS parameters, interfacial resistance, and electrochemical properties of solid-state electrolytes and electrodes are discussed for different material systems. In the end, we point out future opportunities and challenges associated with SPS application in the hot area of solid-state batteries. It is expected that this timely review will stimulate more fundamental and applied research in the development of solid-state batteries by SPS.

  4. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte

    International Nuclear Information System (INIS)

    Decaux, C.; Lota, G.; Raymundo-Piñero, E.; Frackowiak, E.; Béguin, F.

    2012-01-01

    A hybrid LiC capacitor combining a lithium-ion battery type (graphite) electrode and an electrical double-layer (activated carbon) one has been developed by preloading graphite from 2 mol L −1 lithium bis(trifluoromethane)sulfonimide (LiTFSI) organic electrolyte. The graphite intercalation compound was formed by applying ca. 10 successive charge/self-discharge pulses. The optimized hybrid device operates in the voltage range from 1.5 to 4.2 V and displays 60% higher gravimetric capacitance than an electric double-layer (EDL) capacitor using the same activated carbon for both electrodes. As a result, the energy density reaches 80 Wh kg −1 , which is four times higher than the value for the EDL capacitor with the same total mass of carbon.

  5. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.

    Science.gov (United States)

    Weber, Waldemar; Kraft, Vadim; Grützke, Martin; Wagner, Ralf; Winter, Martin; Nowak, Sascha

    2015-05-15

    The thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes. A fraction of the discovered compounds belongs to the group of fluorophosphates (phosphorofluoridates) which are in suspect of potential toxicity. This is well known for relative derivatives, e.g. diisopropyl fluorophosphate. Another fraction of the identified compounds belongs to the group of trialkyl phosphates. These compounds may provide a positive impact on the thermal and electrochemical performance of Li-based batteries as repeatedly described in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    Science.gov (United States)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  7. Solid state electrolyte composites based on complex hydrides and metal doped fullerenes/fulleranes for batteries and electrochemical applications

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Jr., Joseph A.; Colon-Mercado, Hector R.; Greenway, Scott D.

    2018-05-01

    A LiBH4--C60 nanocomposite that displays fast lithium ionic conduction in the solid state is provided. The material is a homogenous nanocomposite that contains both LiBH4 and a hydrogenated fullerene species. In the presence of C60, the lithium ion mobility of LiBH4 is significantly enhanced in the as prepared state when compared to pure LiBH4. After the material is annealed the lithium ion mobility is further enhanced. Constant current cycling demonstrated that the material is stable in the presence of metallic lithium electrodes. The material can serve as a solid state electrolyte in a solid-state lithium ion battery.

  8. Towards Safer Lithium-Ion Batteries

    OpenAIRE

    Herstedt, Marie

    2003-01-01

    Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) ...

  9. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives

    Science.gov (United States)

    Boltersdorf, Jonathan; Delp, Samuel A.; Yan, Jin; Cao, Ben; Zheng, Jim P.; Jow, T. Richard; Read, Jeffrey A.

    2018-01-01

    Lithium-ion capacitors (LICs) were investigated for high power, moderate energy density applications for operation in extreme environments with prolonged cycle-life performance. The LICs were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes. The capacity retention was measured under high stress conditions, while the design factor explored was electrolyte formulation using a set of carbonates and electrolyte additives, with a focus on their stability. The LIC cells were evaluated using critical performance tests under the following high stress conditions: long-term voltage floating-cycling stability at room temperature (2.2-3.8 V), high temperature storage at 3.8 V, and charge voltages up to 4.4 V. The rate performance of different electrolytes and additives was measured after the initial LIC cell formation for a 1C-10C rate. The presence of vinylene carbonate (VC) and tris (trimethylsilyl) phosphate (TMSP) were found to be essential to the improved electrochemical performance of the LIC cells under all testing conditions.

  10. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte

    Science.gov (United States)

    Richard, M. N.; Dahn, J. R.

    An accelerating rate calorimeter (ARC) is used to measure the thermal stability of de-intercalated Li 1+ xMn 2- xO 4 in LiPF 6 EC:DEC (33:67) electrolyte. Self-heating is detected well after the 80°C onset of self-heating measured for lithium intercalated mesocarbon microbead (MCMB) electrodes in LiPF 6 EC:DEC (33:67) electrolyte. As a result, the initial self-heating measured in a practical carbon/Li 1+ xMn 2- xO 4 lithium-ion cell is caused by reactions at the anode. In previous work, we have proposed a model for the reactions that cause self-heating in MCMB electrodes in electrolyte. By assuming that a cell self-heats only because reactions occur at the anode, the model can be used to predict the power generated by the amount of MCMB in practical cells with an inert cathode. The calculated chemically generated power can be combined with power loss measurements, due to the transfer of heat to the environment, to predict the short-circuit behaviour and the oven exposure behaviour for a cell containing an MCMB anode and an inert cathode. The results agree qualitatively with short-circuit and oven exposure results measured on NEC Moli energy 18650 cells containing an Li 1+ xMn 2- xO 4 cathode.

  11. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life

    Science.gov (United States)

    Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun

    2018-03-01

    Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.

  12. Lithium Ion Transport Across and Between Phase Boundaries in Heterogeneous Polymer Electrolytes, Based on PVdF

    National Research Council Canada - National Science Library

    Greenbaum, Steven

    1998-01-01

    .... In the first reported attempt to exploit 17O NMR to study lithium battery electrolytes, we have prepared 17O-enriched Li triflate and several electrolytes containing the isotopically enriched salt...

  13. Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive

    International Nuclear Information System (INIS)

    Li, Bin; Wang, Yaqiong; Tu, Wenqiang; Wang, Zaisheng; Xu, Mengqing; Xing, Lidan; Li, Weishan

    2014-01-01

    Highlights: • Cyclic stability of LiNi 0.5 Mn 1.5 O 4 is improved significantly by using PES as additive. • A protective SEI is formed on LiNi 0.5 Mn 1.5 O 4 due to the preferential oxidation of PES. • The SEI suppresses electrolyte decomposition and structure destruction of LiNi 0.5 Mn 1.5 O 4 . - Abstract: We report a new approach to improve the cyclic stability of lithium nickel manganese oxide (LiNi 0.5 Mn 1.5 O 4 ) cathode, in which the cathode/electrolyte interface is modified by using prop-1-ene-1, 3-sultone (PES) as an electrolyte additive. The interfacial properties of LiNi 0.5 Mn 1.5 O 4 cathode in PES-containing electrolyte have been investigated by scanning electron spectroscopy (SEM), transmission electron microscopy (TEM), thermal gravimetry (TG), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), cyclic voltammometry (CV), chronoamperometry (CA), and constant current charge/discharge test. It is found that the application of PES improves significantly the cyclic stability of LiNi 0.5 Mn 1.5 O 4 . After 400 cycles at 1C rate (1C=147 mA g −1 ), the capacity retention of LiNi 0.5 Mn 1.5 O 4 is 90% for the cell using 1.0 wt% PES, while only 49% for the cell without the additive. The characterizations from SEM, TEM, TG, XRD, and XPS confirm that the LiNi 0.5 Mn 1.5 O 4 /electrolyte interface is modified and a protective solid electrolyte interface film is formed on LiNi 0.5 Mn 1.5 O 4 particles, which prevents LiNi 0.5 Mn 1.5 O 4 from destruction and suppresses the electrolyte decomposition

  14. Electrochemical performance of high specific capacity of lithium-ion cell LiV3O8//LiMn2O4 with LiNO3 aqueous solution electrolyte

    International Nuclear Information System (INIS)

    Zhao Mingshu; Zheng Qingyang; Wang Fei; Dai Weimin; Song Xiaoping

    2011-01-01

    Research highlights: → In this paper, the electrochemical performance of aqueous rechargeable lithium battery with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. → The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. → In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries. - Abstract: The electrochemical performance of aqueous rechargeable lithium battery (ARLB) with LiV 3 O 8 and LiMn 2 O 4 in saturated LiNO 3 electrolyte is studied. The results indicate that these two electrode materials are stable in the aqueous solution and no hydrogen or oxygen produced, moreover, intercalation/de-intercalation of lithium ions occurred within the range of electrochemical stability of water. The electrochemical performance tests show that the specific capacity of LiMn 2 O 4 using as the cathode of ARLB is similar to that of ordinary lithium-ion battery with organic electrolyte, which works much better than the formerly reported. In addition, the cell systems exhibit good cycling performance. Therefore, it has great potential comparing with other batteries such as lead acid batteries and alkaline manganese batteries.

  15. Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process

    Science.gov (United States)

    Weydanz, W. J.; Reisenweber, H.; Gottschalk, A.; Schulz, M.; Knoche, T.; Reinhart, G.; Masuch, M.; Franke, J.; Gilles, R.

    2018-03-01

    The process of filling electrolyte into lithium ion cells is time consuming and critical to the overall battery quality. However, this process is not well understood. This is partially due to the fact, that it is hard to observe it in situ. A powerful tool for visualization of the process is neutron imaging. The filling and wetting process of the electrode stack can be clearly visualized in situ without destruction of the actual cell. The wetting of certain areas inside the electrode stack can clearly be seen when using this technique. Results showed that wetting of the electrode stack takes place in a mostly isotropic manner from the outside towards a center point of the cell at very similar speed. When the electrolyte reaches the center point, the wetting process can be considered complete. The electrode wetting is a slow but rather steady process for hard case prismatic cells. It starts with a certain speed, which is reduced over the progress of the wetting. Vacuum can assist the process and accelerate it by about a factor of two as was experimentally shown. This gives a considerable time and cost advantage for designing the production process for large-scale battery cell production.

  16. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries

    International Nuclear Information System (INIS)

    Liao Youhao; Rao Mumin; Li Weishan; Tan Chunlin; Yi Jin; Chen Lang

    2009-01-01

    Fumed silica was used as a dopant in the preparation of poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)) to improve the ionic conductivity of the P(MMA-AN-VAc)-based gel polymer electrolyte (GPE). The performance of the P(MMA-AN-VAc) membrane and its GPE for lithium ion battery use were studied by XRD, SEM, TGA, LSV, CA, EIS, and charge/discharge test. It is found that the doping of fumed silica in the P(MMA-AN-VAc) changes the membrane from semi-crystal to amorphous state and the pore structure of the membrane. By the doping of 10 wt.% fumed silica in the membrane, the porosity of the membrane increases with the pore dispersed more uniformly and interconnected and having higher electrolyte uptake, resulting in the improvement in ionic conductivity of the GPE from 3.48 x 10 -3 to 5.13 x 10 -3 S cm -1 at ambient temperature. On the other hand, the thermal stability of the membrane, the electrochemical stability of the GPE, and the cyclic performance of the battery are also improved.

  17. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  18. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  19. Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level

    Science.gov (United States)

    Heider, U.; Oesten, R.; Jungnitz, M.

    The quality of electrolytes for lithium batteries are a major topic in science and battery industries. The solvents and lithium salts should be of highest purity. Therefore, during preparation and handling of electrolyte solutions, the contamination level has to be minimized and the quality during packaging, storage and transportation has to be guaranteed. Especially, protic impurities are found to be very critical for LiPF 6-based electrolytes. The influence of water is reported to be tremendous. But also other protic impurities like alcohols are considered to play an important role in the electrolyte quality. The reaction of the protic impurities with LiPF 6 leads to the formation of HF which further reacts with cathode active materials (e.g., spinel) and the passivating films of the cathode and anode. For a better understanding of the protic impurities and their role in the electrolyte quality a systematic investigation of different impurities was carried out. Electrolytes were doped with different protic compounds. Then the electrolyte was analyzed for protic impurities and HF in dependence of time. First results showing the relation between protic impurities and HF are presented and discussed. In addition, different packaging materials for the electrolyte solutions were investigated. Storage tests were carried out at different temperatures and in different atmospheres. Results on contamination levels, influence of packaging, high temperature storage and handling are addressed.

  20. The influence of the carbonate species on LiNi0.8Co0.15Al0.05O2 surfaces for all-solid-state lithium ion battery performance

    Science.gov (United States)

    Visbal, Heidy; Fujiki, Satoshi; Aihara, Yuichi; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2014-12-01

    The influence of selected carbonate species on LiNi0.8Co0.15Al0.05O2 (NCA) surface for all-solid-state lithium-ion battery (ASSB) with a sulfide based solid electrolyte was studied for its electrochemical properties, structural stabilities, and surface characteristics. The rated discharge performance improved with the reduction of the carbonate concentration on the NCA surface due to the decrease of the interface resistance. The species and coordination of the adsorbed carbonates on the NCA surface were analyzed by diffuse reflectance Fourier transformed infrared (DRIFT) spectroscopy. The coordination of the adsorbed carbonate anion was determined based on the degree of splitting of the ν3(CO) stretching vibrations. It is found that the surface carbonate species exists in an unidentate coordination on the surface. They react with the sulfide electrolyte to form an irreversible passivation layer. This layer obstructs the charge transfer process at the cathode/electrolyte interface, and results in the rise of the interface resistance and drop of the rated discharge capability.

  1. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  2. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  3. Coexistence of conversion and intercalation mechanisms in lithium ion batteries. Consequences for microstructure and interaction between the active material and electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Robert [TU Bergakademie, Freiberg (Germany). Inst. of Materials Science; Lepple, Maren [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Technische Univ. Darmstadt (Germany). Eduard-Zintl-Inst. fuer Anorganische und Physikalische Chemie; Mayer, Nicolas A. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); and others

    2017-11-15

    Conversion-type lithium ion batteries experience severe and partly irreversible phase transitions during operation. Such phase transitions reduce the crystallite size and therefore enhance the exchange of the Li ions. Concurrently, the irreversible nature of the phase transitions may deteriorate the cycling stability and the long-term capacity of conversion-type batteries. In this contribution, the observed correlations between the crystal structures of compounds which are employed as anodes in conversion-type Li ion cells, the capacity and the long-term stability of these cells are discussed. The central characteristics affecting the performance of conversion-type Li ion cells seem to be the similarity of crystal structures of intermediately forming phases during the charge/discharge process, which facilitates strong local preferred orientation of nanocrystallites of neighboring phases and for the formation of local strain fields at partially coherent phase boundaries. The effect of the above-mentioned phenomena on capacity and cycle stability is argued from the point of view of a possibly impeded ion exchange. Equilibrium open circuit potentials are calculated using the CALPHAD method. However, it is shown that in order to better reproduce the experimentally determined plateau voltages, thermodynamic descriptions of the non-equilibrium intermediate phases have to be included. In addition, the stabilization of the conversion reaction by the electrolyte is pointed out.

  4. Electrochemical behavior of sebaconitrile as a cosolvent in the formulation of electrolytes at high potentials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Nanini-Maury, Elise; Światowska, Jolanta; Chagnes, Alexandre; Zanna, Sandrine; Tran-Van, Pierre; Marcus, Philippe; Cassir, Michel

    2014-01-01

    The electrochemical behavior of new high potential electrolyte containing sebaconitrile in LiPF 6 /EC:DMC or LiBF 4 was studied on glassy carbon and LiCoO 2 , LiCoPO 4 as positive electrode materials. The increase of sebaconitrile concentration in EC:DMC electrolyte provides better electrolyte stability at higher potentials on glassy carbon as observed by cyclic voltammetry. Promising electrochemical results showing good reversibility and insertion/deinsertion efficiency have been also obtained on LiCoPO 4 electrode cycled up to 5.3 V vs Li + /Li as upper potential limit. However, the cycling of LiCoPO 4 at higher potential (6 V vs Li + /Li) shows lower reversibility and efficiency of insertion/deinsertion process due to the oxidative decomposition of the electrolyte at high potentials. The surface analysis performed by X-ray photoelectron spectroscopy confirms the formation of a surface layer induced by electrolyte degradation on both types of positive electrodes, which hinder the Li diffusion. The layer composition and morphology vary as a function of electrolyte composition and type of electrode

  5. The effect of Li2CO3 substitution on synthesis of LiBOB compounds as salt of electrolyte battery lithium ion

    Science.gov (United States)

    Lestariningsih, Titik; Wigayati, Etty Marty; Sabrina, Qolby; Prihandoko, Bambang; Priyono, Slamet

    2018-04-01

    Development of the synthesis of LiB(C2O4)2 compounds continues to evolve along with the need for electrolyte salts to support the research of the manufacture of lithium ion batteries. A study had been conducted on the effect of Li2CO3 substitution on the synthesis of LiB(C2O4)2 or LiBOB compounds. LiBOB was a major candidate to replace LiPF6 as a highly toxic lithium battery electrolyte and harmful to human health. Synthesis of Lithium bis(oxalato) borate used powder metallurgy method. The raw materials used are H2C2O4.2H2O, Li2CO3 or LiOH and H2BO3 from Merck Germany products. The materials are mixed with 2: 1: 1 mol ratio until homogeneous. The synthesis of LiBOB refers to previous research, where the heating process was done gradually. The first stage heating is carried out at 120°C for 4 hours, then the next stage heating is carried out at 240°C for 7 hours. The sample variation in this study was to distinguish the lithium source from Li2CO3 and LiOH. Characterization was done by XRD to know the phase formed, FTIR to confirm that functional group of LiB(C2O4)2 compound, SEM to know the morphological structure, and TG/DTA to know the thermal properties. The results of the analysis shows that LiBOB synthesis using Lithium source from Li2CO3 has succeeded to form LiBOB compound with more LiBOB phase composition is 59.1% and 40.9% LiBOB hydrate phase, SEM morphology shows powder consist of elongated round particle porous and similar to LiBOB commercial and show higher thermal stability.

  6. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    Science.gov (United States)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  7. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  8. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  9. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  10. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  11. One-Step Fast-Synthesized Foamlike Amorphous Co(OH)2 Flexible Film on Ti Foil by Plasma-Assisted Electrolytic Deposition as a Binder-Free Anode of a High-Capacity Lithium-Ion Battery.

    Science.gov (United States)

    Li, Tao; Nie, Xueyuan

    2018-05-23

    This research prepared an amorphous Co(OH) 2 flexible film on Ti foil using plasma-assisted electrolytic deposition within 3.5 min. Amorphous Co(OH) 2 structure was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Its areal capacity testing as the binder and adhesive-free anode of a lithium-ion battery shows that the cycling capacity can reach 2000 μAh/cm 2 and remain at 930 μAh/cm 2 after 50 charge-discharge cycles, which benefits from the emerging Co(OH) 2 active material and amorphous foamlike structure. The research introduced a new method to synthesize amorphous Co(OH) 2 as the anode in a fast-manufactured low-cost lithium-ion battery.

  12. Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes.

    Science.gov (United States)

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Menzel, Jennifer; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha

    2015-08-28

    A two-dimensional ion chromatography (IC/IC) technique with heart-cutting mode for the separation of ionic organophosphates was developed. These analytes are generated during thermal degradation of three different commercially available Selectilyte™ lithium ion battery electrolytes. The composition of the investigated electrolytes is based on 1M lithium hexafluorophosphate (LiPF6) dissolved in ethylene carbonate/dimethyl carbonate (50:50wt%, LP30), ethylene carbonate/diethyl carbonate (50:50wt%, LP40) and ethylene carbonate/ethyl methyl carbonate (50:50wt%, LP50). The organophosphates were pre-separated from PF6(-) anion on the low capacity A Supp 4 column, which was eluted with a gradient step containing acetonitrile. The fraction containing analytes was retarded on a pre-concentration column and after that transferred to the high capacity columns, where the separation was performed isocratically. Different stationary phases and eluents were applied on the 2nd dimension for the investigation of retention times, whereas the highly promising results were obtained with a high capacitive A Supp 10 column. The organophosphates generated in LP30 and LP40 electrolytes could be separated by application of an aqueous NaOH eluent providing fast analysis time within 35min. For the separation of the organophosphates of LP50 electrolyte due to its complexity a NaOH eluent containing a mixture of methanol/H2O was necessary. In addition, the developed two dimensional IC method was hyphenated to an inductively coupled plasma mass spectrometer (ICP-MS) using aqueous NaOH without organic modifiers. This proof of principle measurement was carried out for future quantitative investigation regarding the concentration of the ionic organophosphates. Furthermore, the chemical stability of several ionic organophosphates in water and acetonitrile at room temperature over a period of 10h was investigated. In both solvents no decomposition of the investigated analytes was observed and

  13. Lithium ion batteries (NMC/graphite) cycling at 80 °C: Different electrolytes and related degradation mechanism

    Science.gov (United States)

    Genieser, R.; Ferrari, S.; Loveridge, M.; Beattie, S. D.; Beanland, R.; Amari, H.; West, G.; Bhagat, R.

    2018-01-01

    A comprehensive study on high temperature cycling (80 °C) of industrial manufactured Li-ion pouch cells (NMC-111/Graphite) filled with different electrolytes is introduced. Ageing processes such as capacity fade, resistance increase and gas generation are reduced by the choice of appropriate electrolyte formulations. However, even by using additive formulations designed for elevated temperatures a large resistance increase is observed after 200 cycles and more (which does not happen at 55 °C). Symmetrical EIS (Electrochemical Impedance Spectroscopy) shows that the cathodic charge transfer resistance is the main reason for this behaviour. Nonetheless most of the active Li is still available when cycling with suitable additives. No change of the cathode crystalline structure or a growth of the cathodic surface reconstruction layer is observed post cycling at 80 °C. Therefore a disintegration of NMC secondary particles is believed to be the main reason of the cell failure. A separation of single grains is leading to new decomposition and reconstruction layers between primary particles and an increased charge transfer resistance. Further approaches to improve the high temperature cycle stability of NMC based materials should therefore be aimed at the cathode particles morphology in combination with similar electrolyte formulations as used in this study.

  14. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  15. Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2015-01-01

    Full Text Available Electrode material aging leads to a decrease in capacity and/or a rise in resistance of the whole cell and thus can dramatically affect the performance of lithium-ion batteries. Furthermore, the aging phenomena are extremely complicated to describe due to the coupling of various factors. In this review, we give an interpretation of capacity/power fading of electrode-oriented aging mechanisms under cycling and various storage conditions for metallic oxide-based cathodes and carbon-based anodes. For the cathode of lithium-ion batteries, the mechanical stress and strain resulting from the lithium ions insertion and extraction predominantly lead to structural disordering. Another important aging mechanism is the metal dissolution from the cathode and the subsequent deposition on the anode. For the anode, the main aging mechanisms are the loss of recyclable lithium ions caused by the formation and increasing growth of a solid electrolyte interphase (SEI and the mechanical fatigue caused by the diffusion-induced stress on the carbon anode particles. Additionally, electrode aging largely depends on the electrochemical behaviour under cycling and storage conditions and results from both structural/morphological changes and side reactions aggravated by decomposition products and protic impurities in the electrolyte.

  16. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  17. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  18. Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i Monitoring Stability of Anions in Ionic Liquids and (ii Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Marcelina Pyschik

    2017-09-01

    Full Text Available In this work, a method for capillary electrophoresis (CE hyphenated to a high-resolution mass spectrometer was presented for monitoring the stability of anions in ionic liquids (ILs and in commonly used lithium ion battery (LIB electrolytes. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonylimide (PYR13TFSI and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonylimide (PYR13FSI. The method development was conducted by adjusting the following parameters: buffer compositions, buffer concentrations, and the pH value. Also the temperature and the voltage applied on the capillary were optimized. The ILs were aged at room temperature and at 60 °C for 16 months each. At both temperatures, no anionic decomposition products of the FSI− and TFSI− anions were detected. Accordingly, the FSI− and TFSI− anions were thermally stable at these conditions. This method was also applied for the investigation of LIB electrolyte samples, which were aged at 60 °C for one month. The LP30 (50/50 wt. % dimethyl carbonate/ethylene carbonate and 1 M lithium hexafluorophosphate electrolyte was mixed with the additive 1,3-propane sultone (PS and with one of the following organophosphates (OP: dimethyl phosphate (DMP, diethyl phosphate (DEP, and triethyl phosphate (TEP, to investigate the influence of these compounds on the formation of OPs.

  19. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  20. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  1. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements

    Science.gov (United States)

    Dagger, Tim; Lürenbaum, Constantin; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    A modified self-extinguishing time (SET) device which enhances the reproducibility of the results is presented. Pentafluoro(phenoxy)cyclotriphosphazene (FPPN) is investigated as flame retardant electrolyte additive for lithium ion batteries (LIBs) in terms of thermal stability and electrochemical performance. SET measurements and adiabatic reaction calorimetry are applied to determine the flammability and the reactivity of a standard LIB electrolyte containing 5% FPPN. The results reveal that the additive-containing electrolyte is nonflammable for 10 s whereas the commercially available reference electrolyte inflames instantaneously after 1 s of ignition. The onset temperature of the safety enhanced electrolyte is delayed by ≈ 21 °C. Compatibility tests in half cells show that the electrolyte is reductively stable while the cyclic voltammogram indicates oxidative decomposition during the first cycle. Cycling experiments in full cells show improved cycling performance and rate capability, which can be attributed to cathode passivation during the first cycle. Post-mortem analysis of the electrolyte by gas chromatography-mass spectrometry confirms the presence of the additive in high amounts after 501 cycles which ensures enhanced safety of the electrolyte. The investigations present FPPN as stable electrolyte additive that improves the intrinsic safety of the electrolyte and its cycling performance at the same time.

  2. Neutron scattering study on cathode LiMn2O4 and solid electrolyte 5(Li2O)(P2O5)

    International Nuclear Information System (INIS)

    Kartini, E.; Putra, Teguh P.; Jahya, A. K.; Insani, A.; Adams, S.

    2014-01-01

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO 2 , LiMn 2 O 4 and LiFePO 4 , and solid electrolyte Li 3 PO 4 . Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn 2 O 4 and 5(Li 2 O)(P 2 O 5 ), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia

  3. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    Science.gov (United States)

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  4. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  5. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors

    International Nuclear Information System (INIS)

    Boisset, Aurélien; Jacquemin, Johan; Anouti, Mérièm

    2013-01-01

    Highlights: • Preparation of new Deep Eutectic Solvent (DES) based on N-methylacetamide and TFSI. • Characterization of conductivity, viscosity and thermal properties of DES. • DES presents a superionic character in Walden classification. • DES is suitable electrolyte for lithium ion batteries and electric double layer capacitors. -- Abstract: Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from −60 °C to 280 °C, low vapor pressure, and high ionic conductivity up to 28.4 mS cm −1 at 150 °C and at x LiTFSI = 1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius’ Law and Vogel–Tamman–Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO 4 ) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO 4 ) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability

  6. Liquid-Solid-Solution Assembly of CoFe2O4/Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode

    International Nuclear Information System (INIS)

    Zhu, Yanfang; Lv, Xingbin; Zhang, Lili; Guo, Xiaodong; Liu, Daijun; Chen, Jianjun; Ji, Junyi

    2016-01-01

    Graphical abstract: CoFe 2 O 4 /rGO composites are fabricated via a liquid-solid-solution assemble strategy with a well controlled CoFe 2 O 4 size, the composite exhibits a high rate performance for lithium ion batteries anode. - Highlights: • Crumpled CoFe 2 O 4 @graphene composite with uniform CoFe 2 O 4 nanoparticles intimately anchored on graphene sheets was fabricated. • The novel fabrication strategy: liquid-solid-solution strategy where the CoFe 2 O 4 are nucleation and controlled growth at the oil/water interface. • High reversible specific capacity of 1102 mAh g −1 after 100 cycles and high rate capability of 410 mAh g −1 within 230 s charging. - Abstract: CoFe 2 O 4 /graphene composites were fabricated via a novel one-pot liquid-solid-solution (LSS) hydrothermal process. Through ions electrostatic adsorption onto graphene sheets and oil microemulsion encapsulation, CoFe 2 O 4 nanoparticles can be uniformly anchored on crumpled graphene sheets without aggregation, and the size distribution of CoFe 2 O 4 particles can be controlled by the microemulsion shell in the range of 50–100 nm. With the synergistic effect between CoFe 2 O 4 and graphene, the CoFe 2 O 4 /graphene hybrid exhibits a high reversible specific capacity of 1102 mAh g −1 at 0.2 A g −1 after 100 cycles, and a good cycling stability as well. Moreover, the composite has good rate capability. The specific capacity can reach a high value of 410 mAh g −1 even under a high current density of 6.4 A g −1 (corresponds to a charge time of ∼230 s), indicating its promising application as an anode material for lithium ion batteries.

  7. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  8. Nanoconfined LiBH4 as a Fast Lithium Ion Conductor

    DEFF Research Database (Denmark)

    Blanchard, Didier; Nale, Angeloclaudio; Sveinbjörnsson, Dadi Þorsteinn

    2015-01-01

    is associated with a fraction of the confined borohydride that shows no phase transition, and most likely located close to the interface with the SiO2 pore walls. These results point to a new strategy to design low-temperature ion conducting solids for application in all solid-state lithium ion batteries, which......Designing new functional materials is crucial for the development of efficient energy storage and conversion devices such as all solid-state batteries. LiBH 4 is a promising solid electrolyte for Li-ion batteries. It displays high lithium mobility, although only above 110 °C at which a transition...

  9. Towards quantification of toxicity of lithium ion battery electrolytes - development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.

    Science.gov (United States)

    Strehlau, Jenny; Weber, Till; Lürenbaum, Constantin; Bornhorst, Julia; Galla, Hans-Joachim; Schwerdtle, Tanja; Winter, Martin; Nowak, Sascha

    2017-10-01

    A novel method based on liquid-liquid extraction with subsequent gas chromatography separation and mass spectrometric detection (GC-MS) for the quantification of organic carbonates in cell culture materials is presented. Method parameters including the choice of extraction solvent, of extraction method and of extraction time were optimised and the method was validated. The setup allowed for determination within a linear range of more than two orders of magnitude. The limits of detection (LODs) were between 0.0002 and 0.002 mmol/L and the repeatability precisions were in the range of 1.5-12.9%. It could be shown that no matrix effects were present and recovery rates between 98 and 104% were achieved. The methodology was applied to cell culture models incubated with commercial lithium ion battery (LIB) electrolytes to gain more insight into the potential toxic effects of these compounds. The stability of the organic carbonates in cell culture medium after incubation was studied. In a porcine model of the blood-cerebrospinal fluid (CSF) barrier, it could be shown that a transfer of organic carbonates into the brain facing compartment took place. Graphical abstract Schematic setup for the investigation of toxicity of lithium ion battery electrolytes.

  10. Redox shuttles for safer lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen, Zonghai; Qin, Yan; Amine, Khalil

    2009-01-01

    Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

  11. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin; La Mantia, Fabio; Deshazer, Heather; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today's commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect

  12. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa [School of; Engelhard, Mark H.; Polzin, Bryant J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  13. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    An Yongxin; Cheng Xinqun; Zuo Pengjian; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO) 20 LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO 4 /Li and Li 4 Ti 5 O 12 /Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  14. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.

  15. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  16. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  17. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Mýrdal, Jón Steinar Garðarsson; Blanchard, Didier

    2013-01-01

    The LiBH4–LiI solid solution is a good Li+ conductor and a promising crystalline electrolyte for all-solid-state lithium based batteries. The focus of the present work is on the effect of heat treatment on the Li+ conduction. Solid solutions with a LiI content of 6.25–50% were synthesized by high...

  18. Neutron scattering study on cathode LiMn{sub 2}O{sub 4} and solid electrolyte 5(Li{sub 2}O)(P{sub 2}O{sub 5})

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, E., E-mail: kartini@batan.go.id; Putra, Teguh P., E-mail: kartini@batan.go.id; Jahya, A. K., E-mail: kartini@batan.go.id; Insani, A., E-mail: kartini@batan.go.id [Technology Center for Nuclear Industry Materials, National Nuclear Energy Agency, Serpong 15314 (Indonesia); Adams, S. [Department of Materials Science and Engineering, National University of Singapore, Singapore-117576 (Singapore)

    2014-09-30

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO{sub 2}, LiMn{sub 2}O{sub 4} and LiFePO{sub 4}, and solid electrolyte Li{sub 3}PO{sub 4}. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn{sub 2}O{sub 4} and 5(Li{sub 2}O)(P{sub 2}O{sub 5}), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  19. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method.

    Science.gov (United States)

    Hayamizu, Kikuko; Matsuda, Yasuaki; Matsui, Masaki; Imanishi, Nobuyuki

    2015-09-01

    The garnet-type solid conductor Li7-xLa3Zr2-xTaxO12 is known to have high ionic conductivity. We synthesized a series of compositions of this conductor and found that cubic Li6.6La3Zr1.6Ta0.4O12 (LLZO-Ta) has a high ionic conductivity of 3.7×10(-4)Scm(-1) at room temperature. The (7)Li NMR spectrum of LLZO-Ta was composed of narrow and broad components, and the linewidth of the narrow component varied from 0.69kHz (300K) to 0.32kHz (400K). We carried out lithium ion diffusion measurements using pulsed-field spin-echo (PGSE) NMR spectroscopy and found that echo signals were observed at T≥313K with reasonable sensitivity. The lithium diffusion behavior was measured by varying the observation time and pulsed-field gradient (PFG) strength between 313 and 384K. We found that lithium diffusion depended significantly on the observation time and strength of the PFG, which is quite different from lithium ion diffusion in liquids. It was shown that lithium ion migration in the solid conductor was distributed widely in both time and space. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. An Empirical Rate Constant Based Model to Study Capacity Fading in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Srivatsan Ramesh

    2015-01-01

    Full Text Available A one-dimensional model based on solvent diffusion and kinetics to study the formation of the SEI (solid electrolyte interphase layer and its impact on the capacity of a lithium ion battery is developed. The model uses the earlier work on silicon oxidation but studies the kinetic limitations of the SEI growth process. The rate constant of the SEI formation reaction at the anode is seen to play a major role in film formation. The kinetics of the reactions for capacity fading for various battery systems are studied and the rate constants are evaluated. The model is used to fit the capacity fade in different battery systems.

  1. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xie, Huili; Liao, Youhao; Sun, Ping; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-01-01

    Highlights: • P(MMA-co-BA)/nano-SiO 2 /PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO 2 /PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO 2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO 2 /PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO 2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO 2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10 −3 to 2.26 × 10 −3 S.cm −1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li + ). The cyclic stability of Li/GPE/Li(Li 0.13 Ni 0.30 Mn 0.57 )O 2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  2. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL; Meyer III, Harry M [ORNL; Howe, Jane Y [ORNL; Meisner, Roberta Ann [ORNL; Payzant, E Andrew [ORNL; Lance, Michael J [ORNL; Yoon, Steve [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.; Wood III, David L [ORNL

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  3. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  4. In situ Raman spectroscopic studies on concentration change of electrolyte salt in a lithium ion model battery with closely faced graphite composite and LiCoO2 composite electrodes by using an ultrafine microprobe

    International Nuclear Information System (INIS)

    Yamanaka, Toshiro; Nakagawa, Hiroe; Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki; Abe, Takeshi; Ogumi, Zempachi

    2017-01-01

    The concentration of ions in the electrolyte solution in lithium ion batteries changes during operation, reflecting the resistance to ion migration and the positions of diffusion barriers. The change causes various negative effects on the performance of batteries. Thus, it is important to elucidate how the concentration changes during operation. In this work, the concentration change of ions in the electrolyte solution in deep narrow spaces in a realistic battery was studied by in situ ultrafine microprobe Raman spectroscopy. Graphite composite and LiCoO 2 composite electrodes, which are the most commonly used electrodes in practical batteries, were placed facing each other and their distance was set to 80 μm, which is close to the distance between electrodes in practical batteries. After repeated charge/discharge cycles, the concentration of ions increased and decreased greatly during charging and discharging, respectively. The maximum concentration was more than three-times higher than the minimum concentration. The rate of changes in concentration increased almost linearly with increase in current density. The results have important implications about concentration changes of ions occurring in practical batteries.

  5. Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO4 lithium-ion batteries

    Science.gov (United States)

    Park, Joonam; Appiah, Williams Agyei; Byun, Seoungwoo; Jin, Dahee; Ryou, Myung-Hyun; Lee, Yong Min

    2017-10-01

    To overcome the limitation of simple empirical cycle life models based on only equivalent circuits, we attempt to couple a conventional empirical capacity loss model with Newman's porous composite electrode model, which contains both electrochemical reaction kinetics and material/charge balances. In addition, an electrolyte depletion function is newly introduced to simulate a sudden capacity drop at the end of cycling, which is frequently observed in real lithium-ion batteries (LIBs). When simulated electrochemical properties are compared with experimental data obtained with 20 Ah-level graphite/LiFePO4 LIB cells, our semi-empirical model is sufficiently accurate to predict a voltage profile having a low standard deviation of 0.0035 V, even at 5C. Additionally, our model can provide broad cycle life color maps under different c-rate and depth-of-discharge operating conditions. Thus, this semi-empirical model with an electrolyte depletion function will be a promising platform to predict long-term cycle lives of large-format LIB cells under various operating conditions.

  6. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO{sub 2} nanocrystals as high rate lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boyang, E-mail: byliu@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Shao, Yingfeng, E-mail: shaoyf@lnm.imech.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics (China); Zhang, Yuliang, E-mail: ylzhang@shmtu.edu.cn; Zhang, Fuhua, E-mail: fhzhang@shmtu.edu.cn; Zhong, Ning, E-mail: ningzhong@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Li, Wenge, E-mail: wgli@shmtu.edu.cn [Shanghai Maritime University, Merchant Marine College (China)

    2016-12-15

    A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO{sub 2} nanocrystals (MoO{sub 2}@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO{sub 2} nanocrystals, resulting in the formation of core-shell structure. The MoO{sub 2} nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO{sub 2} nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO{sub 2} nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO{sub 2}@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g{sup −1} after 50 cycles at a current density of 3 A g{sup −1}, owing to the effective protection of carbon shell.

  7. Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte

    International Nuclear Information System (INIS)

    Crowe, Adam J.; Bartlett, Bart M.

    2016-01-01

    With high elemental abundance, large volumetric capacity, and dendrite-free metal deposition, magnesium metal anodes offer promise in beyond-lithium-ion batteries. However, the increased charge density associated with the divalent magnesium-ion (Mg 2+ ), relative to lithium-ion (Li + ) hinders the ion-insertion and extraction processes within many materials and structures known for lithium-ion cathodes. As a result, many recent investigations incorporate known amounts of water within the electrolyte to provide temporary solvation of the Mg 2+ , improving diffusion kinetics. Unfortunately with the addition of water, compatibility with magnesium metal anodes disappears due to forming an ion-insulating passivating layer. In this short review, recent advances in solid state cathode materials for rechargeable magnesium-ion batteries are highlighted, with a focus on cathode materials that do not require water contaminated electrolyte solutions for ion insertion and extraction processes. - Graphical abstract: In this short review, we present candidate materials for reversible Mg-battery cathodes that are compatible with magnesium metal in water-free electrolytes. The data suggest that soft, polarizable anions are required for reversible cycling.

  8. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode

  9. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  10. Solid-state synthesis of Li{sub 4}Ti{sub 5}O{sub 12} for high power lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung-Woo [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ryu, Ji Heon [Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jeong, Joayoung [Cell Precedence Development Group, Samsung SDI, Yongin 446-577 (Korea, Republic of); Yoon, Dang-Hyok, E-mail: dhyoon@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2013-09-05

    Highlights: •High energy milling using 0.30 and 0.45 mm beads for Li{sub 4}Ti{sub 5}O{sub 12} synthesis. •Synthesis of 162 nm-sized pure Li{sub 4}Ti{sub 5}O{sub 12} by solid-state reaction. •Spray drying using fine starting materials to confer paste tackiness. •High capacity of 174 mAh/g and adequate rate properties for high power LIBs applications. -- Abstract: Li{sub 4}Ti{sub 5}O{sub 12} was synthesized by a solid-state reaction between Li{sub 2}CO{sub 3} and anatase TiO{sub 2} for applications to high power lithium ion batteries. The starting materials underwent 6 h of high energy milling using ZrO{sub 2} beads with two different sizes, 0.30 and 0.45 mm. The smaller ZrO{sub 2} beads resulted in finer starting materials. Spray drying was also performed on the 0.30 mm beads-treated particles to enhance the screen printability of a paste containing this powder. The finer starting materials showed a pure 162 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} due to the decreased diffusion length for a solid-state reaction, whereas the 0.45 mm beads-treated starting materials resulted in a 242 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} phase containing 2 wt.% of rutile TiO{sub 2} that had transformed from the anatase phase during heat treatment at 800 °C for 3 h. The finer Li{sub 4}Ti{sub 5}O{sub 12} showed higher charge capacity and better charge/discharge rates than the coarser particles, which highlights the importance of the primary particle size on the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} for high power applications. The fine Li{sub 4}Ti{sub 5}O{sub 12} particles had a discharge capacity of 174 mAh/g at 0.1 C and capacity retention of 80% at 10.0 C.

  11. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    combination to changes in glass transition temperatures. Though the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The highest {sigma}{sub dc} obtained at ambient temperatures was 6.0 x 10{sup -6} S.cm{sup -1}, strongly suggesting a rather tight coordination of the lithium ions to the solvating 2-oxo-1,3-dioxolane moieties, supported by the increased {sigma}{sub dc} values for the oligo(ethylene oxide) based analogues. Further insights into the mechanism of lithium ion dynamics were derived from {sup 7}Li and {sup 13}C Solid-State NMR investigations. While localized ion motion was probed by i.e. {sup 7}Li spinlattice relaxation measurements with apparent activation energies E{sub a} of 20 to 40 kJ/mol, long-range macroscopic transport was monitored by Pulsed-Field Gradient (PFG) NMR, providing an E{sub a} of 61 kJ/mol. The latter is in good agreement with the values determined from bulk conductivity data, indicating the major contribution of ion transport was only detected by PFG NMR. However, the {mu}m-diffusion is rather slow, emphasizing the strong lithium coordination to the carbonyl oxygens, which hampers sufficient ion conductivities and suggests exploring 'softer' solvating moieties in future electrolytes.

  12. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China); Qiu, Keqiang, E-mail: qiuwhs@sohu.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People' s Republic of China (China)

    2011-10-30

    Highlights: {yields} The cathode active materials LiCoO{sub 2} from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. {yields} The aluminum foils were excellent without damage after vacuum pyrolysis. {yields} The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. {yields} High leaching efficiencies of cobalt and lithium were obtained with H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}. - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO{sub 2} and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 {sup o}C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 {sup o}C and solid/liquid ratio of 50 g L{sup -1} for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  13. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Liang; Qiu, Keqiang

    2011-01-01

    Highlights: → The cathode active materials LiCoO 2 from spent lithium-ion batteries peeled completely from aluminum foils by vacuum pyrolysis and hydrometallurgical process. → The aluminum foils were excellent without damage after vacuum pyrolysis. → The pyrolysis products organic fluorine compounds from organic electrolyte and binder were collected and enriched. → High leaching efficiencies of cobalt and lithium were obtained with H 2 SO 4 and H 2 O 2 . - Abstract: Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO 2 and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600 o C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2 M sulfuric acid leaching solution at 80 o C and solid/liquid ratio of 50 g L -1 for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  14. An approach to beneficiation of spent lithium-ion batteries for recovery of materials

    Science.gov (United States)

    Marinos, Danai

    Lithium ion batteries are one of the most commonly used batteries. A large amount of these have been used over the past 25 years and the use is expected to rise more due to their use in automotive batteries. Lithium ion batteries cannot be disposed into landfill due to safety reasons and cost. Thus, over the last years, there has been a lot of effort to find ways to recycle lithium ion batteries. A lot of valuable materials are present in a lithium ion battery making their recycling favorable. Many attempts, including pyrometallurgical and hydrometallurgical methods, have been researched and some of them are already used by the industry. However, further improvements are needed to the already existing processes, to win more valuable materials, use less energy and be more environmentally benign. The goal of this thesis is to find a low-temperature, low-energy method of recovering lithium from the electrolyte and to develop pathways for complete recycling of the battery. The research consists of the following parts: Pure LiPF6 powder, which is the electrolyte material, was characterized using x- ray diffraction analysis and DSC/TGA analysis. The LiPF6 powder was titrated using acid (HCl, HNO3, H2SO4), bases (NH4 OH) and distilled water. It was concluded that distilled water was the best solvent to selectively leach lithium from lithium-ion batteries. Leaching conditions were optimized including time, temperature, solid/liquid ratio and stirring velocity. All the samples were tested using ICP for chemical composition. Because leaching could be performed at room temperature, leaching was conducted in a flotation machine that was able to separate plastics by creating bubbles with no excess reagents use. The solution that contained lithium had to be concentrated more in order for lithium to be able to precipitate and it was shown that the solution could be concentrated by using the same solution over and over again. The next set of experiments was composed of battery

  15. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-23

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn 4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g -1 based on solid-state redox reaction of oxide ions.

  16. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-01-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g−1 based on solid-state redox reaction of oxide ions. PMID:28008955

  17. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  18. Response behaviour of oxygen sensing solid electrolytes

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Scharenborg, A.H.A.; Burggraaf, A.J.

    1985-01-01

    The response time (t r) after a step change in oxygen partial pressure was investigated for some solid electrolytes used in Nernst type oxygen sensors. The electrolyte as well as the (porous) electrode material affect the value oft r. Stabilized Bi2O3 materials exhibit slower response rates (largert

  19. A Lithium-Ion Battery with Enhanced Safety Prepared using an Environmentally Friendly Process.

    Science.gov (United States)

    Mueller, Franziska; Loeffler, Nicholas; Kim, Guk-Tae; Diemant, Thomas; Behm, R Jürgen; Passerini, Stefano

    2016-06-08

    A new lithium-ion battery chemistry is presented based on a conversion-alloying anode material, a carbon-coated Fe-doped ZnO (TMO-C), and a LiNi1/3 Mn1/3 Co1/3 O2 (NMC) cathode. Both electrodes were fabricated using an environmentally friendly cellulose-based binding agent. The performance of the new lithium-ion battery was evaluated with a conventional, carbonate-based electrolyte (ethylene carbonate:diethyl carbonate-1 m lithium hexafluorophosphate, EC:DEC 1 m LiPF6 ) and an ionic liquid (IL)-based electrolyte (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide-0.2 m lithium bis(trifluoromethanesulfonyl)imide, Pyr14 TFSI 0.2 m LiTFSI), respectively. Galvanostatic charge/discharge tests revealed a reduced rate capability of the TMO-C/Pyr14 TFSI 0.2 m LiTFSI/NMC full-cell compared to the organic electrolyte, but the coulombic efficiency was significantly enhanced. Moreover, the IL-based electrolyte substantially improves the safety of the system due to a higher thermal stability of the formed anodic solid electrolyte interphase and the IL electrolyte itself. While the carbonate-based electrolyte shows sudden degradation reactions, the IL exhibits a slowly increasing heat flow, which does not constitute a serious safety risk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries.

    Science.gov (United States)

    Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei; Bondarchuk, Oleksandr; Rodriguez-Martinez, Lide M; Zhang, Heng; Armand, Michel

    2017-11-27

    Of the various beyond-lithium-ion battery technologies, lithium-sulfur (Li-S) batteries have an appealing theoretical energy density and are being intensely investigated as next-generation rechargeable lithium-metal batteries. However, the stability of the lithium-metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long-term stability of Li-S batteries. Herein, we report lithium azide (LiN 3 ) as a novel electrolyte additive for all-solid-state Li-S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state-of-the-art additive lithium nitrate (LiNO 3 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  2. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  3. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  4. In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Yuka; Yamamoto, Kazuo; Sato, Takeshi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Murata, Hidekazu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502 (Japan); Yoshida, Ryuji; Fisher, Craig A.J. [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kato, Takehisa; Iriyama, Yasutoshi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Hirayama, Tsukasa, E-mail: t-hirayama@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan)

    2017-07-15

    In situ electron holography is used to observe changes of electric-potential distributions in an amorphous lithium phosphorus oxynitride (LiPON) solid-state electrolyte when different voltages are applied. 2D phase images are simulated by integrating the 3D potential distribution along the electron trajectory through a thin Cu/LiPON/Cu region. Good agreement between experimental and simulated phase distributions is obtained when the influence of the external electric field is taken into account using the 3D boundary-charge method. Based on the precise potential changes, the lithium-ion and lithium-vacancy distributions inside the LiPON layer and electric double layers (EDLs) are inferred. The gradients of the phase drops at the interfaces in relation to EDL widths are discussed. - Highlights: • Solid-state electrolyte LiPON has been observed by in situ electron holography. • Observed phase distributions are compared with those simulated numerically. • 3D electric fields around the specimen are taken into account in the simulation. • Electric-potential distributions inside LiPON have been obtained. • The lithium-ion and lithium-vacancy distributions inside the LiPON are inferred.

  5. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  6. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Ross, Philip N.; Zhao, Hui; Liu, Gao; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2015-01-01

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  7. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2015-03-11

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  8. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  9. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  10. Composite anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    de Guzman, Rhet C.; Ng, K.Y. Simon; Salley, Steven O.

    2018-03-06

    A composite anode for a lithium-ion battery is manufactured from silicon nanoparticles having diameters mostly under 10 nm; providing an oxide layer on the silicon nanoparticles; dispersing the silicon nanoparticles in a polar liquid; providing a graphene oxide suspension; mixing the polar liquid containing the dispersed silicone nanoparticles with the graphene oxide suspension to obtain a composite mixture; probe-sonicating the mixture for a predetermined time; filtering the composite mixture to obtain a solid composite; drying the composite; and reducing the composite to obtain graphene and silicon.

  11. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    Science.gov (United States)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  12. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  13. Redox-assisted Li+-storage in lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang Qizhao; Wang Qing

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e − and h + ) and ionic species (Li + ) at the electrode–electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li + storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. (topical review)

  14. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  15. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries.

    Science.gov (United States)

    Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno

    2017-06-09

    Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M 1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P 1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO 4 (LFP) cathode in lithium cells. When mixing the P 1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize

  17. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  18. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  19. Iron-Based Electrodes Meet Water-Based Preparation, Fluorine-Free Electrolyte and Binder: A Chance for More Sustainable Lithium-Ion Batteries?

    Science.gov (United States)

    Valvo, Mario; Liivat, Anti; Eriksson, Henrik; Tai, Cheuk-Wai; Edström, Kristina

    2017-06-09

    Environmentally friendly and cost-effective Li-ion cells are fabricated with abundant, non-toxic LiFePO 4 cathodes and iron oxide anodes. A water-soluble alginate binder is used to coat both electrodes to reduce the environmental footprint. The critical reactivity of LiPF 6 -based electrolytes toward possible traces of H 2 O in water-processed electrodes is overcome by using a lithium bis(oxalato)borate (LiBOB) salt. The absence of fluorine in the electrolyte and binder is a cornerstone for improved cell chemistry and results in stable battery operation. A dedicated approach to exploit conversion-type anodes more effectively is also disclosed. The issue of large voltage hysteresis upon conversion/de-conversion is circumvented by operating iron oxide in a deeply lithiated Fe/Li 2 O form. Li-ion cells with energy efficiencies of up to 92 % are demonstrated if LiFePO 4 is cycled versus such anodes prepared through a pre-lithiation procedure. These cells show an average energy efficiency of approximately 90.66 % and a mean Coulombic efficiency of approximately 99.65 % over 320 cycles at current densities of 0.1, 0.2 and 0.3 mA cm -2 . They retain nearly 100 % of their initial discharge capacity and provide an unmatched operation potential of approximately 2.85 V for this combination of active materials. No occurrence of Li plating was detected in three-electrode cells at charging rates of approximately 5C. Excellent rate capabilities of up to approximately 30C are achieved thanks to the exploitation of size effects from the small Fe nanoparticles and their reactive boundaries. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie; Lu, Wei

    2015-06-01

    The deposition of manganese ions dissolved from the cathode onto the interface between the solid electrolyte interphase (SEI) and graphite causes severe capacity fading in manganese oxide-based cells. The evolution of the SEI layer containing these Mn compounds and the corresponding instability of the layer are thoroughly investigated by artificially introducing soluble Mn ions into a 1 mol L-1 LiPF6 electrolyte solution. Deposition of dissolved Mn ions induces an oxygen-rich SEI layer that results from increased electrolyte decomposition, accelerating SEI growth. The spatial distribution of Mn shows that dissolved Mn ions diffuse through the porous layer and are deposited mostly at the inorganic layer/graphite interface. The Mn compound deposited on the anode, identified as MnF2, originates from a metathesis reaction between LiF and dissolved Mn ion. It is confirmed that ion-exchange reaction occurs in the inorganic layer, converting SEI species to Mn compounds. Some of the Mn is observed inside the graphite; this may cause surface structural disordering in the graphite, limiting lithium-ion intercalation. The continuous reaction that occurs at the inorganic layer/graphite interfacial regions and the modification of the original SEI layer in the presence of Mn ions are critically related to capacity fade and impedance rise currently plaguing Li-ion cells.

  1. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    International Nuclear Information System (INIS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies. (viewpoint)

  2. Methods for using atomic layer deposition to produce a film for solid state electrolytes and protective electrode coatings for lithium batteries

    Science.gov (United States)

    Elam, Jeffrey W.; Meng, Xiangbo

    2018-03-13

    A method for using atomic layer deposition to produce a film configured for use in an anode, cathode, or solid state electrolyte of a lithium-ion battery or a lithium-sulfur battery. The method includes repeating a cycle for a predetermined number of times in an inert atmosphere. The cycle includes exposing a substrate to a first precursor, purging the substrate with inert gas, exposing the substrate to a second precursor, and purging the substrate with inert gas. The film is a metal sulfide.

  3. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing

    International Nuclear Information System (INIS)

    Hu, Xiaobing; Fisher, Craig A.J.; Kobayashi, Shunsuke; Ikuhara, Yumi H.; Fujiwara, Yasuyuki; Hoshikawa, Keigo; Moriwake, Hiroki; Kohama, Keiichi; Iba, Hideki; Ikuhara, Yuichi

    2017-01-01

    La (1-x)/3 Li x NbO 3 (LLNbO) is a promising electrolyte material for solid-state lithium-ion batteries because it is stable in contact with Li metal and contains a high concentration of intrinsic Li-ion vacancies. One strategy for improving its ionic conductivity and making it more competitive with other solid-state Li-ion electrolytes is to disorder the Li-ion vacancies by appropriate post-synthesis heat treatment, e.g., annealing. In this study, we examine the effects of annealing on single crystals of LLNbO with Li contents x = 0.07 and 0.13 based on simultaneous atomic resolution high angle annular dark field and annular bright field imaging methods using state-of-the-art aberration corrected scanning transmission electron microscopes. It is found that La modulation within A1 layers of the cation-deficient layered perovskite structure becomes more diffuse after annealing. In addition, some La atoms move to A-site positions and O4 window positions in the nominally vacant A2 layer, while O atom columns in this layer become rumpled in the [001] p direction, indicating that the NbO 6 octahedra are more heavily distorted after annealing. The observed crystal structure differences between as-prepared and annealed single crystals explain the drop in Li-ion conductivities of LLNbO single crystals after heat treatment.

  4. Impedance spectroscopy of ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Cosentino, I.C.; Florio, D.Z. de; Franca, Y.V.

    1996-01-01

    The Impedance Spectroscopy (IS) technique has been used to the study of Th O 2 :Y 2 O 3 , Zr O 2 :La 2 O 3 and Zr O 2 :Y 2 O 3 solid electrolytes. The results show that solid solution has been attained, grain boundaries act as oxygen-ion blockers, and the importance of the IS technique to study phase transformation in ceramics. (author)

  5. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  6. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.

    Science.gov (United States)

    Suo, Liumin; Oh, Dahyun; Lin, Yuxiao; Zhuo, Zengqing; Borodin, Oleg; Gao, Tao; Wang, Fei; Kushima, Akihiro; Wang, Ziqiang; Kim, Ho-Cheol; Qi, Yue; Yang, Wanli; Pan, Feng; Li, Ju; Xu, Kang; Wang, Chunsheng

    2017-12-27

    Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

  7. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  8. Current Progress of Si/Graphene Nanocomposites for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yinjie Cen

    2018-03-01

    Full Text Available The demand for high performance lithium-ion batteries (LIBs is increasing due to widespread use of portable devices and electric vehicles. Silicon (Si is one of the most attractive candidate anode materials for next generation LIBs. However, the high-volume change (>300% during lithium ion alloying/de-alloying leads to poor cycle life. When Si is used as the anode, conductive carbon is needed to provide the necessary conductivity. However, the traditional carbon coating method could not overcome the challenges of pulverization and unstable Solid Electrolyte Interphase (SEI layer during long-term cycling. Since 2010, Si/Graphene composites have been vigorously studied in hopes of providing a material with better cycling performance. This paper reviews current progress of Si/Graphene nanocomposites in LIBs. Different fabrication methods have been studied to synthesize Si/Graphene nanocomposites with promising electrochemical performances. Graphene plays a key enabling role in Si/Graphene anodes. However, the desired properties of graphene for this application have not been systematically studied and understood. Further systematic investigation of the desired graphene properties is suggested to better control the Si/Graphene anode performance.

  9. Sulfide-conducting solid electrolytes

    International Nuclear Information System (INIS)

    Kalinina, L.A.; Shirokova, G.I.; Murin, I.V.; Ushakova, Yu.N.; Fominykh, E.G.; Lyalina, M.Yu.

    2000-01-01

    Feasibility of sulfide transfer in phases on the basis of BaZrS 3 and MLn 2 S 4 ( M = Ca, Ba; Ln = La, Y, Tm, Nd, Sm, Pr) is considered. Solid solution regions on the basis of ternary compounds are determined. Systematic study of the phases is carried out making use of the methods of conductometry, emf in chemical concentration chains without/with transfer, potentiostatic chronoamperometry. Possible mechanism of defect formation during successive alloying of ternary sulfides by binary ones in suggested [ru

  10. Lithium ion batteries with titania/graphene anodes

    Science.gov (United States)

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  11. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  12. Anti-perovskite solid electrolyte compositions

    Science.gov (United States)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  13. Improving the performance of soft carbon for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chen Zonghai; Wang Qingzheng; Amine, K.

    2006-01-01

    A novel technique for designing a robust solid electrolyte interface (SEI) on the negative electrodes of lithium-ion batteries has been developed using a silane coating. Two silane compounds, 3,3,3-trifluoropropyltrimethoxysilane (TFPTMS) and dimethoxybis(2-(2-(2-mothoxyethoxy)ethoxy)ethoxy)silane (1ND3(MeO)), have been investigated with respect to improving the capacity retention of lithium manganese oxide spinel/soft carbon cells. The impact of the silane coating on the soft carbon electrode will be attributed to (1) changes in surface functional groups (2) compositional change of the SEI, and (3) changes in the kinetics of manganese deposition. The impact of the upper cutoff voltage on the capacity retention of the cell was also discussed

  14. Confined silicon nanospheres by biomass lignin for stable lithium ion battery

    Science.gov (United States)

    Niu, Xiaoying; Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Yan, Chenglin

    2017-10-01

    Biomass lignin, as a significant renewable resource, is one of the most abundant natural polymers in the world. Here, we report a novel silicon-based material, in which lignin-derived functional conformal network crosslinks the silicon nanoparticles via self-assembly. This newly-developed material could greatly solve the problems of large volume change during lithiation/delithiation process and the formation of unstable solid electrolyte interphase layers on the silicon surface. With this anode, the battery demonstrates a high capacity of ˜3000 mA h g-1, a highly stable cycling retention (˜89% after 100 cycles at 300 mA g-1) and an excellent rate capability (˜800 mA h g-1 at 9 A g-1). Moreover, the feasibility of full lithium-ion batteries with the novel silicon-based material would provide wide range of applications in the field of flexible energy storage systems for wearable electronic devices.

  15. Mechanism of ion exchange in zirconium phosphates. 17. Dehydration behavior of lithium ion exchanged phases

    Energy Technology Data Exchange (ETDEWEB)

    Clearfield, A; Pack, S P; Troup, J M [Ohio Univ., Athens (USA). Dept. of Chemistry

    1977-01-01

    The phases formed by the dehydration of lithium exchanged ..cap alpha..-zirconium phosphate, Zr(HP0/sub 4/).H/sub 2/0, were determined by a combination of X-ray, TGA and DTA studies. Samples containing 10, 20, 30 ..... 100% of theoretical lithium ion capacity were examined. The data are summarized in a phase diagram which however is not an equilibrium diagram because of the slowness of approach to equilibrium. The numerous phases obtained and the ease with which they rearrange indicates a high mobility for the incorporated cations. This suggested that ..cap alpha..-zirconium phosphate may behave as a solid electrolyte and indeed this was demonstrated by having it serve in that capacity in a small sodium sulfur battery.

  16. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  17. Preparation of thoria calcia solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.

    1982-01-01

    The experimental procedures for the preparation of thoria-calcia solid electrolytes are described. Cold-pressed specimens pre-sintered at 1400 0 C and sintered at 2000 0 C have been used for thermally stimulated depolarization currents measurements in the temperature range 100 K - 300 K as well as for ionic conductivity measurements in the temperature range RT - 900 K. The detection of a relaxation peak probably due to the reorientation of the Ca'' sub(Th) - V sup(..) sub(O) complex shows that solid solution has been attained. Preliminary results of electrical conductivity are also reported. (Author) [pt

  18. Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application

    International Nuclear Information System (INIS)

    Yang, Zunxian; Meng, Qing; Yan, Wenhuan; Lv, Jun; Guo, Zaiping; Yu, Xuebin; Chen, Zhixin; Guo, Tailiang; Zeng, Rong

    2015-01-01

    Uniform Sn/C hybrid core/shell nanocomposites were synthesized by a combination of electrospinning and subsequent thermal treatment in a reducing atmosphere. The particular three-dimensional architecture, consisting of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell, is characterized by many micro/nanochannels, enhanced mechanical support from the three-dimensional hollow carbon shell, and the abundant porous carbon matrix. The as-prepared Sn/C core/shell nanomaterials exhibit excellent electrochemical performance. They display a reversible capacity of 546.7 mAhg −1 up to 100 cycles at the current density of 40 mAg −1 and good rate capability of 181.8 mAhg −1 at 4000 mAg −1 . These results indicate that the composite could be a promising anode candidate for lithium ion batteries. - Highlights: • Sn/C core/shell composites were synthesized by an electrospinning, a hydrothermal process, and further thermal treatment. • The best-performing 3D composite consists of a Sn@C nanoparticle core and porous hollow carbon nanofiber shell. • The Sn/C composite electrode exhibit excellent Li ion storage capacity and cycling stability

  19. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    Science.gov (United States)

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  20. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  1. Mechanism of Formation of Li 7 P 3 S 11 Solid Electrolytes through Liquid Phase Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing [Energy; Lu, Dongping [Energy; Bowden, Mark [Environmental; El Khoury, Patrick Z. [Environmental; Han, Kee Sung [Environmental; Deng, Zhiqun Daniel [Energy; Xiao, Jie [Energy; Zhang, Ji-Guang [Energy; Liu, Jun [Energy

    2018-01-22

    Crystalline Li7P3S11 is a promising solid electrolyte for all solid state lithium/lithium ion batteries. A controllable liquid phase synthesis of Li7P3S11 is more desirable compared to conventional mechanochemical synthesis, but recent attempts suffer from reduced ionic conductivities. Here we elucidate the formation mechanism of crystalline Li7P3S11 synthesized in the liquid phase (acetonitrile, or ACN). We conclude that the crystalline Li7P3S11 forms through a two-step reaction: 1) formation of solid Li3PS4∙ACN and amorphous Li2S∙P2S5 phases in the liquid phase; 2) solid-state conversion of the two phases. The implication of this two-step reaction mechanism to the morphology control and the transport properties of liquid phase synthesized Li7P3S11 is identified and discussed.

  2. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  3. Metal-organic frameworks for lithium ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-01-01

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m 2 g −1 ) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m 2 g −1 ), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study

  4. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  5. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  6. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  7. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  8. Neutron scattering studies of solid electrolytes

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1976-01-01

    The role which neutron scattering can play in determining the nature of the disorder and the conducting mechanism in the solid electrolytes is discussed. First, some of the general formalism for elastic and inelastic neutron scattering is reviewed, and the quantities which can be measured are pointed out. Then the application of neutron scattering to the studies of three different problems is examined; the anion disorder in the fluorite system, the dynamical behavior in beta-alumina, and the cation diffusion in αAgI are discussed. 8 figures

  9. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    OpenAIRE

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with...

  10. Lithium-ion batteries advances and applications

    CERN Document Server

    Pistoia, Gianfranco

    2014-01-01

    Lithium-Ion Batteries features an in-depth description of different lithium-ion applications, including important features such as safety and reliability. This title acquaints readers with the numerous and often consumer-oriented applications of this widespread battery type. Lithium-Ion Batteries also explores the concepts of nanostructured materials, as well as the importance of battery management systems. This handbook is an invaluable resource for electrochemical engineers and battery and fuel cell experts everywhere, from research institutions and universities to a worldwi

  11. A Consistent Derivation of the Impedance of a Lithium-Ion Battery Electrode and its Dependency on the State-of-Charge

    International Nuclear Information System (INIS)

    Schönleber, M.; Uhlmann, C.; Braun, P.; Weber, A.; Ivers-Tiffée, E.

    2017-01-01

    Highlights: •A derivation of the impedance model of a Lithium-Ion battery electrode is given. •The dependency of all partial impedances on the State-of-Charge is revealed. •The lasting disagreement in how to model solid-state diffusion is settled. •A solid starting point to derive models of any complexity is provided. •The connection between differential capacity and solid-state diffusion is revealed. -- Abstract: A derivation of the fundamental impedance of a Lithium-Ion battery electrode is given, exemplarily conducted for a solid thin-film electrode. The focus of this derivation is not on developing a model which is able to reproduce the exact behaviour of a given electrode, but rather on deriving its fundamental characteristics from few and intuitive assumptions in a simple and transparent way. It is thus shown, that the fundamental impedance of a solid thin-film electrode consists of an RC-element for charge-transfer, a Finite-Length Warburg element for diffusion in the electrolyte and a Finite-Space Warburg element for diffusion in the solid-state. The use of a Finite-Length Warburg element with a serially connected capacitor for modelling diffusion in the solid-state is thus indicated to be physically questionable. In addition, the theoretically expected behaviour of charge-transfer and solid-state diffusion on the degree of lithiation (State-of-Charge) is derived and discussed.

  12. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte

    International Nuclear Information System (INIS)

    Cheng, Samson Ho-Sum; He, Kang-Qiang; Liu, Ying; Zha, Jun-Wei; Kamruzzaman, Md; Ma, Robin Lok-Wang; Dang, Zhi-Min; Li, Robert K.Y.; Chung, C.Y.

    2017-01-01

    All-solid-state batteries are proposed to have ultimate safety and higher power and energy densities over conventional lithium ion batteries with liquid electrolytes. The Li ion conductivity and interfacial resistance between electrolyte and electrodes are the major bottleneck of the development of all-solid-state batteries for practical uses. Here, we reported a novel composite electrolyte which is composed of uniform distributed Li ion conducting Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) fillers in PEO/LiClO 4 matrix. The EO:Li + ratio of 15:1 is being used to achieve lower interfacial resistance between electrolyte and electrodes through the melting process. The composite electrolyte is fabricated by simple solution casting method, which is more advantageous comparing with high temperature sintering or sol-gel method used in the fabrication of ceramic electrolytes. The composite electrolyte exhibits good Li ion conductivity of 4.8 × 10 −4 Scm −1 at 60 °C and excellent interfacial stability against Li metal. The all-solid-state lithium battery using this composite electrolyte shows a specific capacity of 140mAhg −1 and an unprecedentedly high capacity retention of 83% after 500 cycles at 60 °C and the rate of 1C. It is concluded that good electrode/electrolyte interfacial stability and contact as well as fast Li ion conductivity obtained by the addition of active garnet particulates to PEO/LiClO 4 matrix are essential criteria for good charge/discharge performance of all-solid-state lithium batteries.

  13. Synthesis and electrochemical performance of Sn-doped Li3V2(PO4)3/C cathode material for lithium ion battery by microwave solid-state technique

    International Nuclear Information System (INIS)

    Liu, Haiping; Bi, Sifu; Wen, Guangwu; Teng, Xiangguo; Gao, Peng; Ni, Zujun; Zhu, Yongming; Zhang, Fang

    2012-01-01

    Highlights: ► Li 3 V 2−x Sn x (PO 4 ) 3 /C (0 ⩽ x ⩽ 0.10) cathode is first reported. ► Sn doping improves the initial discharge capacity and the cycle stability of Li 3 V 2 (PO 4 ) 3 /C. ► Sn doping improves the conductivity and reversibility of the Li 3 V 2 (PO 4 ) 3 /C. - Abstract: Li 3 V 2−x Sn x (PO 4 ) 3 /C cathode materials with uniform and fine particle sizes were successfully and fast synthesized by a microwave solid-state synthesis method. X-ray diffraction patterns demonstrated that the appropriate addition of Sn did not destroy the lattice structure of Li 3 V 2 (PO 4 ) 3 /C, but decreased the unit cell volume. X-ray photoelectron spectroscopy analysis demonstrated that the main chemical state of V in the Li 3 V 1.95 Sn 0.05 (PO 4 ) 3 /C composite is +3 valence, while the chemical state of Sn in the Li 3 V 1.95 Sn 0.05 (PO 4 ) 3 /C is +4 valence. Scanning electron microscope analysis illustrated that the addition of Sn slightly affected the morphology of samples. As the cathode materials for Li-ion batteries, Li 3 V 2−x Sn x (PO 4 ) 3 /C (x ⩽ 0.10) exhibited higher discharge capacity and better cycle stability than the pure one. At a discharge rate of 0.5 C in the potential range of 2.5–4.5 V at room temperature, the initial discharge capacity of Li 3 V 1.95 Sn 0.05 (PO 4 ) 3 /C was 136 mA h/g. The low charge-transfer resistances and large lithium ion diffusion coefficients confirmed that Sn-doped Li 3 V 2 (PO 4 ) 3 /C samples possessed better electronic conductivity and lithium ion mobility. These improved electrochemical performances can be attributed to the appropriate amount of Sn doping in Li 3 V 2 (PO 4 ) 3 /C system by enhancing structural stability and electrical conductivity. The present study also demonstrates that the microwave processing is a fast, simple and useful method for the fabrication of Li 3 V 2 (PO 4 ) 3 /C crystals.

  14. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad [Engineering Physics, Sepuluh Nopember Institute of Technology ITS Campus, Sukolilo, Surabaya 6011 (Indonesia); Kartini, Evvy, E-mail: kartini@batan.go.id; Honggowiranto, Wagiyo; Supardi [Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia)

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound of Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.

  15. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji

    2013-01-01

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF 3 SO 3 ) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10 −6 S cm −1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm −1 , carbonyl (-C=O) at 1750–1650 cm −1 and ether (-C-O-C-) at 1150–1000 cm −1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF 3 SO 3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF 3 SO 3

  16. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  17. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  18. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Union operation image processing of data cubes separately processed by different objective filters and its application to void analysis in an all-solid-state lithium-ion battery.

    Science.gov (United States)

    Yamamoto, Yuta; Iriyama, Yasutoshi; Muto, Shunsuke

    2016-04-01

    In this article, we propose a smart image-analysis method suitable for extracting target features with hierarchical dimension from original data. The method was applied to three-dimensional volume data of an all-solid lithium-ion battery obtained by the automated sequential sample milling and imaging process using a focused ion beam/scanning electron microscope to investigate the spatial configuration of voids inside the battery. To automatically fully extract the shape and location of the voids, three types of filters were consecutively applied: a median blur filter to extract relatively larger voids, a morphological opening operation filter for small dot-shaped voids and a morphological closing operation filter for small voids with concave contrasts. Three data cubes separately processed by the above-mentioned filters were integrated by a union operation to the final unified volume data, which confirmed the correct extraction of the voids over the entire dimension contained in the original data. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  1. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  2. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  3. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  4. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  5. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  6. Impedance based time-domain modeling of lithium-ion batteries: Part I

    Science.gov (United States)

    Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen

    2018-03-01

    This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.

  7. Facile synthesis of Li2S-P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST)

    Science.gov (United States)

    Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook

    2018-06-01

    A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.

  8. Infrared thermography non-destructive evaluation of lithium-ion battery

    Science.gov (United States)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  9. Materials Compositions for Lithium Ion Batteries with Extended Thermal Stability

    Science.gov (United States)

    Kalaga, Kaushik

    Advancements in portable electronics have generated a pronounced demand for rechargeable energy storage devices with superior capacity and reliability. Lithium ion batteries (LIBs) have evolved as the primary choice of portable power for several such applications. While multiple variations have been developed, safety concerns of commercial technologies limit them to atmospheric temperature operability. With several niche markets such as aerospace, defense and oil & gas demanding energy storage at elevated temperatures, there is a renewed interest in developing rechargeable batteries that could survive temperatures beyond 100°C. Instability of critical battery components towards extreme thermal and electrochemical conditions limit their usability at high temperatures. This study deals with developing material configurations for LIB components to stabilize them at such temperatures. Flammable organic solvent based electrolytes and low melting polymer based separators have been identified as the primary bottleneck for LIBs to survive increasing temperature. Furthermore, thermally activated degradation processes in oxide based electrodes have been identified as the reason for their limited lifetime. A quasi-solid composite comprising of room temperature ionic liquids (RTILs) and Clay was developed as an electrolyte/separator hybrid and tested to be stable up to 120°C. These composites facilitate complete reversible Li intercalation in lithium titanate (LTO) with a stable capacity of 120 mAh g-1 for several cycles of charge and discharge while simultaneously resisting severe thermal conditions. Modified phosphate based electrodes were introduced as a reliable alternative for operability at high temperatures in this study. These systems were shown to deliver stable reversible capacity for numerous charge/discharge cycles at elevated temperatures. Higher lithium intercalation potential of the developed cathode materials makes them interesting candidates for high voltage

  10. Factors influencing charge capacity of vanadium pentoxide thin films during lithium ion intercalation/deintercalation cycles

    International Nuclear Information System (INIS)

    Alamarguy, D.; Castle, J. E.; Ibris, N.; Salvi, A. M.

    2007-01-01

    The intercalation of vanadium pentoxide by lithium ions leads to a change in optical properties, a process that is of value in thin-film electrochromic devices. In this study, films of V 2 O 5 , deposited on indium tin oxide (ITO) glass coupons by a sol-gel process, were challenged by increasing numbers of charge-discharge cycles ranging from 72 to 589 full cycles. The samples were characterized by x-ray photoelectron spectroscopy (XPS) and then examined in the deintercalated state by time-of-flight secondary ion mass spectroscopy (SIMS). XPS enabled measurement of the thickness and composition of the solid-electrolyte interface and provided evidence of the residual V 4+ concentration within the top few nanometers of the surface. The SIMS profile gave direct information on the thickness of the films and on the thickness loss caused by rinsing the samples after the electrochemical exposure. Determination, by SIMS, of the concentration of lithium ions has enabled a correction to be made for the amount of inactive material within the electrochemically active region of the film. The SIMS depth profiles for lithium in the four samples are similar, with a marked buildup of Li at the interface with the ITO. This interphase zone had a thickness of ∼27 nm and was electrochemically inactive, enabling a further correction to be made. Thus, by means of the XPS and the SIMS results the chemistry and thickness of the films could be fully characterized. The remaining inconsistency between capacity (between 35% and 100% of the anticipated charge) and number of cycles is ascribed to edge effects arising from the method used for production of the coupons

  11. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  12. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  13. Lithium-Ion Cell Charge Control Unit

    Science.gov (United States)

    Reid, Concha; Button, Robert; Manzo, Michelle; McKissock, Barbara; Miller, Thomas; Gemeiner, Russel; Bennett, William; Hand, Evan

    2006-01-01

    Life-test data of Lithium-Ion battery cells is critical in order to establish their performance capabilities for NASA missions and Exploration goals. Lithium-ion cells have the potential to replace rechargeable alkaline cells in aerospace applications, but they require a more complex charging scheme than is typically required for alkaline cells. To address these requirements in our Lithium-Ion Cell Test Verification Program, a Lithium-Ion Cell Charge Control Unit was developed by NASA Glenn Research Center (GRC). This unit gives researchers the ability to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and results in a substantial reduction in test costs as compared to individual cell testing. The Naval Surface Warfare Center at Crane, Indiana developed a power reduction scheme that works in conjunction with the Lithium-Ion Cell Charge Control Unit. This scheme minimizes the power dissipation required by the circuitry to prolong circuit life and improve its reliability.

  14. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Qing, Rui; Yang, Ming-Che; Meng, Ying Shirley; Sigmund, Wolfgang

    2013-01-01

    Highlights: • Phase pure LiNi x Fe 1−x PO 4 and LiNi x Fe 1−x PO 4 /C nanocomposites were obtained via a solid state reaction method. • Crystallite sizes were around 50 nm. Linear relationship was observed between lattice parameters and chemical composition. • Synthesized materials displayed electronic conductivity similar to reported value of LiFePO 4 . Carbon coating increased the conductivity to ∼10 −3 S/cm. • Chemical delithiation via NO 2 BF 4 extracted more than 90% of lithium from the nanocomposites, proving that Ni 2+ /Ni 3+ redox couple was activated. -- Abstract: Nanosize LiNi x Fe 1−x PO 4 solid solution and LiNi x Fe 1−x PO 4 /C nanocomposites were prepared via a solid state reaction method under argon atmosphere. A single phase olivine-type structure with Pnma space group was determined by X-ray diffraction. Crystallite sizes were found to be around 50 nm. A linear relationship was observed between lattice parameters and chemical composition which follows Vegard's law. Synthesized materials displayed electronic conductivity similar to previous reported values of LiFePO 4 . Carbon coating further increased the overall conductivity of nanocomposites to the order of 10 −3 S/cm. Chemical delithiation via NO 2 BF 4 oxidant extracted more than 95% of lithium from the solid solution material accompanied by a decrease in lattice parameters

  16. Identification and modelling of Lithium ion battery

    International Nuclear Information System (INIS)

    Tsang, K.M.; Sun, L.; Chan, W.L.

    2010-01-01

    A universal battery model for the charging process has been identified for Lithium ion battery working at constant temperature. Mathematical models are fitted to different collected charging profiles using the least squares algorithm. With the removal of the component which is related to the DC resistance of the battery, a universal model can be fitted to predict profiles of different charging rates after time scaling. Experimental results are included to demonstrate the goodness of fit of the model at different charging rates and for batteries of different capacities. Comparison with standard electrical-circuit model is also presented. With the proposed model, it is possible to derive more effective way to monitor the status of Lithium ion batteries, and to develop a universal quick charger for different capacities of batteries to result with a more effective usage of Lithium ion batteries.

  17. In-Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering

    International Nuclear Information System (INIS)

    Bridges, Craig A.; Paranthaman, Mariappan Parans; Sun, Xiao-Guang; Zhao, Jinkui; Dai, Sheng

    2012-01-01

    The aim of this work was to better understand the electrochemical processes occurring during the cycling of a lithium-ion half-cell containing ordered mesoporous hard carbon using time-resolved in situ small-angle neutron scattering (SANS). Utilizing electrolytes containing mixtures of deuterated (2H) and non-deuterated (1H) carbonates, we have addressed the challenging task of monitoring the formation and evolution of the solid-electrolyte interphase (SEI) layer. An evolution occurs in the SEI layer during discharge from a composition dominated by a higher scattering length density (SLD) lithium salt, to a lower SLD lithium salt for the ethylene carbonate/dimethyl carbonate (EC/DMC) mixture employed. By comparing half-cells containing different solvent deuteration levels, we show that it is possible to observe both SEI formation and lithium intercalation occurring concurrently at the low voltage region in which lithium intercalates into the hard carbon. These results demonstrate that SANS can be employed to monitor complicated electrochemical processes occurring in rechargeable batteries, in a manner that simultaneously provides information on the composition and microstructure of the electrode.

  18. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells

    International Nuclear Information System (INIS)

    Srinivasan, Rengaswamy; Carkhuff, Bliss G.; Butler, Michael H.; Baisden, Andrew C.

    2011-01-01

    We demonstrate, in three different rechargeable lithium-ion cells, the existence of an intrinsic relationship between a cell's internal temperature and a readily measurable electrical parameter, namely the phase shift between an applied sinusoidal current and the resulting voltage. The temperature range examined spanned from -20 to 66 deg. C. The optimum single frequency for the phase measurement is in the 40-100 Hz range, allowing for a measurement time of much less than a second; the phase shift in this range depends predominantly on temperature, and is almost completely independent of the state-of-charge. Literature reports suggest that the observed dependence of the phase shift on temperature arises from the ionic conduction of the so-called solid-electrolyte-interphase layer between the graphite anode and the electrolyte. A meter measuring the phase shift across this interphase is analogous to a thermometer reporting the temperature, thereby providing feedback for rapid corrections of any operating conditions that might lead to the catastrophic destruction of the cell. This level of monitoring and control is distinctly different from the present safety-enabling mechanisms: typically positive thermal coefficient ceramics/plastics, or 'shutdown' separators based on polyethylene that act to often permanently shut down current flow through the cell.

  19. Electrode nanomaterials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yaroslavtsev, A B; Kulova, T L; Skundin, A M

    2015-01-01

    The state-of-the-art in the field of cathode and anode nanomaterials for lithium-ion batteries is considered. The use of these nanomaterials provides higher charge and discharge rates, reduces the adverse effect of degradation processes caused by volume variations in electrode materials upon lithium intercalation and deintercalation and enhances the power and working capacity of lithium-ion batteries. In discussing the cathode materials, attention is focused on double phosphates and silicates of lithium and transition metals and also on vanadium oxides. The anode materials based on nanodispersions of carbon, silicon, certain metals, oxides and on nanocomposites are also described. The bibliography includes 714 references

  20. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  1. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    Science.gov (United States)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  2. Oxide materials as positive electrodes of lithium-ion batteries

    International Nuclear Information System (INIS)

    Makhonina, Elena V; Pervov, Vladislav S; Dubasova, Valeriya S

    2004-01-01

    The published data on oxide materials as positive electrodes for lithium-ion batteries are described systematically. The mechanisms of structural changes in cathode materials occurring during the operation of lithium-ion batteries and the problems concerned with their selection are discussed. Modern trends in optimising cathode materials and lithium-ion batteries on the whole are considered.

  3. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)3 solid electrolytes

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Shin, Dong Ok; Lee, Young-Gi

    2015-01-01

    Li 1+x Al x Ti 2-x (PO 4 ) 3 (LATP) solid electrolytes are prepared by hydrothermal reaction as an effective method to yield moderate ionic conductivity adoptable in actual lithium-ion batteries. Particularly examined in this study are the effects of the synthesis conditions, such as Al dopant concentration (x), hydrothermal reaction time, and calcination and sintering temperatures, on the ionic conductivity of the synthesized LATP. Through repeated synthesis and characterizations of the LATPs by variation of the values of condition variables, the optimum condition for the best LATP with adequate ionic conductivity applicable to actual lithium batteries are determined to be x = 0.3 or 0.4, a hydrothermal reaction time of 12 h, and calcination and sintering temperatures of 600 °C and 900 °C, respectively

  4. Graphite Recycling from Spent Lithium-Ion Batteries.

    Science.gov (United States)

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal stability and modeling of lithium ion batteries

    Science.gov (United States)

    Botte, Gerardine Gabriela

    2000-10-01

    First-principles mathematical models were developed to examine the effect of the lithium-lithium ion interactions inside the anode particles on the performance of a lithium foil cell. Two different models were developed: the chemical potential model (CPM) that includes the lithium-lithium ion interactions inside the anode particles and the diffusion model (DIM) that does not include the interactions. Significant differences in the thermal and electrochemical performance of the cell were observed between the two approaches. The temperature of the cell predicted by the DFM is higher than the one predicted by the CPM at a given capacity. The discharge time of the cell predicted by the DFM is shorter than the one predicted by the CPM. The results indicate that the cell needs to be modeled using the CPM approach especially at high discharge rates. An evaluation of the numerical techniques, control volume formulation (CVF) and finite difference method (FDM), used for the models was performed. It is shown that the truncation error is the same for both methods when the boundary conditions are of the Dirichlet type, the system of equations are linear and represented in Cartesian coordinates. A new technique to analyze the accuracy of the methods is presented. The only disadvantage of the FDM is that it failed to conserve mass for a small number of nodes when both boundary conditions include a derivative term whereas the CVF did conserve mass for these cases. However, for a large number of nodes the FDM provides mass conservation. It is important to note that the CVF has only (DeltaX) order of accuracy for a Neumann type boundary condition whereas the FDM has (DeltaX) 2 order. The second topic of this dissertation presents a study of the thermal stability of LiPF6 EC:EMC electrolyte for lithium ion batteries. A differential scanning calorimeter (DSC) was used to perform the study of the electrolyte. For first time, the effect of different variables on its thermal stability

  6. Solid-state synthesis of uniform Li2MnSiO4/C/graphene composites and their performance in lithium-ion batteries

    Science.gov (United States)

    Gong, Huaxu; Zhu, Yongchun; Wang, Linlin; Wei, Denghu; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Uniform nanospherical Li2MnSiO4/C/graphene composites have been obtained by polyethylene glycol-600 (PEG-600) assisted solid-state reaction using spherical SiO2 as precursor, and heat treatment with the mixed carbon sources (glucose, cellulose acetate and graphene oxide). The transmission electron microscope (TEM) images show that Li2MnSiO4 nanospheres with size of 50 nm are embedded in the three-dimensional (3D) nest-like carbon network. Electrochemical measurements reveal that the composites exhibit first discharge capacity of 215.3 mAh g-1 under 0.05 C, together with a stable discharge capacity of 175 mAh g-1 after 40 cycles. The 3D carbon network and the carbon layer (amorphous carbon and graphene) are favorable for improving the electrochemical performance.

  7. Hybrid Lithium-ion Capacitor / Lithium-ion Battery System for Extended Performance

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed task will involve the design of a hybrid power system with lithium-ion (li-ion) capacitors (LICs), li-ion batteries and solar cells. The challenge in...

  8. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    Science.gov (United States)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  9. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dequan; Liu, Zheng Jiao; Li, Xiuwan; Xie, Wenhe; Wang, Qi; Liu, Qiming; Fu, Yujun; He, Deyan

    2017-12-01

    To satisfy the increasing energy demands of portable electronics, electric vehicles, and miniaturized energy storage devices, improvements to lithium-ion batteries (LIBs) are required to provide higher energy/power densities and longer cycle lives. Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes are promising candidates for use as electrodes in next-generation LIBs owing to their extremely high gravimetric and volumetric capacities, low working voltages, and natural abundances. However, due to the violent volume changes that occur during lithium-ion insertion/extraction and the formation of an unstable solid electrolyte interface, the use of Group IVA element-based anodes in commercial LIBs is still a great challenge. Evaluating the electrochemical performance of an anode in a full-cell configuration is a key step in investigating the possible application of the active material in LIBs. In this regard, the recent progress and important approaches to overcoming and alleviating the drawbacks of Group IVA element-based anode materials are reviewed, such as the severe volume variations during cycling and the relatively brittle electrode/electrolyte interface in full-cell LIBs. Finally, perspectives and future challenges in achieving the practical application of Group IVA element-based anodes in high-energy and high-power-density LIB systems are proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.

    Science.gov (United States)

    Zhang, Yaguang; Du, Ning; Chen, Yifan; Lin, Yangfan; Jiang, Jinwei; He, Yuanhong; Lei, Yu; Yang, Deren

    2018-03-28

    Si/C composite is one of the most promising candidate materials for next-generation lithium-ion battery anodes. Herein, we demonstrate the novel structure of carbon cages encapsulating porous Si synthesized by the reaction between magnesium silicide (Mg 2 Si) and carbon dioxide (CO 2 ) and subsequent acid washing. Benefitting from the in situ deposition through magnesiothermic reduction of CO 2 , the carbon cage seals the inner Si completely and shows higher graphitization than that obtained from the decomposition of acetylene. After removing MgO, pores are created, which can accommodate the volume change of the Si anode during the charge/discharge process. As the anode material for lithium-ion batteries, the porous Si/C electrode shows a charge capacity of ∼1124 mA h g -1 after 100 cycles with 86.4% capacity retention at the current density of 0.4 A g -1 . When the current density increases to 1.6 and 3.2 A g -1 , the capacity can still be maintained at ∼860 and ∼460 mA h g -1 , respectively. The prominent cycling and rate performance is contributed by the built-in space for Si expansion, static carbon cages that prevent penetration of electrolyte and stabilize the solid electrolyte interface (SEI) outside, and fast charge transport by the novel structure.

  11. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  12. Solid polymer composite electrolytes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, S M.J.; Mikhailenko, S D; Kaliaguine, S

    1998-07-01

    Composite electrolyte membranes for fuel cell technology were prepared from solid state proton conductors and polymer binders. The polymers were partially sulfonated and non-sulfonated polysulfone (PS), porous polyetherimide (PEI) and polymethylmethacrylate (PMMA). As proton conductors H-chabazite, tungstophosphoric acid and its Na-salt and non-stoichiometric boron phosphate were employed. All membranes prepared using sulfonated PS as a binder with sulfonation degree higher than 50% were found to be mechanically unstable. They possess however reasonably high conductivity up to 6{times}10{sup {minus}3} S/cm. Introducing the tungstophosphoric acid (TPA) into the nonsulfonated porous PS makes possible to obtain strong and flexible membranes with s=4{times}10{sup {minus}3} S/cm, while use of boron phosphate in that case results in the conductivity of about 10{sup {minus}5} S/cm. Porous PEI impregnated with aqueous solution of TPA retains its original tensile strength and exhibited the conductivity s=2{times}10{sup {minus}4} S/cm. It however fell to 3{times}10{sup {minus}5} S/cm when the binder was modified with 2% of propionic acid, which caused a decrease in polymer pore size. Incorporation of the sodium acid salt of TPA into PEI allows one to obtain a composite with reasonably good mechanical properties and a conductivity of ca 10{sup {minus}5} S/cm for membranes prepared by the cast method. Using the phase inversion technique for preparation of the membranes of the same composition makes possible to increase their conductivity up to 10{sup {minus}4} S/cm. When boron phosphate was used in lieu of TPA salt the conductivity obtained is still higher reaching 3{times}10{sup {minus}5} and 3{times}10{sup {minus}4} S/cm for membranes prepared by cast and phase inversion techniques respectively. The PMMA based membranes were mechanically stable even when a solid content reached 55wt.%. Among PMMA membranes the highest conductivity of 10{sup {minus}3} S/cm was registered for

  13. The lithium-ion accumulators in Japan

    International Nuclear Information System (INIS)

    Lazzari, O.

    2006-07-01

    This document takes stock on the different technologies of lithium based batteries developed in Japan as the materials used to produce their different elements. The today tendencies of the japanese researches are discussed. The applications of the lithium-ion are presented. A list of the main public and private laboratories in the domain and the research programs is provided. (A.L.B.)

  14. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  15. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes.

    Science.gov (United States)

    Chen, Bingbing; Ju, Jiangwei; Ma, Jun; Zhang, Jianjun; Xiao, Ruijuan; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Density functional theory simulations and experimental studies were performed to investigate the interfacial properties, including lithium ion migration kinetics, between lithium metal anode and solid electrolyte Li 10 GeP 2 S 12 (LGPS). The LGPS[001] plane was chosen as the studied surface because the easiest Li + migration pathway is along this direction. The electronic structure of the surface states indicated that the electrochemical stability was reduced at both the PS 4 - and GeS 4 -teminated surfaces. For the interface cases, the equilibrium interfacial structures of lithium metal against the PS 4 -terminated LGPS[001] surface (Li/PS 4 -LGPS) and the GeS 4 -terminated LGPS[001] surface (Li/GeS 4 -LGPS) were revealed based on the structural relaxation and adhesion energy analysis. Solid electrolyte interphases were expected to be formed at both Li/PS 4 -LGPS and Li/GeS 4 -LGPS interfaces, resulting in an unstable state of interface and large interfacial resistance, which was verified by the EIS results of the Li/LGPS/Li cell. In addition, the simulations of the migration kinetics show that the energy barriers for Li + crossing the Li/GeS 4 -LGPS interface were relatively low compared with the Li/PS 4 -LGPS interface. This may contribute to the formation of Ge-rich phases at the Li/LGPS interface, which can tune the interfacial structures to improve the ionic conductivity for future all-solid-state batteries. This work will offer a thorough understanding of the Li/LGPS interface, including local structures, electronic states and Li + diffusion behaviors in all-solid-state batteries.

  16. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  17. Novel lithium iron phosphate materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Jelena

    2011-06-15

    Conventional energy sources are diminishing and non-renewable, take million years to form and cause environmental degradation. In the 21st century, we have to aim at achieving sustainable, environmentally friendly and cheap energy supply by employing renewable energy technologies associated with portable energy storage devices. Lithium-ion batteries can repeatedly generate clean energy from stored materials and convert reversely electric into chemical energy. The performance of lithium-ion batteries depends intimately on the properties of their materials. Presently used battery electrodes are expensive to be produced; they offer limited energy storage possibility and are unsafe to be used in larger dimensions restraining the diversity of application, especially in hybrid electric vehicles (HEVs) and electric vehicles (EVs). This thesis presents a major progress in the development of LiFePO4 as a cathode material for lithium-ion batteries. Using simple procedure, a completely novel morphology has been synthesized (mesocrystals of LiFePO4) and excellent electrochemical behavior was recorded (nanostructured LiFePO4). The newly developed reactions for synthesis of LiFePO4 are single-step processes and are taking place in an autoclave at significantly lower temperature (200 deg. C) compared to the conventional solid-state method (multi-step and up to 800 deg. C). The use of inexpensive environmentally benign precursors offers a green manufacturing approach for a large scale production. These newly developed experimental procedures can also be extended to other phospho-olivine materials, such as LiCoPO4 and LiMnPO4. The material with the best electrochemical behavior (nanostructured LiFePO4 with carbon coating) was able to deliver a stable 94% of the theoretically known capacity.

  18. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  19. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  20. Characteristics of Vanadium Doped And Bamboo Activated Carbon Coated LiFePO4 And Its Performance For Lithium Ion Battery Cathode

    Directory of Open Access Journals (Sweden)

    Nofrijon Sofyan

    2018-04-01

    Full Text Available Vanadium doped and bamboo activated carbon coated lithium iron phosphate (LiFePO4 used for lithium ion battery cathode has been successfully prepared. Lithium iron phosphate was prepared through a wet chemical method followed by a hydrothermal process from the starting materials of LiOH, NH4H2PO4, and FeSO4.7H2O. The dopant variations of 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% of vanadium and a fixed 3 wt.% of bamboo activated carbon were carried out via a solid-state reaction process each by using NH4VO3 as a source of vanadium and carbon pyrolyzed from bamboo tree, respectively. The characterization was carried out using X-ray Diffraction (XRD for the phase formed and its crystal structure, Scanning Electron Microscope (SEM for the surface morphology, Electrochemical Impedance Spectroscopy (EIS for the conductivity, and battery analyzer for the performance of lithium ion battery cathode. The XRD results show that the phase formed has an olivine based structure with an orthorhombic space group. Morphology examination revealed that the particle agglomeration decreased with the increasing level of vanadium concentrations. Conductivity test showed that the impedance of solid electrolyte interface decreased with the increase of vanadium concentration indicated by increasing conductivity of 1.25 x 10-5 S/cm, 2.02 x 10-5 S/cm, 4.37 x 10-5 S/cm, and 5.69 x 10-5 S/cm, each for 0 wt.%, 3 wt.%, 5 wt.%, and 7 wt.% vanadium, respectively. Vanadium doping and bamboo activated carbon coating are promising candidate for improving lithium ion battery cathode as the initial charge and discharge capacity at 0.5C for LiFePO4/C at 7 wt.% vanadium is in the range of 8.0 mAh/g.

  1. Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery.

    Science.gov (United States)

    Shi, Yang; Noelle, Daniel J; Wang, Meng; Le, Anh V; Yoon, Hyojung; Zhang, Minghao; Meng, Ying Shirley; Qiao, Yu

    2016-11-16

    Benzylamine (BA), dibenzylamine (DBA), and trihexylamine (THA) are investigated as thermal-runaway retardants (TRR) for lithium-ion batteries (LIBs). In a LIB, TRR is packaged separately and released when internal shorting happens, so as to suppress exothermic reactions and slow down temperature increase. THA is identified as the most efficient TRR. Upon nail penetration, 4 wt % THA can reduce the peak temperature by nearly 50%. The working mechanisms of the three amines are different: THA is highly wettable to the separator and immiscible with the electrolyte, and therefore, it blocks lithium-ion (Li + ) transport. BA and DBA decrease the ionic conductivity of electrolyte and increase the charge transfer resistance. All three amines react with charged electrodes; the reactions of DBA and THA do not have much influence on the overall heat generation, while the reaction of BA cannot be ignored.

  2. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.

    2013-06-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case, the performances of the active material are inaccurate, especially at high current densities. In this work we show the error committed in neglecting the polarizability of lithium counter electrodes, and we propose two reference electrodes to use in organic electrolytes based on lithium salts, namely Li4Ti5O12 and LiFePO 4. In particular, it was observed that, the polarizability of the metallic lithium counter electrode has a relevant stochastic component, which renders measurements at high current densities (above 1 mA·cm - 2) in two electrode cells non reproducible.

  3. Lithium-ion batteries with intrinsic pulse overcharge protection

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  4. Guidelines on Lithium-ion Battery Use in Space Applications

    Science.gov (United States)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  5. Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries

    International Nuclear Information System (INIS)

    Li, Bin; Xu, Mengqing; Li, Benzhen; Liu, Yanlin; Yang, Liang; Li, Weishan; Hu, Shejun

    2013-01-01

    Highlights: • SEI formed by PES on NG was characterized with charge/discharge test, SEM, FTIR, and XPS. • NG in PC-based electrolyte can be well protected using PES. • Sulfur-containing species is the main component of the SEI formed by PES. • Preferable reduction of PES results in the formation of protective SEI on NG. -- Abstract: The physical and chemical properties of the solid electrolyte interphase (SEI) formed by prop-1-ene-1,3-sultone (PES) on graphite anode in propylene carbonate (PC) based electrolyte for lithium ion battery were investigated by charge–discharge test, scanning electron spectroscopy with energy dispersive X-ray spectroscopy (SEM–EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It is found that the charge–discharge performance of the cell LiCoO 2 /natural graphite (NG) using PC-based electrolyte containing 3 wt% PES is superior to that containing 6 wt% propane sultone (PS), an SEI formation additive that has the similar molecular structure to PES but is reduced not as easily as PES. The results from SEM–EDS, FTIR and XPS show that the structure of graphite has been protected and some S-containing species are proven to be components of the SEI, suggesting that the preferable reduction of PES plays an important role in the formation of a protective SEI on NG

  6. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh

    2010-04-01

    The effects of crown ethers (CEs) on the performance of quasi-solid-state dye-sensitized solar cells (DSSCs) have been investigated. Nanocomposite silica was used to form gel matrices in the electrolytes, which contained lithium iodide (LiI) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar-to-electricity conversion efficiencies (η), with reference to the one without them. The crown ether, 15-C-5, with a size of cavity matching with the size of Li+ in the electrolyte rendered for its DSSC the best performance with an η of 3.60%, under 100 mW/cm2 illumination, as compared to 2.44% for the cell without any CE. Enhancements in the photovoltaic parameters of the cells with the CEs were explained based on the binding abilities of the CEs with lithium ions (Li+) in the electrolyte. Linear sweep voltammetry (LSV) measurements and electrochemical impedance spectra were used to substantiate the explanations. © 2009 Elsevier B.V. All rights reserved.

  7. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin; Huggins, Robert A.; Cui, Yi

    2011-01-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed

  8. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Yongbeom; Lim, Dae Young

    2009-01-01

    The surface of polyethylene (PE) membranes as a separator for lithium-ion polymer battery was modified with acrylonitrile (AN) using the plasma technology. The plasma-induced acrylonitrile coated PE (PiAN-PE) membrane was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The electrochemical performance of the lithium-ion polymer cell fabricated with the PE and the PiAN-PE membranes were also analyzed. The surface characterization demonstrates that the enhanced adhesion of the PiAN-PE membrane resulted from the increased polar component of surface energy for the PiAN-PE membrane. The presence of the PiAN induced onto the surface of the membrane via the plasma modification plays a critical role in improving the wettability and electrolyte retention, the interfacial adhesion between the electrodes and the separator, the cycle performance of the resulting lithium-ion polymer cell assembly. The PiAN-PE membrane modified by the plasma treatment holds a great potential to be used as a high-performance and cost-effective separator for lithium-ion polymer battery.

  9. Comparison of Vitros Dry Slide Technology for Determination of Lithium Ions with Other Methods

    Directory of Open Access Journals (Sweden)

    Nafija Serdarević

    2006-05-01

    Full Text Available The lithium ions concentration in human serum was determined using Dry-slide technology Vitros 250 Analyser (Ortho Clinical Diagnostic, atomic absorption spectrometry (AAS method Perkin Elmer 403 and ion-selective electrode (ISE potentiometry AVL 9181. We compared lithium ions results in sample sera between these methods. Our reference method was AAS. We analyzed lithium ions concentration in 23 sera samples of patients after oral administration of lithium carbonate (3x 300mg Jadran, Galen Laboratory Rijeka, by dry-slide technology, AAS and ISE methods. The quality control, precision, reproducibility and accuracy for Vitros dry slide technology were assessed. We established that the main difference between AAS method and dry slide technology was not statistically significant at p< 0.05 according to Student t-test. Therefore, the dry slide technology may be a useful alternative or it may even replace other methods, such as AAS. The main difference between dry slide technology and ISE methods was statistically significant at p<0.05 using Student t-test. By ISE method, we obtained considerably higher results, which may be explained by the presence of electrolytes or medicaments interfering with lithium ions.

  10. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  11. Investigating the stability of cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Huang, Yiqing

    Lithium ion batteries are widely used in portable electronic devices and electric vehicles. However, safety is one of the most important issues for the Li-ion batteries' use. Some cathode materials, such as LiCoO 2, are thermally unstable in the charged state. Upon decomposition these cathode materials release O2, which could react with organic electrolyte, leading to a thermal runaway. Thus understanding the stability of the cathode materials is critical to the safety of lithium ion batteries. Olivine-type LiMnPO4 is a promising cathode material for lithium ion batteries because of its high energy density. We have revealed the critical role of carbon in the stability and thermal behaviour of olivine MnPO 4 obtained by chemical delithiation of LiMnPO4. (Li)MnPO 4 samples with various particle sizes and carbon contents were studied. Carbon-free LiMnPO4 obtained by solid state synthesis in O 2 becomes amorphous upon delithiation. Small amounts of carbon (0.3 wt.%) help to stabilize the olivine structure, so that completely delithiated crystalline olivine MnPO4 can be obtained. Larger amount of carbon (2 wt.%) prevents full delithiation. Heating in air, O2, or N 2 results in structural disorder (cathode materials and the electrolyte. The thermal stability of electrochemically delithiated Li0.1N 0.8C0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4 and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability is found in the order: NCA< VOPO4< MFP< FP=LiVOPO4=Li2VOPO4. Sealed capsule high pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC: DMC=1:1) between 200 and 300 °C. Finally, we characterize the lithium storage and release mechanism of V2O5 aerogels by x-ray photoelectron spectroscopy (XPS). We study the

  12. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  13. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  14. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    Science.gov (United States)

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  15. Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhu, Yanfei; Hu, Aiping; Tang, Qunli; Zhang, Shiying; Deng, Weina; Li, Yanhua; Liu, Zheng; Fan, Binbin; Xiao, Kuikui; Liu, Jilei; Chen, Xiaohua

    2018-03-14

    A novel strategy is proposed to construct a compact-nanobox (CNB) structure composed of irregular nanograins (average diameter ≈ 10 nm), aiming to confine the electrode-electrolyte contact area and enhance initial Coulombic efficiency (ICE) of transition metal oxide (TMO) anodes. To demonstrate the validity of this attempt, CoO-CNB is taken as an example which is synthesized via a carbothermic reduction method. Benefiting from the compact configuration, electrolyte can only contact the outer surface of the nanobox, keeping the inner CoO nanograins untouched. Therefore, the solid electrolyte interphase (SEI) formation is reduced. Furthermore, the internal cavity leaves enough room for volume variation upon lithiation and delithiation, resulting in superior mechanical stability of the CNB structure and less generation of fresh SEI. Consequently, the SEI remains stable and spatially confined without degradation, and hence, the CoO-CNB electrode delivers an enhanced ICE of 82.2%, which is among the highest values reported for TMO-based anodes in lithium-ion batteries. In addition, the CoO-CNB electrode also demonstrates excellent cyclability with a reversible capacity of 811.6 mA h g -1 (90.4% capacity retention after 100 cycles). These findings open up a new way to design high-ICE electrodes and boost the practical application of TMO anodes.

  16. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  17. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  18. Bubble-Sheet-Like Interface Design with an Ultrastable Solid Electrolyte Layer for High-Performance Dual-Ion Batteries.

    Science.gov (United States)

    Qin, Panpan; Wang, Meng; Li, Na; Zhu, Haili; Ding, Xuan; Tang, Yongbing

    2017-05-01

    In this work, a bubble-sheet-like hollow interface design on Al foil anode to improve the cycling stability and rate performance of aluminum anode based dual-ion battery is reported, in which, a carbon-coated hollow aluminum anode is used as both anode materials and current collector. This anode structure can guide the alloying position inside the hollow nanospheres, and also confine the alloy sizes within the hollow nanospheres, resulting in significantly restricted volumetric expansion and ultrastable solid electrolyte interface (SEI). As a result, the battery demonstrates an excellent long-term cycling stability within 1500 cycles with ≈99% capacity retention at 2 C. Moreover, this cell displays an energy density of 169 Wh kg -1 even at high power density of 2113 W kg -1 (10 C, charge and discharge within 6 min), which is much higher than most of conventional lithium ion batteries. The interfacial engineering strategy shown in this work to stabilize SEI layer and control the alloy forming position could be generalized to promote the research development of metal anodes based battery systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan; Li, Qiuyan; Lv, Dongping; Xiao, Jie; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupled with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.

  20. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Lü, Xujie [Center for Integrated Nanotechnologies and Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Yutao [Materials Research Program and The Texas Materials Institute, University of Texas at Austin, Texas 78712 (United States); Zhao, Yusheng, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Department of Physics, South University of Science and Technology of China, Guangdong 518055 (China)

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  1. Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Bao, Qi; Huang, Yao-Hui; Lan, Chun-Kai; Chen, Bing-Hong; Duh, Jenq-Gong

    2015-01-01

    Silicon (Si) has been perceived as a promising next-generation anode material for lithium ion batteries (LIBs) due to its superior theoretical capacity. Despite the natural abundance of this element on Earth, large-scale production of high-purity Si nanomaterials in a green and energy-efficient way is yet to become an industrial reality. Spray-drying methods have been exploited to recover Si particles from low-value sludge produced in the photovoltaic industry, providing a massive and cost-effective Si resource for fabricating anode materials. To address such drawbacks like volume expansion, low electrical and Li + conductivity and unstable solid electrolyte interphase (SEI) formation, the recycled silicon particles have been downsized into nanoscale and shielded by a highly conductive and protective graphene multilayer through high energy ball milling. Cyclic voltammetry and electrochemical impedance spectroscopy measurements have revealed that the graphene wrapping and size reduction approach have significantly improved the electrochemical performance. It delivers an excellent reversible capacity of 1,138 mA h g −1 and a long cycle life with 73% capacity retention over 150 cycles at a high current of 450 mA g −1 . The plentiful waste conversion methodology also provides considerable opportunities for developing additional rechargeable devices, ceramic, powder metallurgy and silane/siloxane products

  2. Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries

    Science.gov (United States)

    Stich, Michael; Pandey, Nisrit; Bund, Andreas

    2017-10-01

    The drying behaviour and water uptake of a variety of commonly used electrode materials (graphite, LiFePO4, LiMn2O4, LiCoO2, Li(NiCoMn)O2) and separators (polyolefin, glass fibre) for lithium-ion batteries (LIBs) are investigated. The drying experiments are carried out using a coulometric Karl Fischer titrator in combination with a vaporiser. This setup leads to a highly sensitive and precise method to quantify water amounts in the microgram range in solid materials. Thereby the mass specific drying behaviour at RT and 120 °C is determined as well as the water resorption of the investigated materials in conditioned air atmosphere (T: 25 °C, RH: 40%). By extracting characteristic water detection rate curves for the investigated materials, a method is developed to predict the water detection beyond the runtime of the experiment. The results help optimising drying procedures of LIB components and thus can save time and costs. It is also shown, that water contaminations in graphite/LiFePO4 coin cells with a LiPF6 based electrolyte lead to a faster capacity fade during cycling and a significant change of the cell impedance.

  3. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging.

    Science.gov (United States)

    Müller, Simon; Pietsch, Patrick; Brandt, Ben-Elias; Baade, Paul; De Andrade, Vincent; De Carlo, Francesco; Wood, Vanessa

    2018-06-14

    Capacity fade in lithium-ion battery electrodes can result from a degradation mechanism in which the carbon black-binder network detaches from the active material. Here we present two approaches to visualize and quantify this detachment and use the experimental results to develop and validate a model that considers how the active particle size, the viscoelastic parameters of the composite electrode, the adhesion between the active particle and the carbon black-binder domain, and the solid electrolyte interphase growth rate impact detachment and capacity fade. Using carbon-silicon composite electrodes as a model system, we demonstrate X-ray nano-tomography and backscatter scanning electron microscopy with sufficient resolution and contrast to segment the pore space, active particles, and carbon black-binder domain and quantify delamination as a function of cycle number. The validated model is further used to discuss how detachment and capacity fade in high-capacity materials can be minimized through materials engineering.

  4. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    Science.gov (United States)

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  5. Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.

    Science.gov (United States)

    Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia

    2015-11-11

    Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.

  6. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  7. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  8. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  9. Energetics of lithium ion battery failure

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Richard E., E-mail: richard.e.lyon@faa.gov; Walters, Richard N.

    2016-11-15

    Highlights: • First measure of anaerobic failure energy of lithium ion batteries. • Novel and simple bomb calorimeter method developed and demonstrated. • Four different cathode chemistries examined. • Full range of charged capacity used as independent variable. • Failure energy identified as primary safety hazard. - Abstract: The energy released by failure of rechargeable 18-mm diameter by 65-mm long cylindrical (18650) lithium ion cells/batteries was measured in a bomb calorimeter for 4 different commercial cathode chemistries over the full range of charge using a method developed for this purpose. Thermal runaway was induced by electrical resistance (Joule) heating of the cell in the nitrogen-filled pressure vessel (bomb) to preclude combustion. The total energy released by cell failure, ΔH{sub f}, was assumed to be comprised of the stored electrical energy E (cell potential × charge) and the chemical energy of mixing, reaction and thermal decomposition of the cell components, ΔU{sub rxn}. The contribution of E and ΔU{sub rxn} to ΔH{sub f} was determined and the mass of volatile, combustible thermal decomposition products was measured in an effort to characterize the fire safety hazard of rechargeable lithium ion cells.

  10. Solid-state electrolyte for supercapacitors

    OpenAIRE

    K.C., Sabin

    2016-01-01

    Renewable energy has become a primary focus for scientific community since last decade. Great interesting investigations and creative works have been carried out to develop technology for powering our society, including disrupt technology for efficient energy storage and power manage. Supercapacitors (SP) also known as electrochemical double layer capacitors uses high surface area active electrode materials and various electrolytes to achieve capacitance of several order magnitude greater tha...

  11. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach.

    Science.gov (United States)

    Nowak, Sascha; Winter, Martin

    2018-02-20

    Lithium ion batteries are nowadays the state-of-the-art power sources for portable electronic devices and the most promising candidate for energy storage in large-size batteries, e.g., pure and hybrid vehicles. However, the degradation of the cell components minimizes both storage and operation lifetime (calendar and cycle life), which is called aging. Due to the numerous different aging effects, in either the single constituents or their interactions with each other, many reports about methodologies and techniques, both electrochemical and analytical, can be found in the literature. However, quantitative data about the degradation effects were seldom stated. One important effect is the cation distribution and migration during operation. Metal dissolution and metal migration of the cathode and the corresponding deposition of these metals on the graphitic anode are known harmful degradation effects, especially for the formed solid electrolyte interphase on the surface of the anode. Depending on the applied cell chemistries and therefore the cathode material, different mechanisms were reported so far. For lithium manganese oxide based cells, the acidification of the electrolyte due to composition of the conduction salt is attributed as the main source of metal migration. Due to subsequent loss of manganese from the cathode, the overall performance of the cell is seriously impaired. Based on the obtained observations, this degradation mechanism was adapted to lithium nickel cobalt manganese based cells as main cause of the capacity fading. However, with the help a developed total X-ray fluorescence method and additional surface and electrolyte investigations, the proposed HF based mechanism was disproven. Instead, the migration was directly associated with material defects or mechanical spalling of the particles. Furthermore, with the obtained quantitative data of the migrated transition metals on the anode and separator, the contribution on the capacity fade was

  12. Graphene quantum dots as the electrolyte for solid state supercapacitors

    Science.gov (United States)

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  13. Enhanced high voltage cyclability of LiCoO{sub 2} cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mingjiong; Qin, Chenyang; Liu, Zhen; Feng, Li; Su, Xiaoru; Chen, Yifeng [School of Materials Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, 315211 (China); Xia, Lan, E-mail: Lan.Xia@nottingham.edu.cn [Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, Centre for Sustainable Energy Technologies (CSET), University of Nottingham Ningbo China, Taikang East Road 199, Ningbo, 315100 (China); Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Science (CAS), Zhongguan West Road 1219, Ningbo, 315201 (China); Xia, Yonggao, E-mail: xiayg@nimte.ac.cn [Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Science (CAS), Zhongguan West Road 1219, Ningbo, 315201 (China); Liu, Zhaoping [Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Science (CAS), Zhongguan West Road 1219, Ningbo, 315201 (China)

    2017-05-01

    Highlights: • EEEP with electro-oxidable of the P-O bond can serves as a high-voltage additive. • EEEP tend to be electro-oxidized on LiCoO{sub 2} cathode prior to the solvents. • The high-voltage cyclability of LiCoO{sub 2} cathode is obviously improved using EEEP. - Abstract: Poly[bis-(ethoxyethoxyethoxy)phosphazene] (EEEP) with electro-oxidable of the P-O bond is prepared by a facile method and utilized as an electrolyte additive to enhance the cycling performance of LiCoO{sub 2} cathodes under high-voltage operations. We found that 5 wt.% EEEP made the blank electrolyte obviously reduce the flammability, as well as the capacity retention of Li/LiCoO{sub 2} half-cell assembling with the EEEP-containing electrolyte is elevated to 89.9% from 51.2% after 100 cycles at a high cutoff voltage of 4.4 V. The enhanced cycling performance of LiCoO{sub 2} cathode in the EEEP-containing electrolyte at a high potential should be ascribed to the formation of stable film on the cathode surface, resulting in suppression of the subsequent decomposition of electrolyte under high voltage working. The characterization from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) indicates that EEEP can be electrochemically oxidized to form a robust and protective film on LiCoO{sub 2}, and improve the interfacial stability of LiCoO{sub 2} cathode/electrolyte at high potentials.

  14. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  15. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  16. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  17. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries.

    Science.gov (United States)

    Luo, Zhiqiang; Liu, Luojia; Zhao, Qing; Li, Fujun; Chen, Jun

    2017-10-02

    Application of organic electrode materials in rechargeable batteries has attracted great interest because such materials contain abundant carbon, hydrogen, and oxygen elements. However, organic electrodes are highly soluble in organic electrolytes. An organic electrode of 2,3,5,6-tetraphthalimido-1,4-benzoquinone (TPB) is reported in which rigid groups coordinate to a molecular benzoquinone skeleton. The material is insoluble in aprotic electrolyte, and demonstrates a high capacity retention of 91.4 % (204 mA h g -1 ) over 100 cycles at 0.2 C. The extended π-conjugation of the material contributes to enhancement of the electrochemical performance (155 mA h g -1 at 10 C). Moreover, density functional theory calculations suggest that favorable synergistic reactions between multiple carbonyl groups and lithium ions can enhance the initial lithium ion intercalation potential. The described approach may provide a novel entry to next-generation organic electrode materials with relevance to lithium-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  19. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  20. Development of Lithium Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Directory of Open Access Journals (Sweden)

    Ryoji Inada

    2016-07-01

    Full Text Available All-solid-state lithium-ion battery (LiB is expected as one of the next generation energy storage devices because of their high energy density, high safety and excellent cycle stability. Although oxide-based solid electrolyte materials have rather lower conductivity and poor deformability than sulfide-based one, they have other advantages such as their chemical stability and easiness for handling. Among the various oxide-based SEs, lithium stuffed garnet-type oxide with the formula of Li7La3Zr2O12 (LLZ have been widely studied because of their high conductivity above 10-4 Scm-1 at room temperature, excellent thermal performance and stability against Li metal anode.Here, we present our recent progress for the development of garnet-type solid electrolytes with high conductivity by simultaneous substitution of Ta5+ into Zr4+ site and Ba2+ into La3+ site in LLZ. Li+ concentration was fixed to 6.5 per chemical formulae, so that the formulae of our Li garnet-type oxide is expressed as Li6.5La3-xBaxZr1.5-xTa0.5+xO12 (LLBZT and Ba contents x are changed from 0 to 0.3. As results, all LLBZT samples have cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba2+ contents x < 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba2+ and Ta5+ substitution levels. Relative densities of LLBZT are in the range between 89% and 93% and not influenced so much by the compositions. From AC impedance spectroscopy measurements, the total (bulk + grain conductivity at 27ºC of LLBZT shows its maximum value of 8.34 x 10-4 S cm-1 at x = 0.10, which is slightly higher than the conductivity (= 7.94 x 10-4 S cm-1 of LLZT without substituting Ba (x = 0. Activation energy of the conductivity tends to become lower by Ba substation, while excess Ba substitution degrades the conductivity in LLBZT. LLBZT has wide electrochemical potential window of 0-6 V vs. Li+/Li and

  1. Zinc terephthalates ZnC_8H_4O_4 as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Zou, Jian; Chen, Shulin; Yang, Jingyi; Qing, Fangzhu; Gao, Peng; Li, Jingze

    2017-01-01

    Graphical abstract: Both of well-crystalline and amorphous zinc terephthalates ZnC_8H_4O_4 are synthesized and amorphous structure demonstrates a higher capacity and better cycling performance. - Highlights: • Crystalline and amorphous ZnC_8H_4O_4 are obtained. • Both crystalline and amorphous ZnC_8H_4O_4 have σ_e of 10"−"7 S m"−"1. • Lithium ion diffusion is the rate-determine process. • Amorphous has a high capacity and durable performance. • Amorphous ZnC_8H_4O_4 has a high apparent lithium ion diffusion coefficient. - Abstract: Organic materials offer the advantages of cost-effective, environmental benignity, and molecular structural diversity as applications of electrode materials for lithium ion batteries. In fact, their lithium storage behaviors in terms of dynamics and kinetics intrinsically lie in ion migration in solids. Thus the solid forms including crystalline and amorphous states are crucial for the properties. In this study, a conventional carbonyl type organic material, namely zinc terephthalate (ZnC_8H_4O_4), is obtained in both well-crystalline and amorphous forms and applied as anodes for lithium ion batteries. ZnC_8H_4O_4 with amorphous structure shows higher lithium storage capacity and better capacity retention compared with that of crystalline one. It is ascribed that the amorphous phase provides a higher lithium ion diffusion coefficient than the crystalline one under the conditions of similar electronic conductivity.

  2. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    International Nuclear Information System (INIS)

    Garagounis, Ioannis; Kyriakou, Vasileios; Skodra, Aglaia; Vasileiou, Eirini; Stoukides, Michael

    2014-01-01

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH 3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10 -8 mol s -1 cm -2 , obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe 0.7 Cu 0.1 Ni 0.2 O 3 , cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10 −9 mol s -1 cm -2 using Ce 0.8 Y 0.2 O 2-δ –[Ca 3 (PO 4 ) 2 –K 3 PO 4 ] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  3. Zinc composite anode for batteries with solid electrolyte

    Science.gov (United States)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  4. Zinc composite anode for batteries with solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tedjar, F.; Melki, T.; Zerroual, L. (Setif Univ. (Algeria). Unite de Recherche Electrochimie)

    1992-05-01

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn[sup 2+] electrode (e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased. (orig.).

  5. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Energy Technology Data Exchange (ETDEWEB)

    Garagounis, Ioannis; Kyriakou, Vasileios [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Skodra, Aglaia [Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Vasileiou, Eirini; Stoukides, Michael, E-mail: stoukidi@cperi.certh.gr [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece)

    2014-01-17

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH{sub 3} synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10{sup -8} mol s{sup -1} cm{sup -2}, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe{sub 0.7}Cu{sub 0.1}Ni{sub 0.2}O{sub 3}, cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10{sup −9} mol s{sup -1} cm{sup -2} using Ce{sub 0.8}Y{sub 0.2}O{sub 2-δ}–[Ca{sub 3}(PO{sub 4}){sub 2}–K{sub 3}PO{sub 4}] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  6. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  7. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  8. Lithium bis(fluorosulfonyl)imide-PYR14TFSI ionic liquid electrolyte compatible with graphite

    Czech Academy of Sciences Publication Activity Database

    Nádherná, Martina; Reiter, Jakub; Moškon, J.; Dominko, R.

    2011-01-01

    Roč. 196, č. 18 (2011), s. 7700-7706 ISSN 0378-7753 R&D Projects: GA AV ČR(CZ) KJB200320801; GA AV ČR KJB200320901; GA MŠk(CZ) LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : Graphite * Ionic liquid * Bis(fluorosulfonyl)imide * Lithium -ion battery * Solid electrolyte interface Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.951, year: 2011

  9. The lithium-ion accumulators in Japan; Les accumulateurs lithium-ion au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, O

    2006-07-15

    This document takes stock on the different technologies of lithium based batteries developed in Japan as the materials used to produce their different elements. The today tendencies of the japanese researches are discussed. The applications of the lithium-ion are presented. A list of the main public and private laboratories in the domain and the research programs is provided. (A.L.B.)

  10. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  11. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  12. Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Joshi, Bhavana N.; Lee, Jong-Hyuk; Kim, Tae-Gun; Kim, Do-Yeon; Al-Deyab, Salem S.; Seong, Il Won; Swihart, Mark T.; Yoon, Woo Young; Yoon, Sam S.

    2017-01-01

    Hematite (Fe 2 O 3 ) nanoparticles and reduced graphene oxide (rGO) were supersonically sprayed onto copper current collectors to create high-performance, binder-free lithium ion battery (LIB) electrodes. Supersonic spray deposition is rapid, low-cost, and suitable for large-scale production. Supersonic impact of rGO sheets and Fe 2 O 3 nanoparticles on the substrate produces compacted nanocomposite films with short diffusion lengths for Li + ions. This structure produces high reversible capacity and markedly improved capacity retention over many cycles. Decomposition of lithium oxide generated during cycling activates the solid electrolyte interface layer, contributing to high capacity retention. The optimal composition ratio of rGO to Fe 2 O 3 was 9.1 wt.%, which produced a reversible capacity of 1242 mAh g −1 after N = 305 cycles at a current density of 1000 mA g −1 (1C).

  13. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Science.gov (United States)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  14. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    Energy Technology Data Exchange (ETDEWEB)

    Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.

  15. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  16. Parameter estimation for lithium ion batteries

    Science.gov (United States)

    Santhanagopalan, Shriram

    With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of

  17. Mars Express Lithium Ion Batteries Performance Analysis

    Directory of Open Access Journals (Sweden)

    Dudley G.

    2017-01-01

    Full Text Available Now more than 12 years in orbit, Mars Express battery telemetry during some of the deepest discharge cycles has been analysed with the help of the ESTEC lithium ion cell model. The best-fitting model parameter sets were then used to predict the energy that is expected to be available before the battery voltage drops below the minimum value that can support the power bus. This allows mission planners to determine what future power profiles could be supported without risk of entering safe mode. It also gives some more insights into the ageing properties of these batteries.

  18. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  19. 78 FR 19024 - Lithium Ion Batteries in Transportation Public Forum

    Science.gov (United States)

    2013-03-28

    ... NATIONAL TRANSPORTATION SAFETY BOARD Lithium Ion Batteries in Transportation Public Forum On Thursday and Friday, April 11-12, 2013, the National Transportation Safety Board (NTSB) will convene a forum titled, ``Lithium Ion Batteries in Transportation.'' The forum will begin at 9:00 a.m. on both...

  20. Performance and Safety of Lithium-ion Capacitors

    Science.gov (United States)

    Jeevarajan, Judith A.; Martinez, Martin D.

    2014-01-01

    Lithium-ion capacitors (LIC) are a recent innovation in the area of supercapacitors and ultracapacitors. With an operating voltage range similar to that of lithium-ion batteries and a very low selfdischarge rate, these can be readily used in the place of batteries especially when large currents are required to be stored safely for use at a later time.

  1. Experimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Kazunori, E-mail: takada.kazunori@nims.go.jp [Battery Materials Unit, National Institute for Materials Science, Tsukuba (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Tsukuba (Japan); Ohno, Takahisa [Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Tsukuba (Japan); Computational Materials Science Unit, National Institute for Materials Science, Tsukuba (Japan)

    2016-03-30

    Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solution to the issues of current lithium-ion batteries that are originated from their organic-solvent electrolytes. Although solid-state batteries had been suffering from low rate capability due to low ionic conductivities of solid electrolytes, some sulfide solid electrolytes exhibiting high ionic conductivity of the order of 10{sup −2} S cm{sup −1} have been recently developed. Since the conductivity is comparable to or even higher than that of liquid electrolytes, when taking the transport number of unity into account, ion transport in solid electrolytes has ceased from rate determination; however, it has been replaced by that across interfaces. The sulfide electrolytes show high interfacial resistance to the high-voltage cathodes. Our previous studies have demonstrated that oxide solid electrolytes interposed at the interface reduce the resistance, and they also suggest that the high resistance is attributable to a lithium-depleted layer formed at the interface. This study employs the first-principles calculation in order to gain insight into the interface. The interface structure between an oxide cathode/sulfide electrolyte simulated by the first-principles molecular dynamics has disclosed the presence of lithium-depleted layer at the interface, and the electronic structure calculated on the basis of density functional theory strongly suggests that the charge current preferentially removes lithium ions from the sulfide electrolyte side of the interface to deplete the lithium ion there. These calculation results are consistent with the transport mechanism proposed from the experimental results.

  2. Experimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries

    International Nuclear Information System (INIS)

    Takada, Kazunori; Ohno, Takahisa

    2016-01-01

    Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solution to the issues of current lithium-ion batteries that are originated from their organic-solvent electrolytes. Although solid-state batteries had been suffering from low rate capability due to low ionic conductivities of solid electrolytes, some sulfide solid electrolytes exhibiting high ionic conductivity of the order of 10 −2 S cm −1 have been recently developed. Since the conductivity is comparable to or even higher than that of liquid electrolytes, when taking the transport number of unity into account, ion transport in solid electrolytes has ceased from rate determination; however, it has been replaced by that across interfaces. The sulfide electrolytes show high interfacial resistance to the high-voltage cathodes. Our previous studies have demonstrated that oxide solid electrolytes interposed at the interface reduce the resistance, and they also suggest that the high resistance is attributable to a lithium-depleted layer formed at the interface. This study employs the first-principles calculation in order to gain insight into the interface. The interface structure between an oxide cathode/sulfide electrolyte simulated by the first-principles molecular dynamics has disclosed the presence of lithium-depleted layer at the interface, and the electronic structure calculated on the basis of density functional theory strongly suggests that the charge current preferentially removes lithium ions from the sulfide electrolyte side of the interface to deplete the lithium ion there. These calculation results are consistent with the transport mechanism proposed from the experimental results.

  3. On the theory of the electroreduction of solid oxide electrolytes

    International Nuclear Information System (INIS)

    Chebotin, V.N.; Brajnin, M.I.; Solov'eva, L.M.; Pakhnutov, I.A.; Lukach, Yu.S.

    1986-01-01

    The process of direct current passage through the cell with MOsub(2)+MeOsub(r) solid electrolyte (M-Zr, Hf, Ce, Th; Me-Ca, Sr, Sc, Y, lanthanides), a blockage cathode and a reversible anode is considered; it leads to electrolyte deviation from stoichiometric composition to insufficient oxygen content. The degree of this deviation and n-type electron conductivity proportional to it, depending on coordinate and time, is described by the nonlinear differential equation of the diffusion type. Electron conductivity of the electrolyte near the cathode increases in time approximating to the limiting value proportional to current conducted. As the distance to the cathode increases electron conductivity reduces by the exponential law, which transforms to a linear one in due course

  4. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  5. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  6. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  7. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  8. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  9. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  10. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoqing, E-mail: yxq-886@163.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Hong [Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guoqing; Li, Xinxi [School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Wu, Dingcai [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Fu, Ruowen, E-mail: cesfrw@mail.sysu.edu.cn [Materials Science Institute, PCFM Laboratory, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2015-01-15

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g{sup −1} for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g{sup −1}). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m{sup 2} g{sup −1}, which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite.

  11. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application

    International Nuclear Information System (INIS)

    Yang, Xiaoqing; Huang, Hong; Zhang, Guoqing; Li, Xinxi; Wu, Dingcai; Fu, Ruowen

    2015-01-01

    Carbon aerogel (CA) with 3-D continuous skeleton and mesopore structure was prepared via a microemulsion-templated sol–gel polymerization method and then used as the anode materials of lithium-ion batteries. It was found that the reversible specific capacity of the as-prepared CAs could stay at about 470 mA h g −1 for 80 cycles, much higher than the theoretical capacity of commercial graphite (372 mAh g −1 ). In addition, CA also showed a better rate capacity compared to commercial graphite. The good electrochemical properties could be ascribed to the following three factors: (1) the large BET surface area of 620 m 2  g −1 , which can provide more lithium ion insertion sites, (2) 3-D continuous skeleton of CAs, which favors the transport of the electrons, (3) 3-D continuous mesopore structure with narrow mesopore size distribution and high mesopore ratio of 87.3%, which facilitates the diffusion and transport of the electrolyte and lithium ions. - Highlights: • Carbon aerogel (CA) was prepared via a microemulsion-templated sol–gel method. • The CA presents high surface area, 3D continuous skeleton and mesopore structure. • The reversible capacity of CA is much higher than that of graphite

  12. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew; Long, Dirk; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2015-10-11

    Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internal Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.

  14. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  15. Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.

    Science.gov (United States)

    Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing

    2013-02-14

    Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.

  16. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  17. Moessbauer studies of microscopic disorder in solid electrolytes

    International Nuclear Information System (INIS)

    Pasternak, M.

    1987-01-01

    We implement for the first time Moessbauer spectroscopy (MS) to investigate short-range properties of disorder in solid electrolytes. MS in 129 I and 119 Sn was carried out in RbAg 4 I 5 and as impurity in Ag 2 Se, respectively. Measurements were performed both in the superionic and the normal phases. It is shown that localized cation hopping is an inherent feature of the α-AgI-type solid electrolytes. In RbAg 4 I 5 , at temperatures far below T c , a small fraction of Ag is still locally mobile and at T>T c , its concentration increases exponentially. A strong linear temperature dependence of the point-charge electric field gradient is observed and explained in terms of local hopping. With 119 Sn in Ag 2 Se we observe the onset of 'local melting' of the Ag surroundingt the SnSe 4 cluster at 50 K below the bulk superionic phase transition. The characteristic features of MS related to microscopic studies of solid electrolytes are fully described. (orig.)

  18. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  19. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    Science.gov (United States)

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  20. Control oriented 1D electrochemical model of lithium ion battery

    International Nuclear Information System (INIS)

    Smith, Kandler A.; Rahn, Christopher D.; Wang, Chao-Yang

    2007-01-01

    Lithium ion (Li-ion) batteries provide high energy and power density energy storage for diverse applications ranging from cell phones to hybrid electric vehicles (HEVs). For efficient and reliable systems integration, low order dynamic battery models are needed. This paper introduces a general method to generate numerically a fully observable/controllable state variable model from electrochemical kinetic, species and charge partial differential equations that govern the discharge/charge behavior of a Li-ion battery. Validated against a 313th order nonlinear CFD model of a 6 Ah HEV cell, a 12th order state variable model predicts terminal voltage to within 1% for pulse and constant current profiles at rates up to 50 C. The state equation is constructed in modal form with constant negative real eigenvalues distributed in frequency space from 0 to 10 Hz. Open circuit potential, electrode surface concentration/reaction distribution coupling and electrolyte concentration/ionic conductivity nonlinearities are explicitly approximated in the model output equation on a local, electrode-averaged and distributed basis, respectively. The balanced realization controllability/observability gramian indicates that the fast electrode surface concentration dynamics are more observable/controllable than the electrode bulk concentration dynamics (i.e. state of charge)

  1. Novel graphene papers with sporadic alkyl brushes on the basal plane as a high-capacity flexible anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Oh, Kyung Min; Cho, Sung-Woo; Kim, Gyeong-Ok; Ryu, Kwang-Sun; Jeong, Han Mo

    2014-01-01

    Graphene paper that exhibits an excellent stabilized capacity, as high as 1300 mAh g −1 at a current rate of 60 mA g −1 , as a lithium ion battery anode is fabricated and evaluated. The few-layer graphene used to make the graphene paper is prepared via the thermal reduction of graphite oxide. The graphene is then modified by a novel method utilizing inherent defects, namely epoxy groups, on the graphene as active sites for a reaction with methanol, 1-butanol, 1-hexanol, and 1-octanol. The density values and X-ray diffraction patterns obtained for the graphene paper demonstrate that the alkyl brushes on the graphene sheets expand the d-spacing and hinder close restacking of the sheets, thereby inducing the formation of extra cavities within the paper. This loose packing due to the alkyl brushes increases sensitively as the alkyl chain length of the alcohol becomes longer. The lithium ion insertion capacity of a graphene paper electrode at the first cycle also increases with the alkyl chain length. However, fading of the capacity at early charge/discharge cycles is accelerated by the modification process because of electrolyte penetration into the gallery and the acceleration of protective solid electrolyte interface film formation due to looser packing. The paper composed of graphene modified with 1-butanol rather than shorter or longer alcohols exhibits the best reversible storage capacity, more than two-fold higher when compared to that of pristine graphene paper, due to a compromise between two conflicting effects on the reversible storage capacity by long alkyl brushes. The tensile properties and electrical conductivity of the graphene papers are also examined

  2. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  3. Hyperfine structure of muonic lithium ions

    Directory of Open Access Journals (Sweden)

    Alexey P. Martynenko

    2015-06-01

    Full Text Available On the basis of perturbation theory in fine structure constant $\\alpha$ and the ratio of electron to muon masses we calculate recoil corrections of order $\\alpha^4 (M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2\\ln(M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2$, $\\alpha^5(m_e/m_\\mu\\ln(m_e/m_\\mu$ to hyperfine splitting of the ground state in muonic lithium ions $(\\mu e ^6_3\\mathrm{Li}^+$ and $(\\mu e ^7_3\\mathrm{Li}^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu e ^6_3\\mathrm{Li}^+$ $\\Delta\

  4. Materials for lithium-ion battery safety.

    Science.gov (United States)

    Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi

    2018-06-01

    Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.

  5. Nano silicon for lithium-ion batteries

    International Nuclear Information System (INIS)

    Holzapfel, Michael; Buqa, Hilmi; Hardwick, Laurence J.; Hahn, Matthias; Wuersig, Andreas; Scheifele, Werner; Novak, Petr; Koetz, Ruediger; Veit, Claudia; Petrat, Frank-Martin

    2006-01-01

    New results for two types of nano-size silicon, prepared via thermal vapour deposition either with or without a graphite substrate are presented. Their superior reversible charge capacity and cycle life as negative electrode material for lithium-ion batteries have already been shown in previous work. Here the lithiation reaction of the materials is investigated more closely via different electrochemical in situ techniques: Raman spectroscopy, dilatometry and differential electrochemical mass spectrometry (DEMS). The Si/graphite compound material shows relatively high kinetics upon discharge. The moderate relative volume change and low gas evolution of the nano silicon based electrode, both being important points for a possible future use in real batteries, are discussed with respect to a standard graphite electrode

  6. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  7. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  8. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  9. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  10. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  11. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  12. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  13. Interactions between lanthanum gallate based solid electrolyte and ceria

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.; Ahmad-Khanlou, A.; Samardzija, Z.; Holc, J.

    1999-10-01

    Possible interactions between La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} and Gd{sub 2}O{sub 3}-doped CeO{sub 2} (solid electrolyte and anode binding materials, respectively, for solid oxide fuel cells (SOFC)) at 1,300 C were studied with diffusion couples and fired powder mixtures. The SrLaGa{sub 3}O{sub 7} compound was detected and its formation was attributed to the diffusion of La{sub 2}O{sub 3} from La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} into Ce{sub 1{minus}x}La{sub x}O{sub 2{minus}x/2} solid solution. As the resistivity of SrLaGa{sub 3}O{sub 7} is rather high, around 1 M{center_dot}ohm at 800 C, its presence in the solid electrolyte/anode interface could significantly increase the internal resistivity of an SOFC.

  14. Solid electrolytes. Extremely fast charge carriers in garnet-type Li{sub 6}La{sub 3}ZrTaO{sub 12} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stanje, Bernhard; Breuer, Stefan; Uitz, Marlena [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Rettenwander, Daniel; Redhammer, Guenther [Department Chemistry and Physics of Materials, University of Salzburg (Austria); Berendts, Stefan; Lerch, Martin [Technische Universitaet Berlin, Institut fuer Chemie (Germany); Uecker, Reinhard [Leibniz Institute for Crystal Growth (Forschungsverbund Berlin e.V.), Berlin (Germany); Hanzu, Ilie; Wilkening, Martin [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Alistore-ERI European Research Institute, Amiens (France)

    2017-12-15

    The development of all-solid-state electrochemical energy storage systems, such as lithium-ion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering ceramic oxides, garnet-type Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} and derivatives, see Zr-exchanged Li{sub 6}La{sub 3}ZrTaO{sub 12} (LLZTO), have attracted great attention due to its high Li{sup +} ionic conductivity of 10{sup -3} S cm{sup -1} at ambient temperature. Despite numerous studies focussing on conductivities of powder samples, only few use time-domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report on temperature-variable NMR relaxometry measurements using both laboratory and spin-lock techniques to probe Li jump rates covering a dynamic time window spanning several decades. Both techniques revealed a consistent picture of correlated Li ion jump diffusion in the single crystal; the data perfectly mirror a modified BPP-type relaxation response being based on a Lorentzian-shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Carboxymethyl Carrageenan Based Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A.

    2015-01-01

    Highlights: • The paper highlights the potential of carboxymethyl carrageenan based on iota and kappa to be utilized as host polymer. • The highest conductivity were achieved up to ∼10 −3 S cm −1 by carboxymethyl carrageenan without the addition of plasticizer. • The electrochemical stability windows of the films were electrochemically stable up to 3.0 V. - Abstract: A series of biodegradable carboxymethyl carrageenan based polymer electrolytes, which are carboxymethyl kappa carrageenan (sulphate per disaccharide) and carboxymethyl iota carrageenan (two sulphates per disaccharide), have been prepared by a solution casting technique with different ratios of lithium nitrate (LiNO 3 ) salts. Interestingly, the lithium ions tended to interact with the carbonyl group in the different modes of symmetry, as observed from reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis. In the carboxymethyl kappa carrageenan electrolytes, as the concentration of LiNO 3 increased, the asymmetric stretching peak of the carbonyl bond became dominant because it can be observed clearly with the shifting of the peak from 1592 to 1602 cm −1 due to the interaction between the lithium ion and the carbonyl group, while the broad O-H stretching peak became sharp and intense. However, for the carboxymethyl iota carrageenan, the asymmetry stretching mode of the carbonyl group shifted from 1567 to 1599 cm −1 , as the salt concentration increased. The shifting of the C-O-C peak also occurred in the iota-based electrolytes. However, the changes in the peak that represented SO 4 2− symmetric stretching were only detected when the ion pair formation was observed. It was proposed that the peak shifting was due to the presence of the lithium ion pathway, forming a dative bond between the lithium and oxygen in the carbonyl group. Accordingly, as more peak shifting was observed, the number of the ion pathways also increased. This hypothesis was supported by the impedance

  16. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  17. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  18. Systematic investigations on acyclic organic carbonate solvents for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Peter, S.; Novak, P.

    2003-03-01

    Electrochemical cycling tests on cells with graphite electrodes and several alkyl methyl carbonates were performed. Experiments with mixed binary solvent electrolytes with ethylene carbonate (EC) showed that the alkyl methyl carbonates H{sub 3}CO(CO)O(CH{sub 2}){sub n}H (n = 3-5) are suitable as co-solvents in lithium-ion batteries. Ternary mixtures of EC, BMC, and propylene carbonate (PC) showed better overall performances than EC/PC electrolytes. The branched isobutyl methyl carbonate (i-BMC) outperforms its linear isomer (BMC) in terms of electrochemical performance. LiPF{sub 6} is superior to LiClO{sub 4} as conducting salt in both EC/BMC and EC/i-BMC mixtures in terms of electrolyte conductivity, rate capability, and cycling stability. (author)

  19. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  20. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  1. High Capacity Anodes for Advanced Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  2. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2016-01-01

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material

  3. Transit bus applications of lithium ion batteries : progress and prospects

    Science.gov (United States)

    2012-12-31

    This report provides an overview of diverse transit bus applications of advanced Lithium Ion Batteries (LIBs). The report highlights and illustrates several FTA programs that fostered the successful development, demonstration, and deployment of fuel-...

  4. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.; Huggins, Robert A.; Cui, Yi

    2009-01-01

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured

  5. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  6. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.; Wessells, C.D.; Deshazer, H.D.; Cui, Yi

    2013-01-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case

  7. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2016-01-01

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes

  8. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    International Nuclear Information System (INIS)

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  9. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  10. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  11. Effective Usage of Lithium Ion Batteries for Electric Vehicles

    OpenAIRE

    濱田, 耕治; ハマダ, コウジ; Koji, HAMADA

    2008-01-01

    Pure Electric Vehicles(PEV's) are promising when seen in relation to global environment. However, there is the need to solve a number of problems before PEV's become viable alternatives of transportation. For example, reduction of battery charge time, improvement of battery performance, and reduction in vehicle cost. A way to improve battery performance is to use lithium ion batteries. One problem with lithium ion batteries is with charging (recharging). It is difficult to provide a constant ...

  12. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  13. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  14. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    Directory of Open Access Journals (Sweden)

    Yuandong Sun

    2017-01-01

    Full Text Available Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D, compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs applications is listed and discussed.

  15. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    Science.gov (United States)

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  16. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Fei; Tao Weizhe; Zhao Mingshu; Xu Minwei; Yang Shengchun; Sun Zhanbo; Wang Liqun; Song Xiaoping

    2011-01-01

    Highlights: → The ultrafine CuO nanowires were controlled synthesized by a simple solution route. → CuO nanowires exhibit high capacity, superior cyclability and improved rate capability. → Voltage-capacity curves show larger extra reversible reactions at low potentials in CuO nanowires. → CV curves show lower over-potential in CuO nanowires. - Abstract: A simple solution route is used to synthesize ultrafine Cu(OH) 2 nanowires by restraining the morphology transformation of early formed 1D nanostructure. The obtained ultrafine nanowires can be well preserved at a low temperature structure transformation in solid state. As anode material for lithium-ion batteries, the ultrafine CuO nanowires exhibit high reversible capacity, superior cycling performance and improved rate capability. The improved electrochemical properties of CuO nanowires are ascribed to their ultrafine size which lead to the reduced over-potential, extra reversible reactions at low potentials and improved interface performance between the electrode and electrolyte.

  17. Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhan Liang; Wang Yanli; Qiao Wenming; Ling, Licheng; Yang Shubin

    2012-01-01

    Graphical abstract: Hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles were synthesized. As anode materials for lithium ion battery, the reversible capacity of obtained electrode is as high as 732 mAh g −1 at 74 mA g −1 and 500 mAh g −1 at 744 mA g −1 . - Abstract: Based on the high theoretical capacity of Co 3 O 4 for lithium storage, a noval type of monodisperse hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles (HCSE-Co 3 O 4 ) were designed and synthesized. The monodisperse hollow carbon spheres not only can provide enough void volume to accommodate the volume change of encapsulated Co 3 O 4 nanoparicles, but also can prevent the formation of solid electrolyte interface (SEI) films on the surface of Co 3 O 4 nanoparticles and following direct contact of Co and SEI films upon lithium extraction. The HCSE-Co 3 O 4 electrode exhibit highly reversible capacity, excellent cycle performance and rate capability attributed to the unique structure. The reversible capacity of HCSE-Co 3 O 4 electrode is as high as 500 mAh g −1 at a current density of 744 mA g −1 , while that of bare Co 3 O 4 electrode is only around 80 mAh g −1 .

  18. One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode.

    Science.gov (United States)

    Qin, Jian; Liu, Dongye; Zhang, Xiang; Zhao, Naiqin; Shi, Chunsheng; Liu, En-Zuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; He, Chunnian

    2017-10-26

    A new strategy for the one-step synthesis of a 0D SnCo nanoparticles-1D carbon nanotubes-3D hollow carbon submicrocube cluster (denoted as SnCo@CNT-3DC) hierarchical nanostructured material was developed via a simple chemical vapor deposition (CVD) process with the assistance of a water-soluble salt (NaCl). The adopted NaCl not only acted as a cubic template for inducing the formation of the 3D hollow carbon submicrocube cluster but also provides a substrate for the SnCo catalysts impregnation and CNT growth, ultimately leading to the successful construction of the unique 0D-1D-3D structured SnCo@CNT-3DC during the CVD of C 2 H 2 . When utilized as a lithium-ion battery anode, the SnCo@CNT-3DC composite electrode demonstrated an excellent rate performance and cycling stability for Li-ion storage. Specifically, an impressive reversible capacity of 826 mA h g -1 after 100 cycles at 0.1 A g -1 and a high rate capacity of 278 mA h g -1 even after 1000 cycles at 5 A g -1 were achieved. This remarkable electrochemical performance could be ascribed to the unique hierarchical nanostructure of SnCo@CNT-3DC, which guarantees a deep permeation of electrolytes and a shortened lithium salt diffusion pathway in the solid phase as well as numerous hyperchannels for electron transfer.

  19. Graphene Oxides Used as a New "Dual Role" Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery.

    Science.gov (United States)

    Shan, Changsheng; Wu, Kaifeng; Yen, Hung-Ju; Narvaez Villarrubia, Claudia; Nakotte, Tom; Bo, Xiangjie; Zhou, Ming; Wu, Gang; Wang, Hsing-Lin

    2018-05-09

    For the first time, we report that graphene oxide (GO) can be used as a new "dual-role" binder for Si nanoparticles (SiNPs)-based lithium-ion batteries (LIBs). GO not only provides a graphene-like porous 3D framework for accommodating the volume changes of SiNPs during charging/discharging cycles, but also acts as a polymer-like binder that forms strong chemical bonds with SiNPs through its Si-OH functional groups to trap and stabilize SiNPs inside the electrode. Leveraging this unique dual-role of GO binder, we fabricated GO/SiNPs electrodes with remarkably improved performances as compared to using the conventional polyvinylidene fluoride (PVDF) binder. Specifically, the GO/SiNPs electrode showed a specific capacity of 2400 mA h g -1 at the 50th cycle and 2000 mA h g -1 at the 100th cycle, whereas the SiNPs/PVDF electrode only showed 456 mAh g -1 at the 50th cycle and 100 mAh g -1 at 100th cycle. Moreover, the GO/SiNPs film maintained its structural integrity and formed a stable solid-electrolyte interphase (SEI) film after 100 cycles. These results, combined with the well-established facile synthesis of GO, indicate that GO can be an excellent binder for developing high performance Si-based LIBs.

  20. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries

    International Nuclear Information System (INIS)

    Chai, Lili; Qu, Qunting; Zhang, Longfei; Shen, Ming; Zhang, Li; Zheng, Honghe

    2013-01-01

    Highlights: • Chitosan is used as a new electrode binder for graphite anode. • Electrochemical properties of the chitosan-based electrode are compared with that of PVDF-based one. • Electrochemical performances of the graphite anode are improved by using chitosan binder. • Chitosan binder facilitates the formation of a thin, homogenous and stable SEI film of the electrode. -- Abstract: Chitosan was applied as the electrode binder material for a spherical graphite anode in lithium-ion batteries. Compared to using poly (vinylidene fluoride) (PVDF) binder, the graphite anode using chitosan exhibited enhanced electrochemical performances in terms of the first Columbic efficiency, rate capability and cycling behavior. With similar specific capacity, the first Columbic efficiency of the chitosan-based anode is 95.4% compared to 89.3% of the PVDF-based anode. After 200 charge–discharge cycles at 0.5C, the capacity retention of the chitosan-based electrode showed to be significantly higher than that of the PVDF-based electrode. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) measurements were carried out to investigate the formation and evolution of the solid electrolyte interphase (SEI) formed on the graphite electrodes. The results show that a thin, homogenous and stable SEI layer is formed on the graphite electrode surface with chitosan binder compared with that using the conventional PVDF binder

  1. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  2. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  3. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  4. Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries

    Science.gov (United States)

    Li, Chun; Li, Hsiao-Ling; Li, Chi-Heng; Liu, Yu-Shuan; Sung, Yu-Ching; Huang, Chun

    2018-01-01

    In this paper, we describe the surface transition of the polyethylene (PE) separator used in lithium-ion batteries treated by low-pressure nitrogen plasma discharge. The nitrogen-plasma-treated PE separator was characterized by contact angle measurement, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performance of the lithium ion batteries fabricated with the nitrogen-plasma-treated separator was also evaluated. Results showed that polar functionalization groups were induced on the PE surface by the nitrogen plasma discharge, causing the surface to become hydrophilic. The increases in surface wettability and surface free energy result in electrolyte retention improvement. Moreover, the nitrogen plasma-treated PE separator leads to superior performance in lithium-ion battery assembly.

  5. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  6. Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    As we develop new materials to increase performance of lithium ion batteries for electric vehicles, the impact of potential safety and reliability issues become increasingly important. In addition to electrochemical performance increases (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance behavior. Introduction of a next generation materials, such as silicon based anode, requires a full understanding of the abuse response and degradation mechanisms for these anodes. This work aims to understand the breakdown of these materials during abuse conditions in order to develop an inherently safe power source for our next generation electric vehicles. The effect of materials level changes (electrolytes, additives, silicon particle size, silicon loading, etc.) to cell level abuse response and runaway reactions will be determined using several techniques. Experimentation will start with base material evaluations in coin cells and overall runaway energy will be evaluated using techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and accelerating rate calorimetry (ARC). The goal is to understand the effect of materials parameters on the runaway reactions, which can then be correlated to the response seen on larger cells (18650). Experiments conducted showed that there was significant response from these electrodes. Efforts to minimize risk during testing were taken by development of a smaller capacity cylindrical design in order to quantify materials decision and how they manifest during abuse response.

  7. Lithium-Ion Battery Demonstrated for NASA Desert Research and Technology Studies

    Science.gov (United States)

    Bennett, William R.; Baldwin, Richard S.

    2008-01-01

    Lithium-ion batteries have attractive performance characteristics that are well suited to a number of NASA applications. These rechargeable batteries produce compact, lightweight energy-storage systems with excellent cycle life, high charge/discharge efficiency, and low self-discharge rate. NASA Glenn Research Center's Electrochemistry Branch designed and produced five lithium-ion battery packs configured to power the liquid-air backpack (LAB) on spacesuit simulators. The demonstration batteries incorporated advanced, NASA-developed electrolytes with enhanced low-temperature performance characteristics. The objectives of this effort were to (1) demonstrate practical battery performance under field-test conditions and (2) supply laboratory performance data under controlled laboratory conditions. Advanced electrolyte development is being conducted under the Exploration Technology Development Program by the NASA Jet Propulsion Laboratory. Three field trials were successfully completed at Cinder Lake from September 10 to 12, 2007. Extravehicular activities of up to 1 hr and 50 min were supported, with residual battery capacity sufficient for 30 min of additional run time. Additional laboratory testing of batteries and cells is underway at Glenn s Electrochemical Branch.

  8. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  9. Lithium-Ion Battery Program Status

    Science.gov (United States)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  10. Lithium-ion battery structure that self-heats at low temperatures

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  11. Lithium-ion battery structure that self-heats at low temperatures.

    Science.gov (United States)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  12. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  13. Stabilizing the Electrode/Electrolyte Interface of LiNi0.8Co0.15Al0.05O2 through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Hou, Peiyu; Zhang, Hongzhou; Deng, Xiaolong; Xu, Xijin; Zhang, Lianqi

    2017-09-06

    The unstable electrode/electrolyte interface of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) cathodes, especially at a highly delithiated state, usually leads to the transformation of layered to spinel and/or rock-salt phases, resulting in drastic capacity fade and poor thermal stability. Herein, the Al-increased and Ni-,Co-decreased electrode surface is fabricated through tailoring element distribution in micrometer-sized spherical NCA secondary particles via coprecipitation and solid-state reactions, aimed at stabilizing the electrode/electrolyte interface during continuous cycles. As expected, it shows much extended cycle life, 93.6% capacity retention within 100 cycles, compared with that of 78.5% for the normal NCA. It also delivers large reversible capacity of about 140 mAh g -1 even at 20 C, corresponding to energy density of around 480 Wh kg -1 , which is enhanced by 45% compared to that of the normal NCA (about 330 Wh kg -1 ). Besides, the delayed heat emission temperature and reduced heat generation mean remarkably improved thermal stability. These foregoing improvements are ascribed to the Al-increased spherical secondary particle surface that stabilizes the electrode/electrolyte interface by protecting inner components from directly contacting with electrolyte and suppressing the side reaction on electrode surface between high oxidizing Ni 4+ and electrolyte.

  14. Electro-Analytical Study of Material Interfaces Relevant for Chemical Mechanical Planarization and Lithium Ion Batteries

    Science.gov (United States)

    Turk, Michael C.

    This dissertation work involves two areas of experimental research, focusing specifically on the applications of electro-analytical techniques for interfacial material characterization. The first area of the work is centered on the evaluation and characterization of material components used for chemical mechanical planarization (CMP) in the fabrication of semiconductor devices. This part also represents the bulk of the projects undertaken for the present dissertation. The other area of research included here involves exploratory electrochemical studies of certain electrolyte and electrode materials for applications in the development of advanced lithium ion secondary batteries. The common element between the two areas of investigation is the technical approach that combines a broad variety of electro-analytical characterization techniques to examine application specific functions of the associated materials and devices. The CMP related projects concentrate on designing and evaluating materials for CMP slurries that would be useful in the processing of copper interconnects for the sub-22 nm technology node. Specifically, ruthenium and cobalt are nontraditional barrier materials currently considered for the new interconnects. The CMP schemes used to process the structures based on these metals involve complex surface chemistries of Ru, Co and Cu (used for wiring lines). The strict requirement of defect-control while maintaining material removal by precisely regulated tribo-corrosion complicates the designs of the CMP slurries needed to process these systems. Since Ru is electrochemically more noble than Cu, the surface regions of Cu assembled in contact with Ru tend to generate defects due to galvanic corrosion in the CMP environment. At the same time, Co is strongly reactive in the typical slurry environment and is prone to developing galvanic corrosion induced by Cu. The present work explores a selected class of alkaline slurry formulations aimed at reducing these

  15. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  16. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation

    Science.gov (United States)

    Li, Yajie; Pu, Hongting

    2018-04-01

    Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.

  17. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    Electrolytes. Ionically conducting solid electrolytes are successfully used for battery, fuel cell and sensor applications.

  18. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries

    Science.gov (United States)

    Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen

    2018-06-01

    In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.

  19. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  20. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.