WorldWideScience

Sample records for solid immersion lens-based

  1. Opto-mechatronics issues in solid immersion lens based near-field recording

    Science.gov (United States)

    Park, No-Cheol; Yoon, Yong-Joong; Lee, Yong-Hyun; Kim, Joong-Gon; Kim, Wan-Chin; Choi, Hyun; Lim, Seungho; Yang, Tae-Man; Choi, Moon-Ho; Yang, Hyunseok; Rhim, Yoon-Chul; Park, Young-Pil

    2007-06-01

    We analyzed the effects of an external shock on a collision problem in a solid immersion lens (SIL) based near-field recording (NFR) through a shock response analysis and proposed a possible solution to this problem with adopting a protector and safety mode. With this proposed method the collision between SIL and media can be avoided. We showed possible solution for contamination problem in SIL based NFR through a numerical air flow analysis. We also introduced possible solid immersion lens designs to increase the fabrication and assembly tolerances of an optical head with replicated lens. Potentially, these research results could advance NFR technology for commercial product.

  2. Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control

    International Nuclear Information System (INIS)

    Lee, Won-Sup; Kim, Taeseob; Choi, Guk-Jong; Lim, Geon; Joe, Hang-Eun; Gang, Myeong-Gu; Min, Byung-Kwon; Park, No-Cheol; Moon, Hyungbae; Kim, Do-Hyung; Park, Young-Pil

    2015-01-01

    Plasmonic lithography has been used in nanofabrication because of its utility beyond the diffraction limit. The resolution of plasmonic lithography depends on the nano-gap between the nanoaperture and the photoresist surface—changing the gap distance can modulate the line-width of the pattern. In this letter, we demonstrate solid-immersion lens based active non-contact plasmonic lithography, applying a range of gap conditions to modulate the line-width of the pattern. Using a solid-immersion lens-based near-field control system, the nano-gap between the exit surface of the nanoaperture and the media can be actively modulated and maintained to within a few nanometers. The line-widths of the recorded patterns using 15- and 5-nm gaps were 47 and 19.5 nm, respectively, which matched closely the calculated full-width at half-maximum. From these results, we conclude that changing the nano-gap within a solid-immersion lens-based plasmonic head results in varying line-width patterns

  3. Immersive Visualization of the Solid Earth

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs

  4. Numerical study of interfacial flows with immersed solids

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2003-01-01

    A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle

  5. Microfabricated rubber microscope using soft solid immersion lenses

    OpenAIRE

    Gambin, Yann; Legrand, Olivier; Quake, Stephen R.

    2006-01-01

    We show here a technique of soft lithography to microfabricate efficient solid immersion lenses (SIL) out of rubber elastomers. The light collection efficiency of a lens system is described by its numerical aperture (NA), and is critical for applications as epifluorescence microscopy [B. Herman, Fluorescence Microscopy (BIOS Scientific, Oxford/Springer, United Kingdom, 1998). While most simple lens systems have numerical apertures less than 1, the lenses described here have NA=1.25. Better pe...

  6. Near-field microscopy with a microfabricated solid immersion lens

    Science.gov (United States)

    Fletcher, Daniel Alden

    2001-07-01

    Diffraction of focused light prevents optical microscopes from resolving features in air smaller than half the wavelength, λ Spatial resolution can be improved by passing light through a sub-wavelength metal aperture scanned close to a sample, but aperture-based probes suffer from low optical throughput, typically below 10-4. An alternate and more efficient technique is solid immersion microscopy in which light is focused through a high refractive index Solid Immersion Lens (SIL). This work describes the fabrication, modeling, and use of a microfabricated SIL to obtain spatial resolution better than the diffraction limit in air with high optical throughput for infrared applications. SILs on the order of 10 μm in diameter are fabricated from single-crystal silicon and integrated onto silicon cantilevers with tips for scanning. We measure a focused spot size of λ/5 with optical throughput better than 10-1 at a wavelength of λ = 9.3 μm. Spatial resolution is improved to λ/10 with metal apertures fabricated directly on the tip of the silicon SIL. Microlenses have reduced spherical aberration and better transparency than large lenses but cannot be made arbitrarily small and still focus. We model the advantages and limitations of focusing in lenses close to the wavelength in diameter using an extension of Mie theory. We also investigate a new contrast mechanism unique to microlenses resulting from the decrease in field-of-view with lens diameter. This technique is shown to achieve λ/4 spatial resolution. We explore applications of the microfabricated silicon SIL for high spatial resolution thermal microscopy and biological spectroscopy. Thermal radiation is collected through the SIL from a heated surface with spatial resolution four times better than that of a diffraction- limited infrared microscope. Using a Fourier-transform infrared spectrometer, we observe absorption peaks in bacteria cells positioned at the focus of the silicon SIL.

  7. Submicron hollow spot generation by solid immersion lens and structured illumination

    NARCIS (Netherlands)

    Kim, M.S.; Assafrao, A.C.; Scharf, T.; Wachters, A.J.H.; Pereira, S.F.; Urbach, H.P.; Brun, M.; Olivier, S.; Nicoletti, S.; Herzig, H.P.

    2012-01-01

    We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (?-SIL) made of SiO2. Such structured focal spots are characterized by a

  8. Laser Tweezer Controlled Solid Immersion Lens for High Resolution Imaging in Microfluidic and Biological Samples

    National Research Council Canada - National Science Library

    Birkbeck, Aaron L; Zlatanovic, Sanja; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    ...). Up to now, solid immersion lens imaging systems have relied upon cantilever-mounted SILs that are difficult to integrate into microfluidic systems and require an extra alignment step with external optics...

  9. Solid-immersion fluorescence microscopy with increased emission and super resolution

    Energy Technology Data Exchange (ETDEWEB)

    Liau, Z. L.; Porter, J. M. [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States); Liau, A. A.; Chen, J. J. [Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salmon, W. C. [Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sheu, S. S. [Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107 (United States)

    2015-01-07

    We investigate solid-immersion fluorescence microscopy suitable for super-resolution nanotechnology and biological imaging, and have observed limit of resolution as small as 15 nm with microspheres, mitochondria, and chromatin fibers. We have further observed that fluorescence efficiency increases with excitation power density, implicating appreciable stimulated emission and increased resolution. We discuss potential advantages of the solid-immersion microscopy, including combined use with previously established super-resolution techniques for reaching deeper beyond the conventional diffraction limit.

  10. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  11. Submicron hollow spot generation by solid immersion lens and structured illumination

    International Nuclear Information System (INIS)

    Kim, M-S; Scharf, T; Herzig, H P; Assafrao, A C; Wachters, A J H; Pereira, S F; Urbach, H P; Brun, M; Olivier, S; Nicoletti, S

    2012-01-01

    We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (μ-SIL) made of SiO 2 . Such structured focal spots are characterized by a doughnut-shaped intensity distribution, whose central dark region is of great interest for optical trapping of nano-size particles, super-resolution microscopy and lithography. In this work, we have used a high-resolution interference microscopy technique to measure the structured immersed focal spots, whose dimensions were found to be significantly reduced due to the immersion effect of the μ-SIL. In particular, a reduction of 37% of the dark central region was verified. The measurements were compared with a rigorous finite element method model for the μ-SIL, revealing excellent agreement between them. (paper)

  12. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong; Maltsev, Sergey B.; Emwas, Abdul-Hamid M.; Lorigan, Gary A.

    2010-01-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2

  13. Wave propagation in a piezoelectric solid bar of circular cross-section immersed in fluid

    International Nuclear Information System (INIS)

    Ponnusamy, P.

    2013-01-01

    Wave propagation in a piezoelectric solid bar of circular cross-section immersed in fluid is discussed using three-dimensional theory of piezoelectricity. The equations of motion of the cylinder are formulated using the constitutive equations of a piezoelectric material. The equations of motion of the fluid are formulated using the constitutive equations of an inviscid fluid. Three displacement potential functions are introduced to uncouple the equations of motion, electric conduction. The frequency equation of the coupled system consisting of cylinder and fluid is developed under the assumption of perfect-slip boundary conditions at the fluid–solid interfaces. The frequency equations are obtained for longitudinal and flexural modes of vibration and are studied numerically for PZT-4 material bar immersed in fluid. The computed non-dimensional wave numbers are presented in the form of dispersion curves. The secant method is used to obtain the roots of the frequency equation. -- Highlights: ► Wave propagation in a piezoelectric solid bar of circular cross-section immersed in fluid is analyzed using secant method. ► Solid–fluid interaction for piezoelectric material of PZT-4 is analyzed using the boundary conditions. ► The computed non-dimensional wave numbers are plotted in the form of dispersion curves and studied its characters. ► A comparison is made between the non-dimensional wave numbers obtained by the author with the literature results

  14. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong

    2010-11-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2-stearoyl-sn-glycero-3-phosphocholine (PSPC) phospholipid bilayers as paramagnetic moieties and the resulting enhancements of the longitudinal relaxation (T1) times of 31P nuclei on the surface of the bilayers were measured by a standard inversion recovery pulse sequence. The 31P NMR spin-lattice relaxation times decrease steadily as the DOXYL spin label moves closer to the surface as well as the concentration of the spin-labeled lipids increase. The enhanced relaxation vs. the position and concentration of spin-labels indicate that PRE induced by the DOXYL spin label are significant to determine longer distances over the whole range of the membrane depths. When these data were combined with estimated correlation times τc, the r-6-weighted, time-averaged distances between the spin-labels and the 31P nuclei on the membrane surface were estimated. The application of using this solid-state NMR PRE approach coupled with site-directed spin labeling (SDSL) may be a powerful method for measuring membrane protein immersion depth. © 2010 Elsevier Inc. All rights reserved.

  15. Immersed radioactive wastes

    International Nuclear Information System (INIS)

    2017-03-01

    This document presents a brief overview of immersed radioactive wastes worldwide: historical aspects, geographical localization, type of wastes (liquid, solid), radiological activity of immersed radioactive wastes in the NE Atlantic Ocean, immersion sites and monitoring

  16. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    International Nuclear Information System (INIS)

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.; Silva, G.; Baba, K.

    2009-01-01

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measured by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.

  17. High-Density Near-Field Readout Using Solid Immersion Lens Made of KTaO3 Monocrystal

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Furuki, Motohiro; Takeda, Minoru; Nakaoki, Ariyoshi; Sasaura, Masahiro; Fujiura, Kazuo

    2006-02-01

    We developed solid immersion lenses made of a KTaO3 monocrystal. The refractive index of KTaO3 is 2.382 at a wavelength of 405 nm. Using KTaO3 as the raw material of a solid immersion lens, we could design an effective numerical aperture of 2.20. We observed an eye pattern of a 150 GB capacity with a 130 nm track pitch and a 47.6 nm bit length. The areal density is 104.3 Gbit/in.2.

  18. Improvement of optical imaging resolution by a negative refraction photonic crystal with a solid immersion lens

    International Nuclear Information System (INIS)

    Tseng, M.-C.; Chen, L.-W.; Liu, C.-Y.

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the solid immersion lens (SIL) technology in imaging system based on negative refraction PCs and analyzed the influence of refractive index and geometric parameters of SIL on imaging resolution. In the finite element method calculation, the resolution of our optical system has improved greatly. The high performance of imaging resolution was achieved with shorter radius and larger refractive index of SIL. Furthermore, the effects of the three kinds of SILs at the same radius were analyzed. Such a mechanism of negative refraction PCs and SILs should open up a new application for designing components in optical imaging systems

  19. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  20. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization

    Science.gov (United States)

    Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.

    2018-03-01

    Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

  1. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  2. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  3. Immersion-scanning-tunneling-microscope for long-term variable-temperature experiments at liquid-solid interfaces

    Science.gov (United States)

    Ochs, Oliver; Heckl, Wolfgang M.; Lackinger, Markus

    2018-05-01

    Fundamental insights into the kinetics and thermodynamics of supramolecular self-assembly on surfaces are uniquely gained by variable-temperature high-resolution Scanning-Tunneling-Microscopy (STM). Conventionally, these experiments are performed with standard ambient microscopes extended with heatable sample stages for local heating. However, unavoidable solvent evaporation sets a technical limit on the duration of these experiments, hence prohibiting long-term experiments. These, however, would be highly desirable to provide enough time for temperature stabilization and settling of drift but also to study processes with inherently slow kinetics. To overcome this dilemma, we propose a STM that can operate fully immersed in solution. The instrument is mounted onto the lid of a hermetically sealed heatable container that is filled with the respective solution. By closing the container, both the sample and microscope are immersed in solution. Thereby solvent evaporation is eliminated and an environment for long-term experiments with utmost stable and controllable temperatures between room-temperature and 100 °C is provided. Important experimental requirements for the immersion-STM and resulting design criteria are discussed, the strategy for protection against corrosive media is described, the temperature stability and drift behavior are thoroughly characterized, and first long-term high resolution experiments at liquid-solid interfaces are presented.

  4. Characterization of lens based photoacoustic imaging system

    Directory of Open Access Journals (Sweden)

    Kalloor Joseph Francis

    2017-12-01

    Full Text Available Some of the challenges in translating photoacoustic (PA imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF. Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  5. Characterization of lens based photoacoustic imaging system.

    Science.gov (United States)

    Francis, Kalloor Joseph; Chinni, Bhargava; Channappayya, Sumohana S; Pachamuthu, Rajalakshmi; Dogra, Vikram S; Rao, Navalgund

    2017-12-01

    Some of the challenges in translating photoacoustic (PA) imaging to clinical applications includes limited view of the target tissue, low signal to noise ratio and the high cost of developing real-time systems. Acoustic lens based PA imaging systems, also known as PA cameras are a potential alternative to conventional imaging systems in these scenarios. The 3D focusing action of lens enables real-time C-scan imaging with a 2D transducer array. In this paper, we model the underlying physics in a PA camera in the mathematical framework of an imaging system and derive a closed form expression for the point spread function (PSF). Experimental verification follows including the details on how to design and fabricate the lens inexpensively. The system PSF is evaluated over a 3D volume that can be imaged by this PA camera. Its utility is demonstrated by imaging phantom and an ex vivo human prostate tissue sample.

  6. Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    2016-01-01

    Full Text Available Wave propagation in a transversely isotropic magneto-electro-elastic solid bar immersed in an inviscid fluid is discussed within the frame work of linearized three dimensional theory of elasticity. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The frequency equations that include the interaction between the solid bar and fluid are obtained by the perfect slip boundary conditions using the Bessel functions. The numerical calculations are carried out for the non-dimensional frequency, phase velocity and attenuation coefficient by fixing wave number and are plotted as the dispersion curves. The results reveal that the proposed method is very effective and simple and can be applied to other bar of different cross section by using proper geometric relation.

  7. Immersive CAD

    Energy Technology Data Exchange (ETDEWEB)

    Ames, A.L.

    1999-02-01

    This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

  8. Headspace versus direct immersion solid phase microextraction in complex matrixes: investigation of analyte behavior in multicomponent mixtures.

    Science.gov (United States)

    Gionfriddo, Emanuela; Souza-Silva, Érica A; Pawliszyn, Janusz

    2015-08-18

    This work aims to investigate the behavior of analytes in complex mixtures and matrixes with the use of solid-phase microextraction (SPME). Various factors that influence analyte uptake such as coating chemistry, extraction mode, the physicochemical properties of analytes, and matrix complexity were considered. At first, an aqueous system containing analytes bearing different hydrophobicities, molecular weights, and chemical functionalities was investigated by using commercially available liquid and solid porous coatings. The differences in the mass transfer mechanisms resulted in a more pronounced occurrence of coating saturation in headspace mode. Contrariwise, direct immersion extraction minimizes the occurrence of artifacts related to coating saturation and provides enhanced extraction of polar compounds. In addition, matrix-compatible PDMS-modified solid coatings, characterized by a new morphology that avoids coating fouling, were compared to their nonmodified analogues. The obtained results indicate that PDMS-modified coatings reduce artifacts associated with coating saturation, even in headspace mode. This factor, coupled to their matrix compatibility, make the use of direct SPME very practical as a quantification approach and the best choice for metabolomics studies where wide coverage is intended. To further understand the influence on analyte uptake on a system where additional interactions occur due to matrix components, ex vivo and in vivo sampling conditions were simulated using a starch matrix model, with the aim of mimicking plant-derived materials. Our results corroborate the fact that matrix handling can affect analyte/matrix equilibria, with consequent release of high concentrations of previously bound hydrophobic compounds, potentially leading to coating saturation. Direct immersion SPME limited the occurrence of the artifacts, which confirms the suitability of SPME for in vivo applications. These findings shed light into the implementation of in

  9. Effect of Binding Components in Complex Sample Matrices on Recovery in Direct Immersion Solid-Phase Microextraction: Friends or Foe?

    Science.gov (United States)

    Alam, Md Nazmul; Pawliszyn, Janusz

    2018-02-20

    The development of matrix compatible coatings for solid-phase microextraction (SPME) has enabled direct extraction of analytes from complex sample matrices. The direct immersion (DI) mode of SPME when utilized in conjunction with such extraction phases facilitates extraction of a wide range of analytes from complex matrices without the incurrence of fouling or coating saturation. In this work, mathematical models and computational simulations were employed to investigate the effect of binding components present in complex samples on the recovery of small molecules varying in logP for extractions carried out using the direct immersion approach. The presented findings corroborate that the studied approach indeed enables the extraction of both polar and nonpolar analytes from complex matrices, provided a suitable sorbent is employed. Further results indicated that, in certain cases, the kinetics of extraction of a given analyte in its free form might be dependent on the desorption kinetics of their bound form from matrix components, which might lower total recoveries of analytes with high affinity for the matrix. However, the binding of analytes to matrix components also enables SPME to extract a balanced quantity of different logP analytes, facilitated by multiphase equilibria, with a single extraction device.

  10. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.; Safta, Cosmin; Ray, Jaideep; Najm, Habib N.; Ghoniem, Ahmed F.

    2014-01-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  11. A second-order coupled immersed boundary-SAMR construction for chemically reacting flow over a heat-conducting Cartesian grid-conforming solid

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    In this paper, we present a second-order numerical method for simulations of reacting flow around heat-conducting immersed solid objects. The method is coupled with a block-structured adaptive mesh refinement (SAMR) framework and a low-Mach number operator-split projection algorithm. A "buffer zone" methodology is introduced to impose the solid-fluid boundary conditions such that the solver uses symmetric derivatives and interpolation stencils throughout the interior of the numerical domain; irrespective of whether it describes fluid or solid cells. Solid cells are tracked using a binary marker function. The no-slip velocity boundary condition at the immersed wall is imposed using the staggered mesh. Near the immersed solid boundary, single-sided buffer zones (inside the solid) are created to resolve the species discontinuities, and dual buffer zones (inside and outside the solid) are created to capture the temperature gradient discontinuities. The development discussed in this paper is limited to a two-dimensional Cartesian grid-conforming solid. We validate the code using benchmark simulations documented in the literature. We also demonstrate the overall second-order convergence of our numerical method. To demonstrate its capability, a reacting flow simulation of a methane/air premixed flame stabilized on a channel-confined bluff-body using a detailed chemical kinetics model is discussed. © 2014 Elsevier Inc.

  12. Solid immersion lenses for enhancing the optical resolution of thermal and electroluminescence mapping of GaN-on-SiC transistors

    International Nuclear Information System (INIS)

    Pomeroy, J. W.; Kuball, M.

    2015-01-01

    Solid immersion lenses (SILs) are shown to greatly enhance optical spatial resolution when measuring AlGaN/GaN High Electron Mobility Transistors (HEMTs), taking advantage of the high refractive index of the SiC substrates commonly used for these devices. Solid immersion lenses can be applied to techniques such as electroluminescence emission microscopy and Raman thermography, aiding the development device physics models. Focused ion beam milling is used to fabricate solid immersion lenses in SiC substrates with a numerical aperture of 1.3. A lateral spatial resolution of 300 nm is demonstrated at an emission wavelength of 700 nm, and an axial spatial resolution of 1.7 ± 0.3 μm at a laser wavelength of 532 nm is demonstrated; this is an improvement of 2.5× and 5×, respectively, when compared with a conventional 0.5 numerical aperture objective lens without a SIL. These results highlight the benefit of applying the solid immersion lenses technique to the optical characterization of GaN HEMTs. Further improvements may be gained through aberration compensation and increasing the SIL numerical aperture

  13. Calculation of wideband ultrasonic fields radiated by immersed transducers into solids

    International Nuclear Information System (INIS)

    Lhemery, A.; Calmon, P.; Mephane, M.

    1996-01-01

    In ultrasonic nondestructive testing (NDT), configurations of immersion techniques where transducers radiate through non-planar interfaces are often encountered, e.g., pipe inspection where the probe can be scanned either inside or outside the pipe. When local radii of curvature are far larger that typical wave paths in the coupling fluid and into the piece, field predictions can often be made assuming a plane interface. For smaller radii, such an approximation is not valid. The model developed at the French Atomic ENergy Commission (CEA) to predict ultrasonic fields radiated by wideband transducers through liquid-interfaces (called Champ-Sons) is based on a modification of the Rayleigh integral to take account of refraction. It is derived under the geometrical optics approximation (GO) which introduces two factors: the transmission coefficient between the two media of elementary contributions from source-points to field-points and the so-called 'divergence factor' of the transmitted rays (denoted by DF), accounting for the principal radii of curvature of the retransmitted rays (denoted by DF), accounting for the principal radii of curvature of the refracted wave fronts (initially spherical in the coupling medium). (authors)

  14. Direct determination of enthalpies of solid phase reactions by immersion method; Determination directe des enthalpies de reaction en phase solide par une methode de plongee

    Energy Technology Data Exchange (ETDEWEB)

    Roux, A; Richard, M; Eyraud, L; Stevanovic, M; Elston, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    It is not generally possible to measure the enthalpy change corresponding to solid phase reactions using the dynamic differential thermal analysis method because these reactions are usually too slow at the temperature of operation of present equipment. A ballistic differential thermal analysis apparatus has been developed which is based on an immersion-compensation method; it overcomes the difficulties previously encountered. This apparatus has been used after calibration for determining the enthalpies of formation of calcium and cadmium titanates. and also the Wigner energies of BeO, MgO and Al{sub 2}O{sub 3} samples irradiated at variable dose at a temperature of under 100 deg. C. (authors) [French] Il n'est generalement pas possible de mesurer la variation d'enthalpie correspondant aux reactions en phase solide par la methode d'analyse thermique differentielle dynamique. En effet, ces reactions sont le plus souvent trop lentes aux temperatures d'utilisation des dispositifs actuels. Un appareil d'analyse thermique differentielle balistique, base sur une methode de plongee avec compensation, a ete mis au point et permet de surmonter les difficultes precedentes. Apres etalonnages, cet appareil a ete utilise pour la determination des enthalpies de formation du titanate de calcium et du titanate de cadmium ainsi que pour celle des energies Wigner emmagasinees dans des echantillons de BeO, MgO et Al{sub 2}O{sub 3} irradies a une temperature inferieure a 100 deg. C et a differentes doses. (auteurs)

  15. An Experimental Design Approach for the Analysis of Liquid Phase Products in Water for Hydrogenolysis of Glycerol using Immersed Solid-Phase Micro extraction

    International Nuclear Information System (INIS)

    Noraini Hamzah; Rozita Osman; Noraini Hamzah; Mohd Ambar Yarmo

    2013-01-01

    In this study, a response surface methodology (RSM) was applied to optimize the immersed-solid-phase micro extraction (immersed-SPME) conditions for the first time using a polyacrylate (PA) coated fiber. This was to determine liquid phase compounds in water for hydrogenolysis reaction of glycerol. There are a three-factor response surface experimental design was used to evaluate the interactive effects of extraction temperature (30-70 degree Celsius), extraction time (10-30 minutes) and desorption time (2-18 minutes) on the analysis of liquid phase compounds in water for hydrogenolysis of glycerol using immersed-solid-phase micro extraction (immersed-SPME). The extraction conditions using immersed-SPME were optimized in order to achieve high enrichment of the analytes from aqueous samples. The isolated compounds from the SPME fiber were desorbed and separated on a capillary polar column of a gas chromatography-flame ionization detector (GC-FID). The extraction time and desorption time were found significant in increasing the amount of glycerol in aqueous hydrogenolysis of glycerol. Nevertheless, the effect of extraction temperature was not significant. In terms of interactions between the effects, the relation between extraction temperature and extraction time was the most significant. The optimised immersed-SPME conditions were at extraction temperature of 27 degree Celsius, extraction time of 30 minutes and 15 minutes of desorption time. Thus, the application of SPME was found to be a rapid and effective technique in the determination of glycerol and propylene glycol compounds in aqueous hydrogenolysis glycerol. (author)

  16. Rapid Determination of Clenbuterol in Pork by Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Ye, Diru; Wu, Susu; Xu, Jianqiao; Jiang, Ruifen; Zhu, Fang; Ouyang, Gangfeng

    2016-02-01

    Direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid analysis of clenbuterol in pork for the first time. In this work, a low-cost homemade 44 µm polydimethylsiloxane (PDMS) SPME fiber was employed to extract clenbuterol in pork. After extraction, derivatization was performed by suspending the fiber in the headspace of the 2 mL sample vial saturated with a vapor of 100 µL hexamethyldisilazane. Lastly, the fiber was directly introduced to GC-MS for analysis. All parameters that influenced absorption (extraction time), derivatization (derivatization reagent, time and temperature) and desorption (desorption time) were optimized. Under optimized conditions, the method offered a wide linear range (10-1000 ng g(-1)) and a low detection limit (3.6 ng g(-1)). Finally, the method was successfully applied in the analysis of pork from the market, and recoveries of the method for spiked pork were 97.4-105.7%. Compared with the traditional solvent extraction method, the proposed method was much cheaper and fast. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    Science.gov (United States)

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  18. Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens

    International Nuclear Information System (INIS)

    Schroeder, Tim; Gaedeke, Friedemann; Banholzer, Moritz Julian; Benson, Oliver

    2011-01-01

    Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single-photon sources and thus essential components for reliable and integrated quantum information technology. A key requirement for such applications is a large photon flux and a high efficiency. Paying tribute to various attempts to maximize the single-photon flux, we show that collection efficiencies of photons from colour centres can be increased with a rather simple experimental setup. To do so, we spin-coated nanodiamonds containing single nitrogen-vacancy (N-V) colour centres on the flat surface of a ZrO 2 solid immersion lens. We found stable single-photon count rates of up to 853 kcts s -1 at saturation under continuous wave excitation while having access to more than 100 defect centres with count rates from 400 to 500 kcts s -1 . For a blinking defect centre, we found count rates up to 2.4 Mcts s -1 for time intervals of several tens of seconds. It seems to be a general feature that very high rates are accompanied by blinking behaviour. The overall collection efficiency of our setup of up to 4.2% is the highest yet reported for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of 10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts s -1 thus, opening the way towards diamond-based on-demand single-photon sources for quantum applications.

  19. Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Tim; Gaedeke, Friedemann; Banholzer, Moritz Julian; Benson, Oliver, E-mail: tim.schroeder@physik.hu-berlin.de [Humboldt-Universitaet zu Berlin, Institut fuer Physik, AG Nano Optics Newtonstrasse 15, 12489 Berlin (Germany)

    2011-05-15

    Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single-photon sources and thus essential components for reliable and integrated quantum information technology. A key requirement for such applications is a large photon flux and a high efficiency. Paying tribute to various attempts to maximize the single-photon flux, we show that collection efficiencies of photons from colour centres can be increased with a rather simple experimental setup. To do so, we spin-coated nanodiamonds containing single nitrogen-vacancy (N-V) colour centres on the flat surface of a ZrO{sub 2} solid immersion lens. We found stable single-photon count rates of up to 853 kcts s{sup -1} at saturation under continuous wave excitation while having access to more than 100 defect centres with count rates from 400 to 500 kcts s{sup -1}. For a blinking defect centre, we found count rates up to 2.4 Mcts s{sup -1} for time intervals of several tens of seconds. It seems to be a general feature that very high rates are accompanied by blinking behaviour. The overall collection efficiency of our setup of up to 4.2% is the highest yet reported for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of 10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts s{sup -1} thus, opening the way towards diamond-based on-demand single-photon sources for quantum applications.

  20. Determination of phthalate esters in vegetable oils using direct immersion solid-phase microextraction and fast gas chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    Barp, Laura; Purcaro, Giorgia; Franchina, Flavio A; Zoccali, Mariosimone; Sciarrone, Danilo; Tranchida, Peter Q; Mondello, Luigi

    2015-08-05

    Phthalates are a group of synthetic compounds mainly used as plasticizers, which have been classified as endocrine-disrupting chemicals and potential human-cancer causing agents. They can be found in high amounts in foods, deriving mainly from plastic packaging. The analytical determination of these compounds is very challenging since they are ubiquitous. Therefore, minimization of sample manipulation is highly desirable. The present work exploited the application of a solid-phase microextraction method for the analysis of phthalates in vegetable oil. A preliminary comparison between a polydimethylsiloxane (PDMS) and a Carbopack Z/PDMS fiber was carried out both in the headspace and direct immersion extraction modes. Before immersing the fiber, a rapid liquid-liquid extraction was performed using acetonitrile to remove the bulk of triglycerides. PDMS in the direct immersion mode showed the best performance. The method was fully validated obtaining a good linearity with a coefficient of correlation of over 0.9960 for all compounds, repeatability and accuracy values generally better than 10%, and very good limit of quantification values. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Immersion revisited

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Nordahl, Rolf; Serafin, Stefania

    2016-01-01

    of existing definitions of immersion originating within the study of video games, virtual environments, and literary works of fiction. Based on this review, a three-dimensional taxonomy of the various conceptualizations of immersion is proposed. That is, the existing definitions of immersion may be broadly...... divided into three categories, each representing a dimension of the taxonomy: immersion as a property of a system, a subjective response to narrative contents, or a subjective response to challenges within the virtual environment. Finally, four distinct theories of presence are introduced and, based...... on the established taxonomy, we discuss how the individual theories relate to existing definitions of immersion....

  2. Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds

    Directory of Open Access Journals (Sweden)

    NEVENKA BOSKOVIC-VRAGOLOVIC

    2005-11-01

    Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.

  3. A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials

    Science.gov (United States)

    Nazihah Mat Daud, Anis; Jaafar, Rosly; Kadri Ayop, Shahrul; Supar Rohani, Md

    2018-04-01

    This paper discusses the development of a computerized acoustic characterization system of non-porous solid tissue mimicking materials. This system employs an alternative pulse echo immersion technique and consists of a pulser/receiver generator, a transducer used as both a transmitter and a receiver, a digital oscilloscope, and a personal computer with a custom-developed program installed. The program was developed on the LabVIEW 2012 platform and comprises two main components, a user interface and a block diagram. The user interface consists of three panels: a signal acquisition and selection panel, a display panel, and a calculation panel. The block diagram comprises four blocks: a signal acquisition block, a peak signal analysis block, an acoustic properties calculation and display block, and an additional block. Interestingly, the system can be operated in both online and offline modes. For the online mode, the measurements are performed by connecting the system with a Rigol DS2000 Series digital oscilloscope. In contrast, the measurements are carried out by processing the saved data on the computer for the offline mode. The accuracy and consistency of the developed system was validated by a KB-Aerotech Alpha Series transducer with 5 MHz center frequency and a Rigol DS2202 two-channel 200 MHz 2 GSa s-1 digital oscilloscope, based on the measurement of the acoustic properties of three poly(methyl methacrylate) samples immersed in a medium at a temperature of (24.0  ±  0.1) °C. The findings indicated that the accuracy and consistency of the developed system was exceptionally high, within a 1.04% margin of error compared to the reference values. As such, this computerized system can be efficiently used for the acoustic characterization of non-porous solid tissues, given its spontaneous display of results, user-friendly interface, and convenient hardware connection.

  4. Immersive video

    Science.gov (United States)

    Moezzi, Saied; Katkere, Arun L.; Jain, Ramesh C.

    1996-03-01

    Interactive video and television viewers should have the power to control their viewing position. To make this a reality, we introduce the concept of Immersive Video, which employs computer vision and computer graphics technologies to provide remote users a sense of complete immersion when viewing an event. Immersive Video uses multiple videos of an event, captured from different perspectives, to generate a full 3D digital video of that event. That is accomplished by assimilating important information from each video stream into a comprehensive, dynamic, 3D model of the environment. Using this 3D digital video, interactive viewers can then move around the remote environment and observe the events taking place from any desired perspective. Our Immersive Video System currently provides interactive viewing and `walkthrus' of staged karate demonstrations, basketball games, dance performances, and typical campus scenes. In its full realization, Immersive Video will be a paradigm shift in visual communication which will revolutionize television and video media, and become an integral part of future telepresence and virtual reality systems.

  5. Immersion Strategies.

    Science.gov (United States)

    Lorenz, Eileen B.

    Four classroom activities useful for language immersion instruction are described and specific applications and extensions are noted. All are best used to teach content and language at the same time. The first, entitled "Think-Pair-Share," is a cooperative learning technique that increases student participation in classroom experiences and…

  6. Application of headspace and direct immersion solid-phase microextraction in the analysis of organothiophosphates related to the Chemical Weapons Convention from water and complex matrices.

    Science.gov (United States)

    Althoff, Marc André; Bertsch, Andreas; Metzulat, Manfred; Klapötke, Thomas M; Karaghiosoff, Konstantin L

    2017-11-01

    The successful application of headspace (HS) and direct immersion (DI) solid phase microextraction (SPME) for the unambiguous identification and characterization of a series of toxic thiophosphate esters, such as Amiton (I), from aqueous phases and complex matrices (e.g. grass and foliage) has been demonstrated. A Thermo Scientific gas chromatograph (GC) - tandem mass spectrometer (MS/MS) system with a TriPlus RSH® autosampler and a SPME tool was used to investigate the effect of different parameters that influence the extraction efficiency: e.g. pH of the sample matrix and extraction temperature. The developed methods were employed for the detection of several Amiton derivatives (Schedule II of the CWC) that are structurally closely related to each other; some of which are new and have not been reported in literature previously. In addition, a novel DI SPME method from complex matrices for the analysis of organophosphates related to the CWC was developed. The studies clearly show that DI SPME for complex matrices is superior to HS extraction and can potentially be applied to other related compounds controlled under the CWC. Copyright © 2017. Published by Elsevier B.V.

  7. Development of a polymeric ionic liquid coating for direct-immersion solid-phase microextraction using polyhedral oligomeric silsesquioxane as cross-linker.

    Science.gov (United States)

    Chen, Chunyan; Liang, Xiaotong; Wang, Jianping; Zou, Ying; Hu, Huiping; Cai, Qingyun; Yao, Shouzhuo

    2014-06-27

    A novel solid-phase microextraction (SPME) fiber was developed by chemical binding of a crosslinked polymeric ionic liquid (PIL) on the surface of an anodized Ti wire, and was applied in direct-immersion mode for the extraction of perfluorinated compounds (PFCs) from water samples coupled with high performance liquid chromatography-tandem mass spectrometry analysis. The PIL coatings were synthesized by using 1-vinyl-3-hexylimidazolium hexafluorophosphate as monomer and methylacryloyl-substituted polyhedral oligomeric silsesquioxane (POSS) as cross-linker via free radical reaction. The proposed fiber coating exhibited high mechanical stability due to the chemical bonding between the coating and the Ti wire surface. The integration of POSS reagent enhanced the organic solvent resistance of the coating. The parameters affecting the extraction performance of the fiber coating including extraction time, pH of solution, ionic strength and desorption conditions were optimized. The developed PIL-POSS fiber showed good linearity (R<0.998) between 0.1 and 50ngmL(-1) with method detection limits ranging from 0.005 to 0.08ngmL(-1) depending on the analyte, and with relative standard deviation for single-fiber repeatability and fiber-to-fiber reproducibility less than 8.6% and 9.5%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  9. Immersive Exhibitions

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2015-01-01

    The immersive exhibition is a specialized exhibition genre in museums, which creates the illusion of time and place by representing key characteristics of a reference world and by integrating the visitor in this three-dimensionally reconstructed world (Mortensen 2010). A successful representation...... of the reference world depends on three criteria: whether the exhibition is staged as a coherent whole with all the displayed objects supporting the representation, whether the visitor is integrated as a component of the exhibition, and whether the content and message of the exhibition become dramatized...

  10. Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

    Science.gov (United States)

    Cordero-Vaca, María; Trujillo-Rodríguez, María J; Zhang, Cheng; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2015-06-01

    Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 μg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 μg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 μm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 μg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

  11. Immersive Learning Technologies

    Science.gov (United States)

    2009-08-20

    Immersive Learning Technologies Mr. Peter Smith Lead, ADL Immersive Learning Team 08/20/2009 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2009 4. TITLE AND SUBTITLE Immersive Learning Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Why Immersive Learning Technologies

  12. Fast and robust direct immersion solid phase microextraction coupled with gas chromatography-time-of-flight mass spectrometry method employing a matrix compatible fiber for determination of triazole fungicides in fruits.

    Science.gov (United States)

    Silva, Érica A Souza; Lopez-Avila, Viorica; Pawliszyn, Janusz

    2013-10-25

    A fast and robust method was developed for the determination of ten triazole fungicides in fruit samples using direct immersion solid-phase microextraction coupled to gas chromatography with time-of-flight mass spectrometry detection (DI-SPME-GC-ToFMS). In this work, a newly developed concept of solid-phase microextraction (SPME) sorbent, which allows for direct immersion extraction in complex food matrices, has been applied in the analysis of 10 triazole fungicides in grapes and strawberries pulps. Potential factors affecting the extraction efficiency were investigated and optimized, including extraction temperature, sample pH, and ionic strength, agitation speed, extraction and desorption times. Under optimized conditions, the method was linear for over 4 orders of magnitude in concentration, with linear regression coefficients (R(2)) greater than 0.99 for all test compounds in both matrices. Method reproducibility, as determined by analysis of spiked grapes and strawberries, was better than ±20%. The limits of quantitation objective (LOQs) ranged from 0.25 to 5 ng g(-1) for both matrices, well below the maximum residues levels allowed for those compounds in both matrices. The method was successfully applied in the analysis of commercial samples of grapes and strawberries. Finally, the new SPME method was compared to a modified version of t QuEChERS AOAC method: the limits of quantitation reached by SPME were at least one order of magnitude lower than those achieved by the QuEChERS method, whereas precision and accuracy were comparable for both methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  14. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  15. Micro sized implantable ball lens-based fiber optic probe design

    Science.gov (United States)

    Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.

  16. Methodical evaluation and improvement of matrix compatible PDMS-overcoated coating for direct immersion solid phase microextraction gas chromatography (DI-SPME-GC)-based applications.

    Science.gov (United States)

    Souza-Silva, Érica A; Gionfriddo, Emanuela; Shirey, Robert; Sidisky, Len; Pawliszyn, Janusz

    2016-05-12

    The main quest for the implementation of direct SPME to complex matrices has been the development of matrix compatible coatings that provide sufficient sensitivity towards the target analytes. In this context, we present here a thorough evaluation of PDMS-overcoated fibers suitable for simultaneous extraction of different polarities analytes, while maintaining adequate matrix compatibility. For this, eleven analytes were selected, from various application classes (pesticides, industrial chemicals and pharmaceuticals) and with a wide range of log P values (ranging from 1.43 to 6). The model matrix chosen was commercial Concord grape juice, which is rich in pigments such as anthocyanins, and contains approximately 20% of sugar (w/w). Two types of PDMS, as well as other intrinsic factors associated with the PDMS-overcoated fiber fabrication are studied. The evaluation showed that the PDMS-overcoated fibers considerably slowed down the coating fouling process during direct immersion in complex matrices of high sugar content. Longevity differences could be seen between the two types of PDMS tested, with a proprietary Sylgard(®) giving superior performance because of lesser amount of reactive groups and enhanced hydrophobicity. Conversely, the thickness of the outer layer did not seem to have a significant effect on the fiber lifetime. We also demonstrate that the uniformity of the overcoated PDMS layer is paramount to the achievement of reliable data and extended fiber lifetime. Employing the optimum overcoated fiber, limits of detection (LOD) in the range of 0.2-1.3 ng/g could be achieved. Additional improvement is attainable by introducing washing of the coatings after desorption, so that any carbon build-up (fouling) left on the coating surface after thermal desorption can be removed. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Computed and experimental motion picture determination of bubble and solids motion in a two-dimensional fluidized-bed with a jet and immersed obstacle

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Bouillard, J.; Gidaspow, D.

    1986-01-01

    Bubble and solids motion in a two-dimensional rectangular fluidized-bed having a high speed central jet with a rectangular obstacle above it and secondary air flow at minimum fluidization have been computer modeled. Computer generated motion pictures have been found to be necessary to analyze the computations since there are such a large number of time-dependent complex phenomena difficult to comprehend otherwise. Comparison of the computer generated motion pictures with high speed motion pictures of a flow visualization experiment reveal good agreement

  18. Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil.

    Science.gov (United States)

    Purcaro, Giorgia; Picardo, Massimo; Barp, Laura; Moret, Sabrina; Conte, Lanfranco S

    2013-09-13

    The aim of the present work was to optimize a preparation step for polycyclic aromatic hydrocarbons in a fatty extract. Solid-phase microextraction is an easy preparation technique, which allows to minimize solvent consumption and reduce sample manipulation. A Carbopack Z/polydimethylsiloxane fiber, particularly suitable for extraction of planar compounds, was employed to extract polycyclic aromatic hydrocarbons from a hexane solution obtained after a previous extraction with acetonitrile from oil, followed by a liquid-liquid partition between acetonitrile and hexane. The proposed method was a rapid and sensitive solution to reduce the interference of triglycerides saving the column life and avoiding frequent cleaning of the mass spectrometer ion source. Despite the non-quantitative extraction of polycyclic aromatic hydrocarbons from oil using acetonitrile, the signal-to-noise ratio was significantly improved obtaining a limit of detection largely below the performance criteria required by the European Union legislation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Water immersion in preeclampsia.

    Science.gov (United States)

    Elvan-Taşpinar, Ayten; Franx, Arie; Delprat, Constance C; Bruinse, Hein W; Koomans, Hein A

    2006-12-01

    Preeclampsia is associated with profound vasoconstriction in most organ systems and reduced plasma volume. Because water immersion produces a marked central redistribution of blood volume and suppresses the renin-angiotensin system response and sympathetic activity, we hypothesized that water immersion might be useful in the treatment of preeclampsia. The effects of thermoneutral water immersion for 3 hours on central and peripheral hemodynamics were evaluated in 7 preeclamptic patients, 7 normal pregnant control patients, and 7 nonpregnant women. Finger plethysmography was used to determine hemodynamic measurements (cardiac output and total peripheral resistance), and forearm blood flow was measured by strain gauge plethysmography. Postischemic hyperemia was used to determine endothelium-dependent vasodilation. Analysis was by analysis of variance for repeated measurements. During water immersion cardiac output increased while diastolic blood pressure and heart rate decreased, although systolic blood pressure remained unchanged in each group. Forearm blood flow increased significantly in the normal pregnant and preeclamptic subjects. Total peripheral resistance decreased in all groups, but values in preeclamptic patients remained above those of normotensive pregnant women. Water immersion had no effect on endothelium-dependent vasodilation in the preeclamptic group, and most hemodynamic changes that were observed reversed to baseline within 2 hours of completion of the procedure. Although water immersion results in hemodynamic alterations in a manner that is theoretically therapeutic for women with preeclampsia, the effect was limited and short-lived. In addition water immersion had no effect on endothelium-dependent vasodilation in women with preeclampsia. The therapeutic potential for water immersion in preeclampsia appears to be limited.

  20. [Immersion pulmonary edema].

    Science.gov (United States)

    Desgraz, Benoît; Sartori, Claudio; Saubade, Mathieu; Héritier, Francis; Gabus, Vincent

    2017-07-12

    Immersion pulmonary edema may occur during scuba diving, snorke-ling or swimming. It is a rare and often recurrent disease, mainly affecting individuals aged over 50 with high blood pressure. However it also occurs in young individuals with a healthy heart. The main symptoms are dyspnea, cough and hemoptysis. The outcome is often favorable under oxygen treatment but deaths are reported. A cardiac and pulmonary assessment is necessary to evaluate the risk of recurrence and possible contraindications to immersion.

  1. Immersion Ethnography of Elites

    DEFF Research Database (Denmark)

    Harrington, Brooke

    2016-01-01

    This chapter examines an innovative form of data-gathering that brings together two of the greatest methodological challenges social scientists face: conducting classical immersion ethnography and gaining access to elites. The difficulties of accessing elites for research purposes have been well......-documented (Conti and O’Neill 2007; Gilding 2010; Harrington 2003). There has been less scholarly discussion of the challenges posed by traditional ethnography, a method whose claim to scientific status is based on the length and depth of the investigator’s immersion in an organization or culture....

  2. A planar lens based on the electrowetting of two immiscible liquids

    International Nuclear Information System (INIS)

    Liu Chaoxuan; Park, Jihwan; Choi, Jin-Woo

    2008-01-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50–250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate

  3. $f$-Biminimal immersions

    OpenAIRE

    GÜRLER, FATMA; ÖZGÜR, CİHAN

    2017-01-01

    In the present paper, we define $f$-biminimal immersions. We consider $f$-biminimal curves in a Riemannian manifold and $f$-biminimal submanifolds of codimension $1$ in a Riemannian manifold, and we give examples of $f$-biminimal surfaces. Finally, we consider $f$-biminimal Legendre curves in Sasakian space forms and give an example.

  4. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  5. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Animal imaging using immersion

    Science.gov (United States)

    Kalogerakis, Konstantinos S.; Kotz, Kenneth T.; Rand, Kendra; Faris, Gregory W.

    2003-07-01

    We are using rodent animal models to study and compare contrast mechanisms for detection of breast cancer. These measurements are performed with the animals immersed in a matching scattering medium. The matching scattering medium or liquid tissue phantom comprises a mixture of Ropaque (hollow acrylic/styrene microspheres) and ink. We have previously applied matched imaging to imaging in humans. Surrounding the imaged region with a matched tissue phantom compensates for variations in tissue thickness and geometry, provides more uniform illumination, and allows better use of the dynamic range of the imaging system. If the match is good, the boundaries of the imaged region should almost vanish, enhancing the contrast from internal structure as compared to contrast from the boundaries and surface topography. For our measurements in animals, the immersion plays two additional roles. First, we can readily study tumors through tissue thickness similar to that of a human breast. Although the heterogeneity of the breast is lost, this is a practical method to study the detection of small tumors and monitor changes as they grow. Second, the immersion enhances our ability to quantify the contrast mechanisms for peripheral tumors on the animal because the boundary effects on photon migration are eliminated. We are currently developing two systems for these measurements. One is a continuous-wave (CW) system based on near-infrared LED illumination and a CCD (charge-coupled device) camera. The second system, a frequency domain system, can help quantify the changes observed with the CW system.

  7. Altered Perspectives: Immersive Environments

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.

    2016-12-01

    Immersive environments provide an exciting experiential technology to visualize the natural world. Given the increasing accessibility of 360o cameras and virtual reality headsets we are now able to visualize artistic principles and scientific concepts in a fully immersive environment. The technology has become popular for photographers as well as designers, industry, educational groups, and museums. Here we show a sci-art perspective on the use of optics and light in the capture and manipulation of 360o images and video of geologic phenomena and cultural heritage sites in Alaska, England, and France. Additionally, we will generate intentionally altered perspectives to lend a surrealistic quality to the landscapes. Locations include the Catacombs of Paris, the Palace of Versailles, and the Northern Lights over Fairbanks, Alaska. Some 360o view cameras now use small portable dual lens technology extending beyond the 180o fish eye lens previously used, providing better coverage and image quality. Virtual reality headsets range in level of sophistication and cost, with the most affordable versions using smart phones and Google Cardboard viewers. The equipment used in this presentation includes a Ricoh Theta S spherical imaging camera. Here we will demonstrate the use of 360o imaging with attendees being able to be part of the immersive environment and experience our locations as if they were visiting themselves.

  8. Time-lens based synchronizer and retimer for 10 Gb/s Ethernet packets with up to ±1MHz frequency offset

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results.......We present a time-lens based all-optical 10 Gb/s frame synchronizer and retimer. Our scheme can work with a 4096-bit frame, with frequency offset up to 1MHz, which is demonstrated by experimental results....

  9. Immersive viewing engine

    Science.gov (United States)

    Schonlau, William J.

    2006-05-01

    An immersive viewing engine providing basic telepresence functionality for a variety of application types is presented. Augmented reality, teleoperation and virtual reality applications all benefit from the use of head mounted display devices that present imagery appropriate to the user's head orientation at full frame rates. Our primary application is the viewing of remote environments, as with a camera equipped teleoperated vehicle. The conventional approach where imagery from a narrow field camera onboard the vehicle is presented to the user on a small rectangular screen is contrasted with an immersive viewing system where a cylindrical or spherical format image is received from a panoramic camera on the vehicle, resampled in response to sensed user head orientation and presented via wide field eyewear display, approaching 180 degrees of horizontal field. Of primary interest is the user's enhanced ability to perceive and understand image content, even when image resolution parameters are poor, due to the innate visual integration and 3-D model generation capabilities of the human visual system. A mathematical model for tracking user head position and resampling the panoramic image to attain distortion free viewing of the region appropriate to the user's current head pose is presented and consideration is given to providing the user with stereo viewing generated from depth map information derived using stereo from motion algorithms.

  10. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  11. Immersion in narrative games

    Directory of Open Access Journals (Sweden)

    Suely Fragoso

    2014-12-01

    Full Text Available This paper discusses the expressions used to refer to the experience of immersive in narrative games. The starting point is a review of the meanings associated with the suspension of disbelief in literature, cinema and television, challenging the myth of the naïve audience that cannot distinguish between representation and reality. Two characteristics of interactive media narratives – the possibility of agency and the disparities between hardware and software interfaces – reveal the active nature of the audience’s involvement with media representations. It is proposed that, in the case of games, this ability, which allows for simultaneous actions in the world of games and in the real world, is better described as a performance of belief.

  12. Immersive Technologies and Language Learning

    Science.gov (United States)

    Blyth, Carl

    2018-01-01

    This article briefly traces the historical conceptualization of linguistic and cultural immersion through technological applications, from the early days of locally networked computers to the cutting-edge technologies known as virtual reality and augmented reality. Next, the article explores the challenges of immersive technologies for the field…

  13. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  14. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng; Lee, Bok Jik; Im, Hong G.

    2016-01-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary

  15. Photometric immersion refractometry of bacterial spores.

    Science.gov (United States)

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  16. Thermal comfort following immersion.

    Science.gov (United States)

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Complete spacelike immersions with topology

    International Nuclear Information System (INIS)

    Harris, S.G.

    1988-01-01

    A fairly large class of Lorentz manifolds is defined, called WH normal manifolds, which are approximately those for which timelike infinity is a single point. It is shown that, in such a space, an immersed spacelike hypersurface which is complete must, if it is self-intersecting, not achronal or proper, satisfy strong topological conditions; in particular, if the immersion is injective in the fundamental group, then the hypersurface must be closed, embedded and achronal (i.e. a partial Cauchy surface). WH normal spaces include products of any Riemannian manifold with Minkowski 1-space; in such space, a complete immersed spacelike hypersurface must be immersed as a covering space for the Riemannian factor. (author)

  18. Immersion Music: a Progress Report

    OpenAIRE

    Nakra, Teresa M.

    2003-01-01

    This paper describes the artistic projects undertaken at ImmersionMusic, Inc. (www.immersionmusic.org) during its three-yearexistence. We detail work in interactive performance systems,computer-based training systems, and concert production.

  19. A Theory of Immersion Freezing

    Science.gov (United States)

    Barahona, Donifan

    2017-01-01

    Immersion freezing is likely involved in the initiation of precipitation and determines to large extent the phase partitioning in convective clouds. Theoretical models commonly used to describe immersion freezing in atmospheric models are based on the classical nucleation theory which however neglects important interactions near the immersed particle that may affect nucleation rates. This work introduces a new theory of immersion freezing based on two premises. First, immersion ice nucleation is mediated by the modification of the properties of water near the particle-liquid interface, rather than by the geometry of the ice germ. Second, the same mechanism that leads to the decrease in the work of germ formation also decreases the mobility of water molecules near the immersed particle. These two premises allow establishing general thermodynamic constraints to the ice nucleation rate. Analysis of the new theory shows that active sites likely trigger ice nucleation, but they do not control the overall nucleation rate nor the probability of freezing. It also suggests that materials with different ice nucleation efficiency may exhibit similar freezing temperatures under similar conditions but differ in their sensitivity to particle surface area and cooling rate. Predicted nucleation rates show good agreement with observations for a diverse set of materials including dust, black carbon and bacterial ice nucleating particles. The application of the new theory within the NASA Global Earth System Model (GEOS-5) is also discussed.

  20. Immersion Refractometry of Isolated Bacterial Cell Walls

    Science.gov (United States)

    Marquis, Robert E.

    1973-01-01

    Immersion-refractometric and light-scattering measurements were adapted to determinations of average refractive indices and physical compactness of isolated bacterial cell walls. The structures were immersed in solutions containing various concentrations of polymer molecules that cannot penetrate into wall pores, and then an estimate was made of the polymer concentration or the refractive index of the polymer solution in which light scattering was reduced to zero. Because each wall preparation was heterogeneous, the refractive index of the medium for zero light scattering had to be estimated by extrapolation. Refractive indices for walls suspended in bovine serum albumin solutions ranged from 1.348 for walls of the rod form of Arthrobacter crystallopoietes to 1.382 for walls of the teichoic acid deficient, 52A5 strain of Staphylococcus aureus. These indices were used to calculate approximate values for solids content per milliliter, and the calculated values agreed closely with those estimated from a knowledge of dextran-impermeable volumes per gram, dry weight, of the walls. When large molecules such as dextrans or serum albumin were used for immersion refractometry, the refractive indices obtained were for entire walls, including both wall polymers and wall water. When smaller molecules that can penetrate wall pores to various extents were used with Micrococcus lysodeikticus walls, the average, apparent refractive index of the structures increased as the molecular size of probing molecules was decreased. It was possible to obtain an estimate of 1.45 to 1.46 for the refractive index of wall polymers, predominantly peptidoglycans in this case, by extrapolating the curve for refractive index versus molecular radius to a value of 0.2 nm, the approximate radius of a water molecule. This relatively low value for polymer refractive index was interpreted as evidence in favor of the amorphous, elastic model of peptidoglycan structure and against the crystalline, rigid

  1. Cardiovascular regulation during water immersion.

    Science.gov (United States)

    Park, K S; Choi, J K; Park, Y S

    1999-11-01

    Head-out water immersion at thermoneutral temperature (34-35 degrees C) increases cardiac output for a given O2 consumption, leading to a relative hyperperfusion of peripheral tissues. To determine if subjects immersed in water at a colder temperature show similar responses and to explore the significance of the hyperperfusion, cardiovascular functions were investigated (impedance cardiography) on 10 men at rest and while performing exercise on a leg cycle ergometer (delta M = approximately 95 W.m-2) in air and in water at 34.5 degrees C and 30 degrees C, respectively. In subjects resting in water, the cardiac output increased by approximately 50% compared to that in air, mainly due to a rise in stroke volume. The stroke volume change tended to be greater in 30 degrees C water than in 34.5 degrees C water, and this was due to a greater increase in cardiac preload, as indicated by a significantly greater left ventricular end-diastolic volume. Arterial systolic pressure rose slightly during water immersion. Arterial diastolic pressure remained unchanged in 34.5 degrees C water, but it rose in 30 degrees C water. The total peripheral resistance fell 37% in 34.5 degrees C water and 32% in 30 degrees C water. Both in air and in water, mild exercise increased the cardiac output, and this was mainly due to an increase in heart rate. Since, however, the stroke volume increased with water immersion, cardiac output at a given work load appeared to be significantly higher in water than in air. The arterial pressures did not decrease with water immersion, despite a marked reduction in total peripheral resistance. These results suggest that 1) during cold water immersion, peripheral vasoconstriction provides an additional increase in cardiac preload, leading to a further increase in the stroke volume compared to that of the thermoneutral water immersion, 2) the mechanism of cardiovascular adjustment during dynamic exercise is not changed by the persistent increase in cardiac

  2. Immersible solar heater for fluids

    Science.gov (United States)

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  3. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  4. Low-Cost GRIN-Lens-Based Nephelometric Turbidity Sensing in the Range of 0.1-1000 NTU.

    Science.gov (United States)

    Metzger, Michael; Konrad, Alexander; Blendinger, Felix; Modler, Andreas; Meixner, Alfred J; Bucher, Volker; Brecht, Marc

    2018-04-06

    Turbidity sensing is very common in the control of drinking water. Furthermore, turbidity measurements are applied in the chemical (e.g., process monitoring), pharmaceutical (e.g., drug discovery), and food industries (e.g., the filtration of wine and beer). The most common measurement technique is nephelometric turbidimetry. A nephelometer is a device for measuring the amount of scattered light of suspended particles in a liquid by using a light source and a light detector orientated in 90° to each other. Commercially available nephelometers cost usually-depending on the measurable range, reliability, and precision-thousands of euros. In contrast, our new developed GRIN-lens-based nephelometer, called GRINephy, combines low costs with excellent reproducibility and precision, even at very low turbidity levels, which is achieved by its ability to rotate the sample. Thereby, many cuvette positions can be measured, which results in a more precise average value for the turbidity calculated by an algorithm, which also eliminates errors caused by scratches and contaminations on the cuvettes. With our compact and cheap Arduino-based sensor, we are able to measure in the range of 0.1-1000 NTU and confirm the ISO 7027-1:2016 for low turbidity values.

  5. Immersive Education, an Annotated Webliography

    Science.gov (United States)

    Pricer, Wayne F.

    2011-01-01

    In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…

  6. Learning immersion without getting wet

    Science.gov (United States)

    Aguilera, Julieta C.

    2012-03-01

    This paper describes the teaching of an immersive environments class on the Spring of 2011. The class had students from undergraduate as well as graduate art related majors. Their digital background and interests were also diverse. These variables were channeled as different approaches throughout the semester. Class components included fundamentals of stereoscopic computer graphics to explore spatial depth, 3D modeling and skeleton animation to in turn explore presence, exposure to formats like a stereo projection wall and dome environments to compare field of view across devices, and finally, interaction and tracking to explore issues of embodiment. All these components were supported by theoretical readings discussed in class. Guest artists presented their work in Virtual Reality, Dome Environments and other immersive formats. Museum professionals also introduced students to space science visualizations, which utilize immersive formats. Here I present the assignments and their outcome, together with insights as to how the creation of immersive environments can be learned through constraints that expose students to situations of embodied cognition.

  7. Immersive Learning: Realism, Authenticity & Audience

    OpenAIRE

    Livingstone, Daniel

    2016-01-01

    For almost 20 years the Digital Design Studio has been exploring and applying virtual reality for a wide range of industrial, commercial and educational applications. Drawing from a range of recent projects, we explore the complex relationships between realism, authenticity and audience for effective engagement and education in immersive learning.

  8. The "Total Immersion" Meeting Environment.

    Science.gov (United States)

    Finkel, Coleman

    1980-01-01

    The designing of intelligently planned meeting facilities can aid management communication and learning. The author examines the psychology of meeting attendance; architectural considerations (lighting, windows, color, etc.); design elements and learning modes (furniture, walls, audiovisuals, materials); and the idea of "total immersion meeting…

  9. Embedding Versus Immersion in General Relativity

    OpenAIRE

    Monte, Edmundo M.

    2009-01-01

    We briefly discuss the concepts of immersion and embedding of space-times in higher-dimensional spaces. We revisit the classical work by Kasner in which he constructs a model of immersion of the Schwarzschild exterior solution into a six-dimensional pseudo-Euclidean manifold. We show that, from a physical point of view, this model is not entirely satisfactory since the causal structure of the immersed space-time is not preserved by the immersion.

  10. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    International Nuclear Information System (INIS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-01-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices

  11. Immersion in Movement-Based Interaction

    NARCIS (Netherlands)

    Pasch, M.; Bianchi-Berthouze, N.; van Dijk, Elisabeth M.A.G.; Nijholt, Antinus; Nijholt, A.; Reidsma, Dennis; Reidsma, D.; Hondorp, G.H.W.

    2009-01-01

    The phenomenon of immersing oneself into virtual environments has been established widely. Yet to date (to our best knowledge) the physical dimension has been neglected in studies investigating immersion in Human-Computer Interaction (HCI). In this paper we investigate how the concept of immersion

  12. Authoring Immersive Mixed Reality Experiences

    Science.gov (United States)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  13. An efficient strongly coupled immersed boundary method for deforming bodies

    Science.gov (United States)

    Goza, Andres; Colonius, Tim

    2016-11-01

    Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.

  14. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  15. Forcing clique immersions through chromatic number

    OpenAIRE

    Gauthier, Gregory; Le, Tien-Nam; Wollan, Paul

    2017-01-01

    Building on recent work of Dvo\\v{r}\\'ak and Yepremyan, we show that every simple graph of minimum degree $7t+7$ contains $K_t$ as an immersion and that every graph with chromatic number at least $3.54t + 4$ contains $K_t$ as an immersion. We also show that every graph on $n$ vertices with no stable set of size three contains $K_{2\\lfloor n/5 \\rfloor}$ as an immersion.

  16. An immersed-boundary method for conjugate heat transfer analysis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeong Chul; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of); Ahn, Joon [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In- side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, between the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a laminar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.

  17. An immersed interface vortex particle-mesh solver

    Science.gov (United States)

    Marichal, Yves; Chatelain, Philippe; Winckelmans, Gregoire

    2014-11-01

    An immersed interface-enabled vortex particle-mesh (VPM) solver is presented for the simulation of 2-D incompressible viscous flows, in the framework of external aerodynamics. Considering the simulation of free vortical flows, such as wakes and jets, vortex particle-mesh methods already provide a valuable alternative to standard CFD methods, thanks to the interesting numerical properties arising from its Lagrangian nature. Yet, accounting for solid bodies remains challenging, despite the extensive research efforts that have been made for several decades. The present immersed interface approach aims at improving the consistency and the accuracy of one very common technique (based on Lighthill's model) for the enforcement of the no-slip condition at the wall in vortex methods. Targeting a sharp treatment of the wall calls for substantial modifications at all computational levels of the VPM solver. More specifically, the solution of the underlying Poisson equation, the computation of the diffusion term and the particle-mesh interpolation are adapted accordingly and the spatial accuracy is assessed. The immersed interface VPM solver is subsequently validated on the simulation of some challenging impulsively started flows, such as the flow past a cylinder and that past an airfoil. Research Fellow (PhD student) of the F.R.S.-FNRS of Belgium.

  18. ERM immersion vaccination and adjuvants

    DEFF Research Database (Denmark)

    Skov, J.; Chettri, J. K.; Jaafar, R. M.

    2015-01-01

    Two candidate adjuvants were tested with a commercial ERM dip vaccine (AquaVac™ Relera, MSD Animal Health) for rainbow trout in an experimental design compatible with common vaccination practices at farm level, i.e. immersion of fish in vaccine (±adjuvant) for 30 s. The adjuvants were...... the commercial product Montanide™ IMS 1312 VG PR (SEPPIC), and a soluble and ≥98% pure β-glucan from yeast (Saccharomyces cerevisiae) (Sigma-Aldrich). Hence, five experimental groups in duplicate were established and exposed to vaccine and adjuvants in the following combinations: AquaVac™ Relera (alone); Aqua......Vac™ Relera + Montanide™; AquaVac™ Relera + β-glucan; Montanide™ (alone); and β-glucan (alone). Approximately 450 degree days post-vaccination, the fish were bath-challenged with live Yersinia ruckeri to produce survival curves. Blood, skin and gills were sampled at selected time points during the course...

  19. Game engines and immersive displays

    Science.gov (United States)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  20. Social Interaction Development through Immersive Virtual Environments

    Science.gov (United States)

    Beach, Jason; Wendt, Jeremy

    2014-01-01

    The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…

  1. Research on evaluation techniques for immersive multimedia

    Science.gov (United States)

    Hashim, Aslinda M.; Romli, Fakaruddin Fahmi; Zainal Osman, Zosipha

    2013-03-01

    Nowadays Immersive Multimedia covers most usage in tremendous ways, such as healthcare/surgery, military, architecture, art, entertainment, education, business, media, sport, rehabilitation/treatment and training areas. Moreover, the significant of Immersive Multimedia to directly meet the end-users, clients and customers needs for a diversity of feature and purpose is the assembly of multiple elements that drive effective Immersive Multimedia system design, so evaluation techniques is crucial for Immersive Multimedia environments. A brief general idea of virtual environment (VE) context and `realism' concept that formulate the Immersive Multimedia environments is then provided. This is followed by a concise summary of the elements of VE assessment technique that is applied in Immersive Multimedia system design, which outlines the classification space for Immersive Multimedia environments evaluation techniques and gives an overview of the types of results reported. A particular focus is placed on the implications of the Immersive Multimedia environments evaluation techniques in relation to the elements of VE assessment technique, which is the primary purpose of producing this research. The paper will then conclude with an extensive overview of the recommendations emanating from the research.

  2. Finite-volume discretizations and immersed boundaries

    NARCIS (Netherlands)

    Y.J. Hassen (Yunus); B. Koren (Barry)

    2009-01-01

    htmlabstractIn this chapter, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed `Cartesian' grid. The essence of the present method

  3. Finite-volume discretizations and immersed boundaries

    NARCIS (Netherlands)

    Y.J. Hassen (Yunus); B. Koren (Barry)

    2010-01-01

    textabstractIn this chapter, an accurate method, using a novel immersed-boundary approach, is presented for numerically solving linear, scalar convection problems. As is standard in immersed-boundary methods, moving bodies are embedded in a fixed Cartesian grid. The essence of the present method is

  4. The Balancing Act of Bilingual Immersion

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2005-01-01

    Hadi-Tabassum believes having a separate life context for each language she learned in childhood enabled her to switch easily among five different tongues. She states that the success of dual immersion bilingual programs is largely dependent on whether they immerse students in each of the involved languages separately and help students have a…

  5. Immersive virtual reality simulations in nursing education.

    Science.gov (United States)

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.

  6. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  7. Immersion and Gameplay Experience: A Contingency Framework

    Directory of Open Access Journals (Sweden)

    Daniel Örtqvist

    2010-01-01

    Full Text Available The nature of the relationship between immersion and gameplay experience is investigated, focusing primarily on the literature related to flow. In particular, this paper proposes that immersion and gameplay experience are conceptually different, but empirically positively related through mechanisms related to flow. Furthermore, this study examines gamers' characteristics to determine the influence between immersion and gameplay experiences. The study involves 48 observations in one game setting. Regression analyses including tests for moderation and simple slope analysis are used to reveal gamers' age, experience, and understanding of the game, which moderate the relationship between immersion and gameplay experience. The results suggest that immersion is more positive for gameplay experience when the gamer lacks experience and understanding of the game as well as when the gamer is relatively older. Implications and recommendations for future research are discussed at length in the paper.

  8. Study on Surface Permeability of Concrete under Immersion

    OpenAIRE

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-01

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured af...

  9. Photogrammetric Applications of Immersive Video Cameras

    Science.gov (United States)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  10. Sources of spurious force oscillations from an immersed boundary method for moving-body problems

    Science.gov (United States)

    Lee, Jongho; Kim, Jungwoo; Choi, Haecheon; Yang, Kyung-Soo

    2011-04-01

    When a discrete-forcing immersed boundary method is applied to moving-body problems, it produces spurious force oscillations on a solid body. In the present study, we identify two sources of these force oscillations. One source is from the spatial discontinuity in the pressure across the immersed boundary when a grid point located inside a solid body becomes that of fluid with a body motion. The addition of mass source/sink together with momentum forcing proposed by Kim et al. [J. Kim, D. Kim, H. Choi, An immersed-boundary finite volume method for simulations of flow in complex geometries, Journal of Computational Physics 171 (2001) 132-150] reduces the spurious force oscillations by alleviating this pressure discontinuity. The other source is from the temporal discontinuity in the velocity at the grid points where fluid becomes solid with a body motion. The magnitude of velocity discontinuity decreases with decreasing the grid spacing near the immersed boundary. Four moving-body problems are simulated by varying the grid spacing at a fixed computational time step and at a constant CFL number, respectively. It is found that the spurious force oscillations decrease with decreasing the grid spacing and increasing the computational time step size, but they depend more on the grid spacing than on the computational time step size.

  11. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  12. Lubricated immersed boundary method in two dimensions

    Science.gov (United States)

    Fai, Thomas G.; Rycroft, Chris H.

    2018-03-01

    Many biological examples of fluid-structure interaction, including the transit of red blood cells through the narrow slits in the spleen and the intracellular trafficking of vesicles into dendritic spines, involve the near-contact of elastic structures separated by thin layers of fluid. Motivated by such problems, we introduce an immersed boundary method that uses elements of lubrication theory to resolve thin fluid layers between immersed boundaries. We demonstrate 2nd-order accurate convergence for simple two-dimensional flows with known exact solutions to showcase the increased accuracy of this method compared to the standard immersed boundary method. Motivated by the phenomenon of wall-induced migration, we apply the lubricated immersed boundary method to simulate an elastic vesicle near a wall in shear flow. We also simulate the dynamics of a vesicle traveling through a narrow channel and observe the ability of the lubricated method to capture the vesicle motion on relatively coarse fluid grids.

  13. Semiconductor applications of plasma immersion ion implantation ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 6. Semiconductor applications of plasma immersion ion implantation technology ... Department of Electronic Science, Kurukshetra University, Kurukshetra 136 119, India ...

  14. Immersive Simulation Training for the Dismounted Soldier

    National Research Council Canada - National Science Library

    Knerr, Bruce W

    2007-01-01

    ... R&D organizations during the period 1997 - 2005. The major findings are organized around the topics of training effectiveness, Soldier task performance, and advantages and disadvantages of immersive...

  15. Immersion in Movement-Based Interaction

    Science.gov (United States)

    Pasch, Marco; Bianchi-Berthouze, Nadia; van Dijk, Betsy; Nijholt, Anton

    The phenomenon of immersing oneself into virtual environments has been established widely. Yet to date (to our best knowledge) the physical dimension has been neglected in studies investigating immersion in Human-Computer Interaction (HCI). In movement-based interaction the user controls the interface via body movements, e.g. direct manipulation of screen objects via gestures or using a handheld controller as a virtual tennis racket. It has been shown that physical activity affects arousal and that movement-based controllers can facilitate engagement in the context of video games. This paper aims at identifying movement features that influence immersion. We first give a brief survey on immersion and movement-based interfaces. Then, we report results from an interview study that investigates how users experience their body movements when interacting with movement-based interfaces. Based on the interviews, we identify four movement-specific features. We recommend them as candidates for further investigation.

  16. Development of the immersed sodium flowmeter

    International Nuclear Information System (INIS)

    Chen Daolong

    1994-09-01

    An immersed sodium flowmeter of the range 3 m 3 /h is developed. It is a flowmeter of entire-sealed construction, it can be operated in sodium. Its construction, the theoretical calculation of the calibration characteristic and the pressure loss, the test facility and the calibration test are presented in detail. It analytical expression of the calibration characteristic in the temperature limit 200∼600 degree C and the error analysis are given. The basic error of this immersed sodium flowmeter is below +-2.3% of the measuring range. The immersed sodium flowmeter can be used to resolve the sodium flowrate measuring problems of the in-reactor component of LMFBR, for example, the flowrate measuring of the in-reactor sodium purification loop, the flowrate measuring of the immersed sodium pump and the flowrate measuring of the in-reactor test component

  17. Immersion Pulmonary Edema in Female Triathletes

    Directory of Open Access Journals (Sweden)

    Eric A. Carter

    2011-01-01

    Full Text Available Pulmonary edema has been reported in SCUBA divers, apnea divers, and long-distance swimmers however, no instances of pulmonary edema in triathletes exist in the scientific literature. Pulmonary edema may cause seizures and loss of consciousness which in a water environment may become life threatening. This paper describes pulmonary edema in three female triathletes. Signs and symptoms including cough, fatigue, dyspnea, haemoptysis, and rales may occur within minutes of immersion. Contributing factors include hemodynamic changes due to water immersion, cold exposure, and exertion which elevate cardiac output, causing pulmonary capillary stress failure, resulting in extravasation of fluid into the airspace of the lung. Previous history is a major risk factor. Treatment involves immediate removal from immersion and in more serious cases, hospitalization, and oxygen administration. Immersion pulmonary edema is a critical environmental illness of which triathletes, race organizers, and medical staff, should be made aware.

  18. Immersive journalism: immersive virtual reality for the first-person experience of news

    OpenAIRE

    Peña, Nonny de la; Weil, Peggy; Llobera, Joan; Giannopoulos, Elias; Pomés Freixa, Ausiàs; Spanlang, Bernhard; Friedman, Doron; Sánchez-Vives, María Victoria; Slater, Mel

    2010-01-01

    This paper introduces the concept, and discusses the implications of Immersive Journalism, that is the production of news in a form in which people can gain first- 2 person experiences of the events or situation described in news stories. The fundamental idea of Immersive Journalism is to allow the participant, typically represented as a digital avatar, to actually enter a virtually recreated scenario representing the news story. The sense of presence obtained through an immersive system (whe...

  19. Photogrammetric Applications of Immersive Video Cameras

    OpenAIRE

    Kwiatek, K.; Tokarczyk, R.

    2014-01-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to ov...

  20. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  1. An evaluation of hand immersion for rewarming individuals cooled by immersion in cold water.

    Science.gov (United States)

    Cahill, C J; Balmi, P J; Tipton, M J

    1995-05-01

    The hypothesis that hypothermic individuals can be actively rewarmed in the field by immersion of the extremities in hot water was investigated. Three techniques for rewarming subjects with lowered deep body temperatures were compared: a) whole body immersion to the neck in water at 40 degrees C; b) immersion of two hands plus forearms only in water at 42 degrees C; and c) passive rewarming. The suggestion that the fall in deep body temperature resulting from immersion to the neck in water at 15 degrees C could be arrested by immersing both arms in water at 42 degrees C was also investigated. Results indicated that immersion to the neck in hot water was clearly the most effective rewarming technique. No significant difference (p > 0.05) was observed in the deep body temperature response during passive rewarming or during immersion of both hands and forearms in water at 42 degrees C. In the later condition some increase in peripheral blood flow to the hands may have occurred and resulted in a heat input of approximately 12 W, but any benefit from this was negated by an associated significant decrease (p > 0.05) in intrinsic heat production. Immersing the arms in hot water during immersion to the neck in cold water appeared to accelerate rather than decelerate the rate of fall of deep body temperature. We concluded that hand rewarming, although theoretically attractive, is ineffective in practice and could be detrimental in some circumstances, by suppressing intrinsic heat production or precipitating rewarming collapse.

  2. Progress in video immersion using Panospheric imaging

    Science.gov (United States)

    Bogner, Stephen L.; Southwell, David T.; Penzes, Steven G.; Brosinsky, Chris A.; Anderson, Ron; Hanna, Doug M.

    1998-09-01

    Having demonstrated significant technical and marketplace advantages over other modalities for video immersion, PanosphericTM Imaging (PI) continues to evolve rapidly. This paper reports on progress achieved since AeroSense 97. The first practical field deployment of the technology occurred in June-August 1997 during the NASA-CMU 'Atacama Desert Trek' activity, where the Nomad mobile robot was teleoperated via immersive PanosphericTM imagery from a distance of several thousand kilometers. Research using teleoperated vehicles at DRES has also verified the exceptional utility of the PI technology for achieving high levels of situational awareness, operator confidence, and mission effectiveness. Important performance enhancements have been achieved with the completion of the 4th Generation PI DSP-based array processor system. The system is now able to provide dynamic full video-rate generation of spatial and computational transformations, resulting in a programmable and fully interactive immersive video telepresence. A new multi- CCD camera architecture has been created to exploit the bandwidth of this processor, yielding a well-matched PI system with greatly improved resolution. While the initial commercial application for this technology is expected to be video tele- conferencing, it also appears to have excellent potential for application in the 'Immersive Cockpit' concept. Additional progress is reported in the areas of Long Wave Infrared PI Imaging, Stereo PI concepts, PI based Video-Servoing concepts, PI based Video Navigation concepts, and Foveation concepts (to merge localized high-resolution views with immersive views).

  3. Reshaping Spectatorship: Immersive and Distributed Aesthetics

    Directory of Open Access Journals (Sweden)

    Edwina Bartlem

    2005-01-01

    Full Text Available Although discourses of immersive aesthetics and distributed aesthetics may evoke associations with different media, creative processes, modes of audience engagement and even political ideologies, artists using these aesthetics often share similar interests in transforming and enhancing notions of the body and perception through technological intervention. This paper undertakes a comparison between immersive and distributed aesthetics in relation to Virtual Reality (VR and Networked Art (net.art, particularly networked installation art. It focuses on the ways in which both VR and networked installations immerse the viewer in states of perceptual and cognitive transition. Central to this article is the argument that VR and net.art are able to generate immersive experiences in the viewer by creating the sensation of being (tele-present in an electronically mediated environment that is illusionistic and sometimes remote from the physical body of the participant. Furthermore, the immersive and distributed aesthetics generated by specific VR and net.art projects have revolutionary consequences for traditional aesthetic theories of spectatorship and art appreciation that assert the need for critical and physical distance.

  4. Personal protective clothing against accidental immersion

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, David; Tipton, Michael [Surrey Univ., Robens Inst. of Health and Safety, Guildford (United Kingdom)

    1997-12-31

    The requirements for protective clothing against accidental immersion are discussed and the advantages and limitations of the main types of immersion protection available are analysed. The variety of designs available reflects the various circumstances under which they may be used. In broad terms in the offshore industry these include the following activities: normal work without risk of immersion but with a possible need to abandon the rig or ship; work in areas where there is risk of accidentally falling into the sea; flying over the sea in a helicopter. The first response to sudden immersion in sea water, which must usually be considered to be cold, is a sudden gasp often followed by an immediate phase of uncontrolled breathing. Since control of ones breathing between and under the breaking waves is essential to staying alive, this is a critical time. After surviving this initial ``cold shock`` phase, the effects of body heat loss become hazardous. Protection against hypothermia has been the priority for those providing survival suits and protective clothing while the hazard of the immediate response to cold immersion has been unrecognised to a large extent. (UK)

  5. Metal ion implantation: Conventional versus immersion

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1994-01-01

    Vacuum-arc-produced metal plasma can be used as the ion feedstock material in an ion source for doing conventional metal ion implantation, or as the immersing plasma for doing plasma immersion ion implantation. The basic plasma production method is the same in both cases; it is simple and efficient and can be used with a wide range of metals. Vacuum arc ion sources of different kinds have been developed by the authors and others and their suitability as a metal ion implantation tool has been well established. Metal plasma immersion surface processing is an emerging tool whose characteristics and applications are the subject of present research. There are a number of differences between the two techniques, both in the procedures used and in the modified surfaces created. For example, the condensibility of metal plasma results in thin film formation and subsequent energetic implantation is thus done through the deposited layer; in the usual scenario, this recoil implantation and the intermixing it produces is a feature of metal plasma immersion but not of conventional energetic ion implantation. Metal plasma immersion is more suited (but not limited) to higher doses (>10 17 cm -2 ) and lower energies (E i < tens of keV) than the usual ranges of conventional metal ion implantation. These and other differences provide these vacuum-arc-based surface modification tools with a versatility that enhances the overall technological attractiveness of both

  6. But Do They Speak French? A Comparison of French Immersion Programs in Immersion Only and English/Immersion Settings. Research Report 79-01.

    Science.gov (United States)

    Parkin, Michael

    Students' use of French in unsupervised classroom situations and outside the classroom was investigated in immersion center schools (all students are involved in French immersion programs) and dual track schools (French immersion programs co-exist with regular English language programs). A total of 414 students in grades 3 and 4 were observed…

  7. Immersion microcalorimetry of a carbon black

    International Nuclear Information System (INIS)

    Mendelbaum, Georges

    1966-01-01

    This research thesis first reports a detailed bibliographical study on various topics (fabrication of carbon black, oxidation, immersion heat, adsorptions, main existing theories, and thermodynamics) and then the development of immersion and adsorption microcalorimetry apparatuses aimed at studying the surface of a carbon black and the influence of the oxidation of this carbon black on the adsorption of polar and non-polar solvents. Immersion heats of a raw or oxidised carbon black have been measured in water, in cyclohexane and in methanol. The adsorption of methanol at 20 C and that of nitrogen at -196 C have also been measured. The author outlines that degassing conditions had to be taken into account before performing measurements [fr

  8. Immersive Virtual Environments and Multisensory Interfaces

    DEFF Research Database (Denmark)

    Stenslie, Ståle

    2009-01-01

    Based on my work with virtual environments dating back to the early 1990s, and with practical and engineering limitations on building tactile bodysuits that enhance the sense of immersion within detailed and dynamic virtual worlds overcome, this paper will take as its subject the example of my...... immersive artwork the Erotogod experiment (2001). A key aspect of interaction and immersion for the participant was the use of tactile bodysuit. I will analyze the multisensory nature of this experience, how tactility was engendered and, in fact, engineered through a mixture of technologies and approaches....... The paper will focus on the multisensory aspect of my interfaces as they have evolved through my projects, discussing how engineering problems were overcome to enhance tactility, the experimentations with tactile technologies in order to engineer the right feeling, and what is involved in the multisensory...

  9. Aberration characteristics of immersion lenses for LVSEM

    International Nuclear Information System (INIS)

    Khursheed, Anjam

    2002-01-01

    This paper investigates the on-axis aberration characteristics of various immersion objective lenses for low voltage scanning electron microscopy (LVSEM). A simple aperture lens model is used to generate smooth axial field distributions. The simulation results show that mixed field electric-magnetic immersion lenses are predicted to have between 1.5 and 2 times smaller aberration limited probe diameters than their pure-field counterparts. At a landing energy of 1 keV, mixed field immersion lenses operating at the vacuum electrical field breakdown limit are predicted to have on-axis aberration coefficients between 50 and 60 μm, yielding an ultimate image resolution of below 1 nm. These aberrations lie in the same range as those for LVSEM systems that employ aberration correctors

  10. Immersive Learning Simulations in Aircraft Maintenance Training

    Science.gov (United States)

    2010-02-15

    You might just get a “serious game,” or “as proposed by the eLearning Guild, you could get an Immersive Learning Simulation.”3 Quoting the... eLearning Guild, Caspian Learning, in a report for the United Kingdom Ministry of Defense, defined an Immersive Learning Simulation (ILS) as “an optimized...training is necessary, and will be for the foreseeable future , our current computer systems can provide realistic training that could save substantial time

  11. Through-flow cell of immersion sensor

    International Nuclear Information System (INIS)

    Svandelik, J.

    1986-01-01

    The cell consists of a jacket in shape of a triangular pyramid whose two opposite and skew edges are truncated. It is provided with inlet and outlet openings. The measuring immersion sensor is inserted through the outlet opening or through an opening provided in one of the jacket side walls. The immersion sensor cell is mainly used for in-service inspection of radioactivity of the ion exchanger at the output of the elution column in the manufacture of chemical concentrates of uranium from ores. (J.B.). 4 figs

  12. Immersion Suit Usage Within the RAAF

    Science.gov (United States)

    1992-01-01

    IMMERSION SUIT USED UVIC QDIS HOLDINGS 202. in 12 Sizes, held by ALSS 492SQN REQUIREMENTS No comment USAGE POLICY REFERENCE DIRAF) AAP 7215.004-1 (P3C...held by ALSS 492SQN. REQUIREMENTS No comment ISACE POLICY REFERENCE DIIAF) AAP 7215.004-1 (P3C Flight Manual) RAAF Supplement No 92 USAGE POUICY UVIC...TYPE P3C REFERENCE Telecon FLTLT Toft I I SQNfRESO AVMED Dated 22 Mar 91 IMMERSION SUIT USED UVIC QDIS HOLDINGS No comment REQUIREMENTS No comment USAGE

  13. Water immersion in neonatal bereavement photography.

    Science.gov (United States)

    Duffey, Heather

    2014-01-01

    Water immersion in neonatal bereavement photography is a new technique intended to enhance the quality of the photographs provided to families following their loss. Water immersion appears to be most helpful following a second trimester fetal demise. This technique can be used by nurses, professional photographers and others in addition to more traditional neonatal bereavement photography. It does not require special skills or equipment and can be implemented in virtually any perinatal setting. The enhanced quality of photographs produced with this method can potentially provide a source of comfort to grieving families. © 2014 AWHONN.

  14. Project Oriented Immersion Learning: Method and Results

    DEFF Research Database (Denmark)

    Icaza, José I.; Heredia, Yolanda; Borch, Ole M.

    2005-01-01

    A pedagogical approach called “project oriented immersion learning” is presented and tested on a graduate online course. The approach combines the Project Oriented Learning method with immersion learning in a virtual enterprise. Students assumed the role of authors hired by a fictitious publishing...... house that develops digital products including e-books, tutorials, web sites and so on. The students defined the problem that their product was to solve; choose the type of product and the content; and built the product following a strict project methodology. A wiki server was used as a platform to hold...

  15. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  16. The use of immersion calorimetry in the determination of micropore distribution of carbons in the course of activation

    OpenAIRE

    Kraehenbuehl, F.; Stoeckli, Fritz; Addoun, A.; Ehrburger, P.; Donnet, J. B.

    2007-01-01

    The combination of gas-solid adsorption experiments with immersion calorimetry of carbons into liquids of increasing molecular dimensions leads to accurate micropore distributions in the range 0.4-0.8 nm. This technique is used to study the development of the micropore structure during activation of carbons with CO2 or KOH.

  17. Immersive visualization of rail simulation data.

    Science.gov (United States)

    2016-01-01

    The prime objective of this project was to create scientific, immersive visualizations of a Rail-simulation. This project is a part of a larger initiative that consists of three distinct parts. The first step consists of performing a finite element a...

  18. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  19. Report: Immersion French at Meriden Junior School

    Science.gov (United States)

    Esposito, Marie-Josee

    2006-01-01

    In this article, the author describes the French immersion program at Meriden Junior School, an Anglican school for girls from pre-Kindergarten to Year 12 in Sydney. Four teachers (one of whom is the coordinator) and three assistants are involved in the program. They include six French native speakers and one non-French-born teacher who speaks…

  20. CLIL in Queensland: The Evolution of "Immersion"

    Science.gov (United States)

    Smala, Simone

    2015-01-01

    Queensland second language immersion programs have been in existence for three decades, and are part of a growing number of additive bilingual education programs in Australia. Most prominently, many new Content and Language Integrated Learning (CLIL) programs have been established particularly in Victoria over the past few years. This focus on…

  1. The Role of Agency in Ludoacoustic Immersion

    DEFF Research Database (Denmark)

    Gasselseder, Hans-Peter

    2015-01-01

    to antecedents of immersion that depend on emotional arousal and personality traits of the listener. After having outlined a conceptual framework describing the mediation and agency detection of sonic expression within the acoustic properties of situational contexts, the paper provides an outlook on how...... these agents may be translated to meaningful structures that are yet to be studied in video games....

  2. Scaling-up the biomass production of Cymbopogon citratus L. in temporary immersion system

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2014-04-01

    Full Text Available Shoot-tips, collected from greenhouse-grown plants of Cymbopogon citratus L. (lemmon grass, were incubated on a semi-solid Murashige and Skoog (MS medium with 30% (w/v sucrose, and supplemented with 0.89 µM 6-benzyladenine (BA. After three weeks of culture shoots were individualized and then inoculated in 10 litres temporary immersion system (TIS containing 3 litres of the same basal MS liquid medium. The effects of three immersion frequency (immersion every 12, 6 and 4 hours on the production of biomass were studied. Three inoculum densities (forty, fifty and sixty shoots/TIS were also tested. The biomass growth was inûuenced by the immersion frequency. The highest proliferation rate (17.3 shoots/explants and the plant length (45.2 cm were obtained in plants immersed every 4 h. Also, the fresh and dry biomass weight (153.4 gFW and 24.8 gDW, respectively were higher in this treatment. The maximum biomass accumulation (185.2 gFW and 35.2 gDW was achieved after 30 days of culture when an inoculum density of 60 explants per TIS was used. For the first time, biomass of C. citratus has been produced in10 litres TIS. These results represent the first step in the scaling-up the biomass production of this medicinal plant in large temporary immersion bioreactors. Key words: automation, biomass growth, lemmon grass medicinal plant, tissue culture

  3. Permeability computation on a REV with an immersed finite element method

    International Nuclear Information System (INIS)

    Laure, P.; Puaux, G.; Silva, L.; Vincent, M.

    2011-01-01

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  4. Study on Surface Permeability of Concrete under Immersion.

    Science.gov (United States)

    Liu, Jun; Xing, Feng; Dong, Biqin; Ma, Hongyan; Pan, Dong

    2014-01-28

    In this paper, concrete specimens are immersed in ultrapure water, to study the evolutions of surface permeability, pore structure and paste microstructure following the prolonging of immersion period. According to the results, after 30-day immersion, the surface permeability of concrete becomes higher as compared with the value before immersion. However, further immersion makes the surface permeability decrease, so that the value measured after 150-day immersion is only half that measured after 30-day immersion. The early increase in surface permeability should be mainly attributed to the leaching of calcium hydroxide, while the later decrease to the refinement of pore structure due to hydration. The two effects work simultaneously and compete throughout the immersion period. The proposed mechanisms get support from microscopic measurements and observations.

  5. Interaction with virtual crowd in Immersive and semi‐Immersive Virtual Reality systems

    OpenAIRE

    Kyriakou, Marios; Pan, Xueni; Chrysanthou, Yiorgos

    2016-01-01

    This study examines attributes of virtual human behavior that may increase the plausibility of a simulated crowd and affect the user's experience in Virtual Reality. Purpose-developed experiments in both Immersive and semi-Immersive Virtual Reality systems queried the impact of collision and basic interaction between real-users and the virtual crowd and their effect on the apparent realism and ease of navigation within Virtual Reality (VR). Participants' behavior and subjective measurements i...

  6. FIJI: A Framework for the Immersion-Journalism Intersection

    OpenAIRE

    Hardee, Gary M.; McMahan, Ryan P.

    2017-01-01

    As journalists experiment with developing immersive journalism—first-person, interactive experiences of news events—guidelines are needed to help bridge a disconnect between the requirements of journalism and the capabilities of emerging technologies. Many journalists need to better understand the fundamental concepts of immersion and the capabilities and limitations of common immersive technologies. Similarly, developers of immersive journalism works need to know the fundamentals that define...

  7. Immersive Training Systems: Virtual Reality and Education and Training.

    Science.gov (United States)

    Psotka, Joseph

    1995-01-01

    Describes virtual reality (VR) technology and VR research on education and training. Focuses on immersion as the key added value of VR, analyzes cognitive variables connected to immersion, how it is generated in synthetic environments and its benefits. Discusses value of tracked, immersive visual displays over nonimmersive simulations. Contains 78…

  8. The emotional and cognitive effect of immersion in film viewing

    NARCIS (Netherlands)

    Visch, V.T.; Tan, E.S.; Molenaar, D.

    2010-01-01

    This brief report presents an experiment testing the effect of immersion on emotional responses and cognitive genre categorisation of film viewers. Immersion of a film presentation was varied by presenting an animated movie either in a 3D-viewing condition (low immersive condition) or in a CAVE

  9. Whole body cooling by immersion in water at moderate temperatures.

    Science.gov (United States)

    Marino, F; Booth, J

    1998-06-01

    This study investigated the potential use of whole body cooling by water immersion for lowering body temperatures prior to endurance exercise. Rectal temperature (Tre), mean skin temperature (Tsk), oxygen consumption (VO2), and ventilation (VE) were measured in 7 male and 3 female subjects who were immersed in a water bath for up to 60 min. Initial water temperature was 28.8+/-1.5 degrees C and decreased to 23.8+/-1.1 degrees C by the end of immersion. Pre-immersion Tre of 37.34+/-0.36 degrees C was not altered by 60 min water immersion but decreased to 36.64+/-0.34 degrees C at 3 min post immersion (p immersion. Reductions in Tre and Tsk resulted in reduced body heat content (Hc) of approximately 545 kJ (p immersion. VO2 and VE increased from pre-immersion values of 0.34+/-0.08 L x min(-1) and 6.2+/-1.4 L x min(-1) to 0.54+/-0.09 L x min(-) and 11.5+/-5.4 L x min(-1) at the end of immersion, respectively. Heart rate remained unchanged throughout immersion. These results indicate that whole body immersion in moderately cold water temperatures is an effective cooling maneuver for lowering body temperatures and body Hc in the absence of severe physiological responses generally associated with sudden cold stress.

  10. Designing immersion exhibits as border-crossing environments

    DEFF Research Database (Denmark)

    Mortensen, Marianne Foss

    2010-01-01

    be applied to achieve an understanding of the immersion exhibit form. The argument proceeds by demonstrating how the characteristics of immersion exhibits, and visitors to them, classify them as microcultures, and examining the implications of this for exhibit design using a hypothetical immersion exhibit...

  11. L'expression orale apres treize ans d'immersion francaise (Oral Expression After Thirteen Years of French Immersion).

    Science.gov (United States)

    Pellerin, Micheline; Hammerly, Hector

    1986-01-01

    Conversations with six twelfth graders who had been in French immersion since kindergarten found a high rate of incorrect sentences, suggesting a faulty interlanguage fossilized at grade six and a need for immersion program revision. (MSE)

  12. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  13. A two pressure-velocity approach for immersed boundary methods in three dimensional incompressible flows

    International Nuclear Information System (INIS)

    Sabir, O; Ahmad, Norhafizan; Nukman, Y; Tuan Ya, T M Y S

    2013-01-01

    This paper describes an innovative method for computing fluid solid interaction using Immersed boundary methods with two stage pressure-velocity corrections. The algorithm calculates the interactions between incompressible viscous flows and a solid shape in three-dimensional domain. The fractional step method is used to solve the Navier-Stokes equations in finite difference schemes. Most of IBMs are concern about exchange of the momentum between the Eulerian variables (fluid) and the Lagrangian nodes (solid). To address that concern, a new algorithm to correct the pressure and the velocity using Simplified Marker and Cell method is added. This scheme is applied on staggered grid to simulate the flow past a circular cylinder and study the effect of the new stage on calculations cost. To evaluate the accuracy of the computations the results are compared with the previous software results. The paper confirms the capacity of new algorithm for accurate and robust simulation of Fluid Solid Interaction with respect to pressure field

  14. A second order penalized direct forcing for hybrid Cartesian/immersed boundary flow simulations

    International Nuclear Information System (INIS)

    Introini, C.; Belliard, M.; Fournier, C.

    2014-01-01

    In this paper, we propose a second order penalized direct forcing method to deal with fluid-structure interaction problems involving complex static or time-varying geometries. As this work constitutes a first step toward more complicated problems, our developments are restricted to Dirichlet boundary condition in purely hydraulic context. The proposed method belongs to the class of immersed boundary techniques and consists in immersing the physical domain in a Cartesian fictitious one of simpler geometry on fixed grids. A penalized forcing term is added to the momentum equation to take the boundary conditions around/inside the obstacles into account. This approach avoids the tedious task of re-meshing and allows us to use fast and accurate numerical schemes. In contrary, as the immersed boundary is described by a set of Lagrangian points that does not generally coincide with those of the Eulerian grid, numerical procedures are required to reconstruct the velocity field near the immersed boundary. Here, we develop a second order linear interpolation scheme and we compare it to a simpler model of order one. As far as the governing equations are concerned, we use a particular fractional-step method in which the penalized forcing term is distributed both in prediction and correction equations. The accuracy of the proposed method is assessed through 2-D numerical experiments involving static and rotating solids. We show in particular that the numerical rate of convergence of our method is quasi-quadratic. (authors)

  15. Immersion cooling of silicon photomultipliers (SiPM) for nuclear medicine imaging applications

    International Nuclear Information System (INIS)

    Raylman, R.R.; Stolin, A.V.

    2016-01-01

    Silicon photomultipliers (SiPM) are compact, high amplification light detection devices that have recently been incorporated into magnetic field-compatible positron emission tomography (PET) scanners. To take full advantage of these devices, it is preferable to cool them below room temperature. Most current methods are limited to the cooling of individual detector modules, increasing complexity and cost of scanners made-up of a large number of modules. In this work we investigated a new method of cooling, immersion of the detector modules in non-electrically conductive, cooled liquid. A small-scale prototype system was constructed to cool a relatively large area SiPM-based, scintillator detector module by immersing it in a circulating bath of mineral oil. Testing demonstrated that the system rapidly decreased and stabilized the temperature of the device. Operation of the detector illustrated the expected benefits of cooling, with no apparent degradation of performance attributable to immersion in fluid. - Highlights: • Immersion cooling is new, simple and inexpensive method to cool solid state based nuclear medicine scanner. • Method successfully tested on a scaled version of an SiPM-based PET detector module. • Can be scaled up to cool a complete PET scanner.

  16. An Immersive VR System for Sports Education

    Science.gov (United States)

    Song, Peng; Xu, Shuhong; Fong, Wee Teck; Chin, Ching Ling; Chua, Gim Guan; Huang, Zhiyong

    The development of new technologies has undoubtedly promoted the advances of modern education, among which Virtual Reality (VR) technologies have made the education more visually accessible for students. However, classroom education has been the focus of VR applications whereas not much research has been done in promoting sports education using VR technologies. In this paper, an immersive VR system is designed and implemented to create a more intuitive and visual way of teaching tennis. A scalable system architecture is proposed in addition to the hardware setup layout, which can be used for various immersive interactive applications such as architecture walkthroughs, military training simulations, other sports game simulations, interactive theaters, and telepresent exhibitions. Realistic interaction experience is achieved through accurate and robust hybrid tracking technology, while the virtual human opponent is animated in real time using shader-based skin deformation. Potential future extensions are also discussed to improve the teaching/learning experience.

  17. Immersive volume rendering of blood vessels

    Science.gov (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  18. Damping system immersed in a fluid

    International Nuclear Information System (INIS)

    1980-01-01

    The invention relates to a damping system which is immersed in a fluid and allows slow motion, while opposing fast motion of a mobile or deformable system immersed in a fluid. Nuclear reactors utilize fabricated assemblies immmersed in the spent fuel storage pool to support the fuel elements placed in the pool, e.g., when refueling the reactor. These fabricated assemblies must be held in position, relative to the concrete walls of the pool, so as to allow slow deformation of the assemblies due to thermal expansion, while curbing fast motion, e.g., earthquake-induced motion. Such fast motion due to earthquakes might be the cause of resonance phenomena involving the fuel storage rack structure and the pool walls, should the rack structure and pool walls have the same resonant frequency. In the event of an earthquake, the damping system would provide for fast curbing of structure motion to prevent uncontrolled deformation which might result in breaks and destruction [fr

  19. Immersion in water in labour and birth

    Directory of Open Access Journals (Sweden)

    Elizabeth R. Cluett

    Full Text Available BACKGROUND: Enthusiasts suggest that labouring in water and waterbirth increase maternal relaxation, reduce analgesia requirements and promote a midwifery model of care. Critics cite the risk of neonatal water inhalation and maternal/neonatal infection. OBJECTIVES: To assess the evidence from randomised controlled trials about immersion in water during labour and waterbirth on maternal, fetal, neonatal and caregiver outcomes. METHODS: Search methods: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 June 2011 and reference lists of retrieved studies. Selection criteria: Randomised controlled trials comparing immersion in any bath tub/pool with no immersion, or other non-pharmacological forms of pain management during labour and/or birth, in women during labour who were considered to be at low risk of complications, as defined by the researchers. Data collection and analysis: We assessed trial eligibility and quality and extracted data independently. One review author entered data and the other checked for accuracy. MAIN RESULTS: This review includes 12 trials (3,243 women: 8 related to just the first stage of labour: one to early versus late immersion in the first stage of labour; two to the first and second stages; and another to the second stage only. We identified no trials evaluating different baths/pools, or the management of third stage of labour. Results for the first stage of labour showed there was a significant reduction in the epidural/spinal/paracervical analgesia/anaesthesia rate amongst women allocated to water immersion compared to controls (478/1,254 versus 529/1,245; risk ratio (RR 0.90; 95% confidence interval (CI 0.82 to 0.99, six trials. There was also a reduction in duration of the first stage of labour (mean difference -32.4 minutes; 95% CI -58.7 to -6.13. There was no difference in assisted vaginal deliveries (RR 0.86; 95% CI 0.71 to 1.05, seven trials, caesarean sections (RR 1.21; 95% CI 0

  20. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  1. Decoupling, situated cognition and immersion in art.

    Science.gov (United States)

    Reboul, Anne

    2015-09-01

    Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.

  2. Simulation Exploration through Immersive Parallel Planes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas; Bush, Brian W.; Gruchalla, Kenny; Smith, Steve

    2016-03-01

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  3. Immersion and identity in video games

    OpenAIRE

    Terzioglu, Yaman

    2015-01-01

    The video gaming industry is an ever-expanding one. According to Reuters, the global net worth of the industry in 2011 was US$65 billion (Reuters, 2011). Every year developers race to deliver the best game ever produced. There are various factors, which render a game successful and a successful formulation of those factors means a satisfying game experience for the players. Immersion, the mental involvement between the game and the player, is one of the broader phenomena, which includes most ...

  4. Helicon plasma with additional immersed antenna

    International Nuclear Information System (INIS)

    Aanesland, A; Charles, C; Boswell, R W; Fredriksen, A

    2004-01-01

    A 'primary' RF power (H-power) at 13.56 MHz is coupled to a plasma source excited by an external double saddle field Helicon antenna. A 'secondary' RF power (S-power), also at 13.56 MHz but with variable phase, is additionally coupled by inserting a second antenna in contact with the plasma through one end of the source. The immersed antenna can be grounded or floating, allowing a self-bias to form in the latter case. Changes in the plasma density and electron temperature are measured in both cases with varying power on the immersed antenna. The plasma potential increases dramatically with S-power in the grounded case, and is found to be similar in size to the sum of the plasma potential and the self-bias formed in the floating case for all powers. Hence, the sheath between the immersed antenna and the plasma is shown to be equal in both the grounded and floating cases. Although the power efficiency does not vary significantly as a function of the S-power, it is consistently lower for the grounded case possibly as a result of a dc current to ground. The plasma parameters are drastically changed as the phase between the two antennae are varied (floating case), and a sinusoidal function was fitted to the plasma parameters as a function of the phase shift. The calculated power loss to the antenna indicates that the power efficiency of the immersed antenna, as the phase is changed, is altered from 80% to 10%

  5. Simulation Exploration through Immersive Parallel Planes

    Energy Technology Data Exchange (ETDEWEB)

    Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Steve [Los Alamos Visualization Associates

    2017-05-25

    We present a visualization-driven simulation system that tightly couples systems dynamics simulations with an immersive virtual environment to allow analysts to rapidly develop and test hypotheses in a high-dimensional parameter space. To accomplish this, we generalize the two-dimensional parallel-coordinates statistical graphic as an immersive 'parallel-planes' visualization for multivariate time series emitted by simulations running in parallel with the visualization. In contrast to traditional parallel coordinate's mapping the multivariate dimensions onto coordinate axes represented by a series of parallel lines, we map pairs of the multivariate dimensions onto a series of parallel rectangles. As in the case of parallel coordinates, each individual observation in the dataset is mapped to a polyline whose vertices coincide with its coordinate values. Regions of the rectangles can be 'brushed' to highlight and select observations of interest: a 'slider' control allows the user to filter the observations by their time coordinate. In an immersive virtual environment, users interact with the parallel planes using a joystick that can select regions on the planes, manipulate selection, and filter time. The brushing and selection actions are used to both explore existing data as well as to launch additional simulations corresponding to the visually selected portions of the input parameter space. As soon as the new simulations complete, their resulting observations are displayed in the virtual environment. This tight feedback loop between simulation and immersive analytics accelerates users' realization of insights about the simulation and its output.

  6. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  7. FIJI: A Framework for the Immersion-Journalism Intersection

    Directory of Open Access Journals (Sweden)

    Gary M. Hardee

    2017-07-01

    Full Text Available As journalists experiment with developing immersive journalism—first-person, interactive experiences of news events—guidelines are needed to help bridge a disconnect between the requirements of journalism and the capabilities of emerging technologies. Many journalists need to better understand the fundamental concepts of immersion and the capabilities and limitations of common immersive technologies. Similarly, developers of immersive journalism works need to know the fundamentals that define journalistic professionalism and excellence and the key requirements of various types of journalistic stories. To address these gaps, we have developed a Framework for the Immersion-Journalism Intersection (FIJI. In FIJI, we have identified four domains of knowledge that intersect to define the key requirements of immersive journalism: the fundamentals of immersion, common immersive technologies, the fundamentals of journalism, and the major types of journalistic stories. Based on these key requirements, we have formally defined four types of immersive journalism that are appropriate for public dissemination. In this article, we discuss the history of immersive journalism, present the four domains and key intersection of FIJI, and provide a number of guidelines for journalists new to creating immersive experiences.

  8. Is Learning in Low Immersive Environments Carried over to High Immersive Environments?

    Directory of Open Access Journals (Sweden)

    Dror David Lev

    2012-01-01

    Full Text Available One of the more debated issues regarding training simulators is their validity for transfer of skills to sensory environments that differ from the simulator. In two experiments, the advantages of three-dimensional (3D and collocated (Col visual displays were evaluated in a realistic and complex visuomotor task. The two factors were evaluated independently, comparing Col-2D with dislocated-2D (experiment 1 and with Col-3D (experiment 2. As expected, in both cases the more immersive presentation condition facilitated better performance. Furthermore, improvement following training in the more immersive condition carried over to the following less immersive condition but there was no carry over in the opposing order of presentation. This is taken as an indication for the differential development of skills conditioned by the level of immersiveness of the training environment. This further suggests that learning of complex realistic tasks is not carried over from less immersive simulator to the complex sensory environment of reality, due to the large gap in sensory patterns.

  9. Immersion Revisited: A Review of Existing Definitions of Immersion and Their Relation to Different Theories of Presence

    Directory of Open Access Journals (Sweden)

    Niels Christian Nilsson

    2016-11-01

    Full Text Available The term immersion continues to be applied inconsistently within and across different fields of research connected with the study of virtual reality and interactive media. Moreover, immersion is oftentimes used interchangeably with the terms presence and engagement. This article details a review of existing definitions of immersion originating within the study of video games, virtual environments, and literary works of fiction. Based on this review, a three-dimensional taxonomy of the various conceptualizations of immersion is proposed. That is, the existing definitions of immersion may be broadly divided into three categories, each representing a dimension of the taxonomy: immersion as a property of a system, a subjective response to narrative contents, or a subjective response to challenges within the virtual environment. Finally, four distinct theories of presence are introduced and, based on the established taxonomy, we discuss how the individual theories relate to existing definitions of immersion.

  10. An immersed body method for coupled neutron transport and thermal hydraulic simulations of PWR assemblies

    International Nuclear Information System (INIS)

    Jewer, S.; Buchan, A.G.; Pain, C.C.; Cacuci, D.G.

    2014-01-01

    Highlights: • A new method of coupled radiation transport, heat and momentum exchanges on fluids, and heat transfer simulations. • Simulation of the thermal hydraulics and radiative properties within whole PWR assemblies. • An immersed body method for modelling complex solid domains on practical computational meshes. - Abstract: A recently developed immersed body method is adapted and used to model a typical pressurised water reactor (PWR) fuel assembly. The approach is implemented with the numerical framework of the finite element, transient criticality code, FETCH which is composed of the neutron transport code, EVENT, and the CFD code, FLUIDITY. Within this framework the neutron transport equation, Navier–Stokes equations and a fluid energy conservation equation are solved in a coupled manner on a coincident structured or unstructured mesh. The immersed body method has been used to model the solid fuel pins. The key feature of this method is that the fluid/neutronic domain and the solid domain are represented by overlapping and non-conforming meshes. The main difficulty of this approach, for which a solution is proposed in this work, is the conservative mapping of the energy and momentum exchange between the fluid/neutronic mesh and the solid fuel pin mesh. Three numerical examples are presented which include a validation of the fuel pin submodel against an analytical solution; an uncoupled (no neutron transport solution) PWR fuel assembly model with a specified power distribution which was validated against the COBRA-EN subchannel analysis code; and finally a coupled model of a PWR fuel assembly with reflective neutron boundary conditions. Coupling between the fluid and neutron transport solutions is through the nuclear cross sections dependence on Doppler fuel temperature, coolant density and temperature, which was taken into account by using pre-calculated cross-section lookup tables generated using WIMS9a. The method was found to show good agreement

  11. Immersed in media telepresence theory, measurement & technology

    CERN Document Server

    Lombard, Matthew; Freeman, Jonathan; IJsselsteijn, Wijnand; Schaevitz, Rachel J

    2015-01-01

    Highlights key research currently being undertaken within the field of telepresence, providing the most detailed account of the field to date, advancing our understanding of a fundamental property of all media - the illusion of presence; the sense of "being there" inside a virtual environment, with actual or virtual others. This collection has been put together by leading international scholars from America, Europe, and Asia. Together, they describe the state-of-the-art in presence theory, research and technology design for an advanced academic audience. Immersed in Media provides research t

  12. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  13. Teaching and Learning Immersion and Presence

    DEFF Research Database (Denmark)

    Herbelin, Bruno; Ciger, Jan

    2008-01-01

    It is known since Socrates that people learn better by experiencing a problem by themselves and by finding a (the) solution(s) by their own. It is however not always possible to offer such freedom to students when teaching the concepts of immersion and presence in virtual environments due......-presence, and observe the inherent problems liked to  communication, field of view, or latency issues. The test performed shows that such experimentation have positive pedagogical impacts, both from the learning and students motivation perspectives....

  14. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality.

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-05-17

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality.

  15. The Feel Good Factor: Comparing Immersion by Design and Immersion by Default Models

    Science.gov (United States)

    Gallagher, Fiona; Leahy, Angela

    2014-01-01

    This article presents findings from an exploratory research project entitled "Gaelscoileanna and Multicultural classrooms: the potential for transfer to enhance L2 learning experiences". The project focussed on two language immersion contexts in Ireland which, despite obvious differences, share a range of significant commonalities. One…

  16. Associations of Subjective Immersion, Immersion Subfactors, and Learning Outcomes in the Revised Game Engagement Model

    Science.gov (United States)

    Barclay, Paul A.; Bowers, Clint

    2018-01-01

    Serious Educational Video Games (SEGs) play a large role in education for both children and adults. However, the budget for SEGs is typically lower than traditional entertainment video games, bringing with it the need to optimize the learning experience. This article looks at the role game immersion plays in improving learning outcomes, using the…

  17. A Study on Immersion and Presence of a Portable Hand Haptic System for Immersive Virtual Reality

    Science.gov (United States)

    Kim, Mingyu; Jeon, Changyu; Kim, Jinmo

    2017-01-01

    This paper proposes a portable hand haptic system using Leap Motion as a haptic interface that can be used in various virtual reality (VR) applications. The proposed hand haptic system was designed as an Arduino-based sensor architecture to enable a variety of tactile senses at low cost, and is also equipped with a portable wristband. As a haptic system designed for tactile feedback, the proposed system first identifies the left and right hands and then sends tactile senses (vibration and heat) to each fingertip (thumb and index finger). It is incorporated into a wearable band-type system, making its use easy and convenient. Next, hand motion is accurately captured using the sensor of the hand tracking system and is used for virtual object control, thus achieving interaction that enhances immersion. A VR application was designed with the purpose of testing the immersion and presence aspects of the proposed system. Lastly, technical and statistical tests were carried out to assess whether the proposed haptic system can provide a new immersive presence to users. According to the results of the presence questionnaire and the simulator sickness questionnaire, we confirmed that the proposed hand haptic system, in comparison to the existing interaction that uses only the hand tracking system, provided greater presence and a more immersive environment in the virtual reality. PMID:28513545

  18. Exploring the Design Space of Immersive Urban Analytics

    OpenAIRE

    Chen, Zhutian; Wang, Yifang; Sun, Tianchen; Gao, Xiang; Chen, Wei; Pan, Zhigeng; Qu, Huamin; Wu, Yingcai

    2017-01-01

    Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft HoloLens. These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence. In this paper, we propose an theoretical model to characterize the visualizations in immersive urban analytics. Further more, based on our comprehensiv...

  19. Immersion lithography defectivity analysis at DUV inspection wavelength

    Science.gov (United States)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  20. Immersion technique in soft tissue radiography of the hands

    International Nuclear Information System (INIS)

    Maekelae, P.; Haaslahti, J.O.

    1978-01-01

    Soft tissue radiography of hands using the technique of mammary radiography and immersion in a 2.5 cm layer of 1 : 1 water-ethanol solution is evaluated. Using immersion the average background density decreases with a factor of about 2.5 : 1, with little deterioration in resolution (MTF). The immersion procedure makes the demonstration and evaluation of soft tisse swelling and periarticular oedema easier. (Auth.)

  1. Immersive visualization of dynamic CFD model results

    International Nuclear Information System (INIS)

    Comparato, J.R.; Ringel, K.L.; Heath, D.J.

    2004-01-01

    With immersive visualization the engineer has the means for vividly understanding problem causes and discovering opportunities to improve design. Software can generate an interactive world in which collaborators experience the results of complex mathematical simulations such as computational fluid dynamic (CFD) modeling. Such software, while providing unique benefits over traditional visualization techniques, presents special development challenges. The visualization of large quantities of data interactively requires both significant computational power and shrewd data management. On the computational front, commodity hardware is outperforming large workstations in graphical quality and frame rates. Also, 64-bit commodity computing shows promise in enabling interactive visualization of large datasets. Initial interactive transient visualization methods and examples are presented, as well as development trends in commodity hardware and clustering. Interactive, immersive visualization relies on relevant data being stored in active memory for fast response to user requests. For large or transient datasets, data management becomes a key issue. Techniques for dynamic data loading and data reduction are presented as means to increase visualization performance. (author)

  2. Foreign language learning in immersive virtual environments

    Science.gov (United States)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  3. Immersive STEM: From Fulldome to VR Technologies

    Science.gov (United States)

    Wyatt, R. J.

    2015-12-01

    For more than 15 years, fulldome video technology has transformed planetariums worldwide, using data-driven visualizations to support science storytelling. Fulldome video shares significant technical infrastructure with emerging VR headset technologies, and these personalized VR experiences allow for new audiences and new experiences of an existing library of context—as well as affording new opportunities for fulldome producers to explore. At the California Academy of Sciences, we are translating assets for our planetarium shows into immersive experiences for a variety of HR headsets. We have adapted scenes from our four award-wining features—Fragile Planet (2008), Life: A Cosmic Story (2010), Earthquake: Evidence of a Restless Planet (2012), and Habitat Earth (2015)—to place viewers inside a virtual planetarium viewing the shows. Similarly, we have released two creative-commons mini-shows on various VR outlets. This presentation will also highlight content the Academy will make available from our upcoming 2016 planetarium show about asteroids, comets, and solar system origins, some of which has been formatted for a full four-pi-steradian perspective. The shared immersive environment of digital planetariums offers significant opportunities for education and affective engagement of STEM-hungry audiences—including students, families, and adults. With the advent of VR technologies, we can leverage the experience of fulldome producers and planetarium professionals to create personalized home experiences that allow new ways to experience their content.

  4. Water-immersion type ship reactor

    International Nuclear Information System (INIS)

    Okada, Hiroki; Yamamura, Toshio.

    1996-01-01

    In a water immersion-type ship reactor in which a water-tight wall is formed around a pressure vessel by way of an air permeable heat insulation layer and immersing the wall under water in a reactor container, a pressure equalizing means equipped with a back flow check valve and introducing a gas in a gas phase portion above the water level of the container into a water tight wall and a relief valve for releasing the gas in the water tight wall to the reactor container are disposed on the water tight wall. When the pressure in the water tight wall exceeds the pressure in the container, the gas in the water tight wall is released from the relief valve to the reactor container. On the contrary, when the pressure in the container exceeds the pressure in the water tight wall, the gas in the gas phase portion is flown from the pressure equalizing means equipped with a back flow check valve to the inside of the water tight wall. Thus, a differential pressure between both of them is kept around 0kg/cm 2 . A large differential pressure is not exerted on the water tight wall thereby capable of preventing rupture of them to improve reliability, as well as the thickness of the plate can be decreased thereby enabling to moderate the design for the pressure resistance and reduce the weight. (N.H.)

  5. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  6. Immersive 3D Visualization of Astronomical Data

    Science.gov (United States)

    Schaaff, A.; Berthier, J.; Da Rocha, J.; Deparis, N.; Derriere, S.; Gaultier, P.; Houpin, R.; Normand, J.; Ocvirk, P.

    2015-09-01

    The immersive-3D visualization, or Virtual Reality in our study, was previously dedicated to specific uses (research, flight simulators, etc.) The investment in infrastructure and its cost was reserved to large laboratories or companies. Lately we saw the development of immersive-3D masks intended for wide distribution, for example the Oculus Rift and the Sony Morpheus projects. The usual reaction is to say that these tools are primarily intended for games since it is easy to imagine a player in a virtual environment and the added value to conventional 2D screens. Yet it is likely that there are many applications in the professional field if these tools are becoming common. Introducing this technology into existing applications or new developments makes sense only if interest is properly evaluated. The use in Astronomy is clear for education, it is easy to imagine mobile and light planetariums or to reproduce poorly accessible environments (e.g., large instruments). In contrast, in the field of professional astronomy the use is probably less obvious and it requires to conduct studies to determine the most appropriate ones and to assess the contributions compared to the other display modes.

  7. Extended Immersive Learning Environment: A Hybrid Remote/Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Lírio Shaeffer

    2010-09-01

    Full Text Available This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.

  8. The Influence of Hand Immersion Duration on Manual Performance.

    Science.gov (United States)

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2017-08-01

    To investigate the effect of hand immersion duration on manipulative ability and tactile sensitivity. Individuals in maritime settings often work with hands that have been immersed in water. Although research has shown that hand immersion duration differentially impacts skin adhesion and tactile sensitivity, the effect of hand immersion on manipulative ability has not been directly tested. Given how critical manipulative ability is for the safety and performance of those working at sea, the effect of hand immersion duration on manual performance was investigated. Tests of manipulative ability (Purdue Pegboard, Grooved Pegboard, reef knot untying) and tactile sensitivity (Touch-Test) were completed following no-exposure, short-exposure, and long-exposure hand immersions in thermoneutral water. Compared to the no immersion condition, the Purdue Pegboard performance was reduced in both immersion conditions (short exposure, -11%; long exposure, -8%). A performance decrement was only observed in the short exposure condition (+15% in time to complete task) for the reef knot untying task. There were no statistical differences in the Grooved Pegboard or Touch-Test scores between exposure conditions. Immersing the hands in water decreases manipulative ability except for when object properties reduce the slipperiness between the hand and object. Manual performance in a wet environment may be conserved by designing tools and objects with edges and textures that can offset the slipperiness of wet hands. To maintain safety, the time requirements for working with wet hands needs to be considered.

  9. Construction of codimension 1 immersions of spacetime: the exceptional case

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2005-01-01

    The Frobenius theorem was used in Edelen (2003 Class. Quantum Grav. 20 3661) to obtain a general body of results for the immersion of spacetime in flat spaces of higher dimension. This addendum completes those results for the exceptional case of immersions of codimension 1 where the Frobenius theorem need not be applied. Local actions of the Poincare groups SO(2, 3)--T(5) or SO(1, 4) -- T(5) are used to obtain immersions of spacetime of codimension 1 that involve six arbitrary functions of the four immersion parameters and an arbitrary constant. Explicit calculations are given for several cases. (addendum)

  10. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    OpenAIRE

    Moreno-Piraj?n, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2011-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-so...

  11. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    Science.gov (United States)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  12. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    Science.gov (United States)

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  13. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2011-12-01

    Full Text Available An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG, the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1.

  14. Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2017-07-01

    Full Text Available The combination of high strength and toughness, excellent wear resistance and moderate density makes zirconia-toughened alumina (ZTA a favorable ceramic, and the foam version of it may also exhibit excellent properties. Here, ZTA foams were prepared by the polymer sponge replication method. We developed an immersion infiltration approach with simple equipment and operations to fill the hollow struts in as-prepared ZTA foams, and also adopted a multiple recoating method (up to four cycles to strengthen them. The solid load of the slurry imposed a significant influence on the properties of the ZTA foams. Immersion infiltration gave ZTA foams an improvement of 1.5 MPa in compressive strength to 2.6 MPa at 87% porosity, only resulting in a moderate reduction of porosity (2–3%. The Weibull modulus of the infiltrated foams was in the range of 6–9. The recoating method generated an increase in compression strength to 3.3–11.4 MPa with the reduced porosity of 58–83%. The recoating cycle dependency of porosity and compression strength is nearly linear. The immersion infiltration strategy is comparable to the industrially-established recoating method and can be applied to other reticulated porous ceramics (RPCs.

  15. Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method

    International Nuclear Information System (INIS)

    Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.

    2003-01-01

    In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers

  16. Temporary Immersion System for Date Palm Micropropagation.

    Science.gov (United States)

    Othmani, Ahmed; Bayoudh, Chokri; Sellemi, Amel; Drira, Noureddine

    2017-01-01

    The temporary immersion system (TIS) is being used with tremendous success for automation of micropropagation of many plant species. TIS usually consists of a culture vessel comprising two compartments, an upper one with the plant material and a lower one with the liquid culture medium and an automated air pump. The latter enables contact between all parts of the explants and the liquid medium by setting overpressure to the lower part of the container. These systems are providing the most satisfactory conditions for date palm regeneration via shoot organogenesis and allow a significant increase of multiplication rate (5.5-fold in comparison with that regenerated on agar-solidified medium) and plant material quality, thereby reducing production cost.

  17. DCNS invents the immersed civil modular reactor

    International Nuclear Information System (INIS)

    Guilhem, Jean

    2013-01-01

    SMRs (Small and Modular Reactors) are a response to networks smaller than 10 GW. They are under study in USA, Russia and China, and a Korean one is already certified. In France, DCNS proposes Flexblue, a compact modular 160 MWe reactor, completely immersed 60 to 100 m under the sea level, few kilometres off the coasts. Almost invisible and protected by the marine environment, it will benefit from an infinite cold source which will ensure a high safety level. It is designed to produce 1 MWh at less than 100 euros. It will be retrieved onshore for its dismantling at the end of its service life. Its operation is said to be neutral for surrounding ecosystems with a tritium release more than 90 per cent less than that of onshore power plants

  18. Integrating modular mechatronic systems for immersive performances

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2015-01-01

    and video output in a very easy manner, thanks to mechatronical wearable interfaces. In this light, we describe two of our systems that explore the concept of run-time composition of a variety of input and output modalities, e.g. both music and graphical expression. Indeed, we developed both hardware......As a branch of mechatronic research in interactivity, and in robot art, we describe the concept of implementing Playware based tools inspired by modern AI robotic systems for audio-video performances. We develop immersive and personalizable tools that can allow any user to manipulate both audio...... to create a run-time audio-video performance that is original and unique. This can further be combined with modular wearable – inspired by modular robotics – to interact and control the performance. This mechatronic wearable concept and its implementations exemplify how to convey a user-centered experience...

  19. Plasma immersion ion implantation of Pebax polymer

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, A. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, Sydney, NSW 2006 (Australia)]. E-mail: kond@mailcity.com; Volodin, P. [Leibniz Institute of Polymer Research Dresden e.v., Hohe Str.6, Dresden 01069 (Germany); Weber, J. [Boston Scientific Corporation, One Scimed Place, Maple Grove, MN 55311-1566 (United States)

    2006-10-15

    Nitrogen plasma immersion ion implantation (PIII) was applied to Pebax thin films and plates using doses ranging from 5 x 10{sup 14} to 10{sup 17} ions/cm{sup 2} at applied voltages of 5, 10, 20 and 30 kV. The analysis of the Pebax structure after implantation was performed using FTIR ATR, Raman, UV-vis transmission spectra, tensile and AFM contact mode data. The carbonization and depolymerisation processes were observed in the surface layer of Pebax. It was found, that graphitic- and diamond-like structures in Pebax are formed at PIII treatment of 30 kV applied voltage. AFM measurement data showed that the hardness of the Pebax surface layer increased sharply at PIII treatment with a dose higher then 10{sup 16} ions/cm{sup 2}. The bulk mechanical properties of the Pebax film after PIII remained unchanged.

  20. Virtual reality, immersion, and the unforgettable experience

    Science.gov (United States)

    Morie, Jacquelyn F.

    2006-02-01

    Virtual reality has been in the public eye for nearly forty years. Its early promise was vast: worlds we could visit and live in, if we could bend the technology to our desires. Progress was made, but along the way the original directions and challenges of fully immersive VR took a back seat to more ubiquitous technology such as games that provided many of the same functions. What was lost in this transition was the potential for VR to become a stage for encounters that are meaningful, those experiences that tap into what it means to be human. This paper describes examples of such experiences using VR technology and puts forward several avenues of thought concerning how we might reinvigorate these types of VR explorations.

  1. Diffraction by an immersed elastic wedge

    CERN Document Server

    Croisille, Jean-Pierre

    1999-01-01

    This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.

  2. Grism and immersion grating for space telescope

    Science.gov (United States)

    Ebizuka, Noboru; Oka, Kiko; Yamada, Akiko; Ishikawa, Mami; Kashiwagi, Masako; Kodate, Kashiko; Hirahara, Yasuhiro; Sato, Shuji; Kawabata, Koji S.; Wakaki, Moriaki; Morita, Shin-ya; Simizu, Tomoyuki; Yin, Shaohui; Omori, Hitoshi; Iye, Masanori

    2017-11-01

    The grism is a versatile dispersion element for an astronomical instrument ranging from ultraviolet to infrared. Major benefit of using a grism in a space application, instead of a reflection grating, is the size reduction of optical system because collimator and following optical elements could locate near by the grism. The surface relief (SR) grism is consisted a transmission grating and a prism, vertex angle of which is adjusted to redirect the diffracted beam straight along the direct vision direction at a specific order and wavelength. The volume phase holographic (VPH) grism consists a thick VPH grating sandwiched between two prisms, as specific order and wavelength is aligned the direct vision direction. The VPH grating inheres ideal diffraction efficiency on a higher dispersion application. On the other hand, the SR grating could achieve high diffraction efficiency on a lower dispersion application. Five grisms among eleven for the Faint Object Camera And Spectrograph (FOCAS) of the 8.2m Subaru Telescope with the resolving power from 250 to 3,000 are SR grisms fabricated by a replication method. Six additional grisms of FOCAS with the resolving power from 3,000 to 7,000 are VPH grisms. We propose "Quasi-Bragg grism" for a high dispersion spectroscopy with wide wavelength range. The germanium immersion grating for instance could reduce 1/64 as the total volume of a spectrograph with a conventional reflection grating since refractive index of germanium is over 4.0 from 1.6 to 20 μm. The prototype immersion gratings for the mid-InfraRed High dispersion Spectrograph (IRHS) are successfully fabricated by a nano-precision machine and grinding cup of cast iron with electrolytic dressing method.

  3. Introduction of English Immersion in China: A Transplant with Modifications

    Science.gov (United States)

    Qiang, Haiyan; Siegel, Linda S.

    2012-01-01

    This article presents an overview of replicating the French immersion model used in Canada to English immersion programs in China. It provides the Chinese context of this program highlighting the importance of English education and the defect of traditional English teaching and learning. The paper explains the borrowable features of the French…

  4. Story immersion in a health videogame for childhood obesity prevention

    Science.gov (United States)

    Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion’s role in health video games among children by addressing two main questions: Will children be more immersed...

  5. Story Immersion in a Health Videogame for Childhood Obesity Prevention

    Science.gov (United States)

    Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom

    2012-01-01

    Abstract Objective Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Subjects and Methods Eighty-seven 10–12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, “Escape from Diab” (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. Results African-American and Hispanic participants reported higher immersion scores than Caucasian participants (P=0.01). Story immersion correlated positively (P valuesvideogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors. PMID:24066276

  6. Story Immersion in a Health Videogame for Childhood Obesity Prevention.

    Science.gov (United States)

    Lu, Amy Shirong; Thompson, Debbe; Baranowski, Janice; Buday, Richard; Baranowski, Tom

    2012-02-15

    Stories can serve as powerful tools for health interventions. Story immersion refers to the experience of being absorbed in a story. This is among the first studies to analyze story immersion's role in health videogames among children by addressing two main questions: Will children be more immersed when the main characters are similar to them? Do increased levels of immersion relate to more positive health outcomes? Eighty-seven 10-12-year-old African-American, Caucasian, and Hispanic children from Houston, TX, played a health videogame, "Escape from Diab" (Archimage, Houston, TX), featuring a protagonist with both African-American and Hispanic phenotypic features. Children's demographic information, immersion, and health outcomes (i.e., preference, motivation, and self-efficacy) were recorded and then correlated and analyzed. African-American and Hispanic participants reported higher immersion scores than Caucasian participants ( P = 0.01). Story immersion correlated positively ( P values videogame characters and players enhanced immersion and several health outcomes. Effectively embedding characters with similar phenotypic features to the target population in interactive health videogame narratives may be important when motivating children to adopt obesity prevention behaviors.

  7. Use of French, Attitudes and Motivations of French Immersion Students.

    Science.gov (United States)

    Van der Keilen, Marguerite

    1995-01-01

    Compares the degree to which pupils in the French immersion and regular English school programs speak French and initiate contact with French people. Attitudes and motivations were significantly more positive, and social tolerance and self-rated competency in French were much higher in the immersion than in English program subjects. (29…

  8. Declarative Knowledge Acquisition in Immersive Virtual Learning Environments

    Science.gov (United States)

    Webster, Rustin

    2016-01-01

    The author investigated the interaction effect of immersive virtual reality (VR) in the classroom. The objective of the project was to develop and provide a low-cost, scalable, and portable VR system containing purposely designed and developed immersive virtual learning environments for the US Army. The purpose of the mixed design experiment was…

  9. Intrapericardial Denervation: Responses to Water Immersion in Rhesus Monkeys

    Science.gov (United States)

    McKeever, Kenneth H.; Keil, Lanny C.; Sandler, Harold

    1995-01-01

    Eleven anesthetized rhesus monkeys were used to study cardiovascular, renal, and endocrine alterations associated with 120 min of head-out water immersion. Five animals underwent complete intrapericardial denervation using the Randall technique, while the remaining six monkeys served as intact controls. Each animal was chronically instrumented with an electromagnetic flow probe on the ascending aorta, a strain gauge pressure transducer implanted in the apex of the left ventricle (LV), and electrocardiogram leads anchored to the chest wall and LV. During immersion, LV end-diastolic pressure, urine flow, glomerular filtration rate, sodium excretion, and circulating atrial natriuretic peptide (ANP) each increased (P less than 0.05) for intact and denervated monkeys. There were no alterations in free water clearance in either group during immersion, yet fractional excretion of free water increased (P less than 0.05) in the intact monkeys. Plasma renin activity (PRA) decreased (P less than 0.05) during immersion in intact monkeys but not the denervated animals. Plasma vasopressin (PVP) concentration decreased (P less than 0.05) during the first 30 min of immersion in both groups but was not distinguishable from control by 60 min of immersion in denervated monkeys. These data demonstrate that complete cardiac denervation does not block the rise in plasma ANP or prevent the natriuresis associated with head-out water immersion. The suppression of PVP during the first minutes of immersion after complete cardiac denervation suggests that extracardiac sensing mechanisms associated with the induced fluid shifts may be responsible for the findings.

  10. IQ-Station: A Low Cost Portable Immersive Environment

    Energy Technology Data Exchange (ETDEWEB)

    Eric Whiting; Patrick O' Leary; William Sherman; Eric Wernert

    2010-11-01

    The emergence of inexpensive 3D TV’s, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive environments (IE). A low cost IE system, or IQ-station, fashioned from commercial off the shelf technology (COTS), coupled with a targeted immersive application can be a viable laboratory instrument for enhancing scientific workflow for exploration and analysis. The use of an IQ-station in a laboratory setting also has the potential of quickening the adoption of a more sophisticated immersive environment as a critical enabler in modern scientific and engineering workflows. Prior work in immersive environments generally required either a head mounted display (HMD) system or a large projector-based implementation both of which have limitations in terms of cost, usability, or space requirements. The solution presented here provides an alternative platform providing a reasonable immersive experience that addresses those limitations. Our work brings together the needed hardware and software to create a fully integrated immersive display and interface system that can be readily deployed in laboratories and common workspaces. By doing so, it is now feasible for immersive technologies to be included in researchers’ day-to-day workflows. The IQ-Station sets the stage for much wider adoption of immersive environments outside the small communities of virtual reality centers.

  11. The ALIVE Project: Astronomy Learning in Immersive Virtual Environments

    Science.gov (United States)

    Yu, K. C.; Sahami, K.; Denn, G.

    2008-06-01

    The Astronomy Learning in Immersive Virtual Environments (ALIVE) project seeks to discover learning modes and optimal teaching strategies using immersive virtual environments (VEs). VEs are computer-generated, three-dimensional environments that can be navigated to provide multiple perspectives. Immersive VEs provide the additional benefit of surrounding a viewer with the simulated reality. ALIVE evaluates the incorporation of an interactive, real-time ``virtual universe'' into formal college astronomy education. In the experiment, pre-course, post-course, and curriculum tests will be used to determine the efficacy of immersive visualizations presented in a digital planetarium versus the same visual simulations in the non-immersive setting of a normal classroom, as well as a control case using traditional classroom multimedia. To normalize for inter-instructor variability, each ALIVE instructor will teach at least one of each class in each of the three test groups.

  12. Water immersion and changes in the foetoplacental and uteroplacental circulation

    DEFF Research Database (Denmark)

    Thisted, Dorthe Louise Ahrenkiel; Nørgaard, Lone Nikoline; Meyer, Helle Mølgaard

    2015-01-01

    Abstract Objective: To evaluate the effect of immersion into water on maternal blood pressure, amount of amniotic fluid and on the foetoplacental- and uteroplacental circulation in healthy women with an uncomplicated singleton pregnancy. Methods: Twenty-five healthy women were included. Recordings...... of blood pressure, deepest vertical pocket of amniotic fluid and pulsatility index (PI) measured by Doppler in the umbilical and uterine arteries were obtained. The participants were immersed into water and the measurements were repeated after 5 and 25 min in water and again 15 and 30 min post immersion....... Results: The amount of amniotic fluid increased significantly (p immersion (p immersion on either umbilical- or uterine artery PI. All changes returned toward baseline-level within 30 min...

  13. Is Immersion of Any Value? Whether, and to What Extent, Game Immersion Experience during Serious Gaming Affects Science Learning

    Science.gov (United States)

    Cheng, Meng-Tzu; Lin, Yu-Wen; She, Hsiao-Ching; Kuo, Po-Chih

    2017-01-01

    Many studies have shown the positive impact of serious gaming on learning outcomes, but few have explored the relationships between game immersion and science learning. Accordingly, this study was conducted to investigate the effectiveness of learning by playing, as well as the dynamic process of game immersion experiences, and to further identify…

  14. Color stability of ceramic brackets immersed in potentially staining solutions.

    Science.gov (United States)

    Guignone, Bruna Coser; Silva, Ludimila Karsbergen; Soares, Rodrigo Villamarim; Akaki, Emilio; Goiato, Marcelo Coelho; Pithon, Matheus Melo; Oliveira, Dauro Douglas

    2015-01-01

    To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions. Ninety brackets were divided into 5 groups (n = 18) according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva). The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA), Radiance (American Orthodontics, Sheboygan, WI, USA), Mystique (GAC International Inc., Bohemia, NY, USA) and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA). Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0), 24 hours (T1), 72 hours (T2), as well as 7 days (T3) and 14 days (T4) of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%. The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations. Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  15. Color stability of ceramic brackets immersed in potentially staining solutions

    Directory of Open Access Journals (Sweden)

    Bruna Coser Guignone

    2015-08-01

    Full Text Available OBJECTIVE: To assess the color stability of five types of ceramic brackets after immersion in potentially staining solutions.METHODS: Ninety brackets were divided into 5 groups (n = 18 according to brackets commercial brands and the solutions in which they were immersed (coffee, red wine, coke and artificial saliva. The brackets assessed were Transcend (3M/Unitek, Monrovia, CA, USA, Radiance (American Orthodontics, Sheboygan, WI, USA, Mystique (GAC International Inc., Bohemia, NY, USA and Luxi II (Rocky Mountain Orthodontics, Denver, CO, USA. Chromatic changes were analyzed with the aid of a reflectance spectrophotometer and by visual inspection at five specific time intervals. Assessment periods were as received from the manufacturer (T0, 24 hours (T1, 72 hours (T2, as well as 7 days (T3 and 14 days (T4 of immersion in the aforementioned solutions. Results were submitted to statistical analysis with ANOVA and Bonferroni correction, as well as to a multivariate profile analysis for independent and paired samples with significance level set at 5%.RESULTS: The duration of the immersion period influenced color alteration of all tested brackets, even though these changes could not always be visually observed. Different behaviors were observed for each immersion solution; however, brackets immersed in one solution progressed similarly despite minor variations.CONCLUSIONS: Staining became more intense over time and all brackets underwent color alterations when immersed in the aforementioned solutions.

  16. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  17. Whole body immersion and hydromineral homeostasis: effect of water temperature.

    Science.gov (United States)

    Jimenez, Chantal; Regnard, Jacques; Robinet, Claude; Mourot, Laurent; Gomez-Merino, Danielle; Chennaoui, Mounir; Jammes, Yves; Dumoulin, Gilles; Desruelle, Anne-Virginie; Melin, Bruno

    2010-01-01

    This experiment was designed to assess the effects of prolonged whole body immersion (WBI) in thermoneutral and cold conditions on plasma volume and hydromineral homeostasis.10 navy "combat swimmers" performed three static 6-h immersions at 34 degrees C (T34), 18 degrees C (T18) and 10 degrees C (T10). Rectal temperature, plasma volume (PV) changes, plasma proteins, plasma and urine ions, plasma osmolality, renin, aldosterone and antidiuretic hormone (ADH) were measured. Results show that compared to pre-immersion levels, PV decreased throughout WBI sessions, the changes being markedly accentuated in cold conditions. At the end of WBI, maximal PV variations were -6.9% at T34, -14.3% at T18, and -16.3% at T10. Plasma osmolality did not change during and after T34 immersion, while hyperosmolality was present at the end of T18 immersion and began after only 1 h of T10 immersion. In the three temperature conditions, significant losses of water (1.6-1.7 l) and salt (6-8 g) occurred and were associated with similar increases in osmolar and free water clearances. Furthermore, T18 and T10 immersions increased the glomerular filtration rate. There was little or no change in plasma renin and ADH, while the plasma level of aldosterone decreased equally in the three temperature conditions. In conclusion, our data indicate that cold water hastened PV changes induced by immersion, and increased the glomerular filtration rate, causing larger accumulated water losses. The iso-osmotic hypovolemia may impede the resumption of baseline fluid balance. Results are very similar to those repeatedly described by various authors during head-out water immersion.

  18. Boundaries immersed in a scalar quantum field

    International Nuclear Information System (INIS)

    Actor, A.A.; Bender, I.

    1996-01-01

    We study the interaction between a scalar quantum field φ(x), and many different boundary configurations constructed from (parallel and orthogonal) thin planar surfaces on which φ(x) is constrained to vanish, or to satisfy Neumann conditions. For most of these boundaries the Casimir problem has not previously been investigated. We calculate the canonical and improved vacuum stress tensors left angle T μv (x) right angle and left angle direct difference μv (x) right angle of φ(x) for each example. From these we obtain the local Casimir forces on all boundary planes. For massless fields, both vacuum stress tensors yield identical attractive local Casimir forces in all Dirichlet examples considered. This desirable outcome is not a priori obvious, given the quite different features of left angle T μv (x) right angle and left angle direct difference μv (x) right angle. For Neumann conditions, left angle T μv (x) right angle and left angle direct difference μv (x) right angle lead to attractive Casimir stresses which are not always the same. We also consider Dirichlet and Neumann boundaries immersed in a common scalar quantum field, and find that these repel. The extensive catalogue of worked examples presented here belongs to a large class of completely solvable Casimir problems. Casimir forces previously unknown are predicted, among them ones which might be measurable. (orig.)

  19. Influence of surface sealant on the translucency of composite resin: effect of immersion time and immersion media

    Directory of Open Access Journals (Sweden)

    Patrícia Petromilli Nordi Sasso Garcia

    2008-06-01

    Full Text Available This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8 were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.

  20. Immersed boundary simulation of flow through arterial junctions

    Indian Academy of Sciences (India)

    Dwaipayan Sarkar

    haemodynamic activities in regions like carotid arteries, encephalic regions and ... immersed boundary method (IBM), has gained attention in the last few years .... the flow from left inlet and the flow is subsequently divided among the two ...

  1. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  2. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  3. Crash simulation: an immersive learning model.

    Science.gov (United States)

    Wenham, John; Bennett, Paul; Gleeson, Wendy

    2017-12-26

    Far West New South Wales Local Emergency Management Committee runs an annual crash simulation exercise to assess the operational readiness of all local emergency services to coordinate and manage a multi-casualty exercise. Since 2009, the Broken Hill University Department of Rural Health (BHUDRH) has collaborated with the committee, enabling the inclusion of health students in this exercise. It is an immersive interprofessional learning experience that evaluates teamwork, communication and safe effective clinical trauma management outside the hospital setting. After 7 years of modifying and developing the exercise, we set out to evaluate its impact on the students' learning, and sought ethics approval from the University of Sydney for this study. At the start of this year's crash simulation, students were given information sheets and consent forms with regards to the research. Once formal debriefing had finished, the researchers conducted a semi-structured focus-group interview with the health students to gain insight into their experience and their perceived value of the training. Students also completed short-answer questionnaires, and the anonymised responses were analysed. Crash simulation … evaluates teamwork, communication and safe effective clinical trauma management IMPLICATIONS: Participants identified that this multidisciplinary learning opportunity in a pre-hospital mass casualty situation was of value to them. It has taken them outside of their usually protected hospital or primary care setting and tested their critical thinking and communication skills. We recommend this learning concept to other educational institutions. Further research will assess the learning value of the simulated event to the other agencies involved. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  4. Changes in Landing Mechanics after Cold-Water Immersion

    Science.gov (United States)

    Wang, He; Toner, Michael M.; Lemonda, Thomas J.; Zohar, Mor

    2010-01-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 [degrees]C) and in cold water…

  5. Adoption of the Creative Process According to the Immersive Method

    Directory of Open Access Journals (Sweden)

    Sonja Vuk

    2015-09-01

    Full Text Available The immersive method is a new concept of visual education that is better suited to the needs of students in contemporary post-industrial society. The features of the immersive method are: 1 it emerges from interaction with visual culture; 2 it encourages understanding of contemporary art (as an integral part of visual culture; and 3 it implements the strategies and processes of the dominant tendencies in contemporary art (new media art and relational art with the goal of adopting the creative process, expressing one’s thoughts and emotions, and communicating with the environment. The immersive method transfers the creative process from art to the process of creation by the students themselves. This occurs with the mediation of an algorithmic scheme that enables students to adopt ways to solve problems, to express thoughts and emotions, to develop ideas and to transfer these ideas to form, medium and material. The immersive method uses transfer in classes, the therapeutic aspect of art and “flow state” (the optimal experience of being immersed in an activity/aesthetic experience (a total experience that has a beginning, a process and a conclusion/immersive experience (comprehensive immersion in the present moment. This is a state leading to the sublimative effect of creation (identification with what has been expressed, as well as to self-actualisation. The immersive method teaches one to connect the context, social relations and the artwork as a whole in which one lives as an individual. The adopted creative process is implemented in a critical manner on one’s surrounding through analysis, aesthetic interventions, and ecologically and socially aware inclusion in the life of a community. The students gain the crucial meta-competence of a creative thinking process.

  6. Comparative study on collaborative interaction in non-immersive and immersive systems

    Science.gov (United States)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  7. Cardiovascular responses to apneic facial immersion during altered cardiac filling.

    Science.gov (United States)

    Journeay, W Shane; Reardon, Francis D; Kenny, Glen P

    2003-06-01

    The hypothesis that reduced cardiac filling, as a result of lower body negative pressure (LBNP) and postexercise hypotension (PEH), would attenuate the reflex changes to heart rate (HR), skin blood flow (SkBF), and mean arterial pressure (MAP) normally induced by facial immersion was tested. The purpose of this study was to investigate the cardiovascular control mechanisms associated with apneic facial immersion during different cardiovascular challenges. Six subjects randomly performed 30-s apneic facial immersions in 6.0 +/- 1.2 degrees C water under the following conditions: 1) -20 mmHg LBNP, 2) +40 mmHg lower body positive pressure (LBPP), 3) during a period of PEH, and 4) normal resting (control). Measurements included SkBF at one acral (distal phalanx of the thumb) and one nonacral region of skin (ventral forearm), HR, and MAP. Facial immersion reduced HR and SkBF at both sites and increased MAP under all conditions (P filling during LBNP and PEH significantly attenuated the absolute HR nadir observed during the control immersion (P facial immersion can be attenuated when cardiac filling is compromised.

  8. COGNITIVE AND PHYSIOLOGICAL INITIAL RESPONSES DURING COOL WATER IMMERSION

    Directory of Open Access Journals (Sweden)

    Alex Buoite Stella

    2014-12-01

    Full Text Available The initial responses during water immersion are the first mechanisms reacting to a strong stimulation of superficial nervous cold receptors. Cold shock induces tachycardia, hypertension, tachypnea, hyperventilation, and reduced end-tidal carbon dioxide fraction. These initial responses are observed immediately after the immersion, they last for about 3 min and have been also reported in water temperatures up to 25 °C. the aim of the present study was to observe cognitive and physiological functions during immersion in water at cool temperature. Oxygen consumption, ventilation, respiratory frequency, heart rate and expired fraction of oxygen were measured during the experiment. A code substitution test was used to evaluate executive functions and, specifically, working memory. This cognitive test was repeated consecutively 6 times, for a total duration of 5 minutes. Healthy volunteers (n = 9 performed the test twice in a random order, once in a dry thermoneutral environment and once while immersed head-out in 18 °C water. The results indicated that all the physiological parameters were increased during cool water immersion when compared with the dry thermoneutral condition (p < 0.05. Cognitive performance was reduced during the cool water immersion when compared to the control condition only during the first 2 min (p < 0.05. Our results suggest that planning the best rescue strategy could be partially impaired not only because of panic, but also because of the cold shock.

  9. Maintenance system for immersed seals, specifically for nuclear reactors

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1977-01-01

    The invention concerns the immersed seals of nuclear reactors and specifically a maintenance system for the immersed seals of the revolving closing plugs of liquid metal breeder nuclear reactors. A liquid sodium immersed joint may be located at a given place or be surrounded by heating elements so that the sodium stays liquid whilst the reactor is working. In other cases, the sodium in the immersed seal is allowed to solidify whilst the reactor is working, thereby increasing the efficiency of the seal. At all events, the sodium must be in a liquid state during reloading with fuel to enable the plug to turn. The invention consists in fitting an ultrasonic transducer to the closure head of the reactor vessel so that the vibration emitting surface directs these vibrations towards the immersed seals so as to detach the deposits of impurities on them and ensure the wetting of the metal surfaces of which they are formed. Additionally, an envelope that can be placed around the ultrasonic transducer in conjunction with a suction appliance provides a mechanism through which the impurities can be removed from the area of the immersed seal [fr

  10. 46 CFR 199.214 - Immersion suits and thermal protective aids.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Immersion suits and thermal protective aids. 199.214... Passenger Vessels § 199.214 Immersion suits and thermal protective aids. (a) Each passenger vessel must... an immersion suit. (c) The immersion suits and thermal protective aids required under paragraphs (a...

  11. 33 CFR 150.518 - What are the inspection requirements for work vests and immersion suits?

    Science.gov (United States)

    2010-07-01

    ... requirements for work vests and immersion suits? 150.518 Section 150.518 Navigation and Navigable Waters COAST... vests and immersion suits? (a) All work vests and immersion suits must be inspected by the owner or... a work vest or immersion suit is inspected and is in serviceable condition, then it may remain in...

  12. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  13. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  14. The pedagogical practices of a teacher of Portuguese Foreign Language (PLE in immersion and non-immersion context

    Directory of Open Access Journals (Sweden)

    Nildicéia Aparecida Rocha

    2016-05-01

    Full Text Available The aim of this paper is to present a reflection on the specifics of teaching Portuguese as a Foreign Language (PLE both in the context of immersion and outside it, from the observations carried out in two stages: first, the practice of a teacher PLE will be described in immersion situation at a university in the state of São Paulo, Brazil; and then practice the same teacher in a course of PLE out of the immersion context, at a university in Spain, in a provincial capital. In this sense, the teaching practice will be analyzed from a teacher of PLE in immersion situation and beyond when the didactic and pedagogical treatment of the inseparable relationship between language and culture within an intercultural communicative approach. It is a qualitative research in which it is a case of state, showing the practice of one teacher (research subjects in two socio-historically different contexts, but with the same approach. The survey results indicate that the teacher's practice in non-immersion context had to be re-signified to enable PLE learning in such a context. In fact, the teacher had to redefine their practice and deconstruct a belief and turn to the theory, according to their didactic and pedagogical and linguistic concerns, finding that the examination of social, historical and cultural data should always be the guiding and / or determinants as regards the teaching of a foreign language, in particular PLE out of immersion.

  15. KinImmerse: Macromolecular VR for NMR ensembles

    Directory of Open Access Journals (Sweden)

    Vinson E Claire

    2009-02-01

    Full Text Available Abstract Background In molecular applications, virtual reality (VR and immersive virtual environments have generally been used and valued for the visual and interactive experience – to enhance intuition and communicate excitement – rather than as part of the actual research process. In contrast, this work develops a software infrastructure for research use and illustrates such use on a specific case. Methods The Syzygy open-source toolkit for VR software was used to write the KinImmerse program, which translates the molecular capabilities of the kinemage graphics format into software for display and manipulation in the DiVE (Duke immersive Virtual Environment or other VR system. KinImmerse is supported by the flexible display construction and editing features in the KiNG kinemage viewer and it implements new forms of user interaction in the DiVE. Results In addition to molecular visualizations and navigation, KinImmerse provides a set of research tools for manipulation, identification, co-centering of multiple models, free-form 3D annotation, and output of results. The molecular research test case analyzes the local neighborhood around an individual atom within an ensemble of nuclear magnetic resonance (NMR models, enabling immersive visual comparison of the local conformation with the local NMR experimental data, including target curves for residual dipolar couplings (RDCs. Conclusion The promise of KinImmerse for production-level molecular research in the DiVE is shown by the locally co-centered RDC visualization developed there, which gave new insights now being pursued in wider data analysis.

  16. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  17. Degradation of partially immersed glass: A new perspective

    Science.gov (United States)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  18. A Conceptual Framework of Immersive Shared Environments Emphasizing Social Interaction

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2015-11-01

    Full Text Available The effectiveness of visual displays has often been linked to the sense of presence embodied by immersive visualization. However, efforts analyzing how presence is associated with multi-users’ quality of communication, including visualization capabilities to assist in architecture, engineering and construction (AEC, are still unfolding. This research is an exploratory study on social interaction, which aims to improve the presentation and communication of complex data through immersive simulation techniques. This paper reviews key concepts such as presence and immersion to identify factors that influence communication in the representative literature. It then introduces the Hub for Immersive Visualization and eResearch (HIVE with a focus on the technological components. Finally it presents a conceptual framework of immersive shared environment, which enables multi-users to understand how to implement social interaction in a system efficiently or to determine whether a visualization system could support communication effectively. Future studies to validate the proposed framework are discussed, particularly in the context of cognitive factors in a shared environment.

  19. [Blood plasma volume dynamics in monkeys during immersion].

    Science.gov (United States)

    Krotov, V P; Burkovskaia, T E; Dotsenko, M A; Gordeev, Iu V; Nosovskiĭ, A M; Chel'naia, N A

    2004-01-01

    Dynamics of blood plasma volume (PV) was studied with indirect methods (hematocrit count, hemoglobin, total protein and high-molecular protein) during 9-d immersion of monkeys Macaca mulatta. The animals were donned in waterproof suits, motor restrained in space seat liners and immersed down to the xiphisternum. Two monkeys were immersed in the bath at one time. The suits were changed every day under ketamine (10 mg/kg of body mass). There were two groups with 12 animals in each. The first group was kept in the bath 3 days and the second--9 days. Prior to the experiment, the animals had been trained to stay in the seat liner put down into the dry bath. It was shown that already two days of exposure to the hydrostatic forces (approximately 15 mm Hg) and absence of negative pressure breathing reduced PV by 18-20% on the average in all animals. Subsequent PV dynamics was individual by character; however, PV deficit persisted during 4 days of immersion in the whole group. In this period, albumin filtration was increased significantly, whereas high-molecular protein filtration was increased to a less degree. During the remaining days in immersion PV regained normal values. Ten days of readaptation (reclined positioning of monkeys brought back into cage) raised VP beyond baseline values. This phenomenon can be attributed to the necessity to provide appropriate venous return and sufficient blood supply of organs and tissues following extension of blood vessels capacity.

  20. Changes in landing mechanics after cold-water immersion.

    Science.gov (United States)

    Wang, He; Toner, Michael M; Lemonda, Thomas J; Zohar, Mor

    2010-06-01

    The purpose of this study was to investigate the influence of cold-water immersion on kinematics and kinetics during a drop-landing task. On four separate occasions, 9 men performed drop-landings from a 0.6-m platform to a force platform following 30-min immersion to the hip-joint in thermoneutral water (control; 34 degrees C) and in cold water (20 degrees C) to the ankle (low level), knee (medium level), and hip (high level) joints. Sagittal plane kinematics and kinetics were determined. One-way repeated measures multivariate analysis of variance was used for statistical analysis. Compared to the control, the low-level condition had similar joint mechanics, the medium level showed 26% less ankle mechanical work (p = .003), and the high level showed 9% less vertical ground reaction force (p = .025) and 23% less ankle mechanical work (p = .023) with 18% greater trunk flexion (p = .024). In summary, the low-level cold-water immersion had no effect on landing mechanics. The medium- and high-level cold-water immersion resulted in a reduction in impact absorption at the ankle joint during landing. The increased trunk flexion after high-level immersion helped dissipate landing impact.

  1. Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens

    Science.gov (United States)

    Gale, W.L.; Fitzpatrick, M.S.; Lucero, M.; Contreras-Sanchez, W.M.; Schreck, C. B.

    1999-01-01

    The use of all-male populations increases the efficiency and feasibility of tilapia aquaculture. The objective of this study was to determine the efficacy of a short-term immersion procedure for masculinizing Nile tilapia (Oreochromis niloticus). Two synthetic androgens were evaluated: 17α-methyldihydrotestosterone (MDHT) and 17α-methyltestosterone (MT). Exposure (3 h) on 10 and again on 13 days post-fertilization to MDHT at 500 μg/1 successfully masculinized fry in all experiments, resulting in 100, 94 and 83 ± 2% males in Experiments 1, 2 and 3, respectively. Immersions in MDHT or MT at 100 μg/1 resulted in significantly skewed sex ratios in Experiments 1 and 3 (MT resulted in 73 and 83 ± 3% males; and MDHT resulted in 72 and 91 ± 1% males) but not in Experiment 2. Immersion in MT at 500 μg/1 only caused masculinization in Experiment 3. Although further research and refinement is needed, immersion of Nile tilapia in MDHT may provide a practical alternative to the use of steroid-treated feed. Furthermore, when compared with current techniques for steroid-induced sex inversion of tilapia, short-term immersion reduces the period of time that workers are exposed to anabolic steroids.

  2. Immersive bilingualism reshapes the core of the brain.

    Science.gov (United States)

    Pliatsikas, Christos; DeLuca, Vincent; Moschopoulou, Elisavet; Saddy, James Douglas

    2017-05-01

    Bilingualism has been shown to affect the structure of the brain, including cortical regions related to language. Less is known about subcortical structures, such as the basal ganglia, which underlie speech monitoring and language selection, processes that are crucial for bilinguals, as well as other linguistic functions, such as grammatical and phonological acquisition and processing. Simultaneous bilinguals have demonstrated significant reshaping of the basal ganglia and the thalamus compared to monolinguals. However, it is not clear whether these effects are due to learning of the second language (L2) at a very young age or simply due to continuous usage of two languages. Here, we show that bilingualism-induced subcortical effects are directly related to the amount of continuous L2 usage, or L2 immersion. We found significant subcortical reshaping in non-simultaneous (or sequential) bilinguals with extensive immersion in a bilingual environment, closely mirroring the recent findings in simultaneous bilinguals. Importantly, some of these effects were positively correlated to the amount of L2 immersion. Conversely, sequential bilinguals with comparable proficiency and age of acquisition (AoA) but limited immersion did not show similar effects. Our results provide structural evidence to suggestions that L2 acquisition continuously occurs in an immersive environment, and is expressed as dynamic reshaping of the core of the brain. These findings propose that second language learning in the brain is a dynamic procedure which depends on active and continuous L2 usage.

  3. Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    J. Wu

    2012-01-01

    Full Text Available A hybrid immersed boundary-lattice Boltzmann method (IB-LBM is presented in this work to simulate the thermal flow problems. In current approach, the flow field is resolved by using our recently developed boundary condition-enforced IB-LBM (Wu and Shu, (2009. The nonslip boundary condition on the solid boundary is enforced in simulation. At the same time, to capture the temperature development, the conventional energy equation is resolved. To model the effect of immersed boundary on temperature field, the heat source term is introduced. Different from previous studies, the heat source term is set as unknown rather than predetermined. Inspired by the idea in (Wu and Shu, (2009, the unknown is calculated in such a way that the temperature at the boundary interpolated from the corrected temperature field accurately satisfies the thermal boundary condition. In addition, based on the resolved temperature correction, an efficient way to compute the local and average Nusselt numbers is also proposed in this work. As compared with traditional implementation, no approximation for temperature gradients is required. To validate the present method, the numerical simulations of forced convection are carried out. The obtained results show good agreement with data in the literature.

  4. Evaluation of a New Temporary Immersion Bioreactor System for Micropropagation of Cultivars of Eucalyptus, Birch and Fir

    Directory of Open Access Journals (Sweden)

    Edward Businge

    2017-06-01

    Full Text Available The use of liquid instead of solid culture medium for the micropropagation of plants offers advantages such as better access to medium components and scalability through possible automation of the processes. The objective of this work was to compare a new temporary immersion bioreactor (TIB to solid medium culture for the micropropagation of a selection of tree species micropropagated for commercial use: Nordmann fir (Abies nordmanniana (Steven Spach, Eucalyptus (E. grandis x E. urophylla, Downy birch (Betula pubescens Ehrh, and Curly birch (Betula pendula var. carelica. Cultivation of explants in the TIB resulted in a significant increase of multiplication rate and fresh weight of Eucalyptus and B. pendula, but not Betula pubescens. In addition, the fresh weight of embryogenic tissue and the maturation frequency of somatic embryos increased significantly when an embryogenic cell line of A. nordmanniana was cultivated in the TIB compared to solid culture medium. These results demonstrate the potential for scaling up and automating micropropagation by shoot multiplication and somatic embryogenesis in commercial tree species using a temporary immersion bioreactor.

  5. A common path forward for the immersive visualization community

    Energy Technology Data Exchange (ETDEWEB)

    Eric A. Wernert; William R. Sherman; Patrick O' Leary; Eric Whiting

    2012-03-01

    Immersive visualization makes use of the medium of virtual reality (VR) - it is a subset of virtual reality focused on the application of VR technologies to scientific and information visualization. As the name implies, there is a particular focus on the physically immersive aspect of VR that more fully engages the perceptual and kinesthetic capabilities of the scientist with the goal of producing greater insight. The immersive visualization community is uniquely positioned to address the analysis needs of the wide spectrum of domain scientists who are becoming increasingly overwhelmed by data. The outputs of computational science simulations and high-resolution sensors are creating a data deluge. Data is coming in faster than it can be analyzed, and there are countless opportunities for discovery that are missed as the data speeds by. By more fully utilizing the scientists visual and other sensory systems, and by offering a more natural user interface with which to interact with computer-generated representations, immersive visualization offers great promise in taming this data torrent. However, increasing the adoption of immersive visualization in scientific research communities can only happen by simultaneously lowering the engagement threshold while raising the measurable benefits of adoption. Scientists time spent immersed with their data will thus be rewarded with higher productivity, deeper insight, and improved creativity. Immersive visualization ties together technologies and methodologies from a variety of related but frequently disjoint areas, including hardware, software and human-computer interaction (HCI) disciplines. In many ways, hardware is a solved problem. There are well established technologies including large walk-in systems such as the CAVE{trademark} and head-based systems such as the Wide-5{trademark}. The advent of new consumer-level technologies now enable an entirely new generation of immersive displays, with smaller footprints and costs

  6. Comparing contact and immersion freezing from continuous flow diffusion chambers

    Directory of Open Access Journals (Sweden)

    B. Nagare

    2016-07-01

    Full Text Available Ice nucleating particles (INPs in the atmosphere are responsible for glaciating cloud droplets between 237 and 273 K. Different mechanisms of heterogeneous ice nucleation can compete under mixed-phase cloud conditions. Contact freezing is considered relevant because higher ice nucleation temperatures than for immersion freezing for the same INPs were observed. It has limitations because its efficiency depends on the number of collisions between cloud droplets and INPs. To date, direct comparisons of contact and immersion freezing with the same INP, for similar residence times and concentrations, are lacking. This study compares immersion and contact freezing efficiencies of three different INPs. The contact freezing data were obtained with the ETH CoLlision Ice Nucleation CHamber (CLINCH using 80 µm diameter droplets, which can interact with INPs for residence times of 2 and 4 s in the chamber. The contact freezing efficiency was calculated by estimating the number of collisions between droplets and particles. Theoretical formulations of collision efficiencies gave too high freezing efficiencies for all investigated INPs, namely AgI particles with 200 nm electrical mobility diameter, 400 and 800 nm diameter Arizona Test Dust (ATD and kaolinite particles. Comparison of freezing efficiencies by contact and immersion freezing is therefore limited by the accuracy of collision efficiencies. The concentration of particles was 1000 cm−3 for ATD and kaolinite and 500, 1000, 2000 and 5000 cm−3 for AgI. For concentrations  <  5000 cm−3, the droplets collect only one particle on average during their time in the chamber. For ATD and kaolinite particles, contact freezing efficiencies at 2 s residence time were smaller than at 4 s, which is in disagreement with a collisional contact freezing process but in accordance with immersion freezing or adhesion freezing. With “adhesion freezing”, we refer to a contact nucleation

  7. Virtually numbed: immersive video gaming alters real-life experience.

    Science.gov (United States)

    Weger, Ulrich W; Loughnan, Stephen

    2014-04-01

    As actors in a highly mechanized environment, we are citizens of a world populated not only by fellow humans, but also by virtual characters (avatars). Does immersive video gaming, during which the player takes on the mantle of an avatar, prompt people to adopt the coldness and rigidity associated with robotic behavior and desensitize them to real-life experience? In one study, we correlated participants' reported video-gaming behavior with their emotional rigidity (as indicated by the number of paperclips that they removed from ice-cold water). In a second experiment, we manipulated immersive and nonimmersive gaming behavior and then likewise measured the extent of the participants' emotional rigidity. Both studies yielded reliable impacts, and thus suggest that immersion into a robotic viewpoint desensitizes people to real-life experiences in oneself and others.

  8. Exploring the design space of immersive urban analytics

    Directory of Open Access Journals (Sweden)

    Zhutian Chen

    2017-06-01

    Full Text Available Recent years have witnessed the rapid development and wide adoption of immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft HoloLens. These immersive devices have the potential to significantly extend the methodology of urban visual analytics by providing critical 3D context information and creating a sense of presence. In this paper, we propose a theoretical model to characterize the visualizations in immersive urban analytics. Furthermore, based on our comprehensive and concise model, we contribute a typology of combination methods of 2D and 3D visualizations that distinguishes between linked views, embedded views, and mixed views. We also propose a supporting guideline to assist users in selecting a proper view under certain circumstances by considering visual geometry and spatial distribution of the 2D and 3D visualizations. Finally, based on existing work, possible future research opportunities are explored and discussed.

  9. Heat Acclimation and Water-Immersion Deconditioning: Responses to Exercise

    Science.gov (United States)

    Shvartz, E.; Bhattacharya, A.; Sperinde, S. J.; Brock, P. J.; Sciaraffa, D.; Haines, R. F.; Greenleaf, J. E.

    1977-01-01

    Simulated subgravity conditions, such as bed rest and water immersion, cause a decrease in a acceleration tolerance (3, 4), tilt tolerance (3, 9, 10), work capacity (5, 7), and plasma volume (1, 8-10). Moderate exercise training performed during bed rest (4) and prior to water immersion (5) provides some protection against the adverse effects of deconditioning, but the relationship between exercise and changes due to deconditioning remains unclear. Heat acclimation increases plasma and interstitial volumes, total body water, stroke volume (11), and tilt tolerance (6) and may, therefore, be a more efficient method of ameliorating deconditioning than physical training alone. The present study was undertaken to determine the effects of heat acclimation and moderate physical training, performed in cool conditions, on water-immersion deconditioning.

  10. Immersion hand radiography in the evaluation of musculoskeletal disorders

    International Nuclear Information System (INIS)

    Ngo, C.; Yaghmai, I.; Zach, R.

    1987-01-01

    A prospective study is undertaken to evaluate a new soft-tissue immersion technique. The hand is immersed in a plastic tray containing a mixture solution of alcohol and water. Exposures are made employing low-kilovolt technique. Conventional x-rays of the hands are obtained to serve as baseline studies and for the purpose of comparison. Soft-tissue immersion technique has proven sensitive and efficient in outlining the skin, subcutaneous fat layers, and fat layers between muscle planes. More importantly, the tendons and the joint capsules, which are hardly seen on standard hand radiographs, are easily highlighted with this technique. In conclusion, this technique appears to be superior to conventional plain radiographs in the evaluation and early detection of soft-tissue changes related to musculoskeletal disorders, especially in cases of arthritides

  11. From Perceptual Apparatus to Immersive Field of Experience

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    Peter Sloterdijk ascribes to architecture the “the design of immersions” and hence the “production of embedding situations” or atmosphere (2011 (2006): 108-109), which as devised by Gernot Böhme becomes a fundamental concept of a new aesthetics (1993). Atmosphere implies affective immersion...... the immersive experiences relocate the vision within a “carnal density” (1992: 150), regaining all sensory modalities. Diverse perceptual apparatuses also defined a larger disciplinary expansion in the field of architecture and design. Conceived as sensorial activators, intensifiers of phenomena......, constitute a framework for a re-invention of perceptual worlds, providing a basis for tracing the conceptual contours of atmospheric perception, as well as for discerning the means of the production of space understood as an immersive field of experience. References: Böhme, G. (1993). "Atmosphere...

  12. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  13. The boundary data immersion method for compressible flows with application to aeroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Schlanderer, Stefan C., E-mail: stefan.schlanderer@unimelb.edu.au [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Weymouth, Gabriel D., E-mail: G.D.Weymouth@soton.ac.uk [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Sandberg, Richard D., E-mail: richard.sandberg@unimelb.edu.au [Department of Mechanical Engineering, University of Melbourne, Melbourne VIC 3010 (Australia)

    2017-03-15

    This paper introduces a virtual boundary method for compressible viscous fluid flow that is capable of accurately representing moving bodies in flow and aeroacoustic simulations. The method is the compressible extension of the boundary data immersion method (BDIM, Maertens & Weymouth (2015), ). The BDIM equations for the compressible Navier–Stokes equations are derived and the accuracy of the method for the hydrodynamic representation of solid bodies is demonstrated with challenging test cases, including a fully turbulent boundary layer flow and a supersonic instability wave. In addition we show that the compressible BDIM is able to accurately represent noise radiation from moving bodies and flow induced noise generation without any penalty in allowable time step.

  14. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  15. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  16. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2011-08-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.

  17. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  18. Cardiovascular response to apneic immersion in cool and warm water

    Science.gov (United States)

    Folinsbee, L.

    1974-01-01

    The influence of prior exposure to cool water and the influence of lung volume on the responses to breath holding were examined. The bradycardia and vasoconstriction that occur during breath-hold diving in man are apparently the resultant of stimuli from apnea, relative expansion of the thorax, lung volume, esophageal pressure, face immersion, and thermal receptor stimulation. It is concluded that the bradycardia and vasoconstriction associated with breath holding during body immersion are not attenuated by a preexisting bradycardia and vasoconstriction due to cold.

  19. Medication Adherence Survey: A First Year Pharmacy Immersion Students’ Perspective

    Directory of Open Access Journals (Sweden)

    Claudia F Ortiz Lopez

    2016-09-01

    Full Text Available First year pharmacy Immersion students from University of North Carolina Eshelman School of Pharmacy used a three question survey during their rotation at Moses H. Cone Hospital that analyzed patients’ medication adherence. Data collection revealed common trends that have been shown in the literature and areas for improvement. This method of evaluation was used by Phase I Immersion students to gain perspective on the problems we continue to have with medication adherence. Conflict of Interest We do not have any potential conflicts of interest with respect to the research, authorship, and/or publication of this article.   Type: Student Project

  20. Surfaces immersed in Lie algebras associated with elliptic integrals

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2012-01-01

    The objective of this work is to adapt the Fokas–Gel’fand immersion formula to ordinary differential equations written in the Lax representation. The formalism of generalized vector fields and their prolongation structure is employed to establish necessary and sufficient conditions for the existence and integration of immersion functions for surfaces in Lie algebras. As an example, a class of second-order, integrable, ordinary differential equations is considered and the most general solutions for the wavefunctions of the linear spectral problem are found. Several explicit examples of surfaces associated with Jacobian and P-Weierstrass elliptic functions are presented. (paper)

  1. Nitrogen plasma immersion ion implantation for surface treatment and wear protection of austenitic stainless steel X6CrNiTi1810

    International Nuclear Information System (INIS)

    Blawert, C.; Mordike, B.L.

    1999-01-01

    Plasma immersion ion implantation is an effective surface treatment for stainless steels. The influence of treatment parameters (temperature, plasma density and pressure) on the sliding wear resistance are studied here. At moderate temperatures, nitrogen remains in solid solution without forming nitrides. This increases the surface hardness and the wear resistance without affecting the passivation of the steel. This may allow the use of such steels in applications where their poor wear resistance would normally prohibit their use. (orig.)

  2. Cranial implant design using augmented reality immersive system.

    Science.gov (United States)

    Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary

    2007-01-01

    Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.

  3. Immersive Simulation in Constructivist-Based Classroom E-Learning

    Science.gov (United States)

    McHaney, Roger; Reiter, Lauren; Reychav, Iris

    2018-01-01

    This article describes the development of a simulation-based online course combining sound pedagogy, educational technology, and real world expertise to provide university students with an immersive experience in storage management systems. The course developed in this example does more than use a simulation, the entire course is delivered using a…

  4. Immersion and Identity: Experiences of an African American Preschool Child

    Science.gov (United States)

    McCullough, Ruanda Garth; Reyes, Sharon Adelman

    2010-01-01

    This article explores the benefits and challenges of a Spanish language immersion preschool from the perspective of a non-Spanish speaking African American family. Data explored include the decision to enroll, reactions from peers and family, home-school communication issues, language development, and family involvement. In addition,…

  5. Spatial Tiling and Streaming in an Immersive Media Delivery Network

    NARCIS (Netherlands)

    Niamut, O.A.; Prins, M.J.; Brandenburg, R. van; Havekes, A.

    2011-01-01

    Within the EU FP7 project FascinatE, a capture, production and delivery system capable of supporting pan/tilt/zoom interaction with immersive media is being developed. Intelligent networks with processing components are needed to repurpose the content to suit different device types and framing

  6. The Allobrain: An Interactive, Stereographic, 3D Audio Immersive Environment

    DEFF Research Database (Denmark)

    Wakefield, Graham; Overholt, Dan; Putnam, Lance Jonathan

    2008-01-01

    This document describes the AlloBrain, the debut content created for presentation in the AlloSphere at the University of California, Santa Barbara, and the Cosm toolkit for the prototyping of interactive immersive environments using higher-order Ambisonics and stereographic projections. The Cosm......-computer interfaces and new audiovisual interaction methodologies within a virtual environment....

  7. Spatial Sound and Multimodal Interaction in Immersive Environments

    DEFF Research Database (Denmark)

    Grani, Francesco; Overholt, Daniel; Erkut, Cumhur

    2015-01-01

    primary problem areas: 1) creation of interactive spatial audio experiences for immersive virtual and augmented reality scenarios, and 2) production and mixing of spatial audio for cinema, music, and other artistic contexts. Several ongoing research projects are described, wherein the latest developments...

  8. On deformation of complex continuum immersed in a plane space

    Science.gov (United States)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  9. Relating French Immersion Teacher Practices to Better Student Oral Production

    Science.gov (United States)

    Haj-Broussard, Michelle; Olson Beal, Heather K.; Boudreaux, Nicole

    2017-01-01

    This study examined seven Louisiana kindergarten immersion teachers' practices to evaluate students' oral target language production and compare the oral production elicited when different instructional practices were used over a single semester. Three rounds of three 20-minute observations in three different contexts--circle time, direct…

  10. Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment

    NARCIS (Netherlands)

    Huising, M.O.; Guichelaar, T.; Hoek, C.; Verburg-van Kemenade, B.M.L.; Flik, G.; Savelkoul, H.F.J.; Rombout, J.H.W.M.

    2003-01-01

    Immersion vaccination is common practice in aquaculture, because of its convenience for mass vaccination with sufficient protection. However, the mechanisms of antigen uptake and presentation, resulting in a protective immune response and the role of the innate immune system therein are largely

  11. Technology Use in a Japanese Immersion School: A Case Study.

    Science.gov (United States)

    Ketterer, Kimberley; Giannone, Darby

    1996-01-01

    Examines the uses of technology at Yujin Gakuen, a public elementary-level Japanese language immersion school located in Eugene, Oregon. Discusses goals that can be achieved through cooperative learning and instructional technology use, equipment and software, areas in which technology training and integration takes place, the role of educators,…

  12. Building an Immersive CERN Data Centre Virtual Visit System

    CERN Multimedia

    CERN. Geneva; VALSAN, Liviu

    2015-01-01

    Interested in working on building an immersive, panoramic virtual visit of the CERN Data Centre? We'll show the system used during CERN Open Days, its limitations and plans on how to take it to the next level as a permanent installation to be used by visitors from around the world.

  13. Full Immersive Virtual Environment Cave[TM] in Chemistry Education

    Science.gov (United States)

    Limniou, M.; Roberts, D.; Papadopoulos, N.

    2008-01-01

    By comparing two-dimensional (2D) chemical animations designed for computer's desktop with three-dimensional (3D) chemical animations designed for the full immersive virtual reality environment CAVE[TM] we studied how virtual reality environments could raise student's interest and motivation for learning. By using the 3ds max[TM], we can visualize…

  14. Immersive Learning Technologies: Realism and Online Authentic Learning

    Science.gov (United States)

    Herrington, Jan; Reeves, Thomas C.; Oliver, Ron

    2007-01-01

    The development of immersive learning technologies in the form of virtual reality and advanced computer applications has meant that realistic creations of simulated environments are now possible. Such simulations have been used to great effect in training in the military, air force, and in medical training. But how realistic do problems need to be…

  15. International Immersion in the Classroom: A New Paradigm

    Science.gov (United States)

    White, Marta Szabo

    2006-01-01

    Business, language and cultural eccentricities are the cornerstones of nation-state sovereignty. Cultural diversity presents a myriad of challenges for academia and business. Cross-cultural frameworks serve to transcend barriers and promote classroom learning to an immersion category. In this paper, notable cross-cultural frameworks are explored,…

  16. Wettability changes in polyether impression materials subjected to immersion disinfection.

    Science.gov (United States)

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  17. Strategies for Teaching English Abroad: The Immersion Classroom

    Directory of Open Access Journals (Sweden)

    Ishrat Suri

    2016-06-01

    Full Text Available English language development is best laid on the foundation of natural and social interactions which requires a great deal of sacrifice from educators who teach abroad (Snow, 1997. Learning to speak a new language grants learners a passport and highly coveted citizenship to a culturally interconnected world (Met & Lorenz, 1993; however, educators often face a daunting challenge. They must come up with comprehensive strategies which ensure that learners obtain requisite skills faster than might otherwise be deemed necessary. They must also employ non-verbal communication in place of the native language and secure a total commitment from students (Fortune, 2000. Finally, educators must leverage the brain’s information processing and retention ability against a very formidable threat: forgetting. The paper focuses on language immersion classroom strategies currently being used around the world, along with a discussion on how technology has been used to increase language and cultural competencies. This research has implications for educators and administrators who are interested in the impact that technology access has on learning when paired with a total immersion approach. This paper will present recommendations for international English language immersion programs, whose goals are to develop a total cultural competency for students aged 5-25 in environments where there are limited resources to aid in language immersion.

  18. The Role of Immersive Media in Online Education

    Science.gov (United States)

    Bronack, Stephen C.

    2011-01-01

    An increasing number of educators are integrating immersive media into core course offerings. Virtual worlds, serious games, simulations, and augmented reality are enabling students and instructors to connect with content and with one another in novel ways. As a result, many are investigating the new affordances these media provide and the impact…

  19. Evaluation of red blood cell stability during immersion blood warming

    African Journals Online (AJOL)

    Introduction: The practice of warming blood for transfusion by immersion into a waterbath has been investigated. Objective: To find the maximum waterbath temperature at which blood can be heated effectively without effecting the red blood cell functional and structural integrity. Method: Blood, three days after donation ...

  20. Creating Cultural Competence: An Outreach Immersion Experience in Southern Africa

    Science.gov (United States)

    West-Olatunji, Cirecie; Goodman, Rachael D.; Mehta, Sejal; Templeton, Laura

    2011-01-01

    With disasters on the rise, counselors need to increase their cultural awareness, knowledge, and skills to work with affected communities. This study reports outcomes of a four-week immersion experience in southern Africa with six counselor-trainees. Data sources for this qualitative study were: daily journals and demographic forms. Outcomes…

  1. International Immersion in Counselor Education: A Consensual Qualitative Research Investigation

    Science.gov (United States)

    Barden, Sejal M.; Cashwell, Craig S.

    2014-01-01

    This study used consensual qualitative research methodology to examine the phenomenon of international immersion on counselor education students' (N = 10) development and growth. Seven domains emerged from the data (cultural knowledge, empathy, personal and professional impact, process/reflection, relationships, personal characteristics, and…

  2. Comparing Written Competency in Core French and French Immersion Graduates

    Science.gov (United States)

    Lappin-Fortin, Kerry

    2014-01-01

    Few studies have compared the written competency of French immersion students and their core French peers, and research on these learners at a postsecondary level is even scarcer. My corpus consists of writing samples from 255 students from both backgrounds beginning a university course in French language. The writing proficiency of core French…

  3. Immersion Weekends: The Next Best Thing to Being There.

    Science.gov (United States)

    Myer, Bettye J.; Wellman, Cheryl A.

    A French language immersion weekend housed in an off-campus college lodge and accommodating 12 college students has been successfully implemented by the State University College of New York at Fredonia. The goals of the weekend experiences have been: the development of listening and speaking skills; creation of a cultural atmosphere of the…

  4. Highly immersive virtual reality laparoscopy simulation: development and future aspects.

    Science.gov (United States)

    Huber, Tobias; Wunderling, Tom; Paschold, Markus; Lang, Hauke; Kneist, Werner; Hansen, Christian

    2018-02-01

    Virtual reality (VR) applications with head-mounted displays (HMDs) have had an impact on information and multimedia technologies. The current work aimed to describe the process of developing a highly immersive VR simulation for laparoscopic surgery. We combined a VR laparoscopy simulator (LapSim) and a VR-HMD to create a user-friendly VR simulation scenario. Continuous clinical feedback was an essential aspect of the development process. We created an artificial VR (AVR) scenario by integrating the simulator video output with VR game components of figures and equipment in an operating room. We also created a highly immersive VR surrounding (IVR) by integrating the simulator video output with a [Formula: see text] video of a standard laparoscopy scenario in the department's operating room. Clinical feedback led to optimization of the visualization, synchronization, and resolution of the virtual operating rooms (in both the IVR and the AVR). Preliminary testing results revealed that individuals experienced a high degree of exhilaration and presence, with rare events of motion sickness. The technical performance showed no significant difference compared to that achieved with the standard LapSim. Our results provided a proof of concept for the technical feasibility of an custom highly immersive VR-HMD setup. Future technical research is needed to improve the visualization, immersion, and capability of interacting within the virtual scenario.

  5. Criticality for Global Citizenship in Korean English Immersion Camps

    Science.gov (United States)

    Ahn, So-Yeon

    2015-01-01

    Given a heavy social, ideological pressure for parents to pursue better English education for their children in the globalized world, short-term English immersion camp programs have emerged as an educational option in South Korea, promoted as environments for intercultural communication between native English-speaking teachers and local Korean…

  6. Angiotensin II attenuates the natriuresis of water immersion in humans

    DEFF Research Database (Denmark)

    Schou, Morten; Gabrielsen, Anders; Bruun, Niels Eske

    2002-01-01

    The hypothesis was tested that suppression of generation of ANG II is one of the mechanisms of the water immersion (WI)-induced natriuresis in humans. In one protocol, eight healthy young males were subjected to 3 h of 1) WI (WI + placebo), 2) WI combined with ANG II infusion of 0.5 ng. kg(-1). min...

  7. Role of immersion (transportation) in health video games

    Science.gov (United States)

    Recent empirical studies have shown that narratives can serve as powerful tools for health behavior change. According to theory, the more a narrative immerses or transports a person into a story world, the more consistent their beliefs and behaviors should be with the narrative. As the first analysi...

  8. Discourses on Bilingualism in Canadian French Immersion Programs

    Science.gov (United States)

    Roy, Sylvie; Galiev, Albert

    2011-01-01

    The present article examines discourses on bilingualism in French immersion schools and connects local ideologies of bilingualism to a more global view of what it means to be bilingual in Canada. Bilingualism is usually regarded as two isolated monolingualisms (or monolingual systems) in which there is no place for code-switching, uneven language…

  9. Distortion of calculated whole-body hematocrit during lower-body immersion in water.

    Science.gov (United States)

    Knight, D R; Santoro, T; Bondi, K R

    1986-11-01

    We found a difference between the venous hematocrits of immersed and nonimmersed arms during immersion of the lower body in cold water but not during a comparable exposure to warm water. Fourteen healthy men were exposed to three different experimental conditions: arm immersion, body immersion, and control. The men always sat upright while both upper extremities hung vertically at their sides. During arm immersion, one forearm was completely immersed for 30 min in either cold water (28 degrees C, n = 7) or warm water (38 degrees C, n = 7). This cold-warm water protocol was repeated on separate days for exposure to the remaining conditions of body immersion (immersion of 1 forearm and all tissues below the xiphoid process) and control (no immersion). Blood samples were simultaneously drawn from cannulated veins in both antecubital fossae. Hematocrit difference (Hct diff) was measured by subtracting the nonimmersed forearm's hematocrit (Hct dry) from the immersed forearm's hematocrit (Hct wet). Hct diff was approximately zero when the men were exposed to the control condition and body immersion in warm water. In the remaining conditions, Hct wet dropped below Hct dry (P less than 0.01, 3-way analysis of variance). The decrements of Hct diff showed there were differences between venous hematocrits in immersed and nonimmersed regions of the body, indicating that changes of the whole-body hematocrit cannot be calculated from a large-vessel hematocrit soon after immersing the lower body in cold water.

  10. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  11. How incorporation of scents could enhance immersive virtual experiences

    Directory of Open Access Journals (Sweden)

    Matthieu Jeremiah Ischer

    2014-07-01

    Full Text Available Under normal everyday conditions, senses all work together to create experiences that fill a typical person´s life. Unfortunately for behavioral and cognitive researchers who investigate such experiences, standard laboratory tests are usually conducted in a nondescript room in front of a computer screen. They are very far from replicating the complexity of real world experiences. Recently, immersive virtual reality (IVR environments became promising methods to immerse people into an almost real environment that involves more senses. IVR environments provide many similarities to the complexity of the real world and at the same time allow experimenters to constrain experimental parameters to obtain empirical data. This can eventually lead to better treatment options and/or new mechanistic hypotheses. The idea that increasing sensory modalities improve the realism of immersive virtual reality environments has been empirically supported, but the senses used did not usually include olfaction. In this technology report, we will present an odor delivery system applied to a state-of-the-art IVR technology. The platform provides a three-dimensional, immersive, and fully interactive visualization environment called Brain and Behavioral Laboratory - Immersive System (BBL-IS. The solution we propose can reliably deliver various complex scents during different virtual scenarios, at a precise time and space and without contamination of the environment. The main features of this platform are: i the limited cross-contamination between odorant streams with a fast odor delivery (< 500 ms, ii the ease of use and control, and iii the possibility to synchronize the delivery of the odorant with pictures, videos or sounds. How this unique technology could be used to investigate typical research questions in olfaction (e.g., emotional elicitation, memory encoding or attentional capture by scents will also be addressed.

  12. Correction factors for assessing immersion suits under harsh conditions.

    Science.gov (United States)

    Power, Jonathan; Tikuisis, Peter; Ré, António Simões; Barwood, Martin; Tipton, Michael

    2016-03-01

    Many immersion suit standards require testing of thermal protective properties in calm, circulating water while these suits are typically used in harsher environments where they often underperform. Yet it can be expensive and logistically challenging to test immersion suits in realistic conditions. The goal of this work was to develop a set of correction factors that would allow suits to be tested in calm water yet ensure they will offer sufficient protection in harsher conditions. Two immersion studies, one dry and the other with 500 mL of water within the suit, were conducted in wind and waves to measure the change in suit insulation. In both studies, wind and waves resulted in a significantly lower immersed insulation value compared to calm water. The minimum required thermal insulation for maintaining heat balance can be calculated for a given mean skin temperature, metabolic heat production, and water temperature. Combining the physiological limits of sustainable cold water immersion and actual suit insulation, correction factors can be deduced for harsh conditions compared to calm. The minimum in-situ suit insulation to maintain thermal balance is 1.553-0.0624·TW + 0.00018·TW(2) for a dry calm condition. Multiplicative correction factors to the above equation are 1.37, 1.25, and 1.72 for wind + waves, 500 mL suit wetness, and both combined, respectively. Calm water certification tests of suit insulation should meet or exceed the minimum in-situ requirements to maintain thermal balance, and correction factors should be applied for a more realistic determination of minimum insulation for harsh conditions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  14. Light induced cooling of a heated solid immersed in liquid helium I

    International Nuclear Information System (INIS)

    Lezak, D.; Brodie, L.C.; Semura, J.S.

    1984-01-01

    This chapter investigates the marked enhancement in the transient heat transfer from the heater-thermometer to the liquid helium immediately following the application of a flash of visible light. This ''light effect'' is associated with increased bubble activity, and it is possible that the light induces a rapid nucleation of bubbles in the superheated liquid at or near the heater surface. A summary of the light effect is presented and some potential uses to which this effect could be applied are suggested. Quantification of the light effect and properties of the light effect are discussed. It is determined that the light effect is an additional cooling due to a light induced enhancement of boiling in superheated liquid helium I. The effect could be applied in practical cryogenic engineering and for the acquisition of fundamental knowledge of boiling heat transfer and nucleation in cryogenic liquids

  15. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles

    Czech Academy of Sciences Publication Activity Database

    Tarábková, Hana; Bastl, Zdeněk; Janda, Pavel

    2014-01-01

    Roč. 30, č. 48 (2014), s. 14522-14531 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP208/12/2429 Institutional support: RVO:61388955 Keywords : Deionized water * Drops * Floods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.457, year: 2014

  16. Evaluation of Spatial Perspective Taking Skills using a Digital Game with Different Levels of Immersion

    Directory of Open Access Journals (Sweden)

    Laura Freina

    2017-09-01

    Full Text Available The present paper presents the results of an experiment aimed at assessing the impact of different levels of immersion on performance in a Spatial Perspective Taking (SPT task. Since SPT is an embodied skill, the hypothesis was that the more immersive a tool is, the better the performance should be. Ninety-eight students from a local primary school have played with three different versions of a game: (i completely immersive with a Head Mounted Display, (ii semi immersive on a computer screen and (iii non-immersive where no movements were possible for the player. Results showed that in the immersive versions of the game, players obtained higher scores than in the non-immersive version, suggesting that an immersive tool can better support performance in a SPT task.

  17. How to Describe and Measure Obstacles of Narrative Immersion in a Film? The Wheel of Immersion as a Framework

    DEFF Research Database (Denmark)

    Bjørner, Thomas; Magnusson, Andreas; Nielsen, Robin Pascal

    2016-01-01

    The aim of this study is to describe and measure obstacles of narrative immersion in a film. Inspired by a literature review within both game research and film studies, we propose a circular model to describe the dynamic process of different levels of involvement viewers can be in while watching ...

  18. Immersion francaise precoce: Arts plastiques 1-7 (Early French Immersion: Plastic Arts for Grades 1-7).

    Science.gov (United States)

    Burt, Andy; And Others

    This curriculum guide in art education is intended for use in grades 1-7 in the early French immersion program. An introductory chapter describes the educational objectives of the art program, the role of art education in child development, general and terminal objectives, methodology, the steps in graphic evolution, and an outline of the program.…

  19. Isometric immersions and embeddings of locally Euclidean metrics in R2

    International Nuclear Information System (INIS)

    Sabitov, I Kh

    1999-01-01

    This paper deals with the problem of isometric immersions and embeddings of two-dimensional locally Euclidean metrics in the Euclidean plane. We find explicit formulae for the immersions of metrics defined on a simply connected domain and a number of sufficient conditions for the existence of isometric embeddings. In the case when the domain is multiply connected we find necessary conditions for the existence of isometric immersions and classify the cases when the metric admits no isometric immersion in the Euclidean plane

  20. Atrial distension, haemodilution, and acute control of renin release during water immersion in humans

    DEFF Research Database (Denmark)

    Gabrielsen, A; Pump, B; Bie, P

    2002-01-01

    immersion. During WI, central venous pressure (CVP) and left atrial diameter (LAD) increased (P ... is not the single pivotal stimulus for the acute suppression of renin release in response to intravascular volume expansion by water immersion in humans. Haemodilution constitutes a significant and conceivably the principal stimulus for the acute immersion-induced suppression of renin-angiotensin system activity....

  1. Integration of immersive virtual reality in Communication Degrees

    Directory of Open Access Journals (Sweden)

    Dr. Ubaldo Cuesta Cambra

    2016-07-01

    Full Text Available The European Higher Education Area promotes the integration of new technologies in didactic innovation and it aims to improve skills. It has been requested by students at the Complutense University of Madrid, who have a digital native profile or millennial. This article is a study about implementation of immersive virtual reality in the practical part of the subjects related to business communication. Specifically, it applied in the subject Crisis Communication. The methodology is a survey and three focus groups for professors and students. The conclusions say that the implementation of immersive virtual reality improves the expectations and interest of students. It also improves the skills acquired and the practical part of the subjects of communication improve employment of students of the Degree, which is one of their main causes of dissatisfaction. The full implementation of mobile telephony suggests using virtual reality devices adapted to them rather than “caves” (C.A.V.E. or consoles.

  2. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality.

    Science.gov (United States)

    Rao, Hrishikesh M; Khanna, Rajan; Zielinski, David J; Lu, Yvonne; Clements, Jillian M; Potter, Nicholas D; Sommer, Marc A; Kopper, Regis; Appelbaum, Lawrence G

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  3. Immersion Cooling of Electronics in DoD Installations

    Energy Technology Data Exchange (ETDEWEB)

    Coles, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Herrlin, Magnus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-15

    A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysis of the failures should be completed, and the design changes proven.

  4. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  5. Dynamic Music and Immersion in the Action-Adventure

    DEFF Research Database (Denmark)

    Gasselseder, Hans-Peter

    2014-01-01

    in the context of dynamic and non-dynamic music. 60 subjects answered self-report questionnaires each time after playing a 3rd-person action-adventure in one of three conditions accounting for (1) dynamic music, (2) non-dynamic music/low arousal potential and (3) non-dynamic music/high arousal potential......Aiming to immerse players into a new realm of drama experience, a growing number of video games utilize interactive, ‘dynamic’ music that reacts adaptively to game events. Though little is known about the involved perceptual processes, the design rationale of enhanced immersive experiences is taken...... over by public discussion including scientific accounts, despite lacking empirical validation. The present paper intends to fill this gap by hypothesizing facilitatory effects of dynamic music on attention allocation in the matching of expected and incoming expressive characteristics of concurrent...

  6. Recent advances in the physiology of whole body immersion.

    Science.gov (United States)

    Gauer, O H

    1975-01-01

    Recent investigations have furnished a complete analysis of the hemodynamic events accompanying whole-body immersion. About 700 ml of blood are translocated into the intrathoracic circulation, and heart volume increases by 180 +/- 62 ml. These changes are followed by an increase in stroke volume and cardiac output of over 30%. At the same time a reflex reduction of total peripheral resistance and venous tone occurs. Renin and aldosterone activity are reduced while the 17-hydroxycorticosteroid is not affected. Treatment of the subject with DOCA attenuates but does not extinguish the excess sodium excretion of immersion. This finding strengthens the arguments in favor of an unknown factor enhancing sodium excretion. Finally, the relative activation of the three factors that serve volume control, the excretory function of the kidney, capillary filtration pressure, and the thirst mechanism, is discussed.

  7. A collisional model for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Vahedi, V.; Lieberman, M.A.; Alves, M.V.; Verboncoeur, J.P.; Birdsall, C.K.

    1990-01-01

    In plasma immersion ion implantation, a target is immersed in a plasma and a series of negative short pulses are applied to it to implant the ions. A new analytical model is being developed for the high pressure regimes in which the motion of the ions is highly collisional. The model provides values for ion flux, average ion velocity at the target, and sheath edge motion as a function of time. These values are being compared with those obtained from simulation and show good agreement. A review is also given (for comparison) of the earlier work done at low pressures, where the motion of ions in the sheath is collisionless, also showing good agreement between analysis and simulation. The simulation code is PDP1 which utilizes particle-in-cell techniques plus Monte-Carlo simulation of electron-neutral (elastic, excitation and ionization) and ion-neutral (scattering and charge-exchange) collisions

  8. Modeling of Airfoil Trailing Edge Flap with Immersed Boundary Method

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    The present work considers incompressible flow over a 2D airfoil with a deformable trailing edge. The aerodynamic characteristics of an airfoil with a trailing edge flap is numerically investigated using computational fluid dynamics. A novel hybrid immersed boundary (IB) technique is applied...... to simulate the moving part of the trailing edge. Over the main fixed part of the airfoil the Navier-Stokes (NS) equations are solved using a standard body-fitted finite volume technique whereas the moving trailing edge flap is simulated with the immersed boundary method on a curvilinear mesh. The obtained...... results show that the hybrid approach is an efficient and accurate method for solving turbulent flows past airfoils with a trailing edge flap and flow control using trailing edge flap is an efficient way to regulate the aerodynamic loading on airfoils....

  9. Resorcinol adsorption from aqueous solution on activated carbon: Relation adsorption isotherm and immersion enthalpy

    International Nuclear Information System (INIS)

    Blanco, Diago A; Giraldo, Liliana; Moreno, Juan C.

    2008-01-01

    The resorcinol adsorption on a modified activated carbon, obtained from an activated commercial carbon Carbochem T M - PS30, CAG, modified by means of chemical treatment with HNO 3 7M oxidized activated carbon (CAO) and heat treatment under H 2 flow, reduced activated carbon (CAR) are studied. The influence of solution pH, the reduction and oxidation of the activated surface carbons in resorcinol aqueous solutions is determined. The interaction solid solution is characterized by adsorption isotherms analysis at 298 K and at pHs of 7.9 and 11 in order to evaluate the system on and below the value of resorcinol pKa. The adsorption capacity of carbons increases with diminishing solution pH. The amount retained increases in the reduced carbon at maximum adsorption pH and diminishes in the oxidized carbon. the experimental results of the adsorption isotherms are adjusted to the Freundlich and Langmuir models, obtaining values for the Q m ax parameter Langmuir model in the CAG of 179, 156 and 44 mgg - 1 For pH values of 7,9 and 11 respectively. In this case of modified carbons values of 233, 179 and 164 mgg - 1 Are obtained for CAR, CAG and CAO to pH 7 respectively, as general tendency the resorcinol adsorption increases in the following order CAR > CAG > CAO. Similar conclusions from immersion enthalpies are obtained, their values increase with the amount of solute retained. In the case of the CAG, immersion enthalpies between 25.8 to 40.9 Jg - 1, are obtained for resorcinol aqueous solutions in a range from 20 to 1500 mgL - 1

  10. Alternative Audio Solution to Enhance Immersion in Deployable Synthetic Environments

    Science.gov (United States)

    2003-09-01

    marred by the subject’s subconscious awareness of the sensors. 3. Heart Related Measures Important to note is the relationship between the... subconscious reaction is a clear indication of presence; an indication not associated with a response able to be measured by this study. Another...condition was detrimental to the user’s sense of immersion so the keyboard functionality was reprogrammed to prevent further occurrences at subject 43

  11. Spectral-directional reflectivity of Tyvek immersed in water

    CERN Document Server

    Filevich, A; Bianchi, H; Rodríguez-Martino, J; Torlasco, G

    1999-01-01

    Spectral-directional relative intensity of the light scattered by a Tyvek sample, immersed in water, has been measured for visible and UV wavelengths. The obtained information is useful to simulate the behavior of light in water Cherenkov detectors, such as those proposed for the observation of high energy cosmic ray air showers. In this work a simple empirical dependence of the scattering pattern on the angle was found, convenient to be used in Monte Carlo simulation programs.

  12. SGCS : Stereo Gaze Contingent Steering for Immersive Telepresence

    OpenAIRE

    Cambuzat , Rémi; Elisei , Frédéric; Bailly , Gérard

    2017-01-01

    International audience; Telepresence refers to a set of tools that allows a person to be “present” in a distant environment, by a sufficiently realistic representation of it through a set of multimodal stimuli experienced by the distant devices via its sensors. Immersive Telepresence follows this trend and, thanks to the capabilities given by virtual reality devices, replicates distant sight and sound perception in a more “immersive” way. The use of coherent stereoscopic images displayed in a...

  13. Programme d'immersion du Sustainable Development Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Programme d'immersion du Sustainable Development Policy Institute sur les questions de paix, de violence et de développement. Alors que la paix, la violence et le développement représentent des défis de taille au Pakistan, ils constituent rarement le point de mire pour l'élaboration de politiques. De surcroît, les étudiants ...

  14. Situating Pedagogies, Positions and Practices in Immersive Virtual Worlds.

    OpenAIRE

    Savin-Baden, Maggi; Gourlay, L.; Tombs, C.; Steils, N.; Tombs, G.; Mawer, M.

    2010-01-01

    Background: The literature on immersive virtual worlds and e-learning to date largely indicates that technology has led the pedagogy. Although rationales for implementing e-learning have included flexibility of provision and supporting diversity, none of these recommendations have helped to provide strong pedagogical location. Furthermore, there is little, if any, exploration of the kinds of e-learning spaces that are commonly adopted in higher education or the rationale for their use.\\ud \\ud...

  15. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  16. Immersion Cooling of Electronics in DoD Installations

    Science.gov (United States)

    2016-05-01

    2012). Bitcoin Mining Electronics Cooling Development In January 2013, inventor/consultant Mark Miyoshi began development of a two-phase cooling...system using Novec 649 to be used for cooling bitcoin mining hardware. After a short trial period, hardware power supply and logic-board failures...are reports of bitcoin mining companies vertically stacking two-phase immersion baths to improve the floor space density, but this approach is likely

  17. Immersive Virtual Reality for Visualization of Abdominal CT.

    Science.gov (United States)

    Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A; Bodenheimer, Robert E

    2013-03-28

    Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two-dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.

  18. Nested immersion: Describing and classifying augmented virtual reality

    OpenAIRE

    MARSH, William Eric; MERIENNE, Frédéric

    2015-01-01

    We present a system, intended for automotive design review use cases, that incorporates a tracked tablet in a CAVE, where both the tablet and the CAVE provide different views and interaction possibilities within the same virtual scene. At its core, this idea is not novel. However, the literature reveals few examples of this paradigm in which virtual information is presented on a second physical device to augment an immersive virtual environment. Similarly, it is unclear where the system shoul...

  19. Remarks on the foundations of geometry and immersion theory

    Energy Technology Data Exchange (ETDEWEB)

    Odon, P I [Harvard University, Extension School, Boston, MA (United States); Capistrano, A J S [Universidade Federal do Tocantins, Porto Nacional, TO, 77500-000 (Brazil)], E-mail: podon@fas.harvard.edu, E-mail: capistranoaj@mail.uft.edu.br

    2010-04-15

    In this paper, we deal with the evolution of physics and maths, and how one is intrinsically connected to the other. Euclid and his book Elements, and the importance of the fifth postulate for geometry led to the discovery of non-Euclidean geometries. We point out how these geometries play an essential role in immersion theory and Nash's theorem, and its importance for physics when applied to the brane-world theory.

  20. Immersive virtual reality for visualization of abdominal CT

    Science.gov (United States)

    Lin, Qiufeng; Xu, Zhoubing; Li, Bo; Baucom, Rebeccah; Poulose, Benjamin; Landman, Bennett A.; Bodenheimer, Robert E.

    2013-03-01

    Immersive virtual environments use a stereoscopic head-mounted display and data glove to create high fidelity virtual experiences in which users can interact with three-dimensional models and perceive relationships at their true scale. This stands in stark contrast to traditional PACS-based infrastructure in which images are viewed as stacks of two dimensional slices, or, at best, disembodied renderings. Although there has substantial innovation in immersive virtual environments for entertainment and consumer media, these technologies have not been widely applied in clinical applications. Here, we consider potential applications of immersive virtual environments for ventral hernia patients with abdominal computed tomography imaging data. Nearly a half million ventral hernias occur in the United States each year, and hernia repair is the most commonly performed general surgery operation worldwide. A significant problem in these conditions is communicating the urgency, degree of severity, and impact of a hernia (and potential repair) on patient quality of life. Hernias are defined by ruptures in the abdominal wall (i.e., the absence of healthy tissues) rather than a growth (e.g., cancer); therefore, understanding a hernia necessitates understanding the entire abdomen. Our environment allows surgeons and patients to view body scans at scale and interact with these virtual models using a data glove. This visualization and interaction allows users to perceive the relationship between physical structures and medical imaging data. The system provides close integration of PACS-based CT data with immersive virtual environments and creates opportunities to study and optimize interfaces for patient communication, operative planning, and medical education.

  1. Isometric C1-immersions for pairs of Riemannian metrics

    International Nuclear Information System (INIS)

    D'Ambra, Giuseppina; Datta, Mahuya

    2001-08-01

    Let h 1 , h 2 be two Euclidean metrics on R q , and let V be a C ∞ -manifold endowed with two Riemannian metrics g 1 and g 2 . We study the existence of C 1 -immersions f:(V,g 1 ,g 2 )→(R q ,h 1 ,h 2 ) such that f*(h i )=g i for i=1,2. (author)

  2. METHODS FOR THE ARRANGEMENT OF IMMERSED TUBE TUNNELS DURING CONSTRUCTION BASED ON STRUCTURALLY UNSTABLE SOILS

    Directory of Open Access Journals (Sweden)

    E. N. Kurbatskiy

    2017-01-01

    Full Text Available Objectives. The aim of the research is to develop the most effective construction and technological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, including zones with seismic activity, using pile foundations with broadening and rock filling with micropiles.Methods. The method of constructing combined transport transitions was applied, consisting of overpasses running over relatively shallow channels from coasts to artificial islands on which the route enters tunnels crossing deep shipping canals.Results. The foreign experience in the construction of immersed tube tunnels in the construction of transport crossings through the extended river and sea barriers has been analytically generalised. The features, advantages and disadvantages of the construction of immersed tube tunnels in some countries of the world are revealed.Conclusion. A large number of already constructed and operated transport transits, including immersed tube tunnels, testifies to the advantages of such projects, as compared to other types of transport transitions like bridges and tunnels constructed using mining techniques. Constructiontechnological methods for strengthening the bottom of rivers and bays, composed of weak structurally unstable soils, are proposed. When selecting a design of a bridge to ensure the passage of hightonnage vessels, it is necessary to build large-span bridges on high supports. Weak, structurally unstable soils, deep bedding of bedrock and high seismicity of the area will create serious problems in the construction and operation of such structures. The natural vibration frequencies of the large-span bridges fall into the region of the dominant earthquake frequencies, which can lead to resonant phenomena and damage the structure even under weak seismic influences. Tunnels are less susceptible to seismic impacts, since, unlike ground structures, they don't experience resonance phenomena. When

  3. CD and defect improvement challenges for immersion processes

    Science.gov (United States)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  4. Authentic Astronomical Discovery in Planetariums: Data-Driven Immersive Lectures

    Science.gov (United States)

    Wyatt, Ryan Jason

    2018-01-01

    Planetariums are akin to “branch offices” for astronomy in major cities and other locations around the globe. With immersive, fulldome video technology, modern digital planetariums offer the opportunity to integrate authentic astronomical data into both pre-recorded shows and live lectures. At the California Academy of Sciences Morrison Planetarium, we host the monthly Benjamin Dean Astronomy Lecture Series, which features researchers describing their cutting-edge work to well-informed lay audiences. The Academy’s visualization studio and engineering teams work with researchers to visualize their data in both pre-rendered and real-time formats, and these visualizations are integrated into a variety of programs—including lectures! The assets are then made available to any other planetariums with similar software to support their programming. A lecturer can thus give the same immersive presentation to audiences in a variety of planetariums. The Academy has also collaborated with Chicago’s Adler Planetarium to bring Kavli Fulldome Lecture Series to San Francisco, and the two theaters have also linked together in live “domecasts” to share real-time content with audiences in both cities. These lecture series and other, similar projects suggest a bright future for astronomers to bring their research to the public in an immersive and visually compelling format.

  5. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  6. Microclump effects in magnetically-immersed electron diodes

    International Nuclear Information System (INIS)

    Olson, C.L.

    1998-01-01

    Magnetically-immersed electron diodes are being developed to produce needle-like, high-current, electron beams for radiography applications. An immersed diode consists of a needle cathode and a planar anode/bremmstrahlung converter which are both immersed in a strong solenoidal magnetic field (12--50 T); nominal parameters are 10 MV, 40 kA, 0.5 mm radius cathode, and 5--35 cm anode-cathode gaps. A physical picture of normal and abnormal diode behavior is emerging. Normal diode behavior occurs for times 0 ≤ t ≤ τ, where the transition time τ is typically 30 ns; during this time, bipolar space-charge limited flow occurs, which scales well to desired radiography parameters of high dose and small spot size. Abnormal diode behavior occurs for t ≥ τ, which results in substantial increases in spot size and current (impedance reduction). This abnormal behavior appears to be caused by an increase in ion charge in the gap, which may result from poor vacuum, impurity ions undergoing ion-ion stripping collisions during transit, or microclumps undergoing stripping collisions during transit. The potential effects of microclumps on diode behavior are reported here

  7. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  8. Immersive Data Comprehension: Visualizing Uncertainty in Measurable Models

    Directory of Open Access Journals (Sweden)

    Pere eBrunet

    2015-09-01

    Full Text Available Recent advances in 3D scanning technologies have opened new possibilities in a broad range of applications includingcultural heritage, medicine, civil engineering and urban planning. Virtual Reality systems can provide new tools toprofessionals that want to understand acquired 3D models. In this paper, we review the concept of data comprehension with an emphasis on visualization and inspection tools on immersive setups. We claim that in most application fields, data comprehension requires model measurements which in turn should be based on the explicit visualization of uncertainty. As 3D digital representations are not faithful, information on their fidelity at local level should be included in the model itself as uncertainty bounds. We propose the concept of Measurable 3D Models as digital models that explicitly encode local uncertainty bounds related to their quality. We claim that professionals and experts can strongly benefit from immersive interaction through new specific, fidelity-aware measurement tools which can facilitate 3D data comprehension. Since noise and processing errors are ubiquitous in acquired datasets, we discuss the estimation, representation and visualization of data uncertainty. We show that, based on typical user requirements in Cultural Heritage and other domains, application-oriented measuring tools in 3D models must consider uncertainty and local error bounds. We also discuss the requirements of immersive interaction tools for the comprehension of huge 3D and nD datasets acquired from real objects.

  9. Remote Laboratory Experiments in a Virtual Immersive Learning Environment

    Directory of Open Access Journals (Sweden)

    Luca Berruti

    2008-01-01

    Full Text Available The Virtual Immersive Learning (VIL test bench implements a virtual collaborative immersive environment, capable of integrating natural contexts and typical gestures, which may occur during traditional lectures, enhanced with advanced experimental sessions. The system architecture is described, along with the motivations, and the most significant choices, both hardware and software, adopted for its implementation. The novelty of the approach essentially relies on its capability of embedding functionalities that stem from various research results (mainly carried out within the VICOM national project, and “putting the pieces together” in a well-integrated framework. These features, along with its high portability, good flexibility, and, above all, low cost, make this approach appropriate for educational and training purposes, mainly concerning measurements on telecommunication systems, at universities and research centers, as well as enterprises. Moreover, the methodology can be employed for remote access to and sharing of costly measurement equipment in many different activities. The immersive characteristics of the framework are illustrated, along with performance measurements related to a specific application.

  10. Structure of positive streamers inside gaseous bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    Electric discharges and streamers in liquids typically proceed through vapour phase channels produced by the streamer or in gaseous bubbles. The bubbles can originate by enthalpy changes produced by the discharge or can be artificially injected into the liquid. Experiments on streamers in bubbles immersed in liquids have shown that the discharge propagates either along the surface of the bubble or through the volume of the bubble as in conventional streamer propagation in air. In this paper we report on results of a computational investigation of streamer propagation through bubbles immersed in liquids. We found that the dielectric constant of the liquid in large part determines the path the streamer takes. Streamers in bubbles immersed in a liquid with a high permittivity preferentially propagate along the surface of the bubble. Liquids with low permittivity can result in the streamer propagating along the axis of the bubble. The permittivity at which this transition occurs is a function of the applied voltage, size of the bubble and the conductivity of the liquid. (fast track communication)

  11. Simulation of swimming strings immersed in a viscous fluid flow

    Science.gov (United States)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  12. Ion-solid interactions for materials modification and processing

    International Nuclear Information System (INIS)

    Poker, D.B.; Ila, D.; Cheng, Y.T.; Harriott, L.R.; Sigmon, T.W.

    1996-01-01

    Topics ranged from the very fundamental ion-solid interactions to the highly device-oriented semiconductor applications. Highlights of the symposium featured in this volume include: nanocrystals in insulators, plasma immersion ion implantation. Focused ion beams, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. Separate abstracts were prepared for most papers in this volume

  13. Immersion francaise precoce: Sciences de la nature 1-7 (Early French Immersion: Natural Sciences for Grades 1-7).

    Science.gov (United States)

    Burt, Andy; And Others

    This curriculum guide for the natural sciences is intended for use in grades 1-7 in the early French immersion program. The guide presents the following topics: (1) a list of general objectives; (2) a list of simple skills for children aged 5-8 and for children aged 8-12; (3) activities dealing with matter and its properties, space-time, and human…

  14. Experience dans une classe d'immersion francaise aux Milles-Iles (An Experience in a French Immersion Class in Mille-Iles)

    Science.gov (United States)

    Pariseau, Cecile

    1978-01-01

    A description of an immersion program for 6-year-old anglophone children modeled on "les classes d'accueil" for immigrant children. The program of intensive instruction in oral and written French is outlined. This school district has found this type of immersion superior to the usual kind. (The text is in French.) (AMH)

  15. Effects of Aspect Ratio on Water Immersion into Deep Silica Nanoholes.

    Science.gov (United States)

    Zheng, Jing; Zhang, Junqiao; Tan, Lu; Li, Debing; Huang, Liangliang; Wang, Qi; Liu, Yingchun

    2016-08-30

    Understanding the influence of aspect ratio on water immersion into silica nanoholes is of significant importance to the etching process of semiconductor fabrication and other water immersion-related physical and biological processes. In this work, the processes of water immersion into silica nanoholes with different height/width aspect ratios (ϕ = 0.87, 1.92, 2.97, 4.01, 5.06) and different numbers of water molecules (N = 9986, 19972, 29958, 39944) were studied by molecular dynamics simulations. A comprehensive analysis has been conducted about the detailed process of water immersion and the influence of aspect ratios on water immersion rates. Five distinguishable stages were identified for the immersion process with all studied models. The results reveal that water can easily immerse into the silica nanoholes with larger ϕ and smaller N. The calculation also suggests that aspect ratios have a greater effect on water immersion rates for larger N numbers. The mechanism of the water immersion process is discussed in this work. We also propose a mathematical model to correlate the complete water immersion process for different aspect ratios.

  16. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  17. STM in liquids. A scanning tunneling microscopy exploration of the liquid-solid interface.

    NARCIS (Netherlands)

    Hulsken, B.

    2008-01-01

    This thesis reports of a series of atomic scale studies of the liquid-solid interface, carried out with a home-built liquid-cell Scanning Tunnelling Microscope (STM). The home-built liquid-cell STM is described in detail, and numerical simulations are performed to show that surfaces immersed in the

  18. Effects of short immersion time and cooling rates of copperizing process to the evolution of microstructures and copper behavior in the dead mild steel

    Science.gov (United States)

    Jatimurti, Wikan; Sutarsis, Cunika, Aprida Ulya

    2017-01-01

    In a dead mild steel with maximum carbon content of 0.15%, carbon does not contribute much to its strength. By adding copper as an alloying element, a balance between strength and ductility could be obtained through grain refining, solid solution, or Cu precipitation. This research aimed to analyse the changes in microstructures and copper behaviour on AISI 1006, including the phases formed, composition, and Cu dispersion. The addition of cooper was done by immersing steel into molten copper or so we called, copperizing using the principles of diffusion. Specimens were cut with 6 × 3 × 0.3 cm measurement then preheated to 900°C and melting the copper at 1100°C. Subsequently, the immersion of the specimens into molten copper varied to 5 and 7 minutes, and also varying the cooling rate to annealing, normalizing, and quenching. A series of test being conduct were optical microscope test, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), optical emission spectroscopy (OES), and X-ray diffraction (XRD). The results showed that the longer the immersion time and slower cooling rate, the more Cu diffused causing smaller grain size with the highest Cu diffused recorded was 0.277% in the copperized AISI 1006 steel with 7 minutes of immersion and was annealed. The grain size reduced to 23041.5404 µm2. The annealed specimens show ferrite phase, the normalized ones show polygonal ferrite phase, while the quenched ones show granular bainite phase. The phase formed is single phase Cu. In addition, the normalized and quenched specimens show that Cu dissolved in Fe crystal forming solid solution.

  19. Extrafoveal Video Extension for an Immersive Viewing Experience.

    Science.gov (United States)

    Turban, Laura; Urban, Fabrice; Guillotel, Philippe

    2016-02-11

    Between the recent popularity of virtual reality (VR) and the development of 3D, immersion has become an integral part of entertainment concepts. Head-mounted Display (HMD) devices are often used to afford users a feeling of immersion in the environment. Another technique is to project additional material surrounding the viewer, as is achieved using cave systems. As a continuation of this technique, it could be interesting to extend surrounding projection to current television or cinema screens. The idea would be to entirely fill the viewer's field of vision, thus providing them with a more complete feeling of being in the scene and part of the story. The appropriate content can be captured using large field of view (FoV) technology, using a rig of cameras for 110 to 360 capture, or created using computergenerated images. The FoV is, however, rather limited in its use for existing (legacy) content, achieving between 36 to 90 degrees () field, depending on the distance from the screen. This paper seeks to improve this FoV limitation by proposing computer vision techniques to extend such legacy content to the peripheral (extrafoveal) vision without changing the original creative intent or damaging the viewer's experience. A new methodology is also proposed for performing user tests in order to evaluate the quality of the experience and confirm that the sense of immersion has been increased. This paper thus presents: i) an algorithm to spatially extend the video based on human vision characteristics, ii) its subjective results compared to state-of-the-art techniques, iii) the protocol required to evaluate the quality of the experience (QoE), and iv) the results of the user tests.

  20. Immersive virtual reality as a teaching tool for neuroanatomy.

    Science.gov (United States)

    Stepan, Katelyn; Zeiger, Joshua; Hanchuk, Stephanie; Del Signore, Anthony; Shrivastava, Raj; Govindaraj, Satish; Iloreta, Alfred

    2017-10-01

    Three-dimensional (3D) computer modeling and interactive virtual reality (VR) simulation are validated teaching techniques used throughout medical disciplines. Little objective data exists supporting its use in teaching clinical anatomy. Learner motivation is thought to limit the rate of utilization of such novel technologies. The purpose of this study is to evaluate the effectiveness, satisfaction, and motivation associated with immersive VR simulation in teaching medical students neuroanatomy. Images of normal cerebral anatomy were reconstructed from human Digital Imaging and Communications in Medicine (DICOM) computed tomography (CT) imaging and magnetic resonance imaging (MRI) into 3D VR formats compatible with the Oculus Rift VR System, a head-mounted display with tracking capabilities allowing for an immersive VR experience. The ventricular system and cerebral vasculature were highlighted and labeled to create a focused interactive model. We conducted a randomized controlled study with 66 medical students (33 in both the control and experimental groups). Pertinent neuroanatomical structures were studied using either online textbooks or the VR interactive model, respectively. We then evaluated the students' anatomy knowledge, educational experience, and motivation (using the Instructional Materials Motivation Survey [IMMS], a previously validated assessment). There was no significant difference in anatomy knowledge between the 2 groups on preintervention, postintervention, or retention quizzes. The VR group found the learning experience to be significantly more engaging, enjoyable, and useful (all p < 0.01) and scored significantly higher on the motivation assessment (p < 0.01). Immersive VR educational tools awarded a more positive learner experience and enhanced student motivation. However, the technology was equally as effective as the traditional text books in teaching neuroanatomy. © 2017 ARS-AAOA, LLC.

  1. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp; Sato, Katsumi; Yamanishi, Toshihiko

    2014-10-15

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10{sup 12} Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion{sup ®} ion exchange membrane in 1.38 × 10{sup 12} Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion{sup ®} membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm{sup −1}, demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion{sup ®} membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state {sup 19}F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the {sup 19}F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured.

  2. Investigation on degradation mechanism of ion exchange membrane immersed in highly concentrated tritiated water under the Broader Approach Activities

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko

    2014-01-01

    Highlights: • Endurance of Nafion ion exchange membrane immersed into 1.38 × 10 12 Bq/kg of highly concentrated tritiated water has been demonstrated. • The formation of free hydrophobic free products by reactions between radicals on the membrane and oxygen caused the decrease in ionic conductivity. • From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured. - Abstract: The ion exchange membrane is a key material for electrolysis cells of the water detritiation system. Durability of ion exchange membrane has been demonstrated under the Broader Approach Activities. Long-term exposure of Nafion ® ion exchange membrane in 1.38 × 10 12 Bq/kg of tritiated water was conducted at room temperature for up to 2 years. The ionic conductivity of Nafion ® membrane after immersed in tritiated water was changed. The change in color of membrane from colorless to yellowish was caused by reactions of radicals on the polymer and oxygen molecules in air. Infrared Fourier transform spectrum of a yellowish membrane revealed a small peak for bending vibration of C-H situated at 1437 cm −1 , demonstrating the formation of hydrophobic functional group in the membrane. The hydrophilic network in Nafion ® membrane was partially obstructed by the hydrophobic free products. This caused the decrease in ionic conductivity. The peak for bending vibration was clearly eliminated in the spectrum of the membrane after treatment by acid for removal of free products. The high-resolution solid state 19 F NMR spectrum of a membrane after immersed in tritiated water was similar to that of a membrane irradiated with gamma-rays. From the 19 F NMR spectrum, no distinctive degradation in the membrane structure by interaction with tritium was measured

  3. System Architecture and Mobility Management for Mobile Immersive Communications

    Directory of Open Access Journals (Sweden)

    Mehran Dowlatshahi

    2007-01-01

    Full Text Available We propose a system design for delivery of immersive communications to mobile wireless devices based on a distributed proxy model. It is demonstrated that this architecture addresses key technical challenges for the delivery of these services, that is, constraints on link capacity and power consumption in mobile devices. However, additional complexity is introduced with respect to application layer mobility management. The paper proposes three possible methods for updating proxy assignments in response to mobility management and compares the performance of these methods.

  4. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.

    Science.gov (United States)

    Kondyurin, Alexey

    2018-04-24

    Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  5. EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Alexey Kondyurin

    2018-04-01

    Full Text Available Ethylene-propylene diene monomer rubber (EPDM was treated by plasma immersion ion implantation (PIII with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.

  6. Self-Characterstics and Sound in Immersive Virtual Reality

    DEFF Research Database (Denmark)

    Sikström, Erik; Götzen, Amalia De; Serafin, Stefania

    This experiment aimed to investigate whether a user controlling a full body avatar via real time motion tracking in an immersive virtual reality setup, would estimate the weight of the virtual avatar differently if the footstep sounds are manipulated using three different audio filter settings....... The visual appearance of the avatar was available in two sizes. The subjects performed six walks with each audio configuration active once over two ground types. After completing each walk, the participants were asked to estimate the weight of the virtual avatar and the suitability of the audio feedback...

  7. The Worldviews Network: Transformative Global Change Education in Immersive Environments

    Science.gov (United States)

    Hamilton, H.; Yu, K. C.; Gardiner, N.; McConville, D.; Connolly, R.; "Irving, Lindsay", L. S.

    2011-12-01

    Our modern age is defined by an astounding capacity to generate scientific information. From DNA to dark matter, human ingenuity and technologies create an endless stream of data about ourselves and the world of which we are a part. Yet we largely founder in transforming information into understanding, and understanding into rational action for our society as a whole. Earth and biodiversity scientists are especially frustrated by this impasse because the data they gather often point to a clash between Earth's capacity to sustain life and the decisions that humans make to garner the planet's resources. Immersive virtual environments offer an underexplored link in the translation of scientific data into public understanding, dialogue, and action. The Worldviews Network is a collaboration of scientists, artists, and educators focused on developing best practices for the use of immersive environments for science-based ecological literacy education. A central tenet of the Worldviews Network is that there are multiple ways to know and experience the world, so we are developing scientifically accurate, geographically relevant, and culturally appropriate programming to promote ecological literacy within informal science education programs across the United States. The goal of Worldviews Network is to offer transformative learning experiences, in which participants are guided on a process integrating immersive visual explorations, critical reflection and dialogue, and design-oriented approaches to action - or more simply, seeing, knowing, and doing. Our methods center on live presentations, interactive scientific visualizations, and sustainability dialogues hosted at informal science institutions. Our approach uses datasets from the life, Earth, and space sciences to illuminate the complex conditions that support life on earth and the ways in which ecological systems interact. We are leveraging scientific data from federal agencies, non-governmental organizations, and our

  8. Alternate immersion stress corrosion testing of 5083 aluminum

    International Nuclear Information System (INIS)

    Briggs, J.L.; Dringman, M.R.; Hausburg, D.E.; Jackson, R.J.

    1978-01-01

    The stress corrosion susceptibility of Type 5083 aluminum--magnesium alloy in plate form and press-formed shapes was determined in the short transverse direction. C-ring type specimens were exposed to alternate immersion in a sodium chloride solution. The test equipment and procedure, with several innovative features, are described in detail. Statistical test results are listed for seven thermomechanical conditions. A certain processing scheme was shown to yield a work-strengthened part that is not sensitized with respect to stress corrosion cracking

  9. Investigation of electrical noise in selenium-immersed thermistor bolometers

    Science.gov (United States)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  10. Immersive vision assisted remote teleoperation using head mounted displays

    International Nuclear Information System (INIS)

    Vakkapatla, Veerendrababu; Singh, Ashutosh Pratap; Rakesh, V.; Rajagopalan, C.; Murugan, S.; Sai Baba, M.

    2016-01-01

    Handling and inspection of irradiated material is inevitable in nuclear industry. Hot cells are shielded radiation containment chambers equipped with master slave manipulators that facilitates remote handling. The existing methods using viewing windows and cameras for viewing the contents of hot cell to manipulate the radioactive elements have problems such as optical distortion, limited distance teleoperation, limited field of view that lead to inefficient operation. This paper presents a method of achieving immersive teleoperation to operate the master slave manipulator in hot cells by exploiting the advanced tracking and display capabilities of head mounted display devices. (author)

  11. The design of narrative as an immersive simulation

    OpenAIRE

    gomes, renata

    2005-01-01

    This paper proposes a concept of narrative as the design of an immersive simulation to be experienced by the interactor in a video game. We face this new narrative status as the reconfiguration of a creative process that was initiated in an attempt to generate, in the digital format, a certain concept of narrative inherited from the canonic cinema, but that, faced with the simulative nature of the video game format, was forced to take a different shape. To explain this concept, we draw a brie...

  12. Immersed acoustical transducers and their potential uses in LMFBR

    International Nuclear Information System (INIS)

    Argous, J.P.; Brunet, M.; Baron, J.; Lhuillier, C.; Segui, J.L.

    1980-04-01

    Six years satisfactory operation in PHENIX has proved the reliability and effectivness of under-sodium viewing (VISUS) and Acoustic Detection. This fact has been strong incentive to maintain, on the future LMFBR the visus as well as the Acoustic Detection functions. These two functions are performed on SUPER PHENIX, by two sets of distinct systems using the well-known solution. Taking into account of recent improvements in sodium immersible acoustic transducers technology, CEA decided to undertake the development of a multi-functions instrument. This paper gives an outline of this new concept, which should be able to reduce the cost and the complexity of core instrumentation

  13. Maintenance of immersion ultrasonic testing on the water tube boiler

    International Nuclear Information System (INIS)

    Ishiyama, Toru; Kawasaki, Ichio; Miura, Hirohito

    2014-01-01

    There are 4-boiler in nuclear fuel cycle engineering laboratories (NCL). These boilers have been operated in the long term over 20 years. One of them, the leakage of boiler water was found at one of the generating tubes, and 2 adjoining generating tubes were corroded in Dec, 2011. These generating tubes were investigated by immersion ultrasonic testing (UT) for measure thickness of the tube. As a result, thinner tube was found in a part of a bend and near the water drum. These parts are covered with sulfide deposit, it seems that the generating tubes were corroded by sulfide. (author)

  14. Girls on Ice: Using Immersion to Teach Fluency in Science

    Science.gov (United States)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  15. Solid residues

    International Nuclear Information System (INIS)

    Mulder, E.; Duin, P.J. van; Grootenboer, G.J.

    1995-01-01

    A summary is presented of the many investigations that have been done on solid residues of atmospheric fluid bed combustion (AFBC). These residues are bed ash, cyclone ash and bag filter ash. Physical and chemical properties are discussed and then the various uses of residues (in fillers, bricks, gravel, and for recovery of aluminium) are summarised. Toxicological properties of fly ash and stack ash are discussed as are risks of pneumoconiosis for workers handling fly ash, and contamination of water by ashes. On the basis of present information it is concluded that risks to public health from exposure to emissions of coal fly ash from AFBC appear small or negligible as are health risk to workers in the coal fly ash processing industry. 35 refs., 5 figs., 12 tabs

  16. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the imme......INTRODUCTION: Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored...... cerebral artery (MCA) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice water, heart rate increased from 74 +/- 16 to 107 +/- 18 bpm (mean +/- SD; p elevation...

  17. Immersion enthalpies of activated carbon cloths as physical chemistry characterization parameter

    International Nuclear Information System (INIS)

    Rodriguez, Giovanny; Giraldo, Liliana; Moreno Juan Carlos

    2009-01-01

    The immersion enthalpies of five activated carbon cloths in carbon, CCl 4 , H 2 O and NaOH and HCl 0.1 M solutions are determined. The surface area values of the cloths are between 243 and 848 m 2 g-1 and exhibit a linear relationship with the immersion enthalpies in CCl 4 . The immersion enthalpies of carbon cloths are between 5.49 and 42.3 Jg-1 for CCl 4 and 3.83 and 7.54 Jg-1 for H 2 O. The immersion enthalpies in the solutions are related to the contents of acidic and basic groups and find that in the first case to increase the immersion enthalpy in NaOH increases the total acidity. Hydrophobic factor is calculated from the immersion enthalpies in CCl 4 and H 2 O, that indicate the interaction with polar and a polar compounds, and also relates to pHPZC each sample.

  18. Fabrication of a Superhydrophobic Surface with Flower-Like Microstructures with a One-Step Immersion Process

    International Nuclear Information System (INIS)

    Kim, Younga; Go, Seungcheol; Ahn, Yonghyun

    2013-01-01

    It has been demonstrated that flower-like microstructures can be fabricated on a Mg plate using a solution of propylphosphonic acid and HFTHTMS in ethanol. In the presence of propylphosphonic acid, the HFTHTMS is polymerized and then deposited on the surface of the Mg plates during the immersion period. Many flower-like structures were formed on the surface after at least 6 h of immersion, at which point the modified plate became superhydro-phobic. The nano-/micro scale flower-like structure is composed of fluorinated polysiloxane, which acts as a low-surface-energy material. SEM images reveal that the flower-like structure is composed of many thin flakes. It is confirmed that these structures on the surface contain air and result in an ideal structure for obtaining the superhydrophobic surface. This proposed coating method is simple and can be applied to a large sample to fabricate a superhydrophobic surface without expensive instruments. Superhydrophobicity of solid materials has attracted significant attention because it provides strong water repellency and self-cleaning properties. The chemical composition and nano-/microscale structures of the surface are key factors determining the surface properties. Recently, superhydro-phobic surfaces showing high water contact angles (CA) > 150 .deg. and low sliding angles (SA) < 10 .deg. have been the focus of much research because they have many applications in both academic fields and industrial processes

  19. Taylor-Couette fluid flow with force oscillation in the inner-cylinder using the immersed boundary method

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jonatas Emmanuel; Lourenco, Marcos Antonio de Souza; Padilla, Elie Luis Martinez; Silveira Neto, Aristeu da [Federal University of Uberlandia , MG (Brazil)], e-mails: lourenco@mecanica.ufu.br, epadilla@mecanica.ufu.br, aristeus@mecanica.ufu.br; Leibsohn, Andre Martins [CENPES/Petrobras, Rio de Janeiro, RJ (Brazil)], e-mail: aleibsohn@petrobras.com

    2010-07-01

    As new challenges arise in the exploration of deep and ultra-deep water oil fields by PETROBRAS more knowledge and research are needed, so that tools could be developed to assist in the critical operations and make things practicable. In the context of the drilling process, the complexity of the fluid flow inside the riser is associated with the nature of the non-Newtonian flow, immersed solid particles, variable eccentricity and the superimposed traveling azimuthal waves on the inflow and outflow boundaries of the Taylor vortices. This work presents the numerical three-dimensional results of the following simplified fluid flows: Taylor-Couette, Taylor-Couette with varying imposed eccentricity and Taylor-Couette with forced oscillation in the inner cylinder. Using the Navier-Stokes equations, a finite volume method discretization with second order accuracy in both time and space was utilized to simulate the Newtonian, single-phase incompressible fluid flow in the three cases. The circular walls of the inner and outer cylinders are represented by the immersed boundary method, with the direct multi-forcing model. The determined results allow to evidence the flow structures in the three cases in a very qualitative way, even so in the presence of the inner cylinder oscillation. (author)

  20. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning

    DEFF Research Database (Denmark)

    Mantoni, Teit; Belhage, Bo; Pedersen, Lars M

    2007-01-01

    Near-drowning incidents and drowning deaths after accidental immersion in open waters have been linked to cold shock response. It consists of inspiratory gasps, hyperventilation, tachycardia, and hypertension in the first 2-3 min of cold-water immersion. This study explored the immediate changes...... in cerebral blood flow velocity (Vmean) during cold-water immersion since cold shock induced hyperventilation may diminish Vmean and lead to syncope and drowning....

  1. Takotsubo Cardiomyopathy in the Setting of Immersion Pulmonary Edema: Case Series

    OpenAIRE

    Reed, Tara; Sorrentino, Dante; Azuma, Steven

    2015-01-01

    Immersion Pulmonary Edema is a unique medical condition being increasingly described in the medical literature as sudden-onset pulmonary edema in the setting of scuba diving and or swimming. Case reports have associated immersion pulmonary edema with cardiac dysfunction, but there are no known case reports describing submersion pulmonary edema resulting in Takotsubo cardiomyopathy. We report on three patients with unique presentations of immersion pulmonary edema with associated Takotsubo car...

  2. Immersive virtual reality in destination marketing : evidence from lab and field experiments

    OpenAIRE

    Vekony, David; Korneliussen, Simen

    2016-01-01

    Although the concept of virtual reality (VR) has been studied and used for many years, recent technological development has led to the commercial availability of immersive VR, specifically head-mounted displays. Little research has been conducted on the potential for immersive VR to influence consumer behavior. The aim of this thesis is to give insight into how immersive VR can be utilized in destination marketing, through investigating its effect on consumer outcomes directly,...

  3. Research Paper: Effect of Lower Leg Cold Immersion on Dynamic Balance of Athletes and Nonathlete

    Directory of Open Access Journals (Sweden)

    Ruhollah Salehi

    2016-07-01

    Conclusion The results of this study suggest that cryotherapy through immersion of foot and ankle does not have a negative effect on the overall and anteroposterior indices of dynamic balance of athletes and nonathletes following an 8-min ice water immersion. It seems that the immersion process affected only the surface receptors of the skin and did not affect the deeper joint receptors that have a key role in balance.

  4. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    OpenAIRE

    Rianti, Devi

    2006-01-01

    A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the tra...

  5. Assessing Dutch and English Immersion Education in French-Speaking Belgium: Linguistic, Cognitive and Educational Perspectives

    OpenAIRE

    Hiligsmann, Philippe; Van Mensel, Luk; American Association for Applied Linguistics

    2016-01-01

    Our paper aims to present a 5-year multidisciplinary research project on immersion education in French-speaking Belgium. Our project starts from the premise that although recently published surveys have confirmed that immersion learners outperform traditional L2 learners as far as target language test scores are concerned, it nonetheless remains largely unclear to what extent, in what respect and thanks to which (internal and external) processes and factors immersion students show increased l...

  6. Immersive Virtual Reality with Applications to Tele-Operation and Training

    Science.gov (United States)

    2016-03-07

    reviewed journals : Number of Papers published in non peer-reviewed journals : Final Report: Immersive Virtual Reality with Applications to Tele-Operation... Immersive Virtual Reality with Applications to Tele-Operation and Training The proposed project aims to develop a fundamental framework for...establishing an immersive virtual reality environment for robust and scalable human robotics interaction in a cooperative intelligent architecture at the

  7. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    Directory of Open Access Journals (Sweden)

    Hrishikesh M. Rao

    2018-02-01

    Full Text Available Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting.

  8. Rheology of granular flows immersed in a viscous fluid

    International Nuclear Information System (INIS)

    Amarsid, Lhassan

    2015-01-01

    We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)

  9. Immersion research education: students as catalysts in international collaboration research.

    Science.gov (United States)

    Anderson, K H; Friedemann, M L; Bűscher, A; Sansoni, J; Hodnicki, D

    2012-12-01

    This paper describes an international nursing and health research immersion program. Minority students from the USA work with an international faculty mentor in teams conducting collaborative research. The Minority Health International Research Training (MHIRT) program students become catalysts in the conduct of cross-cultural research. To narrow the healthcare gap for disadvantaged families in the USA and partner countries. Faculty from the USA, Germany, Italy, Colombia, England, Austria and Thailand formed an international research and education team to explore and compare family health issues, disparities in chronic illness care, social inequities and healthcare solutions. USA students in the MHIRT program complete two introductory courses followed by a 3-month research practicum in a partner country guided by faculty mentors abroad. The overall program development, student study abroad preparation, research project activities, cultural learning, and student and faculty team outcomes are explored. Cross-fertilization of research, cultural awareness and ideas about improving family health occur through education, international exchange and research immersion. Faculty research and international team collaboration provide opportunities for learning about research, health disparities, cultural influences and healthcare systems. The students are catalysts in the research effort, the dissemination of research findings and other educational endeavours. Five steps of the collaborative activities lead to programmatic success. MHIRT scholars bring creativity, enthusiasm, and gain a genuine desire to conduct health research about families with chronic illness. Their cultural learning stimulates career plans that include international research and attention to vulnerable populations. © 2012 The Authors. International Nursing Review © 2012 International Council of Nurses.

  10. Designers workbench: toward real-time immersive modeling

    Science.gov (United States)

    Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu

    2000-05-01

    This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.

  11. Industrial plasma immersion ion implanter and its applications

    CERN Document Server

    Tong Hong Hui; Huo Yan Feng; Wang Ke; Mu Li Lan; Feng Tie Min; Zhao Jun; Yan Bing; Geng Man

    2002-01-01

    A new generation industrial plasma immersion ion implanter was developed recently in South-western Institute of Physics and some experimental results are reported. The vacuum chamber with 900 mm in diameter and 1050 mm in height stands vertically. The pumping system includes turbo -pump and mechanical pump and it can be automatically controlled by PLC. The background pressure is less than 4 x 10 sup - sup 4 Pa. The plasma in the chamber can be generated by hot-filament discharge and three high-efficiency magnetic filter metal plasma sources, so that the plasma immersion ion implantation and enhanced deposition can be done. The maximum pulse voltage output is 80 kV, maximum pulse current is 60 A, repetition frequency is 50-500 Hz, and the pulse rise time is less than 2 mu s. The power modulator can operate in the pulse bunching mode if necessary. In general, the plasma density is 10 sup 8 -10 sup 1 sup 0 cm sup - sup 3 , the film deposition rate is 0.1-0.5 nm/s

  12. Cold immersion recovery responses in the diabetic foot with neuropathy.

    Science.gov (United States)

    Bharara, Manish; Viswanathan, Vijay; Cobb, Jonathan E

    2008-10-01

    The aim of this article was to investigate the effectiveness of testing cold immersion recovery responses in the diabetic foot with neuropathy using a contact thermography system based on thermochromic liquid crystals. A total of 81 subjects with no history of diabetic foot ulceration were assigned to neuropathy, non neuropathy and healthy groups. Each group received prior verbal and written description of the test objectives and subsequently underwent a comprehensive foot care examination. The room temperature and humidity were consistently maintained at 24 degrees C and less than 50%, respectively, with air conditioning. The right foot for each subject was located on the measurement platform after cold immersion in water at 18-20 degrees C. Whole-field thermal images of the plantar foot were recorded for 10 minutes. Patients with diabetes with neuropathy show the highest 'delta temperature', that is difference between the temperature after 10-minute recovery period and baseline temperature measured independently at all the three sites tested, that is first metatarsal head (MTH), second MTH and heel. This clinical study showed for the first time the evidence of poor recovery times for the diabetic foot with neuropathy when assessing the foot under load. A temperature deficit (because of poor recovery to baseline temperature) suggests degeneration of thermoreceptors, leading to diminished hypothalamus-mediated activity in the diabetic neuropathic group.

  13. Enhancements to VTK enabling Scientific Visualization in Immersive Environments

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick; Jhaveri, Sankhesh; Chaudhary, Aashish; Sherman, William; Martin, Ken; Lonie, David; Whiting, Eric; Money, James

    2017-04-01

    Modern scientific, engineering and medical computational sim- ulations, as well as experimental and observational data sens- ing/measuring devices, produce enormous amounts of data. While statistical analysis provides insight into this data, scientific vi- sualization is tactically important for scientific discovery, prod- uct design and data analysis. These benefits are impeded, how- ever, when scientific visualization algorithms are implemented from scratch—a time-consuming and redundant process in im- mersive application development. This process can greatly ben- efit from leveraging the state-of-the-art open-source Visualization Toolkit (VTK) and its community. Over the past two (almost three) decades, integrating VTK with a virtual reality (VR) environment has only been attempted to varying degrees of success. In this pa- per, we demonstrate two new approaches to simplify this amalga- mation of an immersive interface with visualization rendering from VTK. In addition, we cover several enhancements to VTK that pro- vide near real-time updates and efficient interaction. Finally, we demonstrate the combination of VTK with both Vrui and OpenVR immersive environments in example applications.

  14. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    Science.gov (United States)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  15. Support for hands-on optics immersions (Conference Presentation)

    Science.gov (United States)

    Spalding, Gabriel C.; McCann, Lowell I.

    2016-09-01

    The Advanced Laboratory Physics Association (ALPhA) is an official affiliate organization of the AAPT, supporting upper-level undergraduate instructional lab education in physics. The ALPhA Immersions program is intended to be an efficient use of an instructor's time: with expert colleague-mentors on hand they spend 2.5 days learning a key new instructional experiment (of their choice) well enough to confidently teach it to the students at their home institutions. At an ALPhA Immersion, participants work in groups of no more than three per experimental setup. Our follow-up surveys support the notion that this individualized, concentrated focus directly results in significant updating and improvement of undergraduate laboratory instruction in physics across the country. Such programs have the effect of encouraging investment, on the part of individual institutions. For example, we have disseminated ideas, training, and equipment for contemporary single-photon-based instructional labs dealing with core, contemporary issues in Quantum Mechanics. By the time this paper is presented, ALPhA will have delivered at least 420 single-photon detectors to a wide variety of educational institutions. We have also partnered with the non-profit Jonathan F. Reichert Foundation to support equipment acquisition by institutions participating in our wide variety of training programs.

  16. Optical clearing of tissues and blood using the immersion method

    International Nuclear Information System (INIS)

    Tuchin, Valery V

    2005-01-01

    This paper aims to review recent results on the optical clearing of the naturally turbid biological tissues and blood using the optical immersion technique, which is well known in physical science and is applied for the reduction of light scattering and undesirable reflections in the optical system. Basic principles of the technique, its advantages, limitations and future are discussed. The refractive index matching concept for enhancement of in-depth light penetration into tissues and blood is presented on the basis of in vitro and in vivo studies using optical spectroscopy, polarization and coherence-domain techniques. The index matching of scatterers and ground matter by means of administration of clearing agents is under discussion. The optical properties of tissues with basic multiple scattering, which are transformed to a low scattering mode, are analysed. It is shown that light reflection, transmission, scattering and polarization can be effectively controlled. The possibilities of using the optical immersion method for diagnostic purposes based on contrasting of abnormalities, on in-depth profiling of tissue and blood and on monitoring of endogenous and exogenous matter diffusion within tissue are demonstrated

  17. Immersive Earth Science: Data Visualization in Virtual Reality

    Science.gov (United States)

    Skolnik, S.; Ramirez-Linan, R.

    2017-12-01

    Utilizing next generation technology, Navteca's exploration of 3D and volumetric temporal data in Virtual Reality (VR) takes advantage of immersive user experiences where stakeholders are literally inside the data. No longer restricted by the edges of a screen, VR provides an innovative way of viewing spatially distributed 2D and 3D data that leverages a 360 field of view and positional-tracking input, allowing users to see and experience data differently. These concepts are relevant to many sectors, industries, and fields of study, as real-time collaboration in VR can enhance understanding and mission with VR visualizations that display temporally-aware 3D, meteorological, and other volumetric datasets. The ability to view data that is traditionally "difficult" to visualize, such as subsurface features or air columns, is a particularly compelling use of the technology. Various development iterations have resulted in Navteca's proof of concept that imports and renders volumetric point-cloud data in the virtual reality environment by interfacing PC-based VR hardware to a back-end server and popular GIS software. The integration of the geo-located data in VR and subsequent display of changeable basemaps, overlaid datasets, and the ability to zoom, navigate, and select specific areas show the potential for immersive VR to revolutionize the way Earth data is viewed, analyzed, and communicated.

  18. Machinima interventions: innovative approaches to immersive virtual world curriculum integration

    Directory of Open Access Journals (Sweden)

    Andrew John Middleton

    2008-12-01

    Full Text Available The educational value of Immersive Virtual Worlds (IVWs seems to be in their social immersive qualities and as an accessible simulation technology. In contrast to these synchronous applications this paper discusses the use of educational machinima developed in IVW virtual film sets. It also introduces the concept of media intervention, proposing that digital media works best when simply developed for deployment within a blended curriculum to inform learning activity, and where the media are specifically designed to set challenges, seed ideas, or illustrate problems. Machinima, digital films created in IVWs, or digital games offer a rich mechanism for delivering such interventions. Scenes are storyboarded, constructed, shot and edited using techniques similar to professional film production, drawing upon a cast of virtual world avatars controlled through a human–computer interface, rather than showing real-life actors. The approach enables academics or students to make films using screen capture software and desktop editing tools. In student-generated production models the learning value may be found in the production process itself. This paper discusses six case studies and several themes from research on ideas for educational machinima including: access to production; creativity in teaching and learning; media intervention methodology; production models; reusability; visualisation and simulation.

  19. Calculation of the line shapes of radiators immersed in plasma

    International Nuclear Information System (INIS)

    Hayrapetian, A.S.

    1987-01-01

    This work reports the results of theoretical calculations of line shapes of radiators immersed in plasma. The fluctuating electric field of the plasma perturbs the atomic structure of the immersed ions or atoms. The perturbed line shape is an important diagnostic tool for the temperature and density measurements of plasma. The line-shape calculation here is done by first deriving the line-shape expression, then it is shown that the problem is equivalent to calculating the temperature Green's function of the bound electron. The total Hamiltonian of the system includes the atomic, plasma, and atom-plasma parts. The temperature Green's function is calculated perturbatively by expanding in orders of atom-plasma interaction. By solving a Dyson equation, the dressed Green's functions of the bound electrons are obtained. At this point, the line shape is calculated by an analytic continuation from the complex frequency plane to real line. To derive the atomic electron Green's function, the momentum integral in the self-energy is approximated by a Riemann sum. With this approximation, the algebraic form of the line shape is obtained for an undetermined number of terms in the Riemann sum. Numerical calculation of line shape is done by using this result

  20. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry.

    Science.gov (United States)

    Valkenburg, J A; Woldringh, C L

    1984-01-01

    The refractive indices of nucleoid and cytoplasm in Escherichia coli were derived theoretically and experimentally. For the theoretical estimates, we made use of the known macromolecular composition of E. coli B/r (G. Churchward and H. Bremer, J. Theor. Biol. 94:651-670, 1982) and of estimates of cell and nucleoid volumes. These were obtained from micrographs of living bacteria made with a confocal scanning light microscope. The theoretical values were calculated, assuming that all DNA occurred in the nucleoid and that all protein and RNA occurred in the cytoplasm. Comparison with experimental refractive index values directly obtained by immersive refractometry showed that, besides its DNA, the nucleoid must contain an additional amount of solids equivalent to 8.6% (wt/vol) protein. With the nucleoid containing 6.8% (wt/vol) DNA and 8.6% (wt/vol) protein and the cytoplasm containing 21% (wt/vol) protein and 4% (wt/vol) RNA, a mass difference is obtained, which accounts for the phase separation observed between the nucleoid and cytoplasm in living cells by phase-contrast microscopy. The decrease in the refractive index of the nucleoid relative to that of the cytoplasm observed upon, for instance, OsO4 fixation was interpreted as being indicative of the loss of protein content in the nucleoid. Images PMID:6389508

  1. Sensitivity analysis of Immersed Boundary Method simulations of fluid flow in dense polydisperse random grain packings

    Directory of Open Access Journals (Sweden)

    Knight Chris

    2017-01-01

    Full Text Available Polydisperse granular materials are ubiquitous in nature and industry. Despite this, knowledge of the momentum coupling between the fluid and solid phases in dense saturated grain packings comes almost exclusively from empirical correlations [2–4, 8] with monosized media. The Immersed Boundary Method (IBM is a Computational Fluid Dynamics (CFD modelling technique capable of resolving pore scale fluid flow and fluid-particle interaction forces in polydisperse media at the grain scale. Validation of the IBM in the low Reynolds number, high concentration limit was performed by comparing simulations of flow through ordered arrays of spheres with the boundary integral results of Zick and Homsy [10]. Random grain packings were studied with linearly graded particle size distributions with a range of coefficient of uniformity values (Cu = 1.01, 1.50, and 2.00 at a range of concentrations (ϕ ∈ [0.396; 0.681] in order to investigate the influence of polydispersity on drag and permeability. The sensitivity of the IBM results to the choice of radius retraction parameter [1] was investigated and a comparison was made between the predicted forces and the widely used Ergun correlation [3].

  2. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  3. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  4. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  5. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    Science.gov (United States)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  6. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion

    DEFF Research Database (Denmark)

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo

    2008-01-01

    INTRODUCTION: In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires...... velocity (CBFV) was measured together with ventilatory parameters and heart rate before, during, and after immersion. RESULTS: Within seconds after immersion in ice-water, heart rate increased significantly from 95 +/- 8 to 126 +/- 7 bpm (mean +/- SEM). Immersion was associated with an elevation...

  7. The impact of immersion protection requirements on hair dryer electrocutions in the USA.

    Science.gov (United States)

    Rodgers, Gregory B; Garland, Sarah

    2012-12-01

    To evaluate the effectiveness of the immersion protection requirements of a voluntary safety standard for portable handheld hair dryers in preventing electrocution deaths in the USA. The present work was an interrupted time series study design. Data on annual hair dryer-related electrocution deaths resulting from water contact were developed for the 1980-2007 study period. A multivariate Poisson regression model for rate data was used to evaluate the impact of the immersion protection requirements during the post-intervention period. The analysis controlled for the estimated number of hair dryers in use and the estimated number of US homes equipped with ground fault circuit interrupters, safety devices that would address hair dryer electrocutions even in the absence of the immersion protection requirements of the voluntary standard. The implementation of the 1987 and 1991 immersion protection requirements of the voluntary standard for portable handheld hair dryers was the intervention studied. The main outcome measure was the estimated reduction in the hair dryer electrocution rate associated with the immersion protection requirements of the voluntary standard. After controlling for covariates, the immersion protection requirements were estimated to reduce the rate of hair dryer immersion electrocution deaths by 96.6% (95% CI, 90.8% to 98.8%). This suggests the prevention of about 280 immersion electrocution deaths involving hair dryers during the post-intervention period (1987-2007). The immersion protection requirements of the voluntary safety standard for hair dryers have been highly effective in reducing hair dryer electrocutions.

  8. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    The diving response is initiated by apnea and facial immersion in cold water and includes, besides bradycardia, peripheral vasoconstriction, while cerebral perfusion may be enhanced. This study evaluated whether facial immersion in 10 degrees C water has an independent influence on cerebral...... immersion further increased MCA V(mean) to 122 cm/s ( approximately 88%; both P ... 180-W exercise (from 47 to 53 cm/s), and this increment became larger with facial immersion (76 cm/s, approximately 62%; P 100% increase in MCA V(mean), largely...

  9. The Effect of Antioxidant Polysaccharide Based Coatings on Optimum Immersion Time, Vitamin C Content and Salt Adsorption of Quince Cylinders during Osmotic Dehydration

    Directory of Open Access Journals (Sweden)

    M. Akbarian

    2015-09-01

    Full Text Available In this study, the effects of carboxymethyl cellulose-low methyl pectin based edible coatings containing ascorbic acid antioxidant were investigated on optimum immersion time during osmotic dehydration of quince sheets. The selection of coating type was based on natural composition of fruits peel, (i.e cellulose and pectin and the osmotic solutions were formulated on the basis of natural ingredients in fruits (fructose, citric acid and calcium ions. The results showed that solid gain trends have been incremental until 240 min in both coating types however, the coated samples showed lower solid gain in all testing times. The optimum immersion time was found to be 180 min based on the water loss (W.L, solids gain (S.G, process efficiency index and weight reduction (W. R. In next stage, the absorption of salt and citric acid from osmotic solution and loss of vitamin C from quince cylinders (dried by hot air were measured. Absorption of salt and citric acid in the coated samples was smaller than the non-coated samples and coated and osmotic quince cylinders indicated smaller vitamin C losses than the uncoated and non-osmotic samples.

  10. Immersed boundary methods for high-resolution simulation of atmospheric boundary-layer flow over complex terrain

    Science.gov (United States)

    Lundquist, Katherine Ann

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  11. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  12. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    Science.gov (United States)

    Zhou, Qiang; Fan, Liang-Shih

    2014-07-01

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge-Kutta schemes in the coupled fluid-particle interaction. The major challenge to implement high-order Runge-Kutta schemes in the LBM is that the flow information such as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid-particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge-Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and -0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding

  13. Statics of deformable solids

    CERN Document Server

    Bisplinghoff, Raymond L; Pian, Theodore HH

    2014-01-01

    Profusely illustrated exposition of fundamentals of solid mechanics and principles of mechanics, statics, and simple statically indeterminate systems. Covers strain and stress in three-dimensional solids, elementary elasticity, energy principles in solid continuum, and more. 1965 edition.

  14. Noble Metal Immersion Spectroscopy of Silica Alcogels and Aerogels

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1998-01-01

    We have fabricated aerogels containing gold and silver nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  15. Partition instability in water-immersed granular systems.

    Science.gov (United States)

    Clement, C P; Pacheco-Martinez, H A; Swift, Michael R; King, P J

    2009-07-01

    It is well known that a system of grains, vibrated vertically in a cell divided into linked columns, may spontaneously move into just one of the columns due to the inelastic nature of their collisions. Here we study the behavior of a water-immersed system of spherical barium titanate particles in a rectangular cell which is divided into two columns, linked by two connecting holes, one at the top and one at the bottom of the cell. Under vibration the grains spontaneously move into just one of the columns via a gradual transfer of grains through the connecting hole at the base of the cell. We have developed numerical simulations that are able to reproduce this behavior and provide detailed information on the instability mechanism. We use this knowledge to propose a simple analytical model for this fluid-driven partition instability based on two coupled granular beds vibrated within an incompressible fluid.

  16. The role of fluid viscosity in an immersed granular collapse

    Science.gov (United States)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  17. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  18. Optimizing an immersion ESL curriculum using analytic hierarchy process.

    Science.gov (United States)

    Tang, Hui-Wen Vivian

    2011-11-01

    The main purpose of this study is to fill a substantial knowledge gap regarding reaching a uniform group decision in English curriculum design and planning. A comprehensive content-based course criterion model extracted from existing literature and expert opinions was developed. Analytical hierarchy process (AHP) was used to identify the relative importance of course criteria for the purpose of tailoring an optimal one-week immersion English as a second language (ESL) curriculum for elementary school students in a suburban county of Taiwan. The hierarchy model and AHP analysis utilized in the present study will be useful for resolving several important multi-criteria decision-making issues in planning and evaluating ESL programs. This study also offers valuable insights and provides a basis for further research in customizing ESL curriculum models for different student populations with distinct learning needs, goals, and socioeconomic backgrounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Plasma immersion ion implantation for reducing metal ion release

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J. [Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain); Leibniz-Institut fuer Oberflaechenmodifizierung, 04318 Leipzig (Germany); Universidad de Oviedo, Departamento Quimica Fisica y Analitica (Spain); Centro de Ingenieria Avanzada de Superficies AIN, 31191, Cordovilla-Pamplona (Spain)

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  20. The drying of sewage sludge by immersion frying

    Directory of Open Access Journals (Sweden)

    D. P. Silva

    2005-06-01

    Full Text Available The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse. The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

  1. Influence of Immersive Human Scale Architectural Representation on Design Judgment

    Science.gov (United States)

    Elder, Rebecca L.

    Unrealistic visual representation of architecture within our existing environments have lost all reference to the human senses. As a design tool, visual and auditory stimuli can be utilized to determine human's perception of design. This experiment renders varying building inputs within different sites, simulated with corresponding immersive visual and audio sensory cues. Introducing audio has been proven to influence the way a person perceives a space, yet most inhabitants rely strictly on their sense of vision to make design judgments. Though not as apparent, users prefer spaces that have a better quality of sound and comfort. Through a series of questions, we can begin to analyze whether a design is fit for both an acoustic and visual environment.

  2. An immersed boundary method for modeling a dirty geometry data

    Science.gov (United States)

    Onishi, Keiji; Tsubokura, Makoto

    2017-11-01

    We present a robust, fast, and low preparation cost immersed boundary method (IBM) for simulating an incompressible high Re flow around highly complex geometries. The method is achieved by the dispersion of the momentum by the axial linear projection and the approximate domain assumption satisfying the mass conservation around the wall including cells. This methodology has been verified against an analytical theory and wind tunnel experiment data. Next, we simulate the problem of flow around a rotating object and demonstrate the ability of this methodology to the moving geometry problem. This methodology provides the possibility as a method for obtaining a quick solution at a next large scale supercomputer. This research was supported by MEXT as ``Priority Issue on Post-K computer'' (Development of innovative design and production processes) and used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science.

  3. Variable frequency matching to a radiofrequency source immersed in vacuum

    International Nuclear Information System (INIS)

    Charles, C; Boswell, R W; Bish, A

    2013-01-01

    A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882–14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters. (paper)

  4. Effects of characteristics of image quality in an immersive environment

    Science.gov (United States)

    Duh, Henry Been-Lirn; Lin, James J W.; Kenyon, Robert V.; Parker, Donald E.; Furness, Thomas A.

    2002-01-01

    Image quality issues such as field of view (FOV) and resolution are important for evaluating "presence" and simulator sickness (SS) in virtual environments (VEs). This research examined effects on postural stability of varying FOV, image resolution, and scene content in an immersive visual display. Two different scenes (a photograph of a fountain and a simple radial pattern) at two different resolutions were tested using six FOVs (30, 60, 90, 120, 150, and 180 deg.). Both postural stability, recorded by force plates, and subjective difficulty ratings varied as a function of FOV, scene content, and image resolution. Subjects exhibited more balance disturbance and reported more difficulty in maintaining posture in the wide-FOV, high-resolution, and natural scene conditions.

  5. Behaviour of slag HPC submitted to immersion-drying cycles

    Directory of Open Access Journals (Sweden)

    Rabah Chaid

    2016-04-01

    Full Text Available This article is part of a summary of the work developed in conjunction with the Laboratory of Civil Engineering and Mechanical Engineering from INSA Rennes and Research Unit: Materials, Processes and Environment, University of Boumerdes. One of the objectives was indeed to promote, through studies of variants, the use of local cementitious additions in the formulation of high performance concretes (HPC. The binding contribution of mineral additions to the physical, mechanical and durability of concrete was evaluated by an experimental methodology to subjugate their original granular and pozzolanic effect. The results show that the contribution of couple cement -slag intensification of the matrix is higher than that obtained when the cement is not substituted by addition. Therefore, a significant improvement in performance of concretes was observed, despite the adverse action immersion cycles - drying maintained for 365 days.

  6. 3D Immersive Visualization: An Educational Tool in Geosciences

    Science.gov (United States)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  7. Hydroxyapatite coating on damaged tooth surfaces by immersion

    International Nuclear Information System (INIS)

    Lim, Byoung-Ki; Ryu, Su-Chak; Sun, Fangfang; Koh, Kwangnak; Han, Dong-Wook; Lee, Jaebeom

    2009-01-01

    Hydroxyapatite (HAp) was coated on scratched areas of a human tooth and HAp disks by the immersion method in a HAp colloidal solution (≤20 μm of average diameter dispersed in DI water). The surface morphologies of the scratched area after immersion for 1-3 months were investigated showing that the damaged surfaces were remarkably recovered. Then, the mechanical property and chemical stability of the HAp coating layers on both specimens were determined via the Vickers hardness test and concentration measurement of extracted Ca 2+ ions, respectively, after strong acidic treatment. The cellular behavior of mouse calvaria-derived pre-osteoblastic cells (MC3T3-E1) was also examined on the HAp layers regenerated on micro-scratched HAp disks for the purpose of their potential applications on maxillofacial bone conservation and reconstruction for prosthetic dentistry, and artificial disk preparation of a vertebral column. The notable loss of Ca 2+ ions under a highly acidic condition was not observed in the layers coated by HAp adsorption, indicating that the coating surface was well adhered with the original surfaces of the respective specimen. Moreover, the HAp adsorption did not adversely affect the adhesion, growth and proliferation of MC3T3-E1 cells on the coated HAp layers for up to 21 days. These results suggest that the HAp coating on the scratched areas of the tooth would be effectively applicable for the development of long-term prevention of micro-cleavage and tooth health supporters to reduce discoloration and further maxillofacial and orthopedic applications.

  8. Theoretical solid state physics

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Research activities at ORNL in theoretical solid state physics are described. Topics covered include: surface studies; particle-solid interactions; electronic and magnetic properties; and lattice dynamics

  9. Effects of sensory immersion on behavioural indicators of player experience : movement synchrony and controller pressure

    NARCIS (Netherlands)

    Hoogen, van den W.M.; IJsselsteijn, W.A.; Kort, de Y.A.W.; Atkins, B.; Kennedy, H.

    2009-01-01

    In this paper we investigate the relation between immersion in a game and the player’s intensity of physical behaviours, in order to explore whether these behaviours can be reliably used as indicators of player experience. Immersion in the game was manipulated by means of screen size (20" vs 42"

  10. Story immersion may be effective in promoting diet and physical activity in Chinese children

    Science.gov (United States)

    This study evaluated the effect of playing a health video game embedded with story immersion, Escape from Diab (Diab), on children's diet and physical activity (PA), and also explored whether children immersed in Diab had greater positive outcomes. The study design employed two groups, nonrandomized...

  11. Leaching models for multiple immersed materials and for granular materials flushed in a column

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1997-01-01

    The present paper addresses the leaching of hazardous contaminants from immersed and replenished materials and from granular materials flushed in a column. First, the leaching of an immersed material in contact with a limited volume of leachant is studied. The mass transfer from material to leachant

  12. Using heart rate to prescribe physical exercise during head-out water immersion.

    Science.gov (United States)

    Kruel, Luiz F M; Peyré-Tartaruga, Leonardo A; Coertjens, Marcelo; Dias, Adriana B C; Da Silva, Rafael C; Rangel, Antônio C B

    2014-01-01

    The purpose of this study was to compare and correlate the effect of age group, sex, depth of water immersion, and the heart rate (HR) assessed out of the water on the HR behavior in individuals subjected to head-out water immersion. A total of 395 healthy individuals of both sexes, aged between 07 and 75 years, underwent vertical head-out water immersion. Heart rate was assessed out of the water in the supine and orthostatic (OHR) positions and at immersion depths corresponding to the ankle, knee, hip, umbilicus, xiphoid process, acromion, neck, and also the neck with the arms out of the water. The formula (ΔHR = OHR - HR immersion depth) was used to calculate the reduction in HR at each immersion depth. No age-based or sex-based differences in HR were found. The greater the depth of the water, the greater was the decrease in HR (p water-based exercise intensity performed during vertical immersion: OHR should be measured before the individual entering the aquatic environment; ΔHR should be measured according to the depth at which exercise is to be performed, and we suggest an adaptation to Karvonen's HRmax prediction formula (predicted HRmax: 220 - age - ΔHR) to prescribe and control the intensity of the exercise performed during vertical immersion.

  13. Enhancing Pre-Service Teachers' Awareness to Pupils' Test-Anxiety with 3D Immersive Simulation

    Science.gov (United States)

    Passig, David; Moshe, Ronit

    2008-01-01

    This study investigated whether participating in a 3D immersive virtual reality world simulating the experience of test-anxiety would affect preservice teachers' awareness to the phenomenon. Ninety subjects participated in this study, and were divided into three groups. The experimental group experienced a 3D immersive simulation which made…

  14. Student and Teacher Perceptions of First Language Use in Secondary French Immersion Mathematics Classrooms

    Science.gov (United States)

    Culligan, Karla

    2015-01-01

    This phenomenological study (Creswell, 2003, 2007; van Manen, 1997) explores student and teacher perceptions of first language use in French immersion mathematics classrooms at a large, urban high school in Canada. During individual interviews, participants discussed their perceptions and experiences of French immersion mathematics, language use,…

  15. Dual Language Immersion Program Equity and Access: Is There Equity for All Students?

    Science.gov (United States)

    Fernandez, Patricia Espinoza

    2016-01-01

    This is a mixed methods study of K-12 school administrators with dual language immersion school leadership expertise. The paramount research focus was to identify equity and access issues in dual language immersion programs serving grades K-12, as identified by school administrators who have led such programs. A total pool of 498 were invited to…

  16. Predicting Participation in Dual Language Immersion Using Theory of Planned Behavior

    Science.gov (United States)

    Call, Andrea; Domenech Rodríguez, Melanie M.; Vázquez, Alejandro L.; Corralejo, Samantha M.

    2018-01-01

    Dual language immersion programs are increasing in popularity. Yet little is known about what motivates parents to enroll their children in dual language immersion. The theory of planned behavior posits that behavior is based on attitudes, subjective norms, and perceived behavioral control. The current study was an exploratory evaluation of the…

  17. The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.

    Science.gov (United States)

    Hadi-Tabassum, Samina

    2000-01-01

    Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…

  18. Immune changes during whole body hot water immersion: the role of growth hormone.

    Science.gov (United States)

    Kappel, M; Poulsen, T D; Hansen, M B; Galbo, H; Pedersen, B K

    1997-07-01

    Studies examined the role of growth hormone, catecholamines, and beta-endorphins in changes in natural killer cell activity, subtypes of blood mononuclear cells, and leukocyte concentration in response to hot water immersion in humans. The response of leukocytes and neutrophils to 2 hours of hot water immersion and simultaneous administration of propranolol, somatostatin, naloxone, or isotonic saline are reported.

  19. Ethnographic strategies for making the familiar strange: Struggling with "distance" and "immersion" among Moroccan students

    NARCIS (Netherlands)

    Frans Kamsteeg; Sierk Ybema; dr. Machteld de Jong

    2013-01-01

    Ethnographic fieldwork is a balancing act between distancing and immersing. Fieldworkers need to come close to meaningfully grasp the sense-making efforts of the researched. In methodological textbooks on ethnography, immersion tends to be emphasized at the expense of its counterpart. In fact,

  20. A Culturally Competent Immersion Protocol: Petit Goâve, Haiti

    Science.gov (United States)

    Streets, Barbara Faye; Wolford, Karen; Nicolas, Guerda

    2015-01-01

    In the human services professions, cultural immersion experiences help satisfy multicultural training standards established by national accreditation bodies. Immersion in a culturally sensitive manner is necessary as we prepare professionals to work with and serve citizens of the globe. The authors describe an international cultural immersion…

  1. Use of Immersive Simulations to Enhance Graduate Student Learning: Implications for Educational Leadership Programs

    Science.gov (United States)

    Voelkel, Robert H.; Johnson, Christie W.; Gilbert, Kristen A.

    2016-01-01

    The purpose of this article is to present how one university incorporates immersive simulations through platforms which employ avatars to enhance graduate student understanding and learning in educational leadership programs. While using simulations and immersive virtual environments continues to grow, the literature suggests limited evidence of…

  2. Immersive Environments and Virtual Reality: Systematic Review and Advances in Communication, Interaction and Simulation

    Directory of Open Access Journals (Sweden)

    Jose Luis Rubio-Tamayo

    2017-09-01

    Full Text Available Today, virtual reality and immersive environments are lines of research which can be applied to numerous scientific and educational domains. Immersive digital media needs new approaches regarding its interactive and immersive features, which means the design of new narratives and relationships with users. Additionally, ICT (information and communication theory evolves through more immersive and interactive scenarios, it being necessary to design and conceive new forms of representing information and improving users’ interaction with immersive environments. Virtual reality and technologies associated with the virtuality continuum, such as immersive and digital environments, are emerging media. As a medium, this approach may help to build and represent ideas and concepts, as well as developing new languages. This review analyses the cutting-edge expressive, interactive and representative potential of immersive digital technologies. It also considers future possibilities regarding the evolution of these immersive technologies, such as virtual reality, in coming years, in order to apply them to diverse scientific, artistic or informational and educational domains. We conclude that virtual reality is an ensemble of technological innovations, but also a concept, and propose models to link it with the latest in other domains such as UX (user experience, interaction design. This concept can help researchers and developers to design new experiences and conceive new expressive models that can be applied to a wide range of scientific lines of research and educational dynamics.

  3. Mobile Immersion: An Experiment Using Mobile Instant Messenger to Support Second-Language Learning

    Science.gov (United States)

    Lai, Arthur

    2016-01-01

    Immersion has been an acclaimed approach for second-language acquisition, but is not available to most students. The idea of this study was to create a mobile immersion environment on a smartphone using a mobile instant messenger, WhatsApp™. Forty-five Form-1 (7th grade) students divided into the Mobile Group and Control Group participated in a…

  4. Reading Strategies in French Immersion Science Classes: Preparing Our Students for Tomorrow

    Science.gov (United States)

    Rivard, Leonard P.; Cormier, Marianne; Turnbull, Miles

    2012-01-01

    This article proposes strategies and practices that create rich discursive spaces for learning science in French immersion contexts. These strategies and practices are drawn from a variety of scholarly sources; here we adapt them to reading in the French immersion science classroom. The strategies and practices are designed for use in a…

  5. Rotating shell eggs immersed in hot water for the purpose of pasteurization

    Science.gov (United States)

    Pasteurization of shell eggs for inactivation of Salmonella using hot water immersion can be used to improve their safety. The rotation of a shell egg immersed in hot water has previously been simulated by computational fluid dynamics (CFD); however, experimental data to verify the results do not ex...

  6. The Impact of Immersion Programs upon Undergraduate Students of Jesuit Colleges and Universities

    Science.gov (United States)

    Savard, John D.

    2010-01-01

    Statement of the problem: This research study examined the impact of international immersion programs upon undergraduate students at Jesuit colleges and universities. Students return from immersion experiences claiming that the experience changed their lives. This study offered an assessment strategy to give greater evidence as to the impact of…

  7. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Science.gov (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  8. The effects of cold immersion and hand protection on grip strength.

    Science.gov (United States)

    Vincent, M J; Tipton, M J

    1988-08-01

    The maximal voluntary grip strength (MVGS) of male volunteers was examined following a series of five intermittent 2 min cold water (5 degrees C) immersions of the unprotected hand or forearm. MVGS changes due to wearing a protective glove were also investigated. The surface electrical activity over the hand flexor muscles was recorded, as was the skin temperature of the hand and forearm. MVGS decreased significantly (p less than 0.01) following hand immersions (16%) and forearm immersion (13%). The majority of these reductions occurred during the first 2-min period of immersion. The effect of wearing a glove after unprotected hand cooling also produced significant (p less than 0.01) MVGS reductions which averaged 14%. These reductions were in addition to those caused by hand cooling. We conclude that both hand and forearm protection are important for the maintenance of hand-grip strength following cold water immersion.

  9. A structural equation modeling investigation of the emotional value of immersive virtual reality in education

    DEFF Research Database (Denmark)

    Makransky, Guido; Lilleholt, Lau

    2018-01-01

    Virtual reality (VR) is projected to play an important role in education by increasing student engagement and motivation. However, little is known about the impact and utility of immersive VR for administering e-learning tools, or the underlying mechanisms that impact learners’ emotional processes...... consisted of 104 university students (39 females). Significantly higher scores were obtained on 11 of the 13 variables investigated using the immersive VR version of the simulation, with the largest differences occurring with regard to presence and motivation. Furthermore, we identified a model with two...... general paths by which immersion in VR impacts perceived learning outcomes. Specifically, we discovered an affective path in which immersion predicted presence and positive emotions, and a cognitive path in which immersion fostered a positive cognitive value of the task in line with the control value...

  10. Influence of a peracetic acid-based immersion on indirect composite resin.

    Science.gov (United States)

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  11. The frequency of occurrence and severity of side-effects of immersion virtual reality.

    Science.gov (United States)

    Regan, E C; Price, K R

    1994-06-01

    Virtual reality (VR) has become increasingly well-known over the last few years. However, little is known about the side-effects of prolonged immersion in VR. This study set out to investigate the frequency of occurrence and severity of side-effects of using an immersion VR system. Out of 146 subjects, 61% reported symptoms of malaise at some point during a 20-min immersion and 10-min post-immersion period. These ranged from symptoms such as dizziness, stomach awareness, headaches, eyestrain and lightheadedness to severe nausea. These symptoms caused 5% of the subjects to withdraw from the experiment before completing their 20-min immersion period. Further research needs to be conducted that attempts to identify those factors that play a causative role in the side-effects of the VR system, and that looks for methods of reducing these side-effects.

  12. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Haddadi, Ikbel, E-mail: haded.ikbel@yahoo.fr; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-05-15

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  13. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    Directory of Open Access Journals (Sweden)

    Devi Rianti

    2006-12-01

    Full Text Available A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the transverse strength and sterilized aquadest was used as control. Acrylic resin plates transverse strength was measured using Autograph AG-10 TE. The data was analyzed using One-Way Anova and LSD with 5% degree of significance. The result showed that longer immersion time will decrease the transverse strength of the acrylic resin plates. After 90 days immersion time, the transverse strength decrease is still above the recommended standard transverse strength.

  14. Metal deposition on porous silicon by immersion plating to improve photoluminescence properties

    International Nuclear Information System (INIS)

    Haddadi, Ikbel; Amor, Sana Ben; Bousbih, Rabaa; Whibi, Seif El; Bardaoui, Afrah; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    Metal deposition into porous silicon (PS) by immersion plating in aqueous solution during different times was investigated. The influence of immersion time on optical properties of porous silicon treated with Lithium (Li) was studied by photoluminescence (PL). From experimental results, we suggest that the treatment, for critical immersion time provides an easy way to achieve an improvement in the PL intensity. To identify surface modification, Fourier transmission infrared spectroscopy and atomic force microscopy were performed. The reflectivity spectra showed that the variation of light absorption can be probably due to the newly formed layer during the chemical deposition of Li. - Highlights: • We have varied the immersion time of PS in LiBr solution. • PL intensity shows significant variation as function of immersion time. • We observe reduction of Si–O–Li bands with increasing treatment time. • Concurrent with the loss of Li we observe a decrease of the PL.

  15. Significant improvement of optical traps by tuning standard water immersion objectives

    International Nuclear Information System (INIS)

    Reihani, S Nader S; Mir, Shahid A; Richardson, Andrew C; Oddershede, Lene B

    2011-01-01

    Focused infrared lasers are widely used for micromanipulation and visualization of biological specimens. An inherent practical problem is that off-the-shelf commercial microscope objectives are designed for use with visible and not infrared wavelengths. Less aberration is introduced by water immersion objectives than by oil immersion ones, however, even water immersion objectives induce significant aberration. We present a simple method to reduce the spherical aberration induced by water immersion objectives, namely by tuning the correction collar of the objective to a value that is ∼ 10% lower than the physical thickness of the coverslip. This results in marked improvements in optical trapping strengths of up to 100% laterally and 600% axially from a standard microscope objective designed for use in the visible range. The results are generally valid for any water immersion objective with any numerical aperture

  16. ???????????? SolidWorks/SolidWorks Flow Simulation/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???

    OpenAIRE

    ????????????, ?. ?.; ????????, ?. ?.; ?????, ?. ?.

    2012-01-01

    ? ?????? ???????? ??????? ??????? ???????? ?? ???????????? ??????????? ????????? SolidWorks/SolidWorks Flow Simulation (COSMOSFloWorks)/SolidWorks Simulation ??? ?????????? ???????? ?? ????????????? ???. ??? ???????? ????????? ???????? ?????????? ?? ?????? ???????? ??????? ? ????????????? ?????? ? ????????????? ????????????? ?????????? ???????????? SolidWorks Flow Simulation (COSMOSFloWorks). ??? ???????????? ??????????? ????????????? ?????? ?? ????????? ??????????? ??????? ?? ??????????? ...

  17. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    Science.gov (United States)

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  18. Sprint cycling performance is maintained with short-term contrast water immersion.

    Science.gov (United States)

    Crampton, David; Donne, Bernard; Egaña, Mikel; Egana, Mikel; Warmington, Stuart A

    2011-11-01

    Given the widespread use of water immersion during recovery from exercise, we aimed to investigate the effect of contrast water immersion on recovery of sprint cycling performance, HR and, blood lactate. Two groups completed high-intensity sprint exercise before and after a 30-min randomized recovery. The Wingate group (n = 8) performed 3 × 30-s Wingate tests (4-min rest periods). The repeated intermittent sprint group (n = 8) cycled for alternating 30-s periods at 40% of predetermined maximum power and 120% maximum power, until exhaustion. Both groups completed three trials using a different recovery treatment for each trial (balanced randomized application). Recovery treatments were passive rest, 1:1 contrast water immersion (2.5 min of cold (8°C) to 2.5 min of hot (40°C)), and 1:4 contrast water immersion (1 min of cold to 4 min of hot). Blood lactate and HR were recorded throughout, and peak power and total work for pre- and postrecovery Wingate performance and exercise time and total work for repeated sprinting were recorded. Recovery of Wingate peak power was 8% greater after 1:4 contrast water immersion than after passive rest, whereas both contrast water immersion ratios provided a greater recovery of exercise time (∼ 10%) and total work (∼ 14%) for repeated sprinting than for passive rest. Blood lactate was similar between trials. Compared with passive rest, HR initially declined more slowly during contrast water immersion but increased with each transition to a cold immersion phase. These data support contrast water immersion being effective in maintaining performance during a short-term recovery from sprint exercise. This effect needs further investigation but is likely explained by cardiovascular mechanisms, shown here by an elevation in HR upon each cold immersion.

  19. Seawater immersion aggravates burn-associated lung injury and inflammatory and oxidative-stress responses.

    Science.gov (United States)

    Ma, Jun; Wang, Ying; Wu, Qi; Chen, Xiaowei; Wang, Jiahan; Yang, Lei

    2017-08-01

    With the increasing frequency of marine development activities and local wars at sea, the incidence of scald burns in marine accidents or wars has been increasing yearly. Various studies have indicated that immersion in seawater has a systemic impact on some organs of animals or humans with burn. Thus, for burn/scald injuries after immersion in seawater, it is desirable to study the effects and mechanisms of action on important organs. In the present study, we aimed to investigate the effect of immersion in seawater on lung injury, inflammatory and oxidative-stress responses in scalded rats. The structural damage to lungs was detected by hematoxylin and eosin staining and the results showed that seawater immersion aggravated structural lung injury in scalded rats. The expression of HMGB1 in lung tissues was detected by immunohistochemical analysis and the results showed that seawater immersion increased HMGB1 expression in lung tissues of scalded rats. Apoptosis in lung tissues was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) staining and the results showed that seawater immersion increased apoptosis rate in lung tissues of scalded rats. In addition, the expression levels of TNF-α, IL-6, IL-8, SOD, and MDA in serum were analyzed by enzyme-linked immunosorbent assays (ELISAs) and the results showed that seawater immersion induced secretion of proinflammatory factors (TNF-α, IL-6, and IL-8), increased MDA protein level, and suppressed SOD activity in the serum of scalded rats. Furthermore, measurement of plasma volume and pH showed that seawater immersion decreased plasma volume and pH value. Overall, the results indicated that all effects induced by immersion in seawater in scalded rats are more pronounced than those induced by freshwater. In conclusion, seawater immersion may aggravate lung injury and enhance inflammatory and oxidative-stress responses after burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  20. Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films

    International Nuclear Information System (INIS)

    Liu, P.; Chen, T.P.; Liu, Z.; Tan, C.S.; Leong, K.C.

    2013-01-01

    Evolution of electrical properties and thin-film transistor characteristics of amorphous indium gallium zinc oxide (IGZO) thin films synthesized by RF sputtering with O 2 plasma immersion has been examined. O 2 plasma immersion results in an enhancement in the Hall mobility and a decrease in the electron concentration; and the transistor performance can be greatly improved by the O 2 plasma immersion. X-ray photoelectron spectroscopy analysis indicates that the effect of O 2 plasma immersion on the electrical properties and the transistor performance can be attributed to the reduction of the oxygen-related defects in the IGZO thin films. - Highlights: • Oxygen plasma immersion effect on indium gallium zinc oxide thin film properties • Oxygen-related defect reduces in the InGaZnO thin film with oxygen plasma immersion. • Increasing oxygen plasma immersion duration on device will decrease the off current. • Oxygen plasma immersion enhances the performance of device

  1. Direct solid-phase microextraction combined with gas and liquid chromatography for the determination of lidocaine in human urine

    NARCIS (Netherlands)

    Koster, E.H M; Hofman, N.S K; de Jong, G.J.

    Solid-phase microextraction (SPME) has been combined with gas chromatography (GC) and liquid chromatography (LC) for the determination of lidocaine in human urine. A polydimethylsiloxane (PDMS) coated fibre was directly immersed into buffered urine. Extraction conditions such as time, pH, ionic

  2. Duration and setting of rural immersion during the medical degree relates to rural work outcomes.

    Science.gov (United States)

    O'Sullivan, Belinda; McGrail, Matthew; Russell, Deborah; Walker, Judi; Chambers, Helen; Major, Laura; Langham, Robyn

    2018-04-19

    Providing year-long rural immersion as part of the medical degree is commonly used to increase the number of doctors with an interest in rural practice. However, the optimal duration and setting of immersion has not been fully established. This paper explores associations between various durations and settings of rural immersion during the medical degree and whether doctors work in rural areas after graduation. Eligible participants were medical graduates of Monash University between 2008 and 2016 in postgraduate years 1-9, whose characteristics, rural immersion information and work location had been prospectively collected. Separate multiple logistic regression and multinomial logit regression models tested associations between the duration and setting of any rural immersion they did during the medical degree and (i) working in a rural area and (ii) working in large or smaller rural towns, in 2017. The adjusted odds of working in a rural area were significantly increased if students were immersed for one full year (odds ratio [OR], 1.79; 95% confidence interval [CI], 1.15-2.79), for between 1 and 2 years (OR, 2.26; 95% CI, 1.54-3.32) and for 2 or more years (OR, 4.43; 95% CI, 3.03-6.47) relative to no rural immersion. The strongest association was for immersion in a mix of both regional hospitals and rural general practice (OR, 3.26; 95% CI, 2.31-4.61), followed by immersion in regional hospitals only (OR, 1.94; 95% CI, 1.39-2.70) and rural general practice only (OR, 1.91; 95% CI, 1.06-3.45). More than 1 year's immersion in a mix of regional hospitals and rural general practices was associated with working in smaller regional or rural towns (immersion programmes. Longer rural immersion and immersion in both regional hospitals and rural general practices are likely to increase rural work and rural distribution of early career doctors. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  3. Leaching behavior of various low-level waste solids

    International Nuclear Information System (INIS)

    Ito, Akihiko; Ouchi, Yasuyoshi; Matsuzuru, Hideo; Wadachi, Yoshiki

    1985-01-01

    This report deals with the leaching of radioactive nuclides from low-level wastes solidified with cement, bitumen or plastics. Considerations are made on the effects of type of solidification matrix and waste; type, amount and exchange frequency of leachate; type and conditions of embedding soil; temperature and pressure; and secular deterioration. It is assumed that a waste composite is entirely immersed in leachate and that the amount of the leachate is large compared to the surface area of the waste. Cement solid is characterized by its high alkalinity and porosity while plastic and bitumen solids are dense and neutral. The content of waste in a composite is low for cement and high for plastics. It is generally high in bitumen solid though it should be reduced if the solid is likely to bulge. The leaching of 137 Cs from cement solid is slightly dependent on the waste-cement ratio while it increases with increasing waste content in the case of plastic or bitumen solid. For 60 Co, the leaching from cement solid depends on the alkalinity of the cement material used though it is not affected by the waste-cement ratio. In the case of plastics and bitumen, on the other hand, the pH value of the waste have some effects on the leaching of 60 Co; the leaching decreases with increasing pH. (Nogami, K.)

  4. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  5. High performance Si immersion gratings patterned with electron beam lithography

    Science.gov (United States)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  6. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  7. An immersive simulation system for provoking and analyzing cataplexy.

    Science.gov (United States)

    Augustine, Kurt; Cameron, Bruce; Camp, Jon; Krahn, Lois; Robb, Richard

    2002-01-01

    Cataplexy, a sudden loss of voluntary muscle control, is one of the hallmark symptoms of narcolepsy, a sleep disorder characterized by excessive daytime sleepiness. Cataplexy is usually triggered by strong, spontaneous emotions, such as laughter, surprise, fear or anger, and is more common in times of stress. The Sleep Disorders Unit and the Biomedical Imaging Resource at Mayo Clinic are developing interactive display technology for reliably inducing cataplexy during clinical monitoring. The use of immersive displays may help bypass patient defenses, and game-like "unreality" allows introduction of surprising, threatening, or humorous elements, with little risk of offending patients. The project is referred to as the "Cataplexy/Narcolepsy Activation Program", or CatNAP. We have developed an automobile driving simulation to allow the introduction of humorous, surprising, or stress-inducing events and objects as the patient attempts to navigate a simulated vehicle through a virtual town. The patient wears a stereoscopic head-mounted display, by which he views the virtual town through the windows of his simulated vehicle. The vehicle is controlled via a driving simulator steering wheel and pedal cluster. The patient is instructed to drive his vehicle to another location in town, given initial directions and street signs. As he attempts to accomplish the task, various objects, sounds or conditions occur which may distract, startle, frustrate or cause laughter; responses which may trigger a cataplectic episode. The patient can be monitored by reflex tests and EMG recordings during the driving experience. An evaluation phase with volunteer patients previously diagnosed with cataplexy has been completed. The goal of these trials was to gain insight from the volunteers as to improvements that could be made to the simulation. All patients that participated in the evaluation phase have been under a physician's care for a number of years and control their cataplexy with

  8. Mandarin Chinese Immersion Program for Preschool Children in an Urban Private School in California: A Case Study

    Science.gov (United States)

    Cao, Yuan

    2013-01-01

    This study enlisted language immersion practitioners in highlighting and exploring the issues and challenges that accompany language immersion education. Comprehensive focused personal interviews of preschool Mandarin Chinese language immersion educators in a private school provided the basis of the study. The research literature reviewed…

  9. From plasma immersion ion implantation to deposition: A historical perspective on principles and trends

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2001-06-14

    Plasma immersion techniques of surface modification are known under a myriad of names. The family of techniques reaches from pure plasma ion implantation, to ion implantation and deposition hybrid modes, to modes that are essentially plasma film deposition with substrate bias. In the most general sense, all plasma immersion techniques have in common that the surface of a substrate (target) is exposed to plasma and that relatively high substrate bias is applied. The bias is usually pulsed. In this review, the roots of immersion techniques are explored, some going back to the 1800s, followed by a discussion of the groundbreaking works of Adler and Conrad in the 1980s. In the 1990s, plasma immersion techniques matured in theoretical understanding, scaling, and the range of applications. First commercial facilities are now operational. Various immersion concepts are compiled and explained in this review. While gas (often nitrogen) ion implantation dominated the early years, film-forming immersion techniques and semiconductor processing gained importance. In the 1980s and 1990s we have seen exponential growth of the field but signs of slowdown are clear since 1998. Nevertheless, plasma immersion techniques have found, and will continue to have, an important place among surface modification techniques.

  10. In Vitro Evaluation of Dimensional Stability of Alginate Impressions after Disinfection by Spray and Immersion Methods

    Directory of Open Access Journals (Sweden)

    Fahimeh Hamedi Rad

    2010-12-01

    Full Text Available Background and aims. The most common method for alginate impression disinfection is spraying it with disinfecting agents, but some studies have shown that these impressions can be immersed, too. The aim of this study was to evaluate the dimensional stability of alginate impressions following disinfecting by spray and immersion methods. Materials and methods. Four common disinfecting agents (Sodium Hypochlorite, Micro 10, Glutaraldehyde and Deconex were selected and the impressions (n=108 were divided into four groups (n=24 and eight subgroups (n=12 for disinfecting by any of the four above-mentioned agents by spray or immersion methods. The control group (n=12 was not disinfected. Then the impressions were poured by type III Dental Stone Plaster in a standard method. The results were analyzed by descriptive methods (mean and standard deviation, t-test, two-way analysis of variance (ANOVA and Duncan test, using SPSS 14.0 software for windows. Results. The mean changes of length and height were significant between the various groups and disinfecting methods. Regarding the length, the greatest and the least amounts were related to Deconex and Micro 10 in the immersion method, respectively. Regarding height, the greatest and the least amounts were related to Glutaraldehyde and Deconex in the immersion method, respectively. Conclusion. Disinfecting alginate impressions by Sodium Hypochlorite, Deconex and Glutaraldehyde by immersion method is not recommended and it is better to disinfect alginate impressions by spraying of Micro 10, Sodium Hypochlorite, Glutaraldehyde and immersion in Micro 10.

  11. The efficacy of hyoscine hydrobromide in reducing side-effects induced during immersion in virtual reality.

    Science.gov (United States)

    Regan, E C; Ramsey, A D

    1996-03-01

    Regan and Price (1994) investigated the frequency of occurrence and severity of side-effects of using an immersion virtual reality system in 150 subjects: 61% of the subjects reported symptoms of malaise at some point during a 20-min immersion and 10-min post-immersion period. This paper describes a double-blind placebo-controlled study that investigated whether 300 microgram of hyoscine/scopolamine hydrobromide administered to subjects prior to immersion in virtual reality was effective in reducing side-effects experienced during immersion. It was hypothesized that the hyoscine hydrobromide would cause a significant reduction in reported symptoms. We administered 300 micrograms of hyoscine hydrobromide to 19 subjects, and 20 subjects were administered a placebo compound 40 min prior to a 20-min immersion in VR. Data on malaise were collected using a simulator sickness questionnaire and a malaise scale. A 2 x 2 Chi-square analysis comparing the numbers of subjects reporting no symptoms on the malaise scale with those reporting some symptoms in the placebo and hyoscine conditions showed the differences between the two groups to be statistically significant at the 0.01 level (Chi-square = 7.392 with 1 df, p = 0.007). This difference was clearly in the direction of fewer symptoms being reported in the hyoscine condition. The results of the study showed that the hyoscine was effective in reducing symptoms that are commonly observed during immersion in virtual reality.

  12. Influence of pyridostigmine bromide on human thermoregulation during cold-water immersion

    Energy Technology Data Exchange (ETDEWEB)

    Cadarette, B.S.; Prusaczyk, W.K.; Sawka, M.N. (Army Research Inst. of Environmental Medicine, Natick, MA (United States))

    1991-03-11

    This study examined the effects of an oral 30 mg dose of pyridostigmine bromide (PYR) on thermoregulatory and physiological responses during cold stress. Six men were immersed in chilled stirred water for up to 180 minutes; once 2 hours following ingestion of PYR and once 2 hours following ingestion of a placebo (CON). With PYR, mean ({plus minus} SD) red blood cell cholinesterase inhibition was 33 ({plus minus}12)% at 110 minutes post-ingestion. Cholinesterase inhibition was negatively related to lean body mass. Abdominal discomfort caused termination in 3 of 6 PYR experiments ({bar X} immersion time = 117 min) but in no CON experiments ({bar X} immersion time = 142 min, p > 0.05). During immersion, metabolic rate increased significantly over pre-immersion levels, and increased with duration of immersion, but did not differ between conditions. PYR had no significant effect on rectal temperature, mean body temperature, thermal sensation, heart rate, or plasma cortisol concentration. It was concluded that a 30 mg dose of PYR does not increase susceptibility to hypothermia in humans immersed in cold-water; however, in combination with cold-stress, PYR may result in marked abdominal cramping and limit cold tolerance.

  13. Immersive Environment Development for Training: Opportunities for Cooperation, Coordination, and Cost Savings

    International Nuclear Information System (INIS)

    Tackentien, J.; Hoffheins, B.; Brown, R.

    2015-01-01

    Immersive environments are increasingly demonstrating their utility for a number of nuclear safeguards, nuclear safety, and nuclear and physical security applications. Although training is an obvious use, the immersive (or sometimes called virtual) environment allows the user to ''visit'' nuclear facilities and sites that might have access restrictions because of security, high radiation or other hazards; are difficult and expensive to visit. An immersive environment can also be reconfigured to study various scenarios, processes, and other what-if situations, which can aid planning and design of new facilities or evaluate safeguards, safety and/or security measures before they are implemented. As the International Atomic Energy Agency, other international organizations, State Authorities, industry, and academia continue development and use of immersive environments and other electronic training technologies, more and more applications can be envisioned. Immersive environments are not a direct or always a desirable replacement for hands-on learning; however, the demand for electronic training media, particularly immersive environments, will grow. The resulting increase of system features and libraries presents opportunities to shorten development time frames, reduce costs and increase availability of immersive environments for a wider audience looking to balance the need for quality training with limited resources. Substantial time and cost savings can be realized by the sharing of raw assets among developers and organizations. This paper will explore potential guidelines, criteria, and mechanisms for such cooperation, including a prototype asset repository website. (author)

  14. Habituation of the initial responses to cold water immersion in humans: a central or peripheral mechanism?

    Science.gov (United States)

    Tipton, M J; Eglin, C M; Golden, F S

    1998-10-15

    1. The initial respiratory and cardiac responses to cold water immersion are thought to be responsible for a significant number of open water deaths each year. Previous research has demonstrated that the magnitude of these responses can be reduced by repeated immersions in cold waterwhether the site of habituation is central or peripheral. 2. Two groups of subjects undertook two 3 min head-out immersions in stirred water at 10 C of the right-hand side of the body (R). Between these two immersions (3 whole days) the control group (n = 7) were not exposed to cold water, but the habituation group (n = 8) undertook a further six 3 min head-out immersions in stirred water at 10 C of the left-hand side of the body (L). 3. Repeated L immersions reduced (P immersion a reduction (P < 0.05) in the magnitude of the responses evoked was seen in the habituation group but not in the control group, despite both groups having identical skin temperature profiles. 4. It is concluded that the mechanisms involved in producing habituation of the initial responses are located more centrally than the peripheral receptors.

  15. Growth hormone and prolactin responses during partial and whole body warm-water immersions.

    Science.gov (United States)

    Koska, J; Rovensky, J; Zimanova, T; Vigas, M

    2003-05-01

    To elucidate the role of core and skin thermoreceptors in the release of growth hormone (GH) and prolactin (PRL), a sequence of two experiments using whole-body (head-out) and partial (one forearm) hot water immersions was performed. Experiment 1: Nine healthy men were exposed to head-out and partial water immersions (25 min, 38-39 degrees C). Head-out immersion increased the core temperature (38.0 +/- 0.1 vs. 36.7 +/- 0.1 degrees C, P immersion the core temperature was slightly elevated (36.8 +/- 0.1 vs. 36.6 +/- 0.1, P immersed one forearm once in 39 degrees C and once in 38 degrees C water. The measurements were performed in 5-min intervals. The GH concentration increased gradually from the beginning of the immersions (min 10; 39 degrees C: 1.9 +/- 1.0 vs. 0.6 +/- 0.3 ng mL(-1), P Immersion in 38 degrees C water did not induce core temperature changes. Peripheral thermoreceptors are involved in GH release when the body is exposed to elevated environmental temperature while a substantial elevation of core temperature is a precondition of PRL release.

  16. Static respiratory muscle work during immersion with positive and negative respiratory loading.

    Science.gov (United States)

    Taylor, N A; Morrison, J B

    1999-10-01

    Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.

  17. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    Science.gov (United States)

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  18. Germination of somatic embryos of Psidium guajava L. cv. Cuban Red Dwarf EEA 18-40 in temporary immersion systems

    Directory of Open Access Journals (Sweden)

    Jorge Vilchez Perozo

    2001-04-01

    Full Text Available Somatic embryo germination of Psidium guajava L. cv. Cuban Red Dwarf EEA 18-40 in temporary immersion systems (TIS, in which somatic embryos were cultured in the heart-torpedo stage in MS mediun at mayor half strength salt and suplemented with: 0.25 mg.l-1 of 6-bencilaminopurine (6-BAP, 10 mg.l-1 of Biobras-6 (analogous of brasinoesteriode and 20 g.l-1 of sucrose. As control was used solid cultivation medium (2.5 g.l-1 Gellan gum, Spectrum® of same composition to the one used in the TIS. The variables germination percentage and fresh weight were evaluated statistically. After ten weeks of cultivation the largest values in germination percentage (91.04% and fresh weight (1.22 g were obtained in the TIS, being statistically different to those obtained in solid medium (9.79% and 1.03 g, respectively. Key words: in vitro plant, guayaba, regeneration, RITA®,somatic embryogenesis

  19. Prolonged whole-body cold water immersion: fluid and ion shifts.

    Science.gov (United States)

    Deuster, P A; Smith, D J; Smoak, B L; Montgomery, L C; Singh, A; Doubt, T J

    1989-01-01

    To characterize fluid and ion shifts during prolonged whole-body immersion, 16 divers wearing dry suits completed four whole-body immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 msw. One immersion was conducted at 1000 (AM) and one at 2200 (PM) so that diurnal variations could be evaluated. Fifty-four hours separated the immersions, which lasted up to 6 h; 9 days separated each air saturation dive. Blood was collected before and after immersion; urine was collected for 12 h before, during, and after immersion for a total of 24 h. Plasma volume decreased significantly and to the same extent (approximately 17%) during both AM and PM immersions. Urine flow increased by 236.1 +/- 38.7 and 296.3 +/- 52.0%, urinary excretion of Na increased by 290.4 +/- 89.0 and 329.5 +/- 77.0%, K by 245.0 +/- 73.4 and 215.5 +/- 44.6%, Ca by 211.0 +/- 31.4 and 241.1 +/- 50.4%, Mg by 201.4 +/- 45.9 and 165.3 +/- 287%, and Zn by 427.8 +/- 93.7 and 301.9 +/- 75.4% during AM and PM immersions, respectively, compared with preimmersion. Urine flow and K excretion were significantly higher during the AM than PM. In summary, when subjects are immersed in cold water for prolonged periods, combined with a slow rate of body cooling afforded by thermal protection and enforced intermittent exercise, there is diuresis, decreased plasma volume, and increased excretions of Na, K, Ca, Mg, and Zn.

  20. Effects of immersion water temperature on whole-body fluid distribution in humans.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-09-01

    In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.

  1. Measuring participants' immersion in healthcare simulation: the development of an instrument.

    Science.gov (United States)

    Hagiwara, Magnus Andersson; Backlund, Per; Söderholm, Hanna Maurin; Lundberg, Lars; Lebram, Mikael; Engström, Henrik

    2016-01-01

    Immersion is important for simulation-based education; however, questionnaire-based instruments to measure immersion have some limitations. The aim of the present work is to develop a new instrument to measure immersion among participants in healthcare simulation scenarios. The instrument was developed in four phases: trigger identification, content validity scores, inter-rater reliability analysis and comparison with an existing immersion measure instrument. A modified Delphi process was used to develop the instrument and to establish validity and reliability. The expert panel consisted of 10 researchers. All the researchers in the team had previous experience of simulation in the health and/or fire and rescue services as researchers and/or educators and simulation designers. To identify triggers, the panel members independently screened video recordings from simulation scenarios. Here, a trigger is an event in a simulation that is considered a sign of reduced or enhanced immersion among simulation participants. The result consists of the Immersion Score Rating Instrument (ISRI). It contains 10 triggers, of which seven indicate reduced and three enhanced immersion. When using ISRI, a rater identifies trigger occurrences and assigns them strength between 1 and 3. The content validity analysis shows that all the 10 triggers meet an acceptable content validity index for items (I-CVI) standard. The inter-rater reliability (IRR) among raters was assessed using a two-way mixed, consistency, average-measures intra-class correlation (ICC). The ICC for the difference between weighted positive and negative triggers was 0.92, which indicates that the raters are in agreement. Comparison with results from an immersion questionnaire mirrors the ISRI results. In conclusion, we present a novel and non-intrusive instrument for identifying and rating the level of immersion among participants in healthcare simulation scenarios.

  2. Bonding capacity of the GFRP-S on strengthened RC beams after sea water immersion

    Science.gov (United States)

    Sultan, Mufti Amir; Djamaluddin, Rudy

    2017-11-01

    Construction of concrete structures that located in extreme environments are such as coastal areas will result in decreased strength or even the damage of the structures. As well know, chloride contained in sea water is responsible for strength reduction or structure fail were hence maintenance and repairs on concrete structure urgently needed. One popular method of structural improvements which under investigation is to use the material Glass Fibre Reinforced Polymer which has one of the advantages such as corrosion resistance. This research will be conducted experimental studies to investigate the bonding capacity behavior of reinforced concrete beams with reinforcement GFRP-S immersed in sea water using immersion time of one month, three months, six months and twelve months. Test specimen consists of 12 pieces of reinforced concrete beams with dimensions (150x200x3000) mm that had been reinforced with GFRP-S in the area of bending, the beam without immersion (B0), immersion one month (B1), three months (B3), six months (B6) and twelve months (B12). Test specimen were cured for 28 days before the application of the GFRP sheet. Test specimen B1, B3, B6 and B12 that have been immersed in sea water pool with a immersion time each 1, 3, 6 and 12 months. The test specimen without immersion test by providing a static load until it reaches the failure, to record data during the test strain gauge mounted on the surface of the specimen and the GFRP to collect the strain value. From the research it obvious that there is a decrease bonding capacity on specimens immersed for one month, three months, six months and twelve months against the test object without immersion of 8.85%; 8.89%; 9.33% and 11.04%.

  3. Effect of Degassing Treatment on the Interfacial Reaction of Molten Aluminum and Solid Steel

    Directory of Open Access Journals (Sweden)

    Triyono T.

    2017-06-01

    Full Text Available The gas porosity is one of the most serious problems in the casting of aluminum. There are several degassing methods that have been studied. During smelting of aluminum, the intermetallic compound (IMC may be formed at the interface between molten aluminum and solid steel of crucible furnace lining. In this study, the effect of degassing treatment on the formations of IMC has been investigated. The rectangular substrate specimens were immersed in a molten aluminum bath. The holding times of the substrate immersions were in the range from 300 s to 1500 s. Two degassing treatments, argon degassing and hexachloroethane tablet degassing, were conducted to investigate their effect on the IMC formation. The IMC was examined under scanning electron microscope with EDX attachment. The thickness of the IMC layer increased with increasing immersion time for all treatments. Due to the high content of hydrogen, substrate specimens immersed in molten aluminum without degasser had IMC layer which was thicker than others. Argon degassing treatment was more effective than tablet degassing to reduce the IMC growth. Furthermore, the hard and brittle phase of IMC, FeAl3, was formed dominantly in specimens immersed for 900 s without degasser while in argon and tablet degasser specimens, it was formed partially.

  4. Plasma Immersion Ion Implantation in Radio Frequency Plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Wyndham, E.

    2013-01-01

    Plasma immersion ion implantation (PIII) has attracted wide interests since it emulates conventional ion-beam ion implantation (IBII) in niche applications. For instance, the technique has very high throughput, the implantation time is independent of the sample size, and samples with an irregular shape can be implanted without complex beam scanning or sample manipulation. For uniform ion implantation and deposition on to different substrates, like silicon, stainless steel etc., a capacitive coupled Radio frequency (RF), 13.6 MHz, plasma is used. During the PIII process, the physical parameters which are expected to play crucial rule in the deposition process like RF power, Negative pulse voltage and pulse duration, gas type and gas mixture, gas flow rates and the implantation dose are studied. The ion dose is calculated by dynamic sheath model and the plasma parameters are calculated from the V-I characteristic and power balance equation by homogeneous model of rf plasma discharge considering Ohmic as well as Stochastic heating. The correlations between the yield of the implantation process and the physical parameters as well as plasma parameters are discussed. (author)

  5. Cyber entertainment system using an immersive networked virtual environment

    Science.gov (United States)

    Ihara, Masayuki; Honda, Shinkuro; Kobayashi, Minoru; Ishibashi, Satoshi

    2002-05-01

    Authors are examining a cyber entertainment system that applies IPT (Immersive Projection Technology) displays to the entertainment field. This system enables users who are in remote locations to communicate with each other so that they feel as if they are together. Moreover, the system enables those users to experience a high degree of presence, this is due to provision of stereoscopic vision as well as a haptic interface and stereo sound. This paper introduces this system from the viewpoint of space sharing across the network and elucidates its operation using the theme of golf. The system is developed by integrating avatar control, an I/O device, communication links, virtual interaction, mixed reality, and physical simulations. Pairs of these environments are connected across the network. This allows the two players to experience competition. An avatar of each player is displayed by the other player's IPT display in the remote location and is driven by only two magnetic sensors. That is, in the proposed system, users don't need to wear any data suit with a lot of sensors and they are able to play golf without any encumbrance.

  6. A young person's game: immersion and distancing in bar work.

    Science.gov (United States)

    Conway, Thomas; MacNeela, Pádraig

    2012-01-01

    Previous research indicates that bar workers report high levels of alcohol consumption, but the bar work experience itself has been little studied as a means to understand health threats associated with this job role. The subjective experience and meaning of bar work was explored in this study by interviewing current and ex-bar workers from a district in an Irish city that had a high density of bars and busy tourism industry. A total of 12 participants took part in focus groups (FGs) and seven in individual interviews. Four themes were identified in a thematic analysis. The central depiction of bar work was of an initial immersion in an intensive lifestyle characterised by heavy drinking, with subsequent distancing from the extremes of the lifestyle. The participants affiliated strongly with the bar work occupational identity, which included alcohol use in group scenarios for drinking during work, after work and on time off. The bar work lifestyle was most intense in the 'superpub' environment, characterised by permissive staff drinking norms and reported stress. Although an important identity, bar work was ultimately a transient role. The findings are considered in relation to research on occupation-specific stress and alcohol use, social identity and developmental needs in young adulthood.

  7. Immersion studies on candidate container alloys for the Tuff Repository

    International Nuclear Information System (INIS)

    Beavers, J.A.; Durr, C.L.

    1991-05-01

    Cortest Columbus Technologies (CC Technologies) is investigating the long-term performance of container materials used for high-level radioactive waste packages. This information is being developed for the Nuclear Regulatory Commission to aid in their assessment of the Department of Energy's application to construct a geologic repository for disposal of high-level radioactive waste. This report summarizes the results of exposure studies performed on two copper-base and two Fe-Cr-Ni alloys in simulated Tuff Repository conditions. Testing was performed at 90 degrees C in three environments; simulated J-13 well water, and two environments that simulated the chemical effects resulting from boiling and irradiation of the groundwater. Creviced specimens and U-bends were exposed to liquid, to vapor above the condensed phase, and to alternate immersion. A rod specimen was used to monitor corrosion at the vapor-liquid interface. The specimens were evaluated by electrochemical, gravimetric, and metallographic techniques following approximately 2000 hours of exposure. Results of the exposure tests indicated that all four alloys exhibited acceptable general corrosion rates in simulated J-13 well water. These rates decreased with time. Incipient pitting was observed under deposits on Alloy 825 and pitting was observed on both Alloy CDA 102 and Alloy CDA 715 in the simulated J-13 well water. No SCC was observed in U-bend specimens of any of the alloys in simulated J-13 well water. 33 refs., 48 figs., 23 tabs

  8. Ontological implications of being in immersive virtual environments

    Science.gov (United States)

    Morie, Jacquelyn F.

    2008-02-01

    The idea of Virtual Reality once conjured up visions of new territories to explore, and expectations of awaiting worlds of wonder. VR has matured to become a practical tool for therapy, medicine and commercial interests, yet artists, in particular, continue to expand the possibilities for the medium. Artistic virtual environments created over the past two decades probe the phenomenological nature of these virtual environments. When we inhabit a fully immersive virtual environment, we have entered into a new form of Being. Not only does our body continue to exist in the real, physical world, we are also embodied within the virtual by means of technology that translates our bodied actions into interactions with the virtual environment. Very few states in human existence allow this bifurcation of our Being, where we can exist simultaneously in two spaces at once, with the possible exception of meta-physical states such as shamanistic trance and out-of-body experiences. This paper discusses the nature of this simultaneous Being, how we enter the virtual space, what forms of persona we can don there, what forms of spaces we can inhabit, and what type of wondrous experiences we can both hope for and expect.

  9. Resident perspectives on communication training that utilizes immersive virtual reality.

    Science.gov (United States)

    Real, Francis J; DeBlasio, Dominick; Ollberding, Nicholas J; Davis, David; Cruse, Bradley; Mclinden, Daniel; Klein, Melissa D

    2017-01-01

    Communication skills can be difficult to teach and assess in busy outpatient settings. These skills are important for effective counseling such as in cases of influenza vaccine hesitancy. It is critical to consider novel educational methods to supplement current strategies aimed at teaching relational skills. An immersive virtual reality (VR) curriculum on addressing influenza vaccine hesitancy was developed using Kern's six-step approach to curriculum design. The curriculum was meant to teach best-practice communication skills in cases of influenza vaccine hesitancy. Eligible participants included postgraduate level (PL) 2 and PL-3 pediatric residents (n = 24). Immediately following the curriculum, a survey was administered to assess residents' attitudes toward the VR curriculum and perceptions regarding the effectiveness of VR in comparison to other educational modalities. A survey was administered 1 month following the VR curriculum to assess trainee-perceived impact of the curriculum on clinical practice. All eligible residents (n = 24) completed the curriculum. Ninety-two percent (n = 22) agreed or strongly agreed that VR simulations were like real-life patient encounters. Seventy-five percent (n = 18) felt that VR was equally effective to standardized patient (SP) encounters and less effective than bedside teaching (P training.

  10. Urban Image. Photography and Images Interactive Semi-immersive

    Directory of Open Access Journals (Sweden)

    Mauro Chiarella

    2009-12-01

    Full Text Available The traditional relation among photographs and drawing relates the study, the representation and the proyectualidad of settings and landscapes of cities, with a history of the urban image and its methods of elaboration. Since the lineal perspectives and the camera obscura of the vedutistas Italian of the 18th century; passing for the cylindrical panorama of the 19th century; the photographic collage of the vanguards of the 20th century and the contemporary resources of the digital photography, a continuity of the urban graphic speech is built oscillating: of the totality to the fragment, of the lineal conical perspective to the digital collage and of the images two-dimensional to the interactive and semi-immersive 3D image. With the potentiality that suggests the use of the digital photography for the relevamiento, study and proyectación of urban fragments an application developed is described partly in a Workshop International of the Universita di Bologna and a proposal of didactic methodology based on the reconstruction vectorial three-dimensional from spherical panorama 360º.

  11. Connect and immerse: a poetry of codes and signals

    Directory of Open Access Journals (Sweden)

    Jesper Olsson

    2012-06-01

    Full Text Available This article investigates how codes and signals were employed in avant-garde poetry and art in the 1960s, and how such attempts were performed in the wake of cybernetics and (partly through the use of new media technologies, such as the tape recorder and the computer. This poetry—as exemplified here by works by Åke Hodell, Peter Weibel, and Henri Chopin—not only employed new materials, media, and methods for the production of poems; it also transformed the interface of literature and the act of reading through immersion in sound, through the activation of different cognitive modes, and through an intersensorial address. On the one hand, this literary and artistic output can be seen as a response to the increasing intermedation (in Katherine Hayles's sense in culture and society during the last century. On the other hand, we might, as contemporary readers, return to these poetic works in order to use them as media archaeological tools that might shed light on the aesthetic transformations taking place within new media today.

  12. Coupled auralization and virtual video for immersive multimedia displays

    Science.gov (United States)

    Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian

    2003-04-01

    The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.

  13. Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor

    Science.gov (United States)

    Gole, Vitthal L.; Priya, Astha; Danao, Sanjay P.

    2017-12-01

    The textile and dye industries require an enormous amount of water for processing and produce a large volume of wastewater. Generated wastewater had potential hazards and a threat to the aquatic biota. The present work investigates the decolorization of brilliant green dye using a combination of two advanced oxidation techniques viz sonocatalysis and photocatalysis (immersed lamp) known as sonophotocatalysis (3 L capacity). The efficiency of decolorization is further improved in the presence of various additives viz. copper oxide, zinc oxide, and sodium chloride. The maximum decolorization of brilliant green (BG) (94.8% in 120 min) obtained in the presence of zinc oxide. The total organic carbon of the treated samples was measured to monitor complete mineralization of BG. The sonophotocatalytic process (in the presence of zinc oxide) shows maximum mineralization. Synergic combination of two oxidation processes increased the production of oxidizing radicals. Continuous cleaning of catalyst surface (due to sonolysis effect) improves the activity of the catalyst for photolysis operation. The present work is highly useful for the development of a sonophotocatalytic process.

  14. 'My Virtual Dream': Collective Neurofeedback in an Immersive Art Environment.

    Directory of Open Access Journals (Sweden)

    Natasha Kovacevic

    Full Text Available While human brains are specialized for complex and variable real world tasks, most neuroscience studies reduce environmental complexity, which limits the range of behaviours that can be explored. Motivated to overcome this limitation, we conducted a large-scale experiment with electroencephalography (EEG based brain-computer interface (BCI technology as part of an immersive multi-media science-art installation. Data from 523 participants were collected in a single night. The exploratory experiment was designed as a collective computer game where players manipulated mental states of relaxation and concentration with neurofeedback targeting modulation of relative spectral power in alpha and beta frequency ranges. Besides validating robust time-of-night effects, gender differences and distinct spectral power patterns for the two mental states, our results also show differences in neurofeedback learning outcome. The unusually large sample size allowed us to detect unprecedented speed of learning changes in the power spectrum (~ 1 min. Moreover, we found that participants' baseline brain activity predicted subsequent neurofeedback beta training, indicating state-dependent learning. Besides revealing these training effects, which are relevant for BCI applications, our results validate a novel platform engaging art and science and fostering the understanding of brains under natural conditions.

  15. Envelopments: immersion in and emergence from drug misuse.

    Science.gov (United States)

    Weegmann, Martin; Khantzian, Edward J

    2011-01-01

    Contemporary psychodynamic therapists, as contrasted with early ones, are more active and interactive, less dependent on interpretations, and more focused on affects, self-regulation, and interpersonal relations, with a premium placed on the therapeutic alliance. Evidence supports the utility and effectiveness of the psychodynamic paradigm. Two cases are presented that demonstrate how a well-trained psychodynamic therapist is able to effectively apply such an approach to individuals with substance use disorders, in one instance a client in early treatment still immersed in her addictions, and, in the second case a client in early abstinence emerging from a long standing dependency on alcohol and cocaine. The case material highlights the special sensitivities and practices required to address predisposing factors and resulting consequences associated with addictive disorders. Reflections by the therapist and the clients provide a basis to consider the nature of the clients' addictive involvements, a rationale for the therapist's interventions, and how client vulnerabilities are addressed in their attempts to recover from their addictions.

  16. Towards immersive designing of production processes using virtual reality techniques

    Directory of Open Access Journals (Sweden)

    Domagoj Buzjak

    2018-03-01

    Full Text Available The article provides a novel approach to the implementation of virtual reality within planning and design of manual processes and systems. The use of hardware and software required to perform different production - especially assembly - tasks in a virtual environment, using CAD parts as interactive elements, is presented. Considering the CAD parts, the format conversion problem is comprehensively described and solved using format conversion software to overcome the present poor data connectivity between the CAD system and VR hardware and software. Two examples of work processes have been made in a virtual environment: peg-in-hole and wall socket assembly. In the latter case, the traditional planning approach of manual assembly tasks using predetermined motion time system MTM-2 has been compared with a modern approach in which the assembly task is fully performed within a virtual environment. The comparison comprises a discussion on the assembly task execution times. In addition, general and specific advantages and disadvantages that arise in the immersive designing of production processes using virtual reality are presented, as well as reflections on teamwork and collaborative man-machine work. Finally, novel technologies are proposed to overcome the main problems that occur when implementing VR, such as time-consuming scene defining or tedious CAD software data conversion.

  17. Plasma immersion ion implantation: duplex layers from a single process

    International Nuclear Information System (INIS)

    Hutchings, R.; Collins, G.A.; Tendys, J.

    1992-01-01

    Plasma immersion ion implantation (PI 3 ) is an alternative non-line-of-sight technique for implanting ions directly from a plasma which surrounds the component to be treated. In contrast to plasma source ion implantation, the PI 3 system uses an inductively coupled r.f. plasma. It is shown that nitrogen can be retained during implantation at elevated temperatures, even for unalloyed steels. This allows controlled diffusion of nitrogen to greater depths, thereby improving the load bearing capacity of the implanted layer. Components can be heated directly, using the energy deposited by the incident ions during the pulsed implantation. The necessary temperature control can be accomplished simply by regulating the frequency and length of the high voltage pulses applied to the component. Chemical depth profiles and microstructural data obtained from H13 tool steel are used to show that PI 3 can, in a single process, effectively produce a duplex subsurface structure. This structure consists of an outer non-equilibrium layer typical of nitrogen implantation (containing in excess of 20 at.% nitrogen) backed by a substantial diffusion zone of much lower nitrogen content. The relationship between implantation temperature and the resultant subsurface microstructure is explored. (orig.)

  18. Development of a Submillimeter-Wavelength Immersion Grating Spectrometer

    Science.gov (United States)

    Phillips, T. G.

    2001-01-01

    The broad goal of this project was to develop a broadband, moderate-resolution spectrometer for submillimeter wavelengths. Our original approach was to build an immersion grating spectrometer, and as such, the first step was to identify the best material (lowest loss, highest index) for the grating medium, and to characterize its properties at the foreseen optical-bench operating temperature of 1.5 K. To this end, we put our initial efforts into upgrading an existing laboratory submillimeter Fourier transform spectrometer, which allowed us to carry out the requisite materials measurements. The associated cryogenic detector dewar was also redesigned and rebuilt to carry out this work. This dewar houses the 1.5 K detector and the filter wheel used in the materials characterization. Our goal was to have the beam propagate through the samples as uniformly as possible, so the optics were redesigned to allow for the samples to be traversed by a well-defined collimated beam. The optics redesign also placed the samples at an image of the aperture stop located within the FTS. After the rebuild, we moved into the testing phase.

  19. Medical student perceptions of an initial collaborative immersion experience.

    Science.gov (United States)

    House, Joseph B; Cedarbaum, Jacob; Haque, Fatema; Wheaton, Michael; Vredeveld, Jennifer; Purkiss, Joel; Moore, Laurel; Santen, Sally A; Daniel, Michelle

    2018-03-01

    Recent reviews of interprofessional education (IPE) highlight the need for innovative curricula focused on longitudinal clinical learning. We describe the development and early outcomes of the initial clinical experience (ICE), a longitudinal practice-based course for first-year medical students. While IPE courses focus on student-to-student interaction, ICE focuses on introducing students to interprofessional collaboration. Students attend 14 sessions at one of 18 different clinical sites. They work directly with different health professionals from among 17 possible professions, including nurses, pharmacists, social workers, and respiratory, occupational, and physical therapists. Between 2015 and 2016, 167 students completed the course, and 81 completed the end-of-course evaluation. Students agreed or strongly agreed that ICE meaningfully contributed to their understanding of healthcare teams and different professional roles (86%), improved their understanding of healthcare systems (84%), improved their ability to communicate with healthcare professionals (61%), and improved their ability to work on interprofessional teams (65%). Select themes from narrative comments suggest that clinical immersion improves understanding of professional roles, helps students understand their own future roles in healthcare teams, and increases awareness of and respect for other professionals, with the potential to change future practice. ICE may be a template for other schools wishing to expand their current educational offerings, by engaging learners in more authentic, longitudinal clinical experiences with practicing healthcare professionals.

  20. Fast Learning for Immersive Engagement in Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-25

    The fast computation which is critical for immersive engagement with and learning from energy simulations would be furthered by developing a general method for creating rapidly computed simplified versions of NREL's computation-intensive energy simulations. Created using machine learning techniques, these 'reduced form' simulations can provide statistically sound estimates of the results of the full simulations at a fraction of the computational cost with response times - typically less than one minute of wall-clock time - suitable for real-time human-in-the-loop design and analysis. Additionally, uncertainty quantification techniques can document the accuracy of the approximate models and their domain of validity. Approximation methods are applicable to a wide range of computational models, including supply-chain models, electric power grid simulations, and building models. These reduced-form representations cannot replace or re-implement existing simulations, but instead supplement them by enabling rapid scenario design and quality assurance for large sets of simulations. We present an overview of the framework and methods we have implemented for developing these reduced-form representations.

  1. How 3D immersive visualization is changing medical diagnostics

    Science.gov (United States)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  2. Assessment of radiation awareness training in immersive virtual environments

    Science.gov (United States)

    Whisker, Vaughn E., III

    The prospect of new nuclear power plant orders in the near future and the graying of the current workforce create a need to train new personnel faster and better. Immersive virtual reality (VR) may offer a solution to the training challenge. VR technology presented in a CAVE Automatic Virtual Environment (CAVE) provides a high-fidelity, one-to-one scale environment where areas of the power plant can be recreated and virtual radiation environments can be simulated, making it possible to safely expose workers to virtual radiation in the context of the actual work environment. The use of virtual reality for training is supported by many educational theories; constructivism and discovery learning, in particular. Educational theory describes the importance of matching the training to the task. Plant access training and radiation worker training, common forms of training in the nuclear industry, rely on computer-based training methods in most cases, which effectively transfer declarative knowledge, but are poor at transferring skills. If an activity were to be added, the training would provide personnel with the opportunity to develop skills and apply their knowledge so they could be more effective when working in the radiation environment. An experiment was developed to test immersive virtual reality's suitability for training radiation awareness. Using a mixed methodology of quantitative and qualitative measures, the subjects' performances before and after training were assessed. First, subjects completed a pre-test to measure their knowledge prior to completing any training. Next they completed unsupervised computer-based training, which consisted of a PowerPoint presentation and a PDF document. After completing a brief orientation activity in the virtual environment, one group of participants received supplemental radiation awareness training in a simulated radiation environment presented in the CAVE, while a second group, the control group, moved directly to the

  3. In Situ Demonstration and Characteristic Analysis of the Protease Using Substrate Immersing Zymography.

    Science.gov (United States)

    He, HaiLun; Li, Hao; Liu, Dan

    2017-01-01

    Zymography, the detection of proteolytic activities on the basis of protein substrate degradation, has been a technique described in the literature for at least in the past 50 years. In this study, we used substrate immersing zymography to analyze proteolysis of proteases. Instead of being directly added into a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel, the substrates were added into the immersing solution after electrophoresis. With substrate immersing zymography, some characters of proteases, such as enzyme forms, potential proteolytic activity, molecular weights, presence of complexes, and potentially active enzyme fragments in complex biological samples, can be determined.

  4. Measurement Tools for the Immersive Visualization Environment: Steps Toward the Virtual Laboratory.

    Science.gov (United States)

    Hagedorn, John G; Dunkers, Joy P; Satterfield, Steven G; Peskin, Adele P; Kelso, John T; Terrill, Judith E

    2007-01-01

    This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

  5. The value of immersion hand radiography in soft tissue changes of musculoskeletal disorders

    International Nuclear Information System (INIS)

    Ngo, C.; Yaghmai, I.

    1988-01-01

    Immersion hand radiographs were performed on 25 patients with various clinical presentations and compared to plain radiographic studies of the hands. The immersion technique is superior in outlining the skin, subcutaneous fat layers, and fat layers between muscle planes. More important, this technique highlights the tendons and soft tissue components of the joint, which are hardly seen on standard hand radiographs. Immersion studies are therefore useful, both in the early diagnosis of erosive arthritis and in the follow-up of the course of the disease. They are recommended as an adjunct to conventional hand radiography in musculoskeletal disorders with soft tissue involvement. (orig.)

  6. Some recent developments of the immersed interface method for flow simulation

    Science.gov (United States)

    Xu, Sheng

    2017-11-01

    The immersed interface method is a general methodology for solving PDEs subject to interfaces. In this talk, I will give an overview of some recent developments of the method toward the enhancement of its robustness for flow simulation. In particular, I will present with numerical results how to capture boundary conditions on immersed rigid objects, how to adopt interface triangulation in the method, and how to parallelize the method for flow with moving objects. With these developments, the immersed interface method can achieve accurate and efficient simulation of a flow involving multiple moving complex objects. Thanks to NSF for the support of this work under Grant NSF DMS 1320317.

  7. Entre l’immersion dans l’image cinématographique et l’immersion totale

    Directory of Open Access Journals (Sweden)

    Marcin Sobieszczanski

    2010-12-01

    Full Text Available Le cinéma organise autour de ses contraintes techniques, relatives à la prise de vue et à l’architecture des salles de projection, une écriture narrative capable de produire un effet à la fois de réel et de fiction, effet qui aspire le spectateur dans un état de suspension et d’abolition de toutes contraintes spatiotemporelles. Mais le genre filmique s’épuise, depuis ses premiers balbutiements et jusqu’à son apogée, entre 1895 et la fin des années 70, évoluant vers une « naturalisation » de l’espace d’acquisition et de visionnement de l’œuvre vidéo-filmique. Les projections splitscreen et multiscreen, et l’écriture scénaristique consécutive à ces techniques, présentent, depuis la fin des années 90, une étape intermédiaire de cette évolution, qui dans un proche avenir, avec différentes déclinaisons et applications de la 3D, s’achemine, en suivant d’ailleurs une tendance anthropologique, vers l’immersion complète ou partielle dans l’image, offrant de surcroit, de nouvelles possibilités d’interaction spectatorielle. Prépare-t-on alors une nouvelle technique narrative ?The cinema organizes around its technical constraints, relative to the recording and to the architecture of projection rooms, a narrative writing capable of producing simultaneousely an effect of both reality and fiction, an effect which puts the spectator in a state of suspension and abolition of all spatiotemporal constraints. But at the same time the cinematic genre has exhausted itself since its beginnings and until its apogee, between 1895 and the end of the 70s, evolving towards a "naturalization" of the space of acquisition and viewing of the video-cinematic work. The projections splitscreen and multiscreen, and the script writing consecutive to these techniques, present, since the end of the 90s, an intermediate stage of this evolution, which will move in the near future, with various declinations and applications of the

  8. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  9. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  10. Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins.

    Science.gov (United States)

    Teulier, Loïc; Rey, Benjamin; Tornos, Jérémy; Le Coadic, Marion; Monternier, Pierre-Axel; Bourguignon, Aurore; Dolmazon, Virginie; Romestaing, Caroline; Rouanet, Jean-Louis; Duchamp, Claude; Roussel, Damien

    2016-07-01

    The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.

  11. Going Outside While Staying Inside - Exercise Motivation with Immersive vs. Non–Immersive Recreational Virtual Environment Augmentation for Older Adult Nursing Home Residents

    DEFF Research Database (Denmark)

    Bruun-Pedersen, Jon Ram; Serafin, Stefania; Kofoed, Lise

    2016-01-01

    Virtual technology and immersive experiences are not very often associated with older adults. Recent studies suggest that exercise augmentation using flat screen-based virtual environments, which allow nursing home residents to experience virtual places different from the nursing home, can increase...... the intrinsic motivation of nursing home residents. In this paper, we increase the immersive properties of such augmentation through an Oculus Rift Head Mounted Display, to evaluate the effect on the older adults’ sense of presence, if it has any relation to the level of intrinsic motivation to exercise...

  12. Influence of cold-water immersion on limb blood flow after resistance exercise.

    Science.gov (United States)

    Mawhinney, Chris; Jones, Helen; Low, David A; Green, Daniel J; Howatson, Glyn; Gregson, Warren

    2017-06-01

    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P lower (55%) than the control post-immersion (P water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise.

  13. An Analysis of VR Technology Used in Immersive Simulations with a Serious Game Perspective.

    Science.gov (United States)

    Menin, Aline; Torchelsen, Rafael; Nedel, Luciana

    2018-03-01

    Using virtual environments (VEs) is a safer and cost-effective alternative to executing dangerous tasks, such as training firefighters and industrial operators. Immersive virtual reality (VR) combined with game aspects have the potential to improve the user experience in the VE by increasing realism, engagement, and motivation. This article investigates the impact of VR technology on 46 immersive gamified simulations with serious purposes and classifies it towards a taxonomy. Our findings suggest that immersive VR improves simulation outcomes, such as increasing learning gain and knowledge retention and improving clinical outcomes for rehabilitation. However, it also has limitations such as motion sickness and restricted access to VR hardware. Our contributions are to provide a better understanding of the benefits and limitations of using VR in immersive simulations with serious purposes, to propose a taxonomy that classifies them, and to discuss whether methods and participants profiles influence results.

  14. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  15. Observations on biofilm bacteria isolated from aluminium panels immersed in estuarine waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    Microfouling biomass generally increased on aluminium panels immersed in the surface waters of a tropical estuary over a period of 30 d. A hundred bacterial colonies were randomly isolated, purified and morphologically, physiologically...

  16. [Dry immersion effects on the mechanisms of metabolic-reflex regulation of hemodynamics during muscular work].

    Science.gov (United States)

    Bravyĭ, Ia R; Bersenev, E Iu; Missina, S S; Borovik, A S; Sharova, A P; Vinogradova, O L

    2008-01-01

    Effects of 4-d dry immersion on metabolic-reflex regulation of hemodynamics were evaluated during local static work (30% of maximum voluntary effort) of the talocrural extensors. One group of immersed test-subjects received low-frequency electrostimulation of leg muscles to offset the immersion effect on EMG of working muscles. Metabolic-reflex regulation was evaluated through comparison of cardiovascular responses to physical tests with and w/o post-exercise vascular occlusion. Immersion vaguely increased heart rate and reduced systolic arterial pressure in resting subjects; however, it did not have a distinct effect on arterial pressure and HR during muscular work or metabolic-reflex potentiation of hemodynamic shifts.

  17. Evaluation of knowledge transfer in an immersive virtual learning environment for the transportation community.

    Science.gov (United States)

    2014-05-01

    Immersive Virtual Learning Environments (IVLEs) are extensively used in training, but few rigorous scientific investigations regarding the : transfer of learning have been conducted. Measurement of learning transfer through evaluative methods is key ...

  18. Degradation of Epoxy-Steel Single Lap Joints Immersed in Water

    DEFF Research Database (Denmark)

    Goglio, L; Rezaei, Mohsen

    2015-01-01

    Exposure to environmental factors, especially moisture, is recognized as the major cause of degradation of adhesive joints. In this work, complementing a previous study on exposure to moisture, single lap joints were subjected to immersion in water, up to five weeks, at room temperature and 50 °C....... The material of the adherends was mild steel, and the adhesive was a bi-component epoxy. The specimens were fabricated using the open-face technique. Mechanical testing at the end of the relevant period of immersion showed an initial loss of ultimate load, after one week at 50 °C or two at room temperature......; then, the strength remained practically constant over the remaining time. The loss was more accentuated after immersion at 50 °C, about 70%, than at room temperature, about 30%. Also a reduction in stiffness of the joints was measured, again dramatic (about 70%) after immersion at 50 °C, moderate...

  19. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy

    International Nuclear Information System (INIS)

    Hosseini, M.; Danesh Manesh, H.

    2010-01-01

    In this research, ultrafine grained strips of commercial pure strain hardenable aluminum (AA1050) were produced by accumulative roll-bonding (ARB) technique. These strips were joined by friction stir welding (FSW) in immersed (underwater) and conventional (in-air) conditions to investigate the effect of the immersion method on the microstructure and mechanical properties of the joint, aiming to reduce the deterioration of the mechanical properties of the joint. Transmission electron microscopy and X-ray diffraction analyses were used to evaluate the microstructure, showing smaller grains and subgrains in the stir zone of the immersed FSW condition with respect to the conventional FSW method. The hardness and tensile properties of the immersed friction stir welded sample and ARBed base metal show more similarity compared to the conventional friction stir welded sample. Moreover, the aforementioned method can result in the enhancement of the superplasticity tendency of the material.

  20. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling