WorldWideScience

Sample records for solid hydrogen layers

  1. Emission of muonic hydrogen isotopes from solid hydrogen layers into vacuum

    International Nuclear Information System (INIS)

    Marshall, G.M.; Bailey, J.M.; Beer, G.A.

    1989-10-01

    An attempt was made to create in vacuum free muonic hydrogen atoms, muonic protium and muonic deuterium. The method was based on slowing a beam of μ - in a layer of solid hydrogen in vacuum frozen to a cold gold foil substrate. Muonic hydrogen formed near the surface is emitted from it into the vacuum with an energy spectrum determined by the formation and subsequent scattering processes. For a typical total cross section of 10 -19 cm 2 the interaction probability is 0.43 μm -1 . For emission at an energy of order 1 eV, the muonic atom travels about 10 mm in vacuum prior to decay. No corresponding signal was observed with a deuterium layer of 6 mg/cm 2 . The natural abundance of deuterons in hydrogen leads to transfer of the muon in a mean time of about 500 ns, and because of the reduced mass difference, the m u - d obtains a kinetic energy of 45 eV, from which the atom will scatter and slow until the energy of the Ramsauer-Townsend minimum is reached and the hydrogen film becomes nearly transparent to μ - d. The Ramsauer-Townsend effect is also expected to show up for tritium in protium, which means a source of μ - t in vacuum should be possible

  2. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  3. Composite hydrogen-solid methane moderators

    International Nuclear Information System (INIS)

    Picton, D.; Bennington, S.; Ansell, S.; Fernandez-Garcia, J.; Broome, T.

    2004-01-01

    This paper describes the results of Monte-Carlo calculations for a coupled moderator on a low-power pulsed neutron spallation source and is part of the design study for a second target station for the ISIS spallation source. Various options were compared including hydrogen, solid methane, grooving the solid methane and compound moderators made of hydrogen in front of solid methane. To maximise the neutron current at low energies two strategies appear to emerge from the calculations. For instruments that view a large area of moderator surface a layer of hydrogen in front of a thin solid-methane moderator is optimum, giving a gain of about a factor 10 relative to the current liquid hydrogen moderator on the existing ISIS tantalum target. For instruments that only view a restricted area higher flux, corresponding to a gain of 13.5, can be achieved with the use of a single groove or re-entrant hole in the moderator. (orig.)

  4. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    Science.gov (United States)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  5. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  6. Enhancing atom densities in solid hydrogen by isotopic substitution

    International Nuclear Information System (INIS)

    Collins, G.W.; Souers, P.C.; Mapoles, E.R.; Magnotta, F.

    1991-01-01

    Atomic hydrogen inside solid H 2 increases the energy density by 200 MegaJoules/m 3 , for each percent mole fraction stored. How many atoms can be stored in solid hydrogen? To answer this, we need to know: (1) how to produce and trap hydrogen atoms in solid hydrogen, (2) how to keep the atoms from recombining into the ground molecular state, and (3) how to measure the atom density in solid hydrogen. Each of these topics will be addressed in this paper. Hydrogen atoms can be trapped in solid hydrogen by co-condensing atoms and molecules, external irradiation of solid H 2 , or introducing a radioactive impurity inside the hydrogen lattice. Tritium, a heavy isotope of hydrogen, is easily condensed as a radioactive isotopic impurity in solid H 2 . Although tritium will probably not be used in future rockets, it provides a way of applying a large, homogenious dose to solid hydrogen. In all of the data presented here, the atoms are produced by the decay of tritium and thus knowing how many atoms are produced from the tritium decay in the solid phase is important. 6 refs., 6 figs

  7. Hydrogen gas driven permeation through tungsten deposition layer formed by hydrogen plasma sputtering

    International Nuclear Information System (INIS)

    Uehara, Keiichiro; Katayama, Kazunari; Date, Hiroyuki; Fukada, Satoshi

    2015-01-01

    Highlights: • H permeation tests for W layer formed by H plasma sputtering are performed. • H permeation flux through W layer is larger than that through W bulk. • H diffusivity in W layer is smaller than that in W bulk. • The equilibrium H concentration in W layer is larger than that in W bulk. - Abstract: It is important to evaluate the influence of deposition layers formed on plasma facing wall on tritium permeation and tritium retention in the vessel of a fusion reactor from a viewpoint of safety. In this work, tungsten deposition layers having different thickness and porosity were formed on circular nickel plates by hydrogen RF plasma sputtering. Hydrogen permeation experiment was carried out at the temperature range from 250 °C to 500 °C and at hydrogen pressure range from 1013 Pa to 101,300 Pa. The hydrogen permeation flux through the nickel plate with tungsten deposition layer was significantly smaller than that through a bare nickel plate. This indicates that a rate-controlling step in hydrogen permeation was not permeation through the nickel plate but permeation though the deposition layer. The pressure dependence on the permeation flux differed by temperature. Hydrogen permeation flux through tungsten deposition layer is larger than that through tungsten bulk. From analysis of the permeation curves, it was indicated that hydrogen diffusivity in tungsten deposition layer is smaller than that in tungsten bulk and the equilibrium hydrogen concentration in tungsten deposition layer is enormously larger than that in tungsten bulk at same hydrogen pressure.

  8. Theoretical interpretation of forbidden transitions in solid hydrogen

    International Nuclear Information System (INIS)

    Balasubramanian, T.K.

    1997-01-01

    In particular, solid hydrogen as the archetypical molecular quantum solid, seems to present endless opportunities and challenges to experimentalists and theorists alike. This chapter briefly reviews certain aspects of infrared spectrum of solid hydrogen and outline how the various spectral features may be interpreted

  9. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  10. Solid hydrogen-plasma interaction

    International Nuclear Information System (INIS)

    Joergensen, L.W.

    1976-03-01

    A review of the need of refuelling fusion reactors and of the possible refuelling methods, in particular injection of pellets of solid hydrogen isotopes, is given. The interaction between hydrogen pellets and a fusion plasma is investigated and a theoretical model is given. From this it is seen that the necessary injected speed is above 10 4 m/sec. Experiments in which hydrogen pellets are interacting with a rotating test plasma (puffatron plasma) is described. The experimental results partly verify the basic ideas of the theoretical model. (Auth.)

  11. Layered vanadyl (IV) nitroprusside: Magnetic interaction through a network of hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Gil, D.M. [Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); Osiry, H. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Pomiro, F.; Varetti, E.L. [CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 and 115, 1900, La Plata (Argentina); Carbonio, R.E. [INFIQC – CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq, Medina Allende, Ciudad Universitaria, X5000HUA Córdoba (Argentina); Alejandro, R.R. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, México (Mexico); Ben Altabef, A. [INQUINOA-UNT-CONICET, Instituto de Química Física, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Lorenzo 456, T4000CAN San Miguel de Tucumán (Argentina); and others

    2016-07-15

    The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN){sub 5}NO]·2H{sub 2}O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna2{sub 1} space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the V atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····O{sub H2O}, OH····N{sub CN}, and OH····O{sub NO} hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K. - Graphical abstract: Coordination environment for the metals in vanadyl (II) nitroprusside dihydrate. Display Omitted - Highlights: • Crystal structure of vanadyl nitroprusside dehydrate. • Network of hydrogen bonds. • Magnetic interactions through a network of hydrogen bonds. • Layered transition metal nitroprussides.

  12. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  13. Chemical storage of hydrogen in few-layer graphene

    Science.gov (United States)

    Subrahmanyam, K. S.; Kumar, Prashant; Maitra, Urmimala; Govindaraj, A.; Hembram, K. P. S. S.; Waghmare, Umesh V.; Rao, C. N. R.

    2011-01-01

    Birch reduction of few-layer graphene samples gives rise to hydrogenated samples containing up to 5 wt % of hydrogen. Spectroscopic studies reveal the presence of sp3 C-H bonds in the hydrogenated graphenes. They, however, decompose readily on heating to 500 °C or on irradiation with UV or laser radiation releasing all the hydrogen, thereby demonstrating the possible use of few-layer graphene for chemical storage of hydrogen. First-principles calculations throw light on the mechanism of dehydrogenation that appears to involve a significant reconstruction and relaxation of the lattice. PMID:21282617

  14. Solid Aluminum Borohydrides for Prospective Hydrogen Storage.

    Science.gov (United States)

    Dovgaliuk, Iurii; Safin, Damir A; Tumanov, Nikolay A; Morelle, Fabrice; Moulai, Adel; Černý, Radovan; Łodziana, Zbigniew; Devillers, Michel; Filinchuk, Yaroslav

    2017-12-08

    Metal borohydrides are intensively researched as high-capacity hydrogen storage materials. Aluminum is a cheap, light, and abundant element and Al 3+ can serve as a template for reversible dehydrogenation. However, Al(BH 4 ) 3 , containing 16.9 wt % of hydrogen, has a low boiling point, is explosive on air and has poor storage stability. A new family of mixed-cation borohydrides M[Al(BH 4 ) 4 ], which are all solid under ambient conditions, show diverse thermal decomposition behaviors: Al(BH 4 ) 3 is released for M=Li + or Na + , whereas heavier derivatives evolve hydrogen and diborane. NH 4 [Al(BH 4 ) 4 ], containing both protic and hydridic hydrogen, has the lowest decomposition temperature of 35 °C and yields Al(BH 4 ) 3 ⋅NHBH and hydrogen. The decomposition temperatures, correlated with the cations' ionic potential, show that M[Al(BH 4 ) 4 ] species are in the most practical stability window. This family of solids, with convenient and versatile properties, puts aluminum borohydride chemistry in the mainstream of hydrogen storage research, for example, for the development of reactive hydride composites with increased hydrogen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optical and thermal energy discharge from tritiated solid hydrogen

    International Nuclear Information System (INIS)

    Magnotta, F.; Mapoles, E.R.; Collins, G.W.; Souers, P.C.

    1991-01-01

    The authors are investigating mechanisms of energy storage and release in tritiated solid hydrogens, by a variety of techniques including ESR, NMR and thermal and optical emission. The nuclear decay of a triton in solid hydrogen initiates the conversion of nuclear energy into stored chemical energy by producing unpaired hydrogen atoms which are trapped within the molecular lattice. The ability to store large quantities of atoms in this manner has been demonstrated and can serve as a basis for new forms of high energy density materials. This paper presents preliminary results of a study of the optical emission from solid hydrogen containing tritium over the visible and near infrared (NIR) spectral regions. Specifically, they have studied optical emission from DT and T 2 using CCD, silicon diode and germanium diode arrays. 8 refs., 6 figs

  16. Ultrahigh-pressure transitions in solid hydrogen

    International Nuclear Information System (INIS)

    Mao, H.; Hemley, R.J.

    1994-01-01

    During the past five years, major progress has been made in the experimental study of solid hydrogen at ultrahigh pressures as a result of developments in diamond-cell technology. Pressures at which metallization has been predicted to occur have been reached (250--300 Gigapascals). Detailed studies of the dynamic, structural, and electronic properties of dense hydrogen reveal a system unexpectedly rich in physical phenomena, exhibiting a variety of transitions at ultrahigh pressures. This colloquium explores the study of dense hydrogen as an archetypal problem in condensed-matter physics

  17. Theory of nuclear quadrupole interactions in solid hydrogen fluoride

    International Nuclear Information System (INIS)

    Mohamed, N.S.; Sahoo, N.; Das, T.P.; Kelires, P.C.

    1990-01-01

    The nuclear quadrupole interaction of 19 F * (I=5/2) nucleus in solid hydrogen fluoride has been studied using the Hartree Fock cluster technique to understand the influence of both intrachain hydrogen bonding effects and the weak interchain interaction. On the basis of our investigations, the 34.04 MHz coupling constant observed by TDPAD measurements has been ascribed to the bulk solid while the observed 40.13 MHz coupling constant is suggested as arising from a small two- or three-molecule cluster produced during the proton irradiation process. Two alternate explanations are offered for the origin of coupling constants close to 40 MHz in a number of solid hydrocarbons containing hydrogen and fluorine ligands. (orig.)

  18. A clean measurement of the hydrogen retardation of the rate of solid phase epitaxy in silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1999-01-01

    The rate retarding effects of the impurity hydrogen on solid phase epitaxy (SPE) in silicon have yet to be completely understood. Existing measurements of this behaviour do not coincide exactly, however, several features have attained prominence. Firstly, a linear decrease in the SPE rate is detected up until a certain concentration of hydrogen. Subsequent to this point the rate remains almost constant at around half the intrinsic rate. It is conjectured that the hydrogen bonds to and passivates the defects whose agency enables the incorporation of atoms from the amorphous phase to the crystalline. This rate reduction increases until the defect population is saturated. At this point the reduction in rate ceases. Secondly, a dependence on temperature has not been consolidated, in contrast with the trends observed with the doping species. Here a method is proposed for producing a controlled concentration of hydrogen for the advancing amorphous/crystalline interface to encounter during epitaxy. A bubble layer is formed in crystalline silicon approximately 0.6μm beneath the surface through the implantation of hydrogen at 65 keV with fluences of 4 x 10 16 /cm 2 and 3 x 10 16 /cm 2 and annealing for 1 hour at 850 deg C in dry argon. The anneal doesn't out gas all the introduced hydrogen, leaving a remnant gas pressure in the bubbles. The hydrogen implants at the two fluences should yield two samples with different amounts of hydrogen trapped in the bubbles. A buried amorphous layer is created to encompass the bubble layer containing this residual contaminant through silicon self implantation at appropriate energies and fluences. The progress of the front interface of the buried amorphous layer is monitored by time resolved reflectivity (TRR) as SPE is effected at various temperatures

  19. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  20. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  1. Equation of state of solid hydrogen at 0 deg K. A bibliography

    International Nuclear Information System (INIS)

    Masse, J.-L.

    1976-02-01

    A bibliography on solid hydrogen at 0 deg K and its equation of state is presented. The isotopic derivatives of H 2 , such as D 2 , HD... have been also considered. Both phases of solid hydrogen have been studied: the molecular phase, stable at low pressure, and the hypothetical metallic phase which must be stable at high pressure. The study of the molecular phase is preceded by a study of the (H 2 ,H 2 ) system of two interacting H 2 , molecules, the knowledge of this interaction being necessary for the evaluation of the properties of the molecular solid phase. The three systems: (H 2 ,H 2 ) and molecular solid and metallic hydrogen have been considered from the experimental and theoretical points of view. The properties of these systems, the measurement or the calculation of which are described, have been chosen on account of their usefulness for the research of the equation of state of molecular or metallic solid hydrogen. Different interaction potentials of two hydrogen molecules and different equations of state of molecular solid hydrogen are given. Some theoretical studies are proposed [fr

  2. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  3. Hydrogen permeation resistant layers for liquid metal reactors

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented

  4. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  5. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

    International Nuclear Information System (INIS)

    Guo Feng; Hu Hai-Quan; Zhang Hong; Cheng Xin-Lu

    2014-01-01

    To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC–DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra- and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter- and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C–H bond is observed in solid RDX, which may lead to further decomposition and even detonation. (condensed matter: structural, mechanical, and thermal properties)

  6. Evidence for Bulk Ripplocations in Layered Solids

    Science.gov (United States)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  7. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  8. Interaction of GaN epitaxial layers with atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S

    2004-08-15

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H{sub 2} plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states.

  9. Interaction of GaN epitaxial layers with atomic hydrogen

    International Nuclear Information System (INIS)

    Losurdo, M.; Giangregorio, M.M.; Capezzuto, P.; Bruno, G.; Namkoong, G.; Doolittle, W.A.; Brown, A.S.

    2004-01-01

    GaN surface passivation processes are still under development and among others hydrogen treatments are investigated. In this study, we use non-destructive optical and electrical probes such as spectroscopic ellipsometry (SE) and surface potential Kelvin probe microscopy (SP-KPM) in conjunction with non-contact atomic force microscopy (AFM) for the study of the different reactivity of Ga-polar and N-polar GaN epitaxial layers with atomic hydrogen. The GaN epitaxial layers are grown by molecular beam epitaxy on sapphire (0 0 0 1) substrates, and GaN and AlN buffer layers are used to grow N-polar and Ga-polar films, respectively. The atomic hydrogen is produced by a remote rf (13.56 MHz) H 2 plasma in order to rule out any ion bombardment of the GaN surface and make the interaction chemical. It is found that the interaction of GaN surfaces with atomic hydrogen depends on polarity, with N-polar GaN exhibiting greater reactivity. Furthermore, it is found that atomic hydrogen is effective in the passivation of grain boundaries and surface defects states

  10. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  11. Nano-porous inorganic-organic hybrid solids: some new materials for hydrogen storage?

    International Nuclear Information System (INIS)

    Serre, Ch.; Loiseau, Th.; Devic, T.; Ferey, G.; Latroche, M.; Llewellyn, Ph.; Chang, J.S.

    2007-01-01

    Recently have been studied chromium and aluminium carboxylates MIL-53(Cr, Al), formed from an assembly of octahedrons chains and for hybrid solids formed with octahedrons trimers (MIL-100 and MIL-101). The compounds MIL-53(Cr, Al) are microporous (φ ∼ 8 Angstroms, while the solids MIL-100 and MIL-101 have very large porous volumes (V ∼ 380-700000 (Angstroms) 3 ), meso-pores (φ ∼ 25-34 Angstroms) and a zeolitic architecture. The resulting specific surface areas are important (between 1000 m 2 .g -1 for the MIL-53 solids, until 4000 m 2 .g -1 for the MIL-101 compound. Here is presented their hydrogen adsorption properties, at 77 K and 298 K. The hydrogen adsorption kinetics has been tested on the MIL-53(Cr) solid at 77 K. Hydrogen adsorption micro-calorimetry experiments have been carried out on these solids between 0 and 1 bar in order to obtain data on the strongest interactions between hydrogen and the porous basic structure. (O.M.)

  12. Nano-porous inorganic-organic hybrid solids: some new materials for hydrogen storage?; Les solides hybrides inorganiques-organiques nanoporeux: de nouveaux materiaux pour le stockage de l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    Serre, Ch.; Loiseau, Th.; Devic, T.; Ferey, G. [Institut Lavoisier, UMR CNRS 8180, 78 - Versailles (France); Latroche, M. [Laboratoire de Chimie Metallurgique des Terres Rares (LCMTR), UPR 209, 94 - Thiais (France); Llewellyn, Ph. [Universite de Provence, Madirel, 13 - Marseille (France); Chang, J.S. [KRICT, Daejon (Korea, Republic of)

    2007-07-01

    Recently have been studied chromium and aluminium carboxylates MIL-53(Cr, Al), formed from an assembly of octahedrons chains and for hybrid solids formed with octahedrons trimers (MIL-100 and MIL-101). The compounds MIL-53(Cr, Al) are microporous ({phi} {approx} 8 Angstroms, while the solids MIL-100 and MIL-101 have very large porous volumes (V {approx} 380-700000 (Angstroms){sup 3}), meso-pores ({phi} {approx} 25-34 Angstroms) and a zeolitic architecture. The resulting specific surface areas are important (between 1000 m{sup 2}.g{sup -1} for the MIL-53 solids, until 4000 m{sup 2}.g{sup -1} for the MIL-101 compound. Here is presented their hydrogen adsorption properties, at 77 K and 298 K. The hydrogen adsorption kinetics has been tested on the MIL-53(Cr) solid at 77 K. Hydrogen adsorption micro-calorimetry experiments have been carried out on these solids between 0 and 1 bar in order to obtain data on the strongest interactions between hydrogen and the porous basic structure. (O.M.)

  13. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  14. Investigation of solid-phase hydrogenation of amino acids and peptides

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Myasoedov, N.F.; Zajtsev, D.A.; Lubnin, M.Yu.; Tatur, V.Yu.; Kozik, V.S.; Dorokhova, E.M.; Rozenberg, S.N.

    1990-01-01

    The possibility of synthesizing amino acids and peptides multiply labelled with tritium or deuterium by the method of solid-phase isotopic exchange with gaseous hydrogen isotopes was verified. Establishment of the isotopic hydrogen equilibrium between the gaseous phase and the solid phase formed by the amino acid molecules was found experimentally. The activation energy of the isotopic exchange is 13 kcal/mol. A mathematical model was set up for the isotopic exchange with a probable substitution of hydrogen atoms. Uniformly labelled amino acids were obtained in a high optical purity and with 80 to 90% hydrogen substitution by deuterium and tritium. Tritiated peptides were prepared in high yields at molar activities of 1.5 to 3.7 TBq/mmol. (author). 4 tabs

  15. Isotopic and spin-nuclear effects in solid hydrogens (Review Article)

    Science.gov (United States)

    Freiman, Yuri A.; Crespo, Yanier

    2017-12-01

    The multiple isotopic family of hydrogens (H2, HD, D2, HT, DT, T2) due to large differences in the de Boer quantum parameter and inertia moments displays a diversity of pronounced quantum isotopic solid-state effects. The homonuclear members of this family (H2, D2, T2) due to the permutation symmetry are subjects of the constraints of quantum mechanics which link the possible rotational states of these molecules to their total nuclear spin giving rise to the existence of two spin-nuclear modifications, ortho- and parahydrogens, possessing substantially different properties. Consequently, hydrogen solids present an unique opportunity for studying both isotope and spin-nuclear effects. The rotational spectra of heteronuclear hydrogens (HD, HT, DT) are free from limitations imposed by the permutation symmetry. As a result, the ground state of these species in solid state is virtually degenerate. The most dramatic consequence of this fact is an effect similar to the Pomeranchuk effect in 3He which in the case of the solid heteronuclear hydrogens manifests itself as the reentrant broken symmetry phase transitions. In this review article we discuss thermodynamic and kinetic effects pertaining to different isotopic and spin-nuclear species, as well as problems that still remain to be solved.

  16. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  17. Evidence for vitreous type orientational ordering in solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Devoret, M.

    1982-09-01

    This shown a new region in the concentration-temperature phase diagram for solid mixtures of ortho and para-hydrogen. This region is characterized by a vitreous type orientational, ordering, with the quadrupoles of the ortho molecules frozen in a random fashion. This new vitreous state is called a quadrupolar glass, with the degrees of freedom of quadrupolar moments frozen in solid hydrogen [fr

  18. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  19. Hydrogen and helium trapping in tungsten deposition layers formed by RF plasma sputtering

    International Nuclear Information System (INIS)

    Kazunari Katayama; Kazumi Imaoka; Takayuki Okamura; Masabumi Nishikawa

    2006-01-01

    Understanding of tritium behavior in plasma facing materials is an important issue for fusion reactor from viewpoints of fuel control and radiation safety. Tungsten is used as a plasma facing material in the divertor region of ITER. However, investigation of hydrogen isotope behavior in tungsten deposition layer is not sufficient so far. It is also necessary to evaluate an effect of helium on a formation of deposition layer and an accumulation of hydrogen isotopes because helium generated by fusion reaction exists in fusion plasma. In this study, tungsten deposition layers were formed by sputtering method using hydrogen and helium RF plasma. An erosion rate and a deposition rate of tungsten were estimated by weight measurement. Hydrogen and helium retention were investigated by thermal desorption method. Tungsten deposition was performed using a capacitively-coupled RF plasma device equipped with parallel-plate electrodes. A tungsten target was mounted on one electrode which is supplied with RF power at 200 W. Tungsten substrates were mounted on the other electrode which is at ground potential. The plasma discharge was continued for 120 hours where pressure of hydrogen or helium was controlled to be 10 Pa. The amounts of hydrogen and helium released from deposition layers was quantified by a gas chromatograph. The erosion rate of target tungsten under helium plasma was estimated to be 1.8 times larger than that under hydrogen plasma. The deposition rate on tungsten substrate under helium plasma was estimated to be 4.1 times larger than that under hydrogen plasma. Atomic ratio of hydrogen to tungsten in a deposition layer formed by hydrogen plasma was estimated to be 0.17 by heating to 600 o C. From a deposition layer formed by helium plasma, not only helium but also hydrogen was released by heating to 500 o C. Atomic ratios of helium and hydrogen to tungsten were estimated to be 0.080 and 0.075, respectively. The trapped hydrogen is probably impurity hydrogen

  20. Boundary layer theory approach to the concentration layer adjacent to the ceiling wall of a hydrogen leakage: Axisymmetric impinging and far regions

    Energy Technology Data Exchange (ETDEWEB)

    El-Amin, M.F.; Kanayama, H. [Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-02-15

    As hydrogen leaks into a partially open space with a ceiling wall, a boundary layer of hydrogen can be constructed under that wall due to the impingement on the wall and the buoyancy force. The resulting boundary layer can be divided into two regions, namely the stagnation-point region and the far region. When the geometry of the source of the hydrogen leak is circular, such as a pinhole or an o-ring, the behavior of leakage flow will be axisymmetric due to the resulting radial jet. In contrast, when the geometry of the source of the hydrogen leak is planar, such as a crack, the behavior of leakage flow will be planar due to the resulting planar jet. Previously, we studied the planar case in the context of both the stagnation-point flow region [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00] and the far region [El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7]. This paper is concerned with both the stagnation-point flow region and the far region of the axisymmetric concentration boundary layer adjacent to a ceiling wall. Flow in the stagnation-point region is treated as Hiemenz flow, while it is treated as Blasius flow in the far region. The current results are compared with the planar cases [El-Amin MF, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall at impinging region of a hydrogen leakage. Int J Hydrogen Energy 2008; 33(21): 6393-00; El-Amin MF, Inoue M, Kanayama H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: far region. Int J Hydrogen Energy 2008; 33(24):7642-7] for both stagnation-point flow and far regions. Both momentum and concentration boundary layer

  1. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Isaiah D. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States); Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States)

    2010-11-01

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration. (author)

  2. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  3. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  4. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  5. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  6. Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder

    International Nuclear Information System (INIS)

    Oda, Y.; Azuma, K.; Onozuka, M.; Kasai, S.; Hasegawa, K.

    1995-01-01

    Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.)

  7. Development of repetitive railgun pellet accelerator and steady-state solid hydrogen extruder

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Azuma, K. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Kasai, S. [Japan Atomic Energy Research Inst., Ibaraki (Japan); Hasegawa, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Development of a railgun pellet accelerator and a steady-state solid hydrogen extruder has been conducted. A railgun accelerator has been investigated for a high-speed repetitive pellet acceleration. The final objective is to develop a railgun system that can achieve a 5km/s speed-class repetitive (2Hz) pellet injection. Improvement in the acceleration efficiency showed a pellet velocity of more than 2km/s using augment rails and a ceramic insulator applied to a 1m-long railgun. The other investigation focused on the development of a steady-state solid hydrogen extruder for continuous pellet injection. Screw-driven extruding system has been chosen to extrude the solid hydrogen filament continuously. Theoretical considerations suggest that temperature control of the system is important in future research. (orig.).

  8. Solid hydrogen pellet injection into the ORMAK Tokamak

    International Nuclear Information System (INIS)

    Foster, C.A.; Colchin, R.J.; Milora, S.L.; Kim, K.; Turnbull, R.J.

    1977-06-01

    Solid hydrogen spheres were injected into the ORMAK tokamak as a test of pellet refueling for tokamak fusion reactors. Pellets 70 μm and 210 μm in diameter were injected with speeds of 91 m/sec and 100 m/sec, respectively. Each of the 210-μm pellets added about 1% to the number of particles contained in the plasma. Excited neutrals, ablated from these hydrogen spheres, emitted light which was monitored either by a photomultiplier or by a high speed framing camera. From these light signals it was possible to measure pellet lifetimes, ablation rates, and the spatial distribution of hydrogen atoms in the ablation clouds. The average measured lifetime of the 70-μm pellets was 422 μsec, and the 210-μm spheres lasted 880 μsec under bombardment by the plasma. These lifetimes and measured ablation rates are in good agreement with a theoretical model which takes into account shielding of plasma electrons by hydrogen atoms ablated from spherical hydrogen ice

  9. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  10. Operation of the cryotron relaxation generator in solid argon and hydrogen

    International Nuclear Information System (INIS)

    Rakhubvsky, V.A.

    2008-01-01

    The research results of the cryotron relaxation generator (CRG) operation in solid argon, normal hydrogen and parahydrogen have been given. The frequency transition times for CRG at different values of cooling the solid gas have been measured

  11. Solid solutions of hydrogen uranyl phosphate and hydrogen uranyl arsenate. A family of luminescent, lamellar hosts

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Rosenthal, G.L.; Ellis, A.B.

    1988-01-01

    Hydrogen uranyl phosphate, HUO 2 PO 4 x 4H 2 O (HUP), and hydrogen uranyl arsenate, HUO 2 AsO 4 x 4H 2 O (HUAs), form solid solutions of composition HUO 2 (PO 4 ) 1-x (AsO 4 )x (HUPAs), representing a family of lamellar, luminescent solids that can serve as hosts for intercalation chemistry. The solids are prepared by aqueous precipitation reactions from uranyl nitrate and mixtures of phosphoric and arsenic acids; thermogravimetric analysis indicates that the phases are tetrahydrates, like HUP and HUAs. Powder x-ray diffraction data reveal the HUPAs solids to be single phases whose lattice constants increase with X, in rough accord with Vegard's law Spectral shifts observed for the HUPAs samples. Emission from the solids is efficient (quantum yields of ∼ 0.2) and long-lived (lifetimes of ∼ 150 μs), although the measured values are uniformly smaller than those of HUP and HUAs; unimolecular radiative and nonradiative rate constants for excited-state decay of ∼ 1500 and 5000 s -1 , respectively, have been calculated for the compounds. 18 refs., 5 figs., 2 tabs

  12. Range measurements of keV hydrogen ions in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    Schou, J.; Soerensen, H.; Andersen, H.H.; Nielsen, M.; Rune, J.

    1984-01-01

    Ranges of 1.3-3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen. The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees with that previously found for solid nitrogen. (orig.)

  13. Double vacancy on BN layer: A natural trap for Hydrogen Molecule

    International Nuclear Information System (INIS)

    Arellano, J S

    2015-01-01

    A pair of vacancies, one of boron and other of nitrogen atom at a flat layer becomes a natural trap to capture a hydrogen molecule at the center of the cavity defined by the empty space left by the lack of a nitrogen and a boron atom at the perfect BN layer formed by 16 N atoms and 16 B atoms. The adsorption of the hydrogen molecule is compared with the equivalent graphene layer with a pair of carbon vacancies. The little increase in the BN cell parameter respect to the graphene cell parameter, besides the differences between N, B and C atoms helps to explain the easier adsorption on the defective BN layer

  14. Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Kuznetsov, M.; Yanez, J.; Grune, J.; Friedrich, A.; Jordan, T.

    2012-01-01

    The hydrogen accumulation at the top of containment or reactor building may occur due to an interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen, released from the reactor, accumulates usually as a stratified semi-confined layer of hydrogen-air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen-air mixtures in presence of obstructions or without them was performed at the Karlsruhe Inst. of Technology (KIT). Different flame propagation regimes from slow subsonic to relative fast sonic flames and then to the detonations were experimentally investigated in different geometries and then simulated with COMSD code with respect to evaluate amount of burnt hydrogen taken place during the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with dimensions of 9x3x0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 0-34 vol. % without or with a gradient of 0-60 vol. %H 2 /m. Effects of hydrogen concentration gradient, thickness of the layer, geometry of the obstructions, average and maximum hydrogen concentration on flame propagation regimes were investigated with respect to evaluate the maximum pressure loads of internal structures. Blast wave strength and dynamics of propagation after explosion of the layer of hydrogen-air mixture was numerically simulated to reproduce the hydrogen explosion process during the Fukushima Daiichi Accident. (authors)

  15. Layered Nanojunctions for Hydrogen-revolution Catalysis

    DEFF Research Database (Denmark)

    Hou, Y.; Laursen, Anders B.; Zhang, J.

    2013-01-01

    The H2 production performance of mpg-CN under visible light is significantly improved by growing thin layers of MoS2 on mpg-CN. The 0.5 wt% MoS2/mpg-CN performs better than 0.5 wt% Pt/mpg-CN under identical reaction conditions. The geometric similarity in the layered structures of MoS2 and g...... dichalcogenides such as WS2 are also efficient promoters for hydrogen production over gCN. Herein we have presented not only an example of a catalyst made of abundant C, N, Mo and S elements for efficient H2 photosynthesis, but also a conceptual advance to rationally design and fabricate a thin, effective...

  16. Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions

    International Nuclear Information System (INIS)

    Santos, Sydney F.; Huot, Jacques

    2009-01-01

    The Ti-V-based BCC solid solutions have been considered attractive candidates for hydrogen storage due to their relatively large hydrogen absorbing capacities near room temperature. In spite of this, improvements of some issues should be achieved to allow the technological applications of these alloys. Higher reversible hydrogen storage capacity, decreasing the hysteresis of PCI curves, and decrease in the cost of the raw materials are needed. In the case of vanadium-rich BCC solid solutions, which usually have large hydrogen storage capacities, the search for raw materials with lower cost is mandatory since pure vanadium is quite expensive. Recently, the substitutions of vanadium in these alloys have been tried and some interesting results were achieved by replacing vanadium by commercial ferrovanadium (FeV) alloy. In the present work, this approach was also adopted and TiCr 1.2 (FeV) x alloy series was investigated. The XRD patterns showed the co-existence of a BCC solid solution and a C14 Laves phase in these alloys. SEM analysis showed the alloys consisted of dendritic microstructure and C14 colonies. The amount of C14 phase increases when the amount of (FeV) decreases in these alloys. Concerning the hydrogen storage, the best results were obtained for the TiCr 1.2 (FeV) 0.4 alloy, which achieved 2.79 mass% of hydrogen storage capacity and 1.36 mass% of reversible hydrogen storage capacity

  17. Molecular dynamics simulation of chemical sputtering of hydrogen atom on layer structured graphite

    International Nuclear Information System (INIS)

    Ito, A.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2008-10-01

    Chemical sputtering of hydrogen atom on graphite was simulated using molecular dynamics. Especially, the layer structure of the graphite was maintained by interlayer intermolecular interaction. Three kinds of graphite surfaces, flat (0 0 0 1) surface, armchair (1 1 2-bar 0) surface and zigzag (1 0 1-bar 0) surface, are dealt with as targets of hydrogen atom bombardment. In the case of the flat surface, graphene layers were peeled off one by one and yielded molecules had chain structures. On the other hand, C 2 H 2 and H 2 are dominant yielded molecules on the armchair and zigzag surfaces, respectively. In addition, the interaction of a single hydrogen isotope on a single graphene is investigated. Adsorption, reflection and penetration rates are obtained as functions of incident energy and explain hydrogen retention on layered graphite. (author)

  18. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...... added. This figure was 21% higher than the methane yield from the one-stage process, which was run as control. Sparging of the hydrogen reactor with methane gas resulted in doubling of the hydrogen production. PH was observed as a key factor affecting fermentation pathway in hydrogen production stage....... Furthermore, this study also provided direct evidence in the dynamic fermentation process that, hydrogen production increase was reflected by acetate to butyrate ratio increase in liquid phase. (c) 2006 Elsevier Ltd. All rights reserved....

  19. Matrix effect on hydrogen-atom tunneling of organic molecules in cryogenic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2000-01-01

    Although the tunneling of atoms through potential energy barriers separating the reactant and reaction systems is not paid much attention in organic reactions, this plays an important role in reactions including the transfer of light atoms. Atomic tunneling is especially important for chemical reactions at low temperatures, since the thermal activation of reactant systems is very slow process in comparison with the tunneling. One of the typical reactions of atomic tunneling is hydrogen-atom abstraction from alkanes in cryogenic solids exposed to high-energy radiation. Irradiation of alkane molecules causes the homolytic cleavage of C-H bonds, which results in the pairwise formation of free hydrogen atoms and organic free radicals. Since the activation energies for the abstraction of hydrogen atoms from alkane molecules by free hydrogen atoms are higher than 5 kcal/mol, the lifetime of free hydrogen atoms at 77 K is estimated from the Arrhenius equation of k=vexp(-E a /RT) to be longer than 10 hrs. However, except for solid methane, free hydrogen atoms immediately convert to alkyl radicals even at 4.2 K by hydrogen-atom tunneling from alkane molecules to the free hydrogen atoms. The rate of hydrogen atom tunneling does not necessary increase with decreasing activation energy or the peak height of the potential energy barrier preventing the tunneling. Although the activation energy is the lowest at the tertiary carbon of alkanes, hydrogen atom tunneling from branched alkanes with tertiary carbon at the antepenultimate position of the carbon skeleton is the fastest at the secondary penultimate carbon. Based on our experimental results, we have proposed that the peculiarity of the hydrogen-atom abstraction in cryogenic solids comes from the steric hindrance by matrix molecules to the deformation of alkane molecules from the initial sp 3 to the final sp 2 configurations. The steric hindrance causes the increase of the height of the potential energy barrier for the

  20. Calculation of hydrogen diffusion toward a crack in a stressed solid

    International Nuclear Information System (INIS)

    1976-10-01

    A set of eigensolutions is derived for use in expanding the steady-state concentration of hydrogen diffusing through a region bounded by two cylinders centred on an infinite crack in a stressed solid. Comparison is made with some experimental values of the hydrogen-induced crack-propagation velocity within the framework of the theory of Dutton and Puls. (author)

  1. Cyclic etching of tin-doped indium oxide using hydrogen-induced modified layer

    Science.gov (United States)

    Hirata, Akiko; Fukasawa, Masanaga; Nagahata, Kazunori; Li, Hu; Karahashi, Kazuhiro; Hamaguchi, Satoshi; Tatsumi, Tetsuya

    2018-06-01

    The rate of etching of tin-doped indium oxide (ITO) and the effects of a hydrogen-induced modified layer on cyclic, multistep thin-layer etching were investigated. It was found that ITO cyclic etching is possible by precisely controlling the hydrogen-induced modified layer. Highly selective etching of ITO/SiO2 was also investigated, and it was suggested that cyclic etching by selective surface adsorption of Si can precisely control the etch rates of ITO and SiO2, resulting in an almost infinite selectivity for ITO over SiO2 and in improved profile controllability.

  2. Liquid Metallic Hydrogen: A Building Block for the Liquid Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Liquid metallic hydrogen provides a compelling material for constructing a condensed matter model of the Sun and the photosphere. Like diamond, metallic hydrogen might have the potential to be a metastable substance requiring high pressures for forma- tion. Once created, it would remain stable even at lower pressures. The metallic form of hydrogen was initially conceived in 1935 by Eugene Wigner and Hillard B. Huntington who indirectly anticipated its elevated critical temperature for liquefaction (Wigner E. and Huntington H.B. On the possibility of a metallic modification of hydro- gen. J. Chem. Phys. , 1935, v.3, 764–770. At that time, solid metallic hydrogen was hypothesized to exist as a body centered cubic, although a more energetically accessible layered graphite-like lattice was also envisioned. Relative to solar emission, this struc- tural resemblance between graphite and layered metallic hydrogen should not be easily dismissed. In the laboratory, metallic hydrogen remains an elusive material. However, given the extensive observational evidence for a condensed Sun composed primarily of hydrogen, it is appropriate to consider metallic hydrogen as a solar building block. It is anticipated that solar liquid metallic hydrogen should possess at least some layered order. Since layered liquid metallic hydrogen would be essentially incompressible, its invocation as a solar constituent brings into question much of current stellar physics. The central proof of a liquid state remains the thermal spectrum of the Sun itself. Its proper understanding brings together all the great forces which shaped modern physics. Although other proofs exist for a liquid photosphere, our focus remains solidly on the generation of this light.

  3. Hydrogen combustion in a flat semi-confined layer with respect to the Fukushima Daiichi accident

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Mike, E-mail: kuznetsov@kit.edu [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Yanez, Jorge [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Grune, Joachim; Friedrich, Andreas [Pro-Science GmbH, 76275 Ettlingen (Germany); Jordan, Thomas [Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2015-05-15

    Graphical abstract: - Highlights: • Critical conditions for flame propagation regimes in a layer geometry are analyzed. • Numerical simulation of hydrogen explosion reproduces real strength of shock waves. • From 80 to 200 kg of hydrogen were exploded during Fukushima (Unit I) accident. • A sonic deflagration with TNT equivalent of 800 kg was the most probable regime. - Abstract: Hydrogen accumulations at the top of a containment or reactor building may occur due to the interaction of molten corium and water followed by a severe accident of a nuclear reactor (TMI, Chernobyl, Fukushima Daiichi). The hydrogen that is released from the reactor accumulates usually as a stratified semi-confined layer of hydrogen–air mixture. A series of large scale experiments on hydrogen combustion and explosion in a semi-confined layer of uniform and non-uniform hydrogen–air mixtures in the presence of obstructions or without them was performed at the Karlsruhe Institute of Technology (KIT). Different flame propagation regimes from slow subsonic to relatively fast sonic flames and then to detonations were experimentally investigated in different geometries and then simulated with COM3D code with respect to evaluate the amount of hydrogen that was involved in the Fukushima Daiichi Accident (FDA). The experiments were performed in a horizontal semi-confined layer with the dimensions 9 × 3 × 0.6 m with/without obstacles opened from below. The hydrogen concentration in the mixtures with air was varied in the range of 10–34 vol.% without or with a gradient of 20–60 vol.%H{sub 2}/m. Effects of hydrogen concentration gradient, layer thickness, obstruction geometry, average and maximum hydrogen concentration on the flame propagation regimes were investigated with respect to evaluate the maximum pressure loads on internal structures. Blast wave strength and dynamics of propagation after the explosion of the hydrogen–air mixture layer were numerically simulated to reproduce

  4. Compact hydrogen production systems for solid polymer fuel cells

    Science.gov (United States)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  5. Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Khanh, N.Q.; Serenyi, M.

    2010-01-01

    Compete text of publication follows. Hydrogenated amorphous Si and Ge films are of current interest in academic and industrial research due to their unique physical properties and important applications. The incorporation of hydrogen in the amorphous network is an accepted means for reducing the density of defect states in the midgap. The passivation of dangling-bonds leads to a significant improvement in the electronic and optical properties of these layers. However, hydrogen is also suspected to degrade the performance of amorphous Si and Ge material and devices. Several studies related to hydrogen motion have been proposed to explain the light and thermal degradation effect in these layers. Thus to improve the performance and reliability of these devices, it is crucially important to understand the role of hydrogen in amorphous layers. In our previous works the structural changes of hydrogenated a-Si/Ge multilayers as a function of annealing condition was investigated. It was shown that during annealing the samples underwent significant structural changes. Due to the fast out-diffusion of hydrogen from the layers prepared with high (6 ml/min) H 2 flow rate, bubbles and craters were created on the surface. However, in the multilayer samples prepared with hydrogen flow rate lower than 6 ml/min the macroscopic degradation by formation bubbles and craters was more moderated. The diffusion measurement shows that in these samples the structural degradation and intermixing of layers was slower than in the non-hydrogenated samples. As it was suggested the hydrogen can inactivate the dangling bonds of amorphous layers and, as a result of this, the intermixing slows down. It was also predicted that the hydrogen first released from the Ge layers because of the lower binding energy. In this work, we have studied the individual a-Si and a-Ge hydrogenated layers prepared by RF sputtering on Si (100) substrates. The absolute value of atomic content of the H was determined by

  6. Solid-state chelation of metal ions by ethylenediaminetetraacetate intercalated in a layered double hydroxide.

    Science.gov (United States)

    Tarasov, Konstantin A; O'Hare, Dermot; Isupov, Vitaly P

    2003-03-24

    The solid-state chelation of transition metal ions (Co(2+), Ni(2+), and Cu(2+)) from aqueous solutions into the lithium aluminum layered double hydroxide ([LiAl(2)(OH)(6)]Cl x 0.5H(2)O or LDH) which has been pre-intercalated with EDTA (ethylenediaminetetraacetate) ligand has been investigated. The intercalated metal cations form [M(edta)](2)(-) complexes between the LDH layers as indicated by elemental analysis, powder X-ray diffraction, and IR and UV-vis spectroscopies. If metal chloride or nitrate salts are used in the reaction with the LDH then co-intercalation of either the Cl(-) or NO(3)(-) anions is observed. In the case of metal acetate salts the cations intercalate without the accompanying anion. This can be explained by the different intercalation selectivity of the anions in relation to the LDH. In the latter case the introduction of the positive charge into LDH structure was compensated for by the release from the solid of the equivalent quantity of lithium and hydrogen cations. Time-resolved in-situ X-ray diffraction measurements have revealed that the chelation/intercalation reactions proceed very quickly. The rate of the reaction found for nickel acetate depends on concentration as approximately k[Ni(Ac)(2)](3).

  7. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Yoshiki, E-mail: yoshiki_fukada@mail.toyota.co.jp [Toyota Motor Corporation, 1200 Mishuku, Susono-shi, Shizuoka-ken, 410-1193 (Japan); Hioki, Tatsumi; Motohiro, Tomoyoshi [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan); Green Mobility Collaborative Research Center & Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Ohshima, Shigeki [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan)

    2015-10-25

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr{sub 1−x} Y{sub x}O{sub 3} solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO{sub 2} substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples.

  8. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    International Nuclear Information System (INIS)

    Fukada, Yoshiki; Hioki, Tatsumi; Motohiro, Tomoyoshi; Ohshima, Shigeki

    2015-01-01

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr 1−x Y x O 3 solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO 2 substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples

  9. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  10. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  11. Sputtering of solid nitrogen and oxygen by keV hydrogen ions

    DEFF Research Database (Denmark)

    Ellegaard, O.; Schou, Jørgen; Stenum, B.

    1994-01-01

    Electronic sputtering of solid nitrogen and oxygen by keV hydrogen ions has been studied at two low-temperature setups. The yield of the sputtered particles has been determined in the energy regime 4-10 keV for H+, H-2+ and H-3+ ions. The yield for oxygen is more than a factor of two larger than...... that for nitrogen. The energy distributions of the sputtered N2 and O2 molecules were measured for hydrogen ions in this energy regime as well. The yields from both solids turn out to depend on the sum of the stopping power of all atoms in the ion. The yield increases as a quadratic function of the stopping power...

  12. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  13. Thermal diffusion of hydrogen in zircaloy-2 containing hydrogen beyond terminal solid solubility

    International Nuclear Information System (INIS)

    Maki, Hideo; Sato, Masao.

    1975-01-01

    The thermal diffusion of hydrogen is one of causes of uneven hydride precipitation in zircaloy fuel cladding tubes that are used in water reactors. In the diffusion model of hydrogen in zircaloy, the effects of the hydride on the diffusibility of hydrogen has been regarded as negligibly small in comparison with that of hydrogen dissolved in the matrix. Contrary to the indications given by this model, phenomena are often encountered that cannot be explained unless hydride platelets have considerable ostensible diffusibility in zircaloy. In order to determine quantitatively the diffusion characteristics of hydrogen in zircaloy, a thermal diffusion experiment was performed with zircaloy-2 fuel cladding tubes containing hydrogen beyond the terminal solid solubility. In this experiment, a temperature difference of 20 0 --30 0 C was applied between the inside and outside surfaces of the specimen in a thermal simulator. To explain the experimental results, a modified diffusion model is presented, in which the effects of stress are introduced into Markowitz's model with the diffusion of hydrogen in the hydride taken into account. The diffusion equation derived from this model can be written in a form that ostensibly represents direct diffusion of hydride in zircaloy. The apparent diffusion characteristics of the hydride at around 300 0 C are Dsub(p)=2.3x10 5 exp(-32,000/RT), (where R:gas constant, T:temperature) and the apparent heat of transport Qsub(p) =-60,000 cal/mol. The modified diffusion model well explains the experimental results in such respects as reaches a steady state after several hours. (auth.)

  14. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  15. Anomalous ortho-para conversion of solid hydrogen in constrained geometries

    International Nuclear Information System (INIS)

    Rall, M.; Brison, J.P.; Sullivan, N.S.

    1991-01-01

    Using cw NMR techniques, we have measured the ortho-para conversion of solid hydrogen constrained to the interior of the molecular cages of zeolite. The conversion observed in the constrained geometry is very different from that of bulk solid hydrogen. Two distinct conversion rates were observed for short and long times. An apparently bimolecular conversion rate of 0.43% h -1 (one-fourth of the bulk value) dominates during the first 500 h, and the rate then increases to 2.2% h -1 . The initial slow rate is explained in terms of a reduced number of nearest neighbors and possible wall effects, and the fast rate is attributed to the formation of small ortho-H 2 Rclusters at later times. Surface effects due to magnetic impurities do not appear to determine the conversion rate in the samples studied

  16. Muon transfer from hot muonic hydrogen atoms to neon

    International Nuclear Information System (INIS)

    Jacot-Guillarmod, R.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Kammel, P.; Zmeskal, J.; Petitjean, C.

    1992-01-01

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of μ -p atoms in each target. The rates λ ppμ and λ pd can be extracted

  17. Exploration and exploitation of homologous series of bis(acrylamidoalkanes containing pyridyl and phenyl groups: β-sheet versus two-dimensional layers in solid-state photochemical [2 + 2] reactions

    Directory of Open Access Journals (Sweden)

    Mousumi Garai

    2015-09-01

    Full Text Available The homologous series of phenyl and pyridyl substituted bis(acrylamidoalkanes have been synthesized with the aim of systematic analysis of their crystal structures and their solid-state [2 + 2] reactivities. The changes in the crystal structures with respect to a small change in the molecular structure, that is by varying alkyl spacers between acrylamides and/or by varying the end groups (phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl on the C-terminal of the amide, were analyzed in terms of hydrogen-bonding interference (N—H...Npy versus N—H...O=C and network geometries. In this series, a greater tendency towards the formation of N—H...O hydrogen bonds (β-sheets and two-dimensional networks over N—H...N hydrogen bonds was observed. Among all the structures seven structures were found to have the required alignments of double bonds for the [2 + 2] reaction such that the formations of single dimer, double dimer and polymer are facilitated. However, only four structures were found to exhibit such a solid-state [2 + 2] reaction to form a single dimer and polymers. The two-dimensional hydrogen-bonding layer via N—H...O hydrogen bonds was found to promote solid-state [2 + 2] photo-polymerization in a single-crystal-to-single-crystal manner. Such two-dimensional layers were encountered only when the spacer between acryl amide moieties is butyl. Only four out of the 16 derivatives were found to form hydrates, two each from 2-pyridyl and 4-pyridyl derivatives. The water molecules in these structures govern the hydrogen-bonding networks by the formation of an octameric water cluster and one-dimensional zigzag water chains. The trends in the melting points and densities were also analyzed.

  18. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  19. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  20. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  1. 26Al production in explosive burning of hydrogen-helium layers

    International Nuclear Information System (INIS)

    Arnould, M.; Hillebrand, W.; Thielemann, F.K.

    1978-08-01

    There is now strong evidence for the presence of live 26 Al (t 1 / 2 approximately 7.2 x 10 5 y) in the early solar system just before the beginning of its condensation phase. It is shown that the passage of a supernova shock wave through the outer part of the helium zone of a massive star can lead to significant 26 Al production if some protons are present in such external layers. In fact, a ratio 26 Al/ 27 Al approximately is derived for a proton mass fraction of the order of 5x10 -3 to 5x10 -2 . The required protons may survive from a preshock incomplete hydrogen burning or may result from some mixing with outer hydrogen-rich layers. (orig.) [de

  2. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    International Nuclear Information System (INIS)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria; Krukowski, Stanisław

    2014-01-01

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking

  3. Phonons in Solid Hydrogen and Deuterium Studied by Inelastic Coherent Neutron Scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits

    1973-01-01

    Phonon dispersion relations have been measured by coherent neutron scattering in solid para-hydrogen and ortho-deuterium. The phonon energies are found to be nearly equal in the two solids, the highest energy in each case lying close to 10 meV. The pressure and temperature dependence of the phonon...... energies have been measured in ortho-deuterium and the lattice change determined by neutron diffraction. When a pressure of 275 bar is applied, the phonon energies are increased by about 10%, and heating the crystal to near the melting point decreases them by about 7%. The densities of states, the specific...... heats, and the Debye temperatures have been deduced and found to be in agreement with the published experimental results. The Debye temperatures are 118 K for hydrogen and 114 K for deuterium. For hydrogen the Debye-Waller factor has been measured by incoherent neutron scattering and it corresponds...

  4. A pyrolysis/gas chromatographic method for the determination of hydrogen in solid samples

    Science.gov (United States)

    Carr, R. H.; Bustin, R.; Gibson, E. K.

    1987-01-01

    A method is described for the determination of hydrogen in solid samples. The sample is heated under vacuum after which the evolved gases are separated by gas chromatography with a helium ionization detector. The system is calibrated by injecting known amounts of hydrogen, as determined manometrically. The method, which is rapid and reliable, was checked for a variety of lunar soils; the limit of detection is about 10 ng of hydrogen.

  5. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  6. Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste

    Science.gov (United States)

    Shin, Hang-Sik

    2008-02-01

    This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.

  7. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  8. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  9. Layer-by-layer immobilized catalase on electrospun nanofibrous mats protects against oxidative stress induced by hydrogen peroxide.

    Science.gov (United States)

    Huang, Rong; Deng, Hongbing; Cai, Tongjian; Zhan, Yingfei; Wang, Xiankai; Chen, Xuanxuan; Ji, Ailing; Lil, Xueyong

    2014-07-01

    Catalase, a kind of redox enzyme and generally recognized as an efficient agent for protecting cells against hydrogen peroxide (H2O2)-induced cytotoxicity. The immobilization of catalase was accomplished by depositing the positively charged chitosan and the negatively charged catalase on electrospun cellulose nanofibrous mats through electrospining and layer-by-layer (LBL) techniques. The morphology obtained from Field emission scanning electron microscopy (FE-SEM) indicated that more orderly arranged three-dimension (3D) structure and roughness formed with increasing the number of coating bilayers. Besides, the enzyme-immobilized nanofibrous mats were found with high enzyme loading and activity, moreover, X-ray photoelectron spectroscopy (XPS) results further demonstrated the successful immobilization of chitosan and catalase on cellulose nanofibers support. Furthermore, we evaluated the cytotoxicity induced by hydrogen peroxide in the Human umbilical vascular endothelial cells with or without pretreatment of nanofibrous mats by MTT assay, LDH activity and Flow cytometric evaluation, and confirmed the pronounced hydrogen peroxide-induced toxicity, but pretreatment of immobilized catalase reduced the cytotoxicity and protected cells against hydrogen peroxide-induced cytotoxic effects which were further demonstrated by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM) images. The data pointed toward a role of catalase-immobilized nanofibrous mats in protecting cells against hydrogen peroxide-induced cellular damage and their potential application in biomedical field.

  10. ESR study on hydrogen-atom abstraction in cryogenic organic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    1995-01-01

    The present paper summarizes our recent results on the hydrogen-atom abstraction from protiated alkane molecule by deuterium atoms in cryogenic deuterated organic solids, obtained by the X-band ESR and electron spin-echo measurements of the product alkyl radicals at cryogenic temperatures. (J.P.N.)

  11. Detection of hot muonic hydrogen atoms emitted in vacuum using x-rays

    International Nuclear Information System (INIS)

    Jacot-Guillarmod, R.; Bailey, J.M.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Kammel, P.; Zmeskal, J.; Petitjean, C.

    1992-01-01

    Negative muons are stopped in solid layers of hydrogen and neon. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. It was found that the time structure of the muonic neon X-rays follows the exponential law where the rate is the same as the disappearance rate of μ - p atoms. The ppμ-formation rate and the muon transfer rate to deuterium are deduced

  12. Hydrogen production by gasification of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  13. Feasibility of solid oxide fuel cell dynamic hydrogen coproduction to meet building demand

    Science.gov (United States)

    Shaffer, Brendan; Brouwer, Jacob

    2014-02-01

    A dynamic internal reforming-solid oxide fuel cell system model is developed and used to simulate the coproduction of electricity and hydrogen while meeting the measured dynamic load of a typical southern California commercial building. The simulated direct internal reforming-solid oxide fuel cell (DIR-SOFC) system is controlled to become an electrical load following device that well follows the measured building load data (3-s resolution). The feasibility of the DIR-SOFC system to meet the dynamic building demand while co-producing hydrogen is demonstrated. The resulting thermal responses of the system to the electrical load dynamics as well as those dynamics associated with the filling of a hydrogen collection tank are investigated. The DIR-SOFC system model also allows for resolution of the fuel cell species and temperature distributions during these dynamics since thermal gradients are a concern for DIR-SOFC.

  14. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill

    Science.gov (United States)

    Kong, Qingna; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill. PMID:28044139

  15. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.

    Science.gov (United States)

    Kong, Qingna; Yao, Jun; Qiu, Zhanhong; Shen, Dongsheng

    2016-01-01

    Municipal solid waste incinerator (MSWI) bottom ash is often used as the protection layer for the geomembrane and intermediate layer in the landfill. In this study, three sets of simulated landfills with different mass proportion of MSWI bottom ash layer to municipal solid waste (MSW) layer were operated. Cu and Zn concentrations in the leachates and MSW were monitored to investigate the effect of MSWI bottom ash layer on the Cu and Zn discharge from the landfill. The results showed that the Zn discharge was dependent on the mass proportion of MSWI bottom ash layer. The pH of landfill was not notably increased when the mass proportion of MSWI bottom ash layer to MSW layer was 1 : 9, resulting in the enhancement of the Zn discharge. However, Zn discharge was mitigated when the mass proportion was 2 : 8, as the pH of landfill was notably promoted. The discharge of Cu was not dependent on the mass proportion, due to the great affinity of Cu to organic matter. Moreover, Cu and Zn contents of the sub-MSW layer increased due to the MSWI bottom ash layer. Therefore, the MSWI bottom ash layer can increase the potential environmental threat of the landfill.

  16. Spectroscopic ellipsometry on Si/SiO2/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    International Nuclear Information System (INIS)

    Eren, Baran; Fu, Wangyang; Marot, Laurent; Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-01

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation

  17. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  18. Calculation studies of a multi-layer decoupler system for a decoupled hydrogen moderator

    International Nuclear Information System (INIS)

    Ooi, M.; Kiyanagi, Y.

    2001-01-01

    We proposed a multi-layer decoupler as a method to improve pulse characteristics of emitted neutrons from a decoupled hydrogen moderator. Pulse shapes from a moderator with the multi layer-decoupler were compared with those with a traditional single layer decoupler. It was found that the multi-layer decoupler system gave better pulse characteristic with less decrease of peak intensity. (author)

  19. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  20. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    Science.gov (United States)

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  1. Ab initio study of structural and mechanical property of solid molecular hydrogens

    Science.gov (United States)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  2. Solid oxide fuel cells and hydrogen production

    International Nuclear Information System (INIS)

    Dogan, F.

    2009-01-01

    'Full text': A single-chamber solid oxide fuel cell (SC-SOFC), operating in a mixture of fuel and oxidant gases, provides several advantages over the conventional SOFC such as simplified cell structure (no sealing required). SC-SOFC allows using a variety of fuels without carbon deposition by selecting appropriate electrode materials and cell operating conditions. The operating conditions of single chamber SOFC was studied using hydrocarbon-air gas mixtures for a cell composed of NiO-YSZ / YSZ / LSCF-Ag. The cell performance and catalytic activity of the anode was measured at various gas flow rates. The results showed that the open-circuit voltage and the power density increased as the gas flow rate increased. Relatively high power densities up to 660 mW/cm 2 were obtained in a SC-SOFC using porous YSZ electrolytes instead of dense electrolytes required for operation of a double chamber SOFC. In addition to propane- or methane-air mixtures as a fuel source, the cells were also tested in a double chamber configuration using hydrogen-air mixtures by controlling the hydrogen/air ratio at the cathode and the anode. Simulation of single chamber conditions in double chamber configurations allows distinguishing and better understanding of the electrode reactions in the presence of mixed gases. Recent research efforts; the effect of hydrogen-air mixtures as a fuel source on the performance of anode and cathode materials in single-chamber and double-chamber SOFC configurations,will be presented. The presentation will address a review on hydrogen production by utilizing of reversible SOFC systems. (author)

  3. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  4. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  5. Anisotropic intermolecular interaction and rotational ordering in hydrogen-containing solids. Progress report No. 12

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Progress is reviewed in these areas: nuclear spin-lattice relaxation in ortho-para mixtures of solid deuterium below T/sub lambda/; pulsed NMR experiments of matrix isolated HCl; stimulated Raman scattering in solid hydrogen and nitrogen; and infrared line broadening of matrix isolated molecules. (GHT)

  6. Anisotropic intermolecular interaction and rotational ordering in hydrogen-containing solids. Progress report No. 12

    International Nuclear Information System (INIS)

    1976-01-01

    Progress is reviewed in these areas: nuclear spin-lattice relaxation in ortho-para mixtures of solid deuterium below T/sub lambda/; pulsed NMR experiments of matrix isolated HCl; stimulated Raman scattering in solid hydrogen and nitrogen; and infrared line broadening of matrix isolated molecules

  7. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  8. Experimental investigation of solid hydrogen pellet ablation in high-temperature plasmas using holographic interferometry and other diagnostics

    International Nuclear Information System (INIS)

    Thomas, C.E. Jr.

    1981-03-01

    The technology currently most favored for the refueling of fusion reactors is the high-velocity injection of solid hydrogen pellets. Design details are presented for a holographic interferometer/shadowgraph used to study the microscopic characteristics of a solid hydrogen pellet ablating in an approx. 1-keV plasma. Experimental data are presented for two sets of experiments in which the interferometer/shadowgraph was used to study approx. 1-mm-diam solid hydrogen pellets injected into the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) at velocities of 1000 m/s. In addition to the use of the holographic interferometer, the pellet ablation process is diagnosed by studying the emission of Balmer-alpha photons and by using the available tokamak diagnostics

  9. Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins.

    Science.gov (United States)

    Grohe, Kristof; Movellan, Kumar Tekwani; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2017-05-01

    We demonstrate measurement of non-equilibrium backbone amide hydrogen-deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3 mm rotor. Tracking of the HN peak intensities for 2 weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1 H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.

  10. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eren, Baran [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fu, Wangyang; Marot, Laurent, E-mail: laurent.marot@unibas.ch; Calame, Michel; Steiner, Roland; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30 eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  11. Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air.

    Science.gov (United States)

    Caucheteur, Christophe; Debliquy, Marc; Lahem, Driss; Megret, Patrice

    2008-10-13

    Using hydrogen as fuel presents a potential risk of explosion and requires low cost and efficient leak sensors. We present here a hybrid sensor configuration consisting of a long period fiber grating (LPFG) and a superimposed uniform fiber Bragg grating (FBG). Both gratings are covered with a sensitive layer made of WO(3) doped with Pt on which H(2) undergoes an exothermic reaction. The released heat increases the temperature around the gratings. In this configuration, the LPFG favors the exothermic reaction thanks to a light coupling to the sensitive layer while the FBG reflects the temperature change linked to the hydrogen concentration. Our sensor is very fast and suitable to detect low hydrogen concentrations in air whatever the relative humidity level and for temperatures down to -50 degrees C, which is without equivalent for other hydrogen optical sensors reported so far.

  12. Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Jafari-Asl, Mehdi; Nabiyan, Afshin; Rezaei, Behzad; Dinari, Mohammad

    2016-01-01

    New efficient hydrogen storage hybrids were fabricated based on hydrogen spillover mechanism, including chemisorptions and dissociation of H_2 on the surface of LDH (layered double hydroxides) and diffusion of H to rGO (reduced graphene oxide). The structures and compositions of all of the hybrids (LDHs/rGO) have been verified using different methods including transmission electron microscopy, X ray diffraction spectroscopy, infrared spectroscopy and Brunauer–Emmett–Teller analysis. Then, the abilities of the LDHs/rGOs, as hydrogen spillover, were investigated by electrochemical methods. In addition, the LDHs/rGOs were decorated with palladium, using redox replacement process, and their hydrogen spillover properties were studied. The results showed that the hydrogen adsorption/desorption kinetics, hydrogen storage capacities and stabilities of Pd"#LDH/rGOs are better than Pd/rGO. Finally presence of different polymers (synthesis with monomers, 4–aminophenol, 4–aminothiophenol, o-phenylenediamine and p-phenylenediamine) at the surface of the Pd#LDH/rGOs on hydrogen storage were studied. The results showed that presence of o-phenylenediamine and p-phenylenediamine improves the kinetics of the hydrogen adsorption/desorption and increase the capacity of the hydrogen storage. - Highlights: • Efficient hydrogen storage sorbents are introduced. • The sorbents are synthesized based on hybrids of layered double hydroxide. • The compositions of all of the hybrids are verified using different methods. • Pd nanoparticles modified nanohybrids are investigated for hydrogen storage. • Presence of different polymers beside the hydrogen sorbents are investigated.

  13. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    are small, in contrast to what is expected for insulating materials. One explanation is that the secondary electrons lose energy inside the target material by exciting vibrational and rotational states of the molecules, so that the number of electrons that may escape as secondary electrons is rather small....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...... or the stopping power of the incident particles. Measurements were also made for oblique incidence of H+ ions on solid deuterium for angles of incidence up to 75°. A correction could be made for the emission of secondary ions by also measuring the current calorimetrically. At largest energies, the angular...

  14. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe

    2016-01-01

    Full Text Available We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  15. Hydrogen-induced structural transition in single layer ReS2

    Science.gov (United States)

    Yagmurcukardes, M.; Bacaksiz, C.; Senger, R. T.; Sahin, H.

    2017-09-01

    By performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1T {{}\\text{R{{\\text{e}}2}}} ) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1T {{}\\text{R{{\\text{e}}2}}} -ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1T {{}\\text{R{{\\text{e}}2}}} phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constants.

  16. The hydrogen state: from the solid to the gas taking into account the liquid; L'hydrogene dans tous ses etats: du solide au gaz en passant par le liquide

    Energy Technology Data Exchange (ETDEWEB)

    Latroche, M.; Joubert, J.M.; Cuevas, F.; Paul-Boncour, V.; Percheron-Guegan, A. [Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Materiaux Paris-Est (CMTR-ICMPE-UMR7182), 94 - Thiais (France)

    2007-07-01

    Hydrogen is considered as a future energy vector. To become a viable solution, the hydrogen storage processes must be safe, economic and adapted to the use possibilities. Today many storage modes offer interesting possibilities but need also more researches before realization of prototypes. These modes are described taking into account the physical (compression, liquefaction) and chemical (adsorption in porous solids and absorption in chemical hydrides) solutions. (A.L.B.)

  17. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vieira, M.M.F.

    1985-01-01

    Vibrational-rotational overtones absorption solid hydrogens (H 2 , D 2 , HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H 2 and D 2 , showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H 2 and D 2 , which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*10 5 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author) [pt

  18. Effect on hydrogen adsorption due to a lonely or a pair of carbon vacancies on the graphene layer

    International Nuclear Information System (INIS)

    Arellano, J S

    2017-01-01

    The influence on the hydrogen molecule adsorption on a pristine and a defective graphene layer is compared. The different lengths for the C-C bonds on the graphene layer with one vacancy are visualized and compared respect to pristine graphene. The energy of formation of one vacancy is calculated and a comparison of the binding energy for the hydrogen molecule is presented when the molecule is adsorbed on pristine graphene or on the defective graphene layer. The adsorption is studied for a single vacancy and at least for two different pairs of carbon vacancies. The qualitative general result, and contrary to the expected effect of the carbon vacancies on the hydrogen adsorption is that the rearrangement of the carbon atoms on the defective graphene layer allows only a relatively small increase in the magnitude of the binding energy for the hydrogen molecule. (paper)

  19. The high pressure equation of state of the isotopes of solid hydrogen and helium

    International Nuclear Information System (INIS)

    Driessen, A.

    1982-01-01

    The initial aim of this thesis was to provide the high pressure equipment and the knowledge about the equation of state (EOS) necessary for a research program in a laboratory dealing with spectroscopy of solid hydrogen under high pressure. Once this first goal was reached, a logical step was to extend the work on the EOS to all three hydrogen isotopes and later also to the helium isotpes. During the experiments on the EOS of hydrogen, the effects of the concentration C 1 of the rotationally excited molecules provoked interest, resulting in an extensive experimental and theoretical study. Chapter I describes the results and experience with high pressure equipment for hydrogen up to 7 kbar and chapter II gives a short general introduction to the calculation of the EOS by introducing the Mie-Grueneisen picture and the Silvera-Goldman (SG) potential for hydrogen. Chapter III gives the results of the first EOS of H 2 and D 2 and chapter IV gives a prediction of the EOS of solid T 2 with aid of the SG potential and the experimental results of H 2 and D 2 . Chapter V presents calculations on the thermal expansion of the hydrogen isotopes, which are compared with direct experiments and chapter VI deals in detail with the influence of C 1 on the EOS of H 2 . Ortho-para conversion in hydrogen is considered in chapter VII, and chapter VIII describes experiments on 4 He. (Auth.)

  20. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  1. Life Time Performance Characterization of Solid Oxide Electrolysis Cells for Hydrogen Production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Liu, Yi-Lin

    2015-01-01

    Solid oxide electrolysis cells (SOECs) offer a promising technological solution for efficient energy conversion and production of hydrogen or syngas. The commercialization of the SOEC technology can be promoted if SOECs can be operated at high current density with stable performance over ~5 years...... - 3 years (continuous operation, setting 1.5 V as the upper voltage defining “end of life”). The results provide technological input to future design of electrolysis plants for hydrogen production. © 2015 ECS - The Electrochemical Society...

  2. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  3. Ion-induced emission of charged particles from solid hydrogen and deuterium

    International Nuclear Information System (INIS)

    Borgesen, P.; Schou, J.; Sorensen, H.

    1980-01-01

    Measurements have been made of the emission of both positive and negative particles from solid hydrogen and deuterium for normal incidence of H + , H + 2 , H + 3 , D 2 H + , D + 3 and He + ions up to 10 keV. For positive particles the emission coefficient increased with increasing energy of incidence to reach a value of 0.08 per atom for 10 keV H + onto hydrogen. Apparently the positive particles are sputtered ones. The negative particles emitted are predominantly electrons. The emission coefficient per incident atom as a function of the velocity of the incident particle agress fairly well with results published earlier for incidence of hydrogen and deuterium ions. However, systematic differences of up to 10% are now observed between the coefficients for the different types of ions. (orig.)

  4. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  5. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  6. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  7. Atomic layer deposition of high-mobility hydrogen-doped zinc oxide

    NARCIS (Netherlands)

    Macco, B.; Knoops, H.C.M.; Verheijen, M.A.; Beyer, W.; Creatore, M.; Kessels, W.M.M.

    2017-01-01

    In this work, atomic layer deposition (ALD) has been employed to prepare high-mobility H-doped zinc oxide (ZnO:H) films. Hydrogen doping was achieved by interleaving the ZnO ALD cycles with H2 plasma treatments. It has been shown that doping with H2 plasma offers key advantages over traditional

  8. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    OpenAIRE

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution...

  9. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH2OH FORMATION IN SPACE

    International Nuclear Information System (INIS)

    Congiu, Emanuele; Dulieu, François; Chaabouni, Henda; Baouche, Saoud; Lemaire, Jean Louis; Fedoseev, Gleb; Ioppolo, Sergio; Lamberts, Thanja; Linnartz, Harold; Laffon, Carine; Parent, Philippe; Cuppen, Herma M.

    2012-01-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine—NH 2 OH—a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH 2 OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.

  10. Near-infrared analysis of hydrogen-bonding in glass- and rubber-state amorphous saccharide solids.

    Science.gov (United States)

    Izutsu, Ken-ichi; Hiyama, Yukio; Yomota, Chikako; Kawanishi, Toru

    2009-01-01

    Near-infrared (NIR) spectroscopic analysis of noncrystalline polyols and saccharides (e.g., glycerol, sorbitol, maltitol, glucose, sucrose, maltose) was performed at different temperatures (30-80 degrees C) to elucidate the effect of glass transition on molecular interaction. Transmission NIR spectra (4,000-12,000 cm(-1)) of the liquids and cooled-melt amorphous solids showed broad absorption bands that indicate random configuration of molecules. Heating of the samples decreased an intermolecular hydrogen-bonding OH vibration band intensity (6,200-6,500 cm(-1)) with a concomitant increase in a free and intramolecular hydrogen-bonding OH group band (6,600-7,100 cm(-1)). Large reduction of the intermolecular hydrogen-bonding band intensity at temperatures above the glass transition (T(g)) of the individual solids should explain the higher molecular mobility and lower viscosity in the rubber state. Mixing of the polyols with a high T(g) saccharide (maltose) or an inorganic salt (sodium tetraborate) shifted both the glass transition and the inflection point of the hydrogen-bonding band intensity to higher temperatures. The implications of these results for pharmaceutical formulation design and process monitoring (PAT) are discussed.

  11. Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide

    Science.gov (United States)

    Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian

    2017-07-01

    Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.

  12. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    Science.gov (United States)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  13. Decoupling of Solid 4He Layers under the Superfluid Overlayer

    Science.gov (United States)

    Ishibashi, Kenji; Hiraide, Jo; Taniguchi, Junko; Suzuki, Masaru

    2018-03-01

    It has been reported that in a large oscillation amplitude, the mass decoupling of multilayer 4He films adsorbed on graphite results from the depinning of the second solid atomic layer. This decoupling suddenly vanishes below a certain low temperature TD due to the cancellation of mass decoupling by the superfluid counterflow of the the overylayer. We studied the relaxation of the depinned state at various temperatures, after reduction of oscillation amplitude below TD . It was found that above the superfluid transition temperature the mass decoupling revives with a relaxation time of several 100 s. It strongly supports that the depinned state of the second solid atomic layer remains underneath the superfluid overlayer.

  14. Hydrogen isotopes confinement in the over-dusted layers of fusion reactor candidate materials

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibaeva, I.L.; Shestakov, V.P.; Lisitsyn, V.N.; Tuleushev, Yu.Zh.

    2001-01-01

    In the work the experiments on gas-emission determination from samples of sputtered beryllium, graphite, tungsten, jointly sputtered graphite and tungsten obtained by the magnetron sputtering method at the 'Argamak' facility (National Nuclear Center of the Republic of Kazakhstan), as well as the samples processed on the 'OSPA' plasma accelerator (TRINITI, Russia). The gas-release curves were obtained for indicated samples under different heating velocities within temperature range from 300 up to 1200 K. Gas-release parameters and hydrogen isotopes confinement in these layers were determined. Simulation of hydrogen isotopes gas-emission from samples sputtered layers on the base of obtained experiments with application of simulating programs and TMAP code was carried out

  15. A method of estimating hydrogen in solid and liquid samples by means of neutron thermalisation

    International Nuclear Information System (INIS)

    Carter, D.H.; Sanders, J.E.

    1967-06-01

    The count-rate of a cadmium-covered Pu239 fission chamber placed in a reactor neutron flux increases when a hydrogen-containing material is inserted due to the thermalisation of epicadmium neutrons. This effect forms the basis of a non-destructive method of estimating hydrogen in solid or liquid samples, and trial experiments to demonstrate the principles have been made. The sensitivity is such that hydrogen down to 10 p.p.m. in a typical metal should be detected. A useful feature of the method is its very low response to elements other than hydrogen. (author)

  16. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.

  17. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  18. Communication: Dynamical and structural analyses of solid hydrogen under vapor pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ando, Koji [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan)

    2015-11-07

    Nuclear quantum effects play a dominant role in determining the phase diagram of H{sub 2}. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H{sub 2} under vapor pressure, demonstrating the difference from liquid and high-pressure solid H{sub 2}. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H{sub 2} molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H–H vibrational frequencies as well as H–H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H{sub 2} solid will be useful in monitoring thermodynamic states of condensed hydrogens.

  19. Feasibility of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels

    International Nuclear Information System (INIS)

    Gnanapragasam, Nirmal V.; Reddy, Bale V.; Rosen, Marc A.

    2010-01-01

    A large-scale hydrogen production system is proposed using solid fuels and designed to increase the sustainability of alternative energy forms in Canada, and the technical and economic aspects of the system within the Canadian energy market are examined. The work investigates the feasibility and constraints in implementing such a system within the energy infrastructure of Canada. The proposed multi-conversion and single-function system produces hydrogen in large quantities using energy from solid fuels such as coal, tar sands, biomass, municipal solid waste (MSW) and agricultural/forest/industrial residue. The proposed system involves significant technology integration, with various energy conversion processes (such as gasification, chemical looping combustion, anaerobic digestion, combustion power cycles-electrolysis and solar-thermal converters) interconnected to increase the utilization of solid fuels as much as feasible within cost, environmental and other constraints. The analysis involves quantitative and qualitative assessments based on (i) energy resources availability and demand for hydrogen, (ii) commercial viability of primary energy conversion technologies, (iii) academia, industry and government participation, (iv) sustainability and (v) economics. An illustrative example provides an initial road map for implementing such a system. (author)

  20. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, E.A.; Kompaniets, M.V.; Kompaniets, T.N., E-mail: tkompaniets@spbu.ru; Bobkova, I.S.

    2016-04-15

    Hydrogen permeation through Zr–1%Nb alloy was studied at the temperature below the temperature of α-β transition. Analysis of the transient permeation curves from a closed volume in a surface limited regime allowed to determine total and mobile hydrogen concentrations. At the mobile hydrogen concentration of 4.3 at% a part of the absorbed hydrogen is cut out of permeation process. Increase of the mobile hydrogen concentration in α-phase of Zr–1%Nb alloy is ceasing at the concentration of (5.5 ± 0.3) at%, which is the maximum possible concentration of the mobile hydrogen in α-phase of the studied alloy. From this moment on all absorbed hydrogen is spent on hydride formation. The obtained results are compared with those obtained by means of traditional techniques for terminal solid solubility determination.

  1. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  2. Hydrogen blister formation on cold-worked tungsten with layered structure

    International Nuclear Information System (INIS)

    Nishijima, Dai; Sugimoto, Takanori; Takamura, Shuichi; Ye, Minyou; Ohno, Noriyasu

    2005-01-01

    Low-energy ( 10 21 m -2 s -1 ) hydrogen plasma exposures were performed on cold-worked powder metallurgy tungsten (PM-W), recrystallized cold-worked PM-W and hot-worked PM-W. Large blisters with a diameter of approximately 100-200 μm were observed only on the surface of cold-worked PM-W. The blister formation mechanism has not been clarified thus far. PM-W has a consisting of 1-μm-thick layers, which is formed by press-roll processing. A detailed observation of the cross section of those blisters shows for the first time that the blisters are formed by cleaving the upper layer along the stratified layer. These experimental results indicate that the manufacturing process of tungsten material is one of the key factors for blister formation on the tungsten surface. (author)

  3. Kinetics of solid-phase in ion exchange on tin hydrogen phosphate

    International Nuclear Information System (INIS)

    Kislitsyn, M.N.; Ketsko, V.A.; Yaroslavtsev, A.B.

    2004-01-01

    Solid state reactions in mixture of tin hydrogen phosphate and alkali metal (M=Na, K, Cs) chlorides have been studied both in the mode of polythermal heating and at a fixed temperature, using data of X-ray phase and thermogravimetric analyses. In the range 400-750 Deg C solid state ion exchange reactions occur in the systems studied and yield mono-- and dialkali phosphates MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 . Counter diffusion coefficients for alkali metal cations and protons in the matrices of compositions MHSn(PO 4 ) 2 and M 2 Sn(PO 4 ) 2 have been determined [ru

  4. Kinetic energy of solid and liquid para-hydrogen: a path integral Monte Carlo simulation

    International Nuclear Information System (INIS)

    Zoppi, M.; Neumann, M.

    1992-01-01

    The translational (center of mass) kinetic energy of solid and liquid para-hydrogen have been recently measured by means of Deep Inelastic Neutron Scattering. We have evaluated the same quantity, in similar thermodynamic conditions, by means of Path Integral Monte Carlo computer simulation, modelling the system as composed of a set of spherical molecules interacting through a pairwise additive Lennard-Jones potential. In spite of the crude approximations on the interaction potential, the agreement is excellent. The pressure was also computed by means of the same simulations. This quantity, compared with the equation of state for solid para-hydrogen given by Driessen and Silvera, gives an agreement of a lesser quality and a negative value for the liquid state. We attribute this discrepancy to the limitations of the Lennard-Jones potential. (orig.)

  5. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda; Baouche, Saoud; Lemaire, Jean Louis [LERMA-LAMAp, Universite de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France); Fedoseev, Gleb; Ioppolo, Sergio; Lamberts, Thanja; Linnartz, Harold [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, P.O. Box 9513, 2300 RA Leiden (Netherlands); Laffon, Carine; Parent, Philippe [Laboratoire de Chimie-Physique, Matiere et Rayonnement, Universite Pierre-et-Marie Curie (Paris 06) and CNRS (UMR 7614), 11 rue Pierre-et-Marie-Curie, 75231 Paris (France); Cuppen, Herma M., E-mail: emanuele.congiu@u-cergy.fr [Faculty of Science, Radboud University Nijmegen, IMM, P.O. Box 9010, NL 6500 GL Nijmegen (Netherlands)

    2012-05-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.

  6. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-01-01

    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  7. Dehydration Process of Hofmann-Type Layered Solids

    Directory of Open Access Journals (Sweden)

    Edilso Reguera

    2013-04-01

    Full Text Available In the present work the dehydration process of layered solids with formula unit M(H2O2[Ni(CN4]·nH2O, M = Ni, Co, Mn; n = 1, 2, 4 is studied using modulated thermogravimetry. The results show that water molecules need to overcome an energetic barrier (activation energy between 63 and 500 kJ/mol in order to diffuse through the interlayer region. The related kinetic parameters show a dependence on the water partial pressure. On the other hand, X-ray diffraction results provide evidence that the dehydration process is accompanied by framework collapse, limiting the structural reversibility, except for heating below 80 °C where the ordered structure remains. Removal of water molecules from the interlayer region disrupts the long-range structural order of the solid.

  8. Solution and solid-phase halogen and C-H hydrogen bonding to perrhenate.

    Science.gov (United States)

    Massena, Casey J; Riel, Asia Marie S; Neuhaus, George F; Decato, Daniel A; Berryman, Orion B

    2015-01-28

    (1)H NMR spectroscopic and X-ray crystallographic investigations of a 1,3-bis(4-ethynyl-3-iodopyridinium)benzene scaffold with perrhenate reveal strong halogen bonding in solution, and bidentate association in the solid state. A nearly isostructural host molecule demonstrates significant C-H hydrogen bonding to perrhenate in the same phases.

  9. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Directory of Open Access Journals (Sweden)

    Yehui Cui

    2018-06-01

    Full Text Available In this work a three-dimensional (3D hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized. Keywords: Hydrogen storage, ZrCo metal hydride, Heat transfer, Three-dimensional simulation

  10. Durability of solid oxide electrolysis cells for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S.

    2007-05-15

    In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide cells (SOCs) is a promising technology as it has the potential of providing efficient and cost effective hydrogen production by high temperature electrolysis of steam (HTES). Furthermore development of such electrolysis cells can gain from the results obtained within the R and D of SOFCs. For solid oxide electrolysis cells (SOEC) to become interesting from a technological point of view, cells that are reproducible, high performing and long-term stable need to be developed. In this paper we address some of the perspectives of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US dollar/kg H{sub 2} using SOECs for HTES; is there a possible market for the electrolysers? and what R and D steps are needed for the realisation of the SOEC technology? In the experimental part we present electrolysis test results on SOCs that have been optimized for fuel cell operation but applied for HTES. The SOCs are produced on a pre-pilot scale at Risoe National Laboratory. These cells have been shown to have excellent initial electrolysis performance, but the durability of such electrolysis cells are not optimal and examples of results from SOEC tests over several hundreds of hours are given here. The long-term tests have been run at current densities of -0.5 A/cm{sup 2} and -1 A/cm{sup 2}, temperatures of 850 deg. C and 950 deg. C and p(H{sub 2}O)/p(H{sub 2}) of 0.5/0.5 and 0.9/0.1. Long-term degradation rates are shown to be up to 5 times higher for SOECs compared to similar SOFC testing. Furthermore, hydrogen and synthetic fuel production prices are calculated using the experimental results from long-term electrolysis test as input and a short outlook for the future work on SOECs will be given as well. (au)

  11. Hydrogen production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  12. Diffraction of Elastic Waves in Fluid-Layered Solid Interfaces by an Integral Formulation

    Directory of Open Access Journals (Sweden)

    J. E. Basaldúa-Sánchez

    2013-01-01

    Full Text Available In the present communication, scattering of elastic waves in fluid-layered solid interfaces is studied. The indirect boundary element method is used to deal with this wave propagation phenomenon in 2D fluid-layered solid models. The source is represented by Hankel’s function of second kind and this is always applied in the fluid. Our method is an approximate boundary integral technique which is based upon an integral representation for scattered elastic waves using single-layer boundary sources. This approach is typically called indirect because the sources’ strengths are calculated as an intermediate step. In addition, this formulation is regarded as a realization of Huygens’ principle. The results are presented in frequency and time domains. Various aspects related to the different wave types that emerge from this kind of problems are emphasized. A near interface pulse generates changes in the pressure field and can be registered by receivers located in the fluid. In order to show the accuracy of our method, we validated the results with those obtained by the discrete wave number applied to a fluid-solid interface joining two half-spaces, one fluid and the other an elastic solid.

  13. Development of an instrument for measuring moisture deep into solid materials

    International Nuclear Information System (INIS)

    Westin, R.; Walletun, H.

    1993-01-01

    It is of value in some applications to be able to detect humidity rather deep into a solid material, for example when determining the moisture content in the frame of buildings, in insulation or in biofuels. Common to these measurement problems is that it is difficult to measure moisture in the bulk of a solid, in contrast to the surface layers. In this report is described the principle and the functioning of an instrument to measure moisture at larger depths than other instruments that are available today. It is intended for use primarily on solid materials, not on gases or liquids. Field experience is also reported here. The principle of the measuring technique is nuclear: we have utilized the ability of hydrogen atoms to moderate (or brake) high energy neutrons. If there is hydrogen in the sample, fast neutrons will interact with the hydrogen atoms and one may detect and count low energy, so called thermal neutrons. The intensity of the slow neutron flux is proportional to the water content, if one assumes that hydrogen atoms are water, i.e. moisture

  14. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    Science.gov (United States)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  15. Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Xiang, Quanjun; Cheng, Feiyue; Lang, Di

    2016-05-10

    Graphene-based ternary composite photocatalysts with genuine heterostructure constituents have attracted extensive attention in photocatalytic hydrogen evolution. Here we report a new graphene-based ternary composite consisting of CdS nanorods grown on hierarchical layered WS2 /graphene hybrid (WG) as a high-performance photocatalyst for hydrogen evolution under visible light irradiation. The optimal content of layered WG as a co-catalyst in the ternary CdS/WS2 /graphene composites was found to be 4.2 wt %, giving a visible light photocatalytic H2 -production rate of 1842 μmol h(-1)  g(-1) with an apparent quantum efficiency of 21.2 % at 420 nm. This high photocatalytic H2 -production activity is due to the deposition of CdS nanorods on layered WS2 /graphene sheets, which can efficiently suppress charge recombination, improve interfacial charge transfer, and provide reduction active sites. The proposed mechanism for the enhanced photocatalytic activity of CdS nanorods modified with hierarchical layered WG was further confirmed by transient photocurrent response. This work shows that a noble-metal-free hierarchical layered WS2 /graphene nanosheets hybrid can be used as an effective co-catalyst for photocatalytic water splitting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Terminal solid solubility of hydrogen in titanium

    International Nuclear Information System (INIS)

    Giroldi, J.P.; Vizcaino, Pablo; Banchik, Abraham David

    2003-01-01

    A Research and Development program to build a data base is currently under progress to support the local titanium fabrication. In the present work the temperature of the Terminal Solid Solubility on dissolution (TSSd) and precipitation (TSSp) of titanium hydrides in the Ti α-phase were both measured in the same thermal cycle with a Differential Scanning Calorimeter (DSC). The local titanium producer (FAESA) provided ASTM grade 1 pure Ti bars of about 2,5 cm in diameter. Samples weighting between 50 to 200 mg were cut with a diamond disc and the parallelepiped faces were all carefully ground with SiC papers, then picked in a HNO 3 plus HF aqueous solution and finally dried out with ethanol and hot air. Pairs of (TSSd, TSSp) values for α + δ → α and α → α + δ transformation temperatures in titanium were determined with the same calorimetric procedure already used to calculate the TSS values in zirconium. Data were taken from the same sample during the heating up and cooling down cycle of the second calorimeter run made with the same rate of 20 C degrees / minute. The Cathodic Charging technique was used to charge the samples at different hydrogen concentrations between the 'as fabricated' value and the concentration corresponding to the eutectoid temperature. A mixture of glycerin and phosphoric acid in a 2:1 ratio and a current density of 0,05 to 0,1 Amp/cm 2 were applied to different samples during 24 to 96 hours to get a wide range of hydrogen concentrations. A homogenization heat treatment at 400 C degrees for 45 minutes -made at open air in an electric furnace- was applied to each sample to dissolve the massive hydrides at the sample surfaces and diffuse them into the bulk of the sample. The hydrogen concentration of each sample was measured after the final calorimetric run using the Extraction Method in Liquid State under an inert atmosphere using a Leco RH-404 model Hydrogen Determinator. The experimental data follows a linear relationship -with a

  17. Hybrid n-Alkylamine Intercalated Layered Titanates for Solid Lubrication

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; Yuan, H.; van den Nieuwenhuijzen, Karin Jacqueline Huberta; Lette, W.; Schipper, Dirk J.; ten Elshof, Johan E.

    2016-01-01

    The intercalation of different primary n-alkylamines in the structure of a layered titanate of the lepidocrocite type (H1.07Ti1.73O4) for application in high-temperature solid lubrication is reported. The intercalation process of the amines was explored by means of in situ small-angle X-ray

  18. Solid hydrogen target for laser driven proton acceleration

    Science.gov (United States)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  19. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    International Nuclear Information System (INIS)

    Singh, S.P.; Asthana, R.K.; Singh, A.P.

    2006-01-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 μg bacterial biomass ml -1 ). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H 2 h -1 . For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H 2 h -1 were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  20. Semi-solid state fermentation of bagasse for hydrogen production; the cost-effective approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Asthana, R.K.; Singh, A.P. [Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, (India)

    2006-07-01

    Semi-solid state fermentation route of hydrogen production from agro-waste sugar cane bagasse was tried using the photosynthetic bacterium Rhodopseudomonas (BHU strain-1) and the non-photosynthetic Enterobacter aerogenes MTCC2822. The process seems an alternative to submerged fermentation that requires high volumes of nutrient broth. Bagasse (10 g) pre-hydrolyzed with NaOH (2%, w/v) was coated with Ca-alginate (1.5%, v/v) containing Rhodopseudomonas and E. aerogenes in the co-immobilized state (300 {mu}g bacterial biomass ml{sup -1}). The fermenting medium was just 150 ml to sustain the moistened bagasse in a 0.5 L fermenter kept in light. A parallel set of free bacterial cells served as control. Hydrogen production by the immobilized sets reached 30 L within 60 h with the average rate of 0.177 L H{sub 2} h{sup -1}. For free cells, the values for hydrogen output (20 L) or the rate 0.1125 L H{sub 2} h{sup -1} were approximately 1.5-fold low. It is proposed that semi-solid fermentation route of hydrogen production from bagasse will be a cost-effective technology in countries generating this agro-waste. (authors)

  1. A two-stage bio hydrogen process for energy generation from municipal solid wastes

    International Nuclear Information System (INIS)

    Acevedo-Benitez, J. a.; Poggi-Varaldo, H. M.

    2009-01-01

    Energy supply and disposal of solid wastes are two big challenges that great cities face at the present time. Several experts have shown that hydrogen is the fuel of the future, due to their high energy content (three times more than that of the gasoline) and its clean combustion. (Author)

  2. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  3. Enhanced liquid-solid mass transfer in micro channels by a layer of carbon nano fibers

    NARCIS (Netherlands)

    Loos, de S.R.A.; Schaaf, van der J.; Croon, de M.H.J.M.; Nijhuis, T.A.; Schouten, J.C.

    2011-01-01

    This paper demonstrates that the observed rate of reaction of the liquid-phase selective hydrogenation of an alkyne is higher for an open and rough carbon nanofiber (CNF) layer positioned on a microchannel wall than for an unsupported flat plate catalyst or dense and smooth CNF layers. This

  4. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Yu, Zhang [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)]|[Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhenhong, Yuan; Yongming, Sun; Xiaoying, Kong [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2009-01-15

    The hydrogen production from the organic fraction of municipal solid waste (OFMSW) by anaerobic mixed culture fermentation was investigated using batch experiments at 37 C. Seven varieties of typical individual components of OFMSW including rice, potato, lettuce, lean meat, oil, fat and banyan leaves were selected to estimate the hydrogen production potential. Experimental results showed that the boiling treated anaerobic sludge was effective mixed inoculum for fermentative hydrogen production from OFMSW. Mechanism of fermentative hydrogen production indicates that, among the OFMSW, carbohydrates is the most optimal substrate for fermentative hydrogen production compared with proteins, lipids and lignocelluloses. This conclusion was also substantiated by experimental results of this study. The hydrogen production potentials of rice, potato and lettuce were 134 mL/g-VS, 106 mL/g-VS, and 50 mL/g-VS respectively. The hydrogen percentages of the total gas produced from rice, potato and lettuce were 57-70%, 41-55% and 37-67%. (author)

  5. Hydrogen transport in solids with traps in the case of continuum distribution of detrapping energies

    International Nuclear Information System (INIS)

    Krasheninnikov, S I; Smirnov, R D; Marenkov, E D; Pisarev, A A

    2014-01-01

    Tritium retention in the first wall material is one of the key issues in the performance of future fusion reactors. Transport of hydrogenic species in these materials is most commonly treated as diffusion affected by trapping/detrapping processes. Usually only several trap types differing in their activation energies of hydrogen release are considered (up to three types in the TMAP7 code). We suggest that in some cases (e.g. highly damaged or disordered media) the hydrogen trapping/detrapping process is better characterized by a continuum distribution of traps over their detrapping energies. Within a random walk model we show that this assumption leads to qualitative changes in hydrogen transport in solids. Using this model we explain experimental findings on temporal dependence of deuterium outgassing from tokamaks, first wall. (paper)

  6. Curvature-insensitive methodology for thermal-wave depth-profilometry in multi-layered curvilinear solids

    International Nuclear Information System (INIS)

    Liu Liwang; Wang Chinhua; Yuan Xiao; Mandelis, Andreas

    2010-01-01

    A generalized similarity normalization (SN) methodology for characterizing depth profiles of continuously varying thermophysical properties in curvilinear (cylindrical and spherical) solids is presented. Specifically, the principle and the physical mechanism of the elimination of the surface curvature effect from the overall photothermal signal is introduced based on theoretical models of cylindrical, spherical and flat solids with multi-layer structures. The effects of the relative values of radii of curvature of the curvilinear solid, the thickness of the inhomogeneous surface layer and the measurement azimuthal angle on the validity of the technique are discussed in detail. Experimental reconstructions of thermophysical depth profiles of hardened cylindrical steel rods of various diameters are performed based on both curvilinear theory and the equivalent flat surface theory. The reconstructed results are compared and validated.

  7. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  8. Preparation of hydrogenated-TiO2/Ti double layered thin films by water vapor plasma treatment

    International Nuclear Information System (INIS)

    Pranevicius, L.L.; Milcius, D.; Tuckute, S.; Gedvilas, K.

    2012-01-01

    Highlights: ► We investigated reaction of water plasma with nanocrystalline TiO 2 films. ► Simultaneous oxidation and hydrogenation of Ti was observed during plasma treatment. ► Water plasma treatment forms hydrogenated nanocrystalline TiO 2 in the shallow surface. - Abstract: We have investigated the structural and compositional variations in 200–500 nm thick Ti films deposited by magnetron sputter-deposition technique and treated in water vapor plasma at different processing powers. It was found that the upper layer of treated film with the thickness of 110 nm was changed into the black hydrogenated-TiO 2 with around 16 nm sized nanocystals during 10 min for dissipated power 200 W at room temperature. Analysis of the experimental results is used to obtain insights into the effects of water layer adsorbed on hydrophilic oxidized titanium surfaces exposed to plasma radiation.

  9. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The solid molecular hydrogens in the ordered state as function of density and ortho-para concentration: a far infrared study

    International Nuclear Information System (INIS)

    Jochemsen, R.

    1978-01-01

    In this thesis, the results of far infrared absorption experiments on solid molecular hydrogen and deuterium are presented. In Chapter I an introduction to the properties of solid molecular hydrogens in given. The experimental system used for the high pressure infrared measurements and the data handling procedures are discussed in Chapter II. The theory of infrared absorption and the averaging of the dipole moment over the motion of the molecules is contained in Chapter III. In this chapter a general sum rule for the integrated absorption is derived. The remaining chapters present the results of the measurements and the discussion. In Chapter IV the author concentrates on the phonon frequencies as a function of ortho-para concentration and density, while in Chapter V measuremtns of phonon lineshape and integrated absorption intensities are presented. Finally, in Chapter VI, a study is given of the phase transition in solid hydrogen and deuterium. This study provides accurate values for the transition temperature as a function of density (in deuterium) and as a function of ortho-para concentration (in hydrogen) as well as the dependence of the order parameter on the temperature and the ortho-para concentration. (Auth.)

  11. Valorization of Calcium Carbonate-Based Solid Wastes for the Treatment of Hydrogen Sulfide from the Gas Phase

    OpenAIRE

    Pham Xuan , Huynh; Pham Minh , Doan; Galera Martinez , Marta; Nzihou , Ange; Sharrock , Patrick

    2015-01-01

    International audience; This paper focuses on the valorization of calcium carbonate-based solid wastes for theremoval of hydrogen sulfide from gas phase. Two solid wastes taken from industrial sites for theproduction of sodium carbonate and sodium bicarbonate by the Solvay process® were analyzedby different physico-chemical methods. Calcium carbonate was found as the main component ofboth the solid wastes. Trace amounts of other elements such as Mg, Al, Fe, Si, Cl, Na etc. werealso present in...

  12. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    International Nuclear Information System (INIS)

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  13. Japan sunshine project 1987 annual summary of Hydrogen energy R and D

    Science.gov (United States)

    1988-04-01

    This paper presents the findings of the researches on hydrogen energy in sunshine project in FY87. A duration test of the electrolyte membrane of solid polymer fabricated by bonding Pt and Ir catalyst layers was made for seven months to produce hydrogen by the electrolysis of water. The result indicates that the electrolysis will be able to be made at high current density. The sensitivity to stress corrosion cracking of stainless steel for electrolysis of water was evaluated. Since a thin film of stabilized zirconia fabricated by sintering at a temperature of 1500 C or higher is dense and conductive, it is a promising solid electrolyte. Since an inert phase to hydrogen is developed in a high-density metallic alloy for hydrogen storage produced by sintering and partially melting Mg7Zn3-Ni, it must be improved. A heating module of hydrogenated material monolithically coated on copper tube was investigated. The application of metallic alloy for hydrogen storage to the hydrogen electrode is studied. A hydrogen-fueled prime mover system circulating an inert gas is being developed. Since the low alloy steel part is extremely embrittled by heating, the intergranular face of coarse crystal affected by the cycle of welding heat is a problem.

  14. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  15. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza

    2016-09-24

    A theoretical model for multi-tubular palladium-based membrane is proposed in this paper and validated against experimental data for two different sized membrane modules that operate at high temperatures. The model is used in a sequential simulation format to describe and analyse pure hydrogen and hydrogen binary mixture separations, and then extended to simulate an industrial scale membrane unit. This model is used as a sub-routine within an ASPEN Plus model to simulate a membrane reactor in a steam reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor. The economic sensitivity analysis results show usefulness in finding the optimum operating condition that achieves minimum hydrogen production cost at break-even point. A hydrogen production cost of 1.98 $/kg is estimated while the cost of the thin-layer selective membrane is found to constitute 29% of total process capital cost. These results indicate the competiveness of this thin-layer membrane process against conventional methods of hydrogen production. © 2016 Hydrogen Energy Publications LLC

  16. Plasma density measurements on refuelling by solid hydrogen pellets in a rotating plasma

    International Nuclear Information System (INIS)

    Joergensen, L.W.; Sillesen, A.H.

    1978-01-01

    The refuelling of a plasma by solid hydrogen pellets situated in the plasma is investigated. Nearly half of the pellet material is evaporated and seems to be completely ionized, resulting in an increase of the amount of plasma equivalent to one third of the total amount of plasma without refuelling. The gross behaviour of the plasma is not changed. (author)

  17. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  18. Liquid-like thermal conduction in intercalated layered crystalline solids

    Science.gov (United States)

    Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.

    2018-03-01

    As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

  19. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  20. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  1. A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.

    Science.gov (United States)

    Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li

    2014-02-01

    A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.

  2. An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Wahid, Mazlan Abdul; Ganjehkaviri, A.

    2015-01-01

    Highlights: • 40% of energy demand of Malaysia could be supplied by thermochemical process of PSR. • SCWG of PSR is preferable thermochemical process due to char and tar elimination. • Potential of H 2 production from SCWG of PSR is 1.05 × 10 10 kgH 2 per year in Malaysia. • Highly moisturized PSR could be used in hydrogen production by SCWG process. - Abstract: Hydrogen is one of the most promising energy carriers for the future of the world due to its tremendous capability of pollution reduction. Hydrogen utilization is free of toxic gases formation as well as carbon dioxide (CO 2 ) emission. Hydrogen production can be implemented using a wide variety of resources including fossil fuels, nuclear energy and renewable and sustainable energy (RSE). Amongst various RSE resources, biomass has great capacity to be employed for renewable hydrogen production. Hydrogen production from palm solid residue (PSR) via thermochemical process is a perfect candidate for waste-to-well strategy in palm oil mills in Malaysia. In this paper, various characteristics of hydrogen production from thermochemical process of PSR includes pyrolysis and gasification are reviewed. The annual oil palm fruits production in Malaysia is approximately 100 million tonnes which the solid waste of the fruits is capable to generate around 1.05 × 10 10 kgH 2 (1.26 EJ) via supercritical water gasification (SCWG) process. The ratio of energy output to energy input of SCWG process of PSR is about 6.56 which demonstrates the priority of SCWG to transform the energy of PSR into a high energy end product. The high moisture of PSR which is the most important barrier for its direct combustion, emerges as an advantage in thermochemical reactions and highly moisturized PSR (even more than 50%) is utilized directly in SCWG without application of any high cost drying process. Implementation of appropriate strategies could lead Malaysia to supply about 40% of its annual energy demand by hydrogen yield from

  3. Thermal and hydrodynamic study of a whirling liquid hydrogen layer under high heat flux

    International Nuclear Information System (INIS)

    Ewald, R.

    1969-01-01

    In order to achieve a cold neutrons source (λ ≥ 4.10 -10 m) in a high flux reactor (∼ 10 15 neutrons/cm 2 .s), a whirling liquid hydrogen layer (145 mm OD, effective thickness 15 mm, height about 180 mm) was formed, out-of-pile, in a cylindrical transparent glass vessel. The whirling motion was obtained by tangential injection of the liquid, near the wall. Thermal and hydrodynamical conditions of formation and laws of similarity of such a layer were studied. The characteristics of this whirling flow were observed as a function of mass flow rate (5 to 27 g/s; 4.3 to 23 l/mn), and of spillway width (18 and 25 mm). Six different nozzles were used : 1.0; 1.5; 1.9; 2.25; 2.65 and 3.0 mm ID. The total heat influx was found between 8.6 and 10.4 kW. The heat flux density was about 9.4 W/cm 2 and the mean layer density around 80 per cent of that of the liquid hydrogen at 20.4 Kelvin. High speed movies were used to analyze the boiling regime. (author) [fr

  4. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    Science.gov (United States)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  5. Kinetic Studies on State of the Art Solid Oxide Cells – A Comparison between Hydrogen/Steam and Reformate Fuels

    DEFF Research Database (Denmark)

    Njodzefon, Jean-Claude; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen/steam and refor......Electrochemical reaction kinetics at the electrodes of Solid Oxide Cells (SOCs) were investigated at 700 °C for two cells with different fuel electrode microstructures as well as on a third cell with a reduced active electrode area. Three fuel mixtures were investigated – hydrogen....../steam fuel split into two processes with opposing temperature behavior in the reformate fuels. An 87.5% reduction in active electrode area diminishes the gas conversion impedance in the hydrogen/steam fuel at high fuel flow rates. In both reformates, the second and third lowest frequency processes merged...

  6. Comparison of the half-value layer: ionization chambers vs solid-state meters

    International Nuclear Information System (INIS)

    Pereira, L.C.S.; Navarro, V.C.C.; Navarro, M.V.T.; Macedo, E.M.

    2015-01-01

    Generally, the half value layer (HVL) is determined by using ionization chambers and aluminum filters. However, some solid-state dosimeters allow simultaneous measurements of X-ray's parameters, among which the HVL. The main objective of this study was to compare the HVL's values indicated by four different solid-state dosimeters, whose values were measured by ionization chambers. The maximum difference found between the two methods was 11.42%, one the solid-state dosimeters, showing that the use these instruments to determine CSR in industrial X-ray should be subject to a more thorough evaluation. (author)

  7. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    Science.gov (United States)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  8. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    Science.gov (United States)

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  9. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  10. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...... volume. Heat transfer augmentation techniques (e.g. encapsulation) are found to be the reward strategy to achieve the same stored mass and fueling time of the standard technology, while enabling ambient temperature fueling and save the energy cooling demand (4.2 MJ per fueling) at the refueling station....

  11. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    Directory of Open Access Journals (Sweden)

    Niuzi Xue

    2017-10-01

    Full Text Available It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2 powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD, transmission electron microscope (TEM and Brunauer–Emmett–Teller (BET. The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2 by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2 sensor exhibited the highest response (Ra/Rg = 22.2 to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed.

  12. Solid NMR characterization of hydrogen solid storage matrices

    International Nuclear Information System (INIS)

    Pilette, M.A.; Charpentier, T.; Berthault, P.

    2007-01-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  13. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dagle, Vanessa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Holladay, Jamelyn D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krause, Theodore R. [Argonne National Lab. (ANL), Argonne, IL (United States); Ahmed, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-11-16

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces CO2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  14. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    International Nuclear Information System (INIS)

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-01-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900 C. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte supported, with scandia-stabilized zirconia electrolytes (∼140 (micro)m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1-0.6), gas flow rates (1000-4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate

  15. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  16. Solid-State Electrochromic Device Consisting of Amorphous WO3 and Various Thin Oxide Layers

    Science.gov (United States)

    Shizukuishi, Makoto; Shimizu, Isamu; Inoue, Eiichi

    1980-11-01

    A mixed oxide containing Cr2O3 was introduced into an amorphous WO3 solid-state electrochromic device (ECD) in order to improve its colour memory effect. The electrochromic characteristics were greatly affected by the chemical constituents of a dielectric layer on the a-WO3 layer. Particularly, long memory effect and low power dissipation were attained in a solid-state ECD consisting of a-WO3 and Cr2O3\\cdotV2O5(50 wt.%). Some electrochromic characteristics of the a-WO3/Cr2O3\\cdotV2O5 ECD and the role of V2O5 were investigated.

  17. On dewetting dynamics of solid films of hydrogen isotopes and its influence on tritium β spectroscopy

    International Nuclear Information System (INIS)

    Fleischmann, L.; Bonn, J.; Bornschein, B.; Otten, E.W.; Przyrembel, M.; Weinheimer, Ch.

    2000-01-01

    The dewetting dynamics of solid films of hydrogen isotopes, quench-condensed on a graphite substrate, was measured at various temperatures below desorption by observing the stray light from the film. A schematic model describing the dewetting process by surface diffusion is presented, which agrees qualitatively with our data. The activation energies of different hydrogen isotopes for surface diffusion were determined. The time constant for dewetting of a quench-condensed T 2 film at the working temperature of 1.86 K of the mainz neutrino mass experiment was extrapolated. (orig.)

  18. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  19. An Approach to Understanding Cohesive Slurry Settling, Mobilization, and Hydrogen Gas Retention in Pulsed Jet Mixed Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.; Meyer, Perry A.

    2009-05-22

    The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonian slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.

  20. Characteristics and dynamics of the boundary layer in RF-driven sources for negative hydrogen ions

    International Nuclear Information System (INIS)

    Wimmer, Christian

    2014-01-01

    The design of the neutral beam injection system of the upcoming ITER fusion device is based on the IPP (Max-Planck-Institut fuer Plasmaphysik, Garching) prototype source for negative hydrogen ions. The latter consists of a driver, in which hydrogen (or deuterium) molecules are dissociated in a large degree in a hydrogen plasma; the plasma expands then towards the plasma grid, on which negative hydrogen ions are formed by conversion of atoms or positive ions by the surface process and are extracted in the following accompanied by the co-extraction of electrons via a three grid system. Electrons are removed out of the extracted beam prior full acceleration using deflection magnets, bending them onto the second grid. The thermal load limits the tolerable amount of co-extracted electrons. A magnetic filter field in the expansion chamber reduces the electron temperature and density, on the one hand in order to minimize the destruction process of negative hydrogen ions by electron collisions and on the other hand in order to reduce the co-extracted electron current density. Caesium is evaporated into the source for an effective production of negative hydrogen ions, lowering the work function of the plasma grid. Due to the high chemical reactivity of caesium, the high vacuum condition in the source and the plasma-wall interaction, complex redistribution processes of Cs take place in the ion source. The boundary layer is the plasma volume between the magnetic filter field and the plasma grid, in which the most important physics of the negative ion source takes place: the production of negative hydrogen ions at the plasma grid, their transport through the plasma and the following extraction. A deeper understanding of the plasma and Cs dynamics in the boundary layer is desirable in order to achieve a stable long-pulse operation as well as to identify possible future improvements. For this reason, the boundary layer of the prototype source has been characterized in this work

  1. Ranges, Reflection and Secondary Electron Emission for keV Hydrogen Ions Incident on Solid N2

    DEFF Research Database (Denmark)

    Børgesen, P.; Sørensen, H.; Hao-Ming, Chen

    1983-01-01

    Ranges were measured for 0.67–3.3 keV/amu hydrogen and deuterium ions in solid N2. Comparisons with similar results for N2-gas confirm the previously observed large phase effect in the stopping cross section. Measurements of the secondary electron emission coefficient for bulk solid N2 bombarded...... by 0.67–9 keV/amu ions also seem to support such a phase effect. It is argued that we may also extract information about the charge state of reflected projectiles....

  2. Key study on the potential of hydrazine bisborane for solid- and liquid-state chemical hydrogen storage.

    Science.gov (United States)

    Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B

    2015-05-04

    Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.

  3. Moessbauer study of Mg-Ni(Fe) alloys processed as materials for solid state hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P.; Principi, G., E-mail: giovanni.principi@unipd.it; Sartori, S.; Maddalena, A. [Universita di Padova, Settore Materiali, DIM (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica (Italy); Schinteie, G.; Kuncser, V.; Filoti, G. [National Institute for Materials Physics, Solid State Magnetism Department (Romania)

    2006-02-15

    Mg-Ni-Fe magnesium-rich intermetallic compounds were prepared following two distinct routes. A Mg{sub 88}Ni{sub 11}Fe{sub 1} sample (A) was prepared by melt spinning Mg-Ni-Fe pellets and then by high-energy ball milling for 6 h the obtained ribbons. A (MgH{sub 2}){sub 88}Ni{sub 11}Fe{sub 1} sample (B) was obtained by high-energy ball milling for 20 h a mixture of Ni, Fe and MgH{sub 2} powders in the due proportions. A SPEX8000 shaker mill with a 10:1 ball to powder ratio was used for milling in argon atmosphere. The samples were submitted to repeated hydrogen absorption/desorption cycles in a Sievert type gas-solid reaction controller at temperatures in the range 520 - 590 K and a maximum pressure of 2.5 MPa during absorption. The samples were analysed before and after the hydrogen absorption/desorption cycles by X-ray diffraction and Moessbauer spectroscopy. The results concerning the hydrogen storage properties of the studied compounds are discussed in connection with the micro-structural characteristics found by means of the used analytical techniques. The improved kinetics of hydrogen desorption for sample A, in comparison to sample B, has been ascribed to the different behaviour of iron atoms in the two cases, as proved by Moessbauer spectroscopy. In fact, iron results homogeneously distributed in sample A, partly at the Mg{sub 2}Ni grain boundaries, with catalytic effect on the gas-solid reaction; in sample B, instead, iron is dispersed inside the hydride powder as metallic iron or superparamagnetic iron.

  4. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    International Nuclear Information System (INIS)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-01-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  5. Re-fermentation os spent solids from dark fermentation allows for a substantial increase of hydrogen production from the organic fraction of municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Paez, K. M.; Pareja-Camacho, J.; Rios-Leal, E.; Valdez-Vazquez, I.; Poggi Varaldo, H. M.

    2009-07-01

    In the last 10 years, interest on bio hydrogen has resurrected, particularly the research on dark fermentation of solid wastes. In effect, in a context of scarce and expensive fossil fuels, hydrogen can be considered the best energy alternative because it can be produced by biological means, it has the highest energy density, it is versatile since can be used both as a primary or secondary energy source, it is compatible with electrochemical and combustion-based energy conversion processes, and it is environmentally-friendly since water is its main combustion product and no aggressive pollutants are generated. (Author)

  6. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)

    2006-11-15

    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  7. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)?

    Science.gov (United States)

    Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-07-23

    Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.

  8. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  9. Quantitative analysis of hydrogen and hydrogen isotopes at the solid surface

    International Nuclear Information System (INIS)

    Trocellier, P.

    2007-01-01

    Because of the importance of the effects bound to the hydrogen presence in materials it is particularly important to determine with accuracy the surface and volume distribution of hydrogen. Meanwhile the electronic structure of the hydrogen (one electron) do not allow to use many characterization techniques as the electrons spectroscopies or the X micro analysis. The author presents other possible techniques. (A.L.B.)

  10. Solid NMR characterization of hydrogen solid storage matrices; Caracterisation par RMN du solide des matrices de stockage solide de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Pilette, M.A.; Charpentier, T.; Berthault, P. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, Lab. de Structure et Dynamique par Resonance Magnetique Lab. Claude Frejacques - CEA/CNRS URA 331, DSM/DRECAM/SCM, 91 - Gif sur Yvette (France)

    2007-07-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  11. Experimental heat capacity of solid hydrogen as a function of molar volume

    International Nuclear Information System (INIS)

    Krause, J.K.

    1978-01-01

    Constant volume heat capacity measurements have been made on six solid hydrogen samples with low orthohydrogen concentrations. The measurements extend from approximately 1.5 K to the melting line, with molar volumes ranging from 22.787 cm 3 /mole to 16.193 cm 3 /mole. Although clustering of the ortho molecules was observed, the low temperature heat capacity anomaly due to the orthohydrogen pairs could be described quite well by the assumption of a fixed distribution. The data were corrected to obtain a lattice heat capacity which on extrapolation to T = 0 yielded Debye temperatures and a volume dependent Grueneisen parameter. A modified Mie-Grueneisen approximation was used to define a volume and temperature dependent Grueneisen parameter which was used to calculate the equation of state, P(V,T), and isothermal bulk modulus, B/sub T/(V,T), for the six isochores. An extrapolation of the equation of state to T = 0 and P = 0 by two different methods yields a molar volume which, when compared with other determinations, gives a recommended value of 23.20 +- 0.05 cm 3 /mole. A rapid increase in the conversion rate of orthohydrogen to parahydrogen was observed at approximately theta/sub o/12. The molar volumes along the melting curve also have been determined directly for the first time in this volume range. These results have been used to show that a low temperature Lindemann melting relation is only approximately valid for solid hydrogen to 50 K

  12. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  13. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  14. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  15. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    DEFF Research Database (Denmark)

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen

    2004-01-01

    variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements......The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...

  16. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    Science.gov (United States)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  17. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  18. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  19. Robust, functional nanocrystal solids by infilling with atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yao; Gibbs, Markelle; Perkins, Craig L.; Tolentino, Jason; Zarghami, Mohammad H.; Bustamante, Jr., J.; Law, Matt

    2011-12-14

    Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm² V-1 s-1. Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.

  20. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, I G; Pan, Z L; Puls, M P [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1997-02-01

    The presence of hydrides in zirconium based alloys is an important factor in assessing the potential for delayed hydride cracking in pressure tubes and the embrittlement of other in-core components fabricated from these alloys. Consequently, the terminal solid solubility (TSS) of hydrogen in the zirconium alloys used in the Nuclear Industry is an important parameter. However, at the low hydrogen concentrations found in practice, the TSS is difficult to measure accurately and even the measurements of hydrogen concentrations by standard techniques are notoriously difficult to make reproducibly at the nominal levels found in pressure tube materials. The presence of hydrides, their dissolution and nucleation gives rise to a number of internal friction phenomena and changes in Young`s modulus that can be useful from the practical point of view. These phenomena can be used to establish expressions for the TSS as a function of temperature, the hysteresis between dissolution and nucleation and hydrogen supercharging from the gas phase. In particular, such studies show that the hysteresis between the TSS measured during heating and cooling is particularly sensitive to the thermal history of the sample. This paper reviews the phenomena involved and presents some recent results on Zr-2.5Nb pressure tube material. (author). 28 refs, 17 figs, 6 tabs.

  1. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    NARCIS (Netherlands)

    Callini, Elsa; Aguey-Zinsou, Kondo Francois; Ahuja, Rajeev; Ares, Jos Ramon; Bals, Sara; Biliskov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Novakovic, Jasmina G.; Hirscher, Michael; Hirscher, M.; Jensen, Torben R.; Jensen, Peter Bjerre; Novakovic, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated

  2. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...

  3. Analysis of hydrogen content and distribution in hydrogen storage alloys using neutron radiography

    International Nuclear Information System (INIS)

    Sakaguchi, Hiroki; Hatakeyama, Keisuke; Satake, Yuichi; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    2000-01-01

    Small amounts of hydrogen in hydrogen storage alloys, such as Mg 2 Ni, were detected using neutron radiography (NRG). Hydrogen concentrations in a hydrogenated solid solution were determined by this technique. Furthermore, we were able to obtain NRG images for an initial stage of hydrogen absorption in the hydrogen storage alloys. NRG would be a new measurement method to clarify the behavior of hydrogen in hydrogen storage alloys. (author)

  4. Anisotropic intermolecular interactions and rotational ordering in hydrogen containing solids. Final report, January 1, 1972--June 30, 1978

    International Nuclear Information System (INIS)

    White, D.

    1978-01-01

    Thermodynamic properties, order-disorder phenomena, optical, electric and magnetic properties of hydrogen-containing molecular solids have been investigated. A summary of the findings of this 6 year research program is presented here. The approach in these studies was (a) thermodynamic and transport studies extending to very low temperatures, (b) pulsed NMR studies for determination of structural parameters important to spin-lattice relaxation, and (c) pulsed laser studies for the investigation of excitations and energy transfer mechanisms in solids

  5. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    Science.gov (United States)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  6. NMR studies of hydrogen diffusion in hydrogen uranyl phosphate tetrahydrate (HUP)

    International Nuclear Information System (INIS)

    Metcalfe, K.

    1988-01-01

    1 H NMR spin-lattice relaxation times, T 1 (Zeeman) and T 1p (rotating frame) and spin-spin relaxation times, T 2 , and 31 P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200-323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31 P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed. 30 refs.; 6 figs.; 2 tabs

  7. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    Science.gov (United States)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  8. Durable solid oxide electrolysis cells for hydrogen production

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Hendriksen, Peter Vang

    2014-01-01

    production is required for promoting commercialization of the SOEC technology. In this work, we report a recent 4400 hours test of a state-of-the-art Ni-YSZ electrode supported SOEC cell. The cell consists of a Ni-YSZ (YSZ: yttria stabilized zirconia) support and active fuel electrode, an YSZ electrolyte...... that except for the first 250 hours fast initial degradation, for the rest of the testing period, the cell showed rather stable performance with an moderate degradation rate of around 25 mV/1000 h. The electrochemical impedance spectra show that both serial resistance and polarization resistance of the cell...... and changing of porosity inside the active layer. The degree of these microstructural changes becomes less and less severe along the hydrogen-steam flow path. The present test results show that this type of cell can be used for early demonstration electrolysis at 1A/cm2. Future work should be focus on reducing...

  9. Indications of the formation of an oversaturated solid solution during hydrogenation of Mg-Ni based nanocomposite produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama, CRIDESAT, Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Instituto de Materiales y Procesos Termomecanicos, Facultad de Ciencias de la Ingenieria, Universidad Austral de Chile, Av. General Lagos 2086, Valdivia (Chile)

    2009-07-15

    An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg{sub 2}Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid-gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg{sub 2}Ni and H without any sign of Mg{sub 2}NiH{sub 4} hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg{sub 2}NiH{sub 4}, and the second one with the Mg{sub 2}NiH{sub 4} desorption. (author)

  10. Solid particle effects on heat transfer in a multi-layered molten pool with gas injection

    International Nuclear Information System (INIS)

    Bilbao y Leon, Rosa Marina; Corradini, Michael L.

    2006-01-01

    In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a stable coolable state. To achieve this, it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. In this situation the molten pool would become a three-phase mixture: e.g., a solid and liquid slurry formed by the molten pool as it cools to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward in this multi-layered configuration, considering the influence of the viscosity and the solid fraction in the pool, from test data obtained from intermediate scale experiments at the University of Wisconsin-Madison. These experimental results show heat transfer behavior for multi-layered pools for a range of viscosities and solid fractions. These results are compared to previous experimental studies and well known correlations and models

  11. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    Science.gov (United States)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  12. Thermally-induced ortho-para conversion anomaly in solid hydrogen under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J K; Swenson, C A

    1979-01-01

    The spontaneous ortho-para conversion rate in solid hydrogen under pressure has been observed to increase by approximately an order of magnitude at temperatures greater than 0.08 theta/sub 0/ and for molar volumes less than 19.7 cm/sup 3/. This effect, which disappears upon cooling below these temperatures, cannot be understood in terms of present theoretical models. The heat capacity experiment (C/sub V/(V,T)) in which these effects were observed gives an equation of state for parahydrogen for pressures less than 2 kbar which agrees with previous high pressure work at 4.2/sup 0/K, and a T=O equilibrium molar volume of 23.20 +- 0.05 cm/sup 3/. 2 figures.

  13. Molecular rotations and diffusion in solids, in particular hydrogen in metals

    International Nuclear Information System (INIS)

    Springer, T.

    1977-01-01

    The chapter deals mainly with problems related to physical chemistry. The author treats diffusion in solids, in particular of hydrogen in metals, and studies of molecular rotations, in particular studies of tunneling transitions which is a relatively new and rapidly developing field of high resolution neutron spectroscopy. Typical neutron spectra to be discussed appear in energy ranges of a few 10 -6 to a few 10 -3 eV, or 10 -5 to 10 -2 cm -1 . The discussion is restricted to scattering from the protons which is predominantly incoherent. This means that only the motions, or excitations, of individual protons or protonic groups are discussed, ignoring collective excitations and interference. (HPOE) [de

  14. Recent Progress and New Perspectives on Metal Amide and Imide Systems for Solid-State Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Sebastiano Garroni

    2018-04-01

    Full Text Available Hydrogen storage in the solid state represents one of the most attractive and challenging ways to supply hydrogen to a proton exchange membrane (PEM fuel cell. Although in the last 15 years a large variety of material systems have been identified as possible candidates for storing hydrogen, further efforts have to be made in the development of systems which meet the strict targets of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU and U.S. Department of Energy (DOE. Recent projections indicate that a system possessing: (i an ideal enthalpy in the range of 20–50 kJ/mol H2, to use the heat produced by PEM fuel cell for providing the energy necessary for desorption; (ii a gravimetric hydrogen density of 5 wt. % H2 and (iii fast sorption kinetics below 110 °C is strongly recommended. Among the known hydrogen storage materials, amide and imide-based mixtures represent the most promising class of compounds for on-board applications; however, some barriers still have to be overcome before considering this class of material mature for real applications. In this review, the most relevant progresses made in the recent years as well as the kinetic and thermodynamic properties, experimentally measured for the most promising systems, are reported and properly discussed.

  15. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ebru Oender [KOSGEB Bursa Business Development Center, Besevler Kucuk Sanayi Sitesi 16149 Nilufer/Bursa (Turkey); Koparal, Ali Savas; Oeguetveren, Uelker Bakir [Anadolu University, Iki Eylul Campus, Applied Research Center for Environmental Problems 26555 Eskisehir (Turkey); Anadolu University, Iki Eylul Campus, Department of Environmental Engineering, 26555 Eskisehir (Turkey)

    2009-01-15

    The aim of this work is to investigate the feasibility of simultaneous hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte (SPE) in an electrochemical reactor. Titanium oxide coated with iridium oxide as anode and carbon fibre with Pt catalyst as cathode were used in the experiments. Effects of applied current density, flow rates and temperature of formic acid solution, concentration of supporting electrolyte and pH of the solution on performance of the process have been investigated. The effect of membrane thickness has also been examined. The results suggest that electrolysis using SPE is a promising method for the treatment of organic pollutants. Hydrogen with purity of 99.999% at ambient temperature by using carbon fibre cathode with Pt catalyst can be produced simultaneously and COD removal efficiency of 95% has been achieved not requiring any chemical addition and temperature increase. Also complete electrochemical oxidation of formic acid at the original pH to CO{sub 2} and H{sub 2}O without production of intermediate has been proved by HPLC analysis. (author)

  17. An optimized hydrogen target for muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.i [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of)

    2011-04-01

    This paper deals with the optimization of the processes involved in muon catalyzed fusion. Muon catalyzed fusion ({mu}CF) is studied in all layers of the solid hydrogen structure H/0.1%T+D{sub 2}+HD. The layer H/T acts as an emitter source of energetic t{mu} atoms, due to the so-called Ramsauer-Townsend effect. These t{mu} atoms are slowed down in the second layer (degrader) and are forced to take place nuclear fusion in HD. The degrader affects time evolution of t{mu} atomic beam. This effect has not been considered until now in {mu}CF-multilayered targets. Due to muon cycling and this effect, considerable reactions occur in the degrader. In our calculations, it is shown that the fusion yield equals 180{+-}1.5. It is possible to separate events that overlap in time.

  18. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  19. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  20. A Neutron-Diffraction Study of the Solid Layers at the Liquid Solid Boundary in 4He-Films Adsorbed on Graphite

    DEFF Research Database (Denmark)

    da Costa Carneiro, Kim; Passell, L.; Thomlinson, W.

    1981-01-01

    A neutron scattering study of the structure of 4He films adsorbed on graphite is reported. Diffraction from helium monolayers at a temperature of 1.2K shows the formation of an incommensurate, triangular-lattice solid of high density. As the coverage is increased above two layers, the diffraction...

  1. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  2. Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor

    KAUST Repository

    Shafiee, Alireza; Arab, Mobin; Lai, Zhiping; Liu, Zongwen; Abbas, Ali

    2016-01-01

    reforming hydrogen production plant. A techno-economic analysis is then conducted using the validated model for a plant producing 300 TPD of hydrogen. The plant utilises a thin (2.5 μm) defect-free and selective layer (Pd75Ag25 alloy) membrane reactor

  3. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    Science.gov (United States)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  4. Hydrogen-related defects in Al2O3 layers grown on n-type Si by the atomic layer deposition technique

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.

    2018-04-01

    The electrical properties of alumina films with thicknesses varying from 15 nm to 150 nm, grown by the atomic layer deposition technique on n-type Si, were investigated. We demonstrated that the annealing of the alumina layers in argon (Ar) or hydrogen (H) atmosphere at about 700 K resulted in the introduction of negatively charged defects irrespective of the type of the substrate. These defects were also observed in samples subjected to a dc H plasma treatment at temperatures below 400 K, whereas they were not detected in as-grown samples and in samples annealed in Ar atmosphere at temperatures below 400 K. The concentration of these defects increased with a higher H content in the alumina films. In good agreement with theory we assigned these defects to interstitial H-related defects.

  5. Hydrogen charging/discharging system with liquid organic compounds: a lacunar oxide catalyst to hydrogenate the unsaturated organic compound

    International Nuclear Information System (INIS)

    Jalowiecki-Duhamel, L.; Carpentier, J.; Payen, E.; Heurtaux, F.

    2006-01-01

    Lacunar mixed oxides based on cerium nickel and aluminium or zirconium CeM 0.5 Ni x O y s (M = Zr or Al), able to store high quantities of hydrogen, have been analysed in the hydrogenation of toluene into methyl-cyclohexane (MCH). When these solids present very good toluene hydrogenation activity and selectivity towards MCH in presence of H 2 , in absence of gaseous hydrogen, the reactive hydrogen species stored in the solid can hydrogenate toluene into MCH. The hydrogenation activity under helium + toluene flow decreases as a function of time and becomes nil. The integration of the curve obtained allows to determine the extractable hydrogen content of the solid used, and a value of 1.2 wt % is obtained at 80 C on a CeAl 0.5 Ni 3 O y compound pre-treated in H 2 at 300 C. To optimise the system, different parameters have been analysed, such as the catalyst formulation, the metal content, the pre-reducing conditions as well as the reaction conditions under helium + toluene. (authors)

  6. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    Science.gov (United States)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  7. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  8. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  9. Development of tantalum–zirconium alloy for hydrogen purification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay, E-mail: sanjay.barc@gmail.com [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India); IAMR, Hiroshima University, Higashihiroshima 739-8530 (Japan); Singh, Anamika [GSASM Hiroshima University, Higashihiroshima 739-8530 (Japan); Jain, Uttam; Dey, Gautam Kumar [Fusion Reactor Materials Section, MG, BARC, Mumbai 85 (India)

    2016-11-01

    Highlights: • Terminal solid solubility of Ta increases with Zr addition. • Increase in lattice parameters of Ta due to Zr addition may be the possible reason. • Enhance H solubility could also be explained on the change in e-DOS of Ta–Zr alloys. • Ta–Zr alloys could be possible combination for hydrogen purification membrane. - Abstract: Terminal solid solubility of hydrogen in Ta–Zr alloys has been studied in connection with the development of tantalum based metallic membrane for hydrogen/tritium purification. The alloys were prepared by vacuum arc melting technique and subsequently cold rolled to 0.2 mm thickness. The terminal solid solubility of hydrogen in these cold rolled samples was investigated in a modified Sieverts apparatus. The terminal solid solubility of hydrogen was marginally increased with zirconium content. The change in the lattices parameter of tantalum upon zirconium addition and the higher affinity of zirconium for hydrogen as compared to tantalum could be the possible reasons.

  10. Photocatalytic hydrogen production over solid solutions between BiFeO{sub 3} and SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lingwei; Lv, Meilin [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Liu, Gang [Shenyang National laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 72 Wenhua Road, Shenyang 110016 (China); Xu, Xiaoxiang, E-mail: xxxu@tongji.edu.cn [Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092 (China)

    2017-01-01

    Graphical abstract: We have successfully prepared a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions. These materials own strong visible light absorption and demonstrate appealing photocatalytic activity under both full range and visible light irradiation. - Highlights: • Band gap values can be tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. • Photocatalytic activity is greatly improved after constituting solid solutions. • Photocatalytic activity is influenced by surface area and light absorption. • Fe plays an important role for band gap reduction and catalytic activity. - Abstract: Constituting solid solutions has been an appealing means to gain control over various physicochemical properties. In this work, we synthesized a series of SrTiO{sub 3}-BiFeO{sub 3} solid solutions and systematically explored their structural, optical and photocatalytic properties. Our results show that all solid solutions crystallize in a primitive cubic structure and their band gap values can be easily tuned by adjusting molar ratios between SrTiO{sub 3} and BiFeO{sub 3}. Photocatalytic hydrogen production under both full range and visible light irradiation is greatly improved after forming solid solutions. The highest hydrogen production rate obtained is ∼180 μmol/h under full range irradiation (λ ≥ 250 nm) and ∼4.2 μmol/h under visible light irradiation (λ ≥ 400 nm), corresponding to apparent quantum efficiency ∼2.28% and ∼0.10%, respectively. The activity is found to be strongly influenced by surface area and light absorption. Theoretical calculation suggests that Fe contributes to the formation of spin-polarized bands in the middle of original band gap and is responsible for the band gap reduction and visible light photocatalytic activity.

  11. Structural evolution in three and four-layer Aurivillius solid solutions: A comparative study versus relaxor properties

    Science.gov (United States)

    Tellier, Jenny; Boullay, Philippe; Ben Jennet, Dorra; Mercurio, Daniele

    2008-02-01

    Two solid solutions of three-layer Ba xBi 4- xNb xTi 3- xO 12 (0 ≤ x ≤ 1.2) and four-layer Aurivillius compounds (Na 0.5Bi 0.5) 1- xBa xBi 4Ti 4O 15 (0 ≤ x ≤ 1), which both present a ferroelectric to relaxor-like transition with increasing x, were synthesized by solid state reaction. The evolution of their crystal structures, as a function of x, was performed using Rietveld refinements from X-ray powder diffraction data. As x increases, the average crystal structures become less distorted with respect to the archetypal high temperature tetragonal one and the coordination number of Bi 3+ in M 2O 2 layers continuously changes from {4 + 2} to {4}. The relaxor behaviour which appears in samples for a tolerance factor t > 0.96 is associated with a general static disorder in A and M sites together with the presence of some Ba 2+ cations in M 2O 2 layers (less than 10%).

  12. Reaction of hydrogen atoms produced by radiolysis and photolysis in solid phase at 4 and 77 K

    International Nuclear Information System (INIS)

    Miyazaki, Tetsuo

    1991-01-01

    The behavior of H atoms in the solid phase has been reviewed with special attention to comparison of H atoms produced by radiolysis with those produced by photolysis. The paper consists of three parts. I -Production of H atoms: (1) the experimental results which indicate H-atom formation in the radiolysis of solid alkane are summarized; (2) ESR saturation behavior of trapped H atoms depends upon the method of H-atom-production, i.e. photolysis or radiolysis, and upon the initial energy of H atoms in the photolysis. II - Diffusion of H atoms: (1) activation energies for thermally-activated diffusion of H atoms are shown; (2) quantum diffusion of H atoms in solid H 2 is explained in terms of repetition of tunneling reaction H 2 + H → H + H 2 . III -Reaction of H atoms: (1) reactions and trapping processes of hot H atoms have been shown in solid methane and argon by use of hot H atoms with specified initial energy; (2) when H atoms are produced by the radiolysis of solvent alkane or by the photolysis of HI in the alkane mixtures at 77 K, the H atoms react very selectively with solute alkane at low concentration. The selective reaction of the H atom has been found in eight matrices; (3) activation energy for a hydrogen-atom-abstraction reaction by thermal H atoms at low temperatures is less than than several kJ mol -1 because of quantum tunneling. The absolute rate constants for H 2 (D 2 , HD) + H(D) tunneling reactions have been determined experimentally in solid hydrogen at 4.2K; (4) theoretical studies for tunneling reactions H 2 (D 2 ,HD) + H(D) at ultralow temperatures were reviewed. The calculated rate constants were compared with the rate constants obtained experimentally. (author)

  13. Computational investigation of the effects of barrier layers on the permeation of hydrogen through metals

    International Nuclear Information System (INIS)

    Perkins, W.G.

    1975-01-01

    Results of a computational investigation of the permeation behavior of oxide-coated metal membranes are presented. A steady-state permeation model was developed which promises to be useful in evaluation of oxide layers on metals as hydrogen permeation barriers. The pressure and thickness dependence of steady state permeation through oxide-coated metal membranes is described using plots of logarithmic functions. (U.S.)

  14. Catalytic reaction in a porous solid subject to a boundary layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Mihail, R; Teddorescu, C

    1978-01-01

    A mathematical model of a boundary layer flowing past a catalytic slab was developed which included an analysis of the coupled mass and heat transfer and the heterogeneous chemical reaction. The porous flat plate was used to illustrate the interaction of boundary layer flow with chemical reaction within a porous catalytic body. The model yielded systems of transcendental equations which were solved numerically by means of a superposition integral in connection with a norm reduction procedure. A parametric study was conducted and an analysis of the possible multiplicity of steady states was developed and illustrated for the extreme case of infinite solid thermal conductivity. Tables, diagrams, graphs, and 12 references.

  15. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  16. Hydrogen storage on graphene: First-principle calculations

    NARCIS (Netherlands)

    Boukhvalov, D.W.; Katsnelson, M.I.; Lichtenstein, A.I.

    2007-01-01

    Density functional calculations of electronic structure, total energy, structural distortions, and magnetism for hydrogenated single-layer, bilayer, and multi-layer graphene are performed. It is found that hydrogen-induced magnetism can survives only at very low concentrations of hydrogen

  17. Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW)

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhenhong, Yuan; Yongming, Sun; Longlong, Ma [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2010-08-15

    In order to harvest high-efficient hydrogen producing seeds, five pretreatment methods (including acid, heat, sonication, aeration and freeze/thawing) were performed on anaerobic digested sludge (AS) which was collected from a batch anaerobic reactor for treating organic fraction of municipal solid waste. The hydrogen production tests were conducted in serum bottles containing 20 gVS/L (24.8 g COD/L) mixture of rice and lettuce powder at 37 C. The experimental results showed that the heat and acid pretreatment completely repressed the methanogenic activity of AS, but acid pretreatment also partially repressed hydrogen production. Sonication, freeze/thawing and aeration did not completely suppress the methanogen activity. The highest hydrogen yields were 119.7, 42.2, 26.0, 23.0, 22.7 and 22.1 mL/gVS for heated, acidified, freeze/thawed, aerated, sonicated and control AS respectively. A pH of about 4.9 was detected at the end of hydrogen producing fermentation for all tests. The selection of an initial pH can markedly affect the hydrogen producing ability for heated and acidified AS. The higher initial pH generated higher hydrogen yield and the highest hydrogen yield was obtained with initial pH 8.9 for heated AS. (author)

  18. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    Science.gov (United States)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  19. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Alzate-Gaviria, Liliana M. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico); Perez-Hernandez, Antonino [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico); Eapen, D. [Universidad Politecnica de Chiapas, 29010 Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    Two laboratory scale anaerobic digestion systems for hydrogen production from organic fraction of municipal solid waste (OFMSW) and synthetic wastewater were compared in this study. One of them was formed by a coupled packed bed reactor (PBR) containing 19.4 L of OFMSW and the other an upflow anaerobic sludge bed (UASB) of 3.85 L. The reactors were inoculated with a mixture of non-anaerobic inocula. In the UASB the percentage of hydrogen yield reached 51% v/v and 127NmLH{sub 2}/gvs removed with a hydraulic retention time (HRT) of 24 h. The concentration of synthetic wastewater in the affluent was 7 g COD/L. For the PBR the percentage yield was 47% v/v and 99NmLH{sub 2}/gvs removed with a mass retention time (MRT) of 50 days and the organic load rate of 16 gvs (Grams Volatile Solids)/(kg-day). The UASB and PBR systems presented maximum hydrogen yields of 30% and 23%, respectively, which correspond to 4molH{sub 2}/mol glucose. These values are similar to those reported in the literature for the hydrogen yield (37%) in mesophilic range. The acetic and butyric acids were present in the effluent as by-products in watery phase. In this work we used non-anaerobic inocula made up of microorganism consortium unlike other works where pure inocula or that from anaerobic sludge was used. (author)

  20. Surface analytical investigations of the interaction between the getter material ZrCo and hydrogen and the influence of different contamination gases on the hydrogen storage capacity

    International Nuclear Information System (INIS)

    Glasbrenner, H.

    1991-11-01

    In this work the results of surface analytical investigations of the alloy ZrCo used for hydrogen storage as well as of the interaction of the alloy with hydrogen and various contamination gases present in a nuclear fusion reactor will be presented and discussed with respect to the application of ZrCo as getter material for tritium. The characterization of the ZrCo alloy showed that on the surface a stable ZrO 2 -layer is formed, which is, however, inhomogeneous. On the phase boundary solid / gas of samples exposed to hydrogen up to the stoichiometrical composition ZrCoH 2.8 a Co enrichment was observed. If the alloy ZrCo is activated before hydrogen take-up in the same way as other getter materials by heating under vacuum, the hydrogenation occurs faster and nearly complete. Zirconium is the alloy component responsible for the hydrogen storage. If a gas reacts nearly exclusively with the alloy component Co, a smaller decrease in the hydrogen storage capacity will be noticed. By exposition to CO and CO 2 mainly compounds with cobalt are formed. However, if the gas produces compounds with Zr like carbide, nitride, or oxide, the result is a strong decrease of the hydrogen storage capacity of the getter. (orig./MM) [de

  1. Stable catalyst layers for hydrogen permeable composite membranes

    Science.gov (United States)

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  2. Hydrogen pellet injection device

    International Nuclear Information System (INIS)

    Kanno, Masahiro.

    1992-01-01

    In a hydrogen pellet injection device, a nozzle block having a hydrogen gas supply channel is disposed at the inner side of a main cryogenic housing, and an electric resistor is attached to the block. Further, a nozzle block and a hydrogen gas introduction pipe are attached by way of a thermal insulating spacer. Electric current is supplied to the resistor to positively heat the nozzle block and melt remaining solid hydrogen in the hydrogen gas supply channel. Further, the effect of temperature elevation due to the resistor is prevented from reaching the side of the hydrogen gas introduction pipe by the thermal insulation spacer. That is, the temperature of the nozzle block is directly and positively elevated, to melt the solid hydrogen rapidly. Preparation operation from the injection of the hydrogen pellet to the next injection can be completed in a shorter period of time compared with a conventional case thereby enabling to make the test more efficient. Further, only the temperature of the nozzle block is elevated with no effect of temperature elevation due to the resistor to other components by the thermal insulation flange. (N.H.)

  3. MIS-based sensors with hydrogen selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Li,; Dongmei, [Boulder, CO; Medlin, J William [Boulder, CO; McDaniel, Anthony H [Livermore, CA; Bastasz, Robert J [Livermore, CA

    2008-03-11

    The invention provides hydrogen selective metal-insulator-semiconductor sensors which include a layer of hydrogen selective material. The hydrogen selective material can be polyimide layer having a thickness between 200 and 800 nm. Suitable polyimide materials include reaction products of benzophenone tetracarboxylic dianhydride 4,4-oxydianiline m-phenylene diamine and other structurally similar materials.

  4. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    Science.gov (United States)

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  5. Quantitative analysis of hydrogen and hydrogen isotopes at the solid surface; Analyse quantitative de l'hydrogene et de ses isotopes a la surface des solides

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), Service de Recherches de Metallurgie Physique, 91 - Gif-sur-Yvette (France)

    2007-07-01

    Because of the importance of the effects bound to the hydrogen presence in materials it is particularly important to determine with accuracy the surface and volume distribution of hydrogen. Meanwhile the electronic structure of the hydrogen (one electron) do not allow to use many characterization techniques as the electrons spectroscopies or the X micro analysis. The author presents other possible techniques. (A.L.B.)

  6. Atomic hydrogen storage method and apparatus

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  7. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  8. Influence of post-hydrogenation upon electrical, optical and structural properties of hydrogen-less sputter-deposited amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, S., E-mail: sebastian.gerke@uni-konstanz.de [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Becker, H.-W.; Rogalla, D. [RUBION — Central Unit for Ion Beams and Radioisotopes, University of Bochum, Bochum, 44780 (Germany); Singer, F.; Brinkmann, N.; Fritz, S.; Hammud, A.; Keller, P.; Skorka, D.; Sommer, D. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Weiß, C. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Flege, S. [Department of Materials Science, TU Darmstadt, Darmstadt 64287 (Germany); Hahn, G. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Job, R. [Department of Electrical Engineering and Computer Science, Münster University of Applied Sciences, Steinfurt 48565 (Germany); Terheiden, B. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany)

    2016-01-01

    Amorphous silicon (a-Si) is common in the production of technical devices and can be deposited by several techniques. In this study intrinsic and doped, hydrogen-less amorphous silicon films are RF magnetron sputter deposited and post-hydrogenated in a remote hydrogen plasma reactor at a temperature of 370 °C. Secondary ion mass spectrometry of a boron doped (p) a-Si layer shows that the concentration of dopants in the sputtered layer becomes the same as present in the sputter-target. Improved surface passivation of phosphorous doped 5 Ω cm, FZ, (n) c-Si can be achieved by post-hydrogenation yielding a minority carrier lifetime of ~ 360 μs finding an optimum for ~ 40 nm thin films, deposited at 325 °C. This relatively low minority carrier lifetime indicates high disorder of the hydrogen-less sputter deposited amorphous network. Post-hydrogenation leads to a decrease of the number of localized states within the band gap. Optical band gaps (Taucs gab as well as E{sub 04}) can be determined to ~ 1.88 eV after post-hydrogenation. High resolution transmission electron microscopy and optical Raman investigations show that the sputtered layers are amorphous and stay like this during post-hydrogenation. As a consequence of the missing hydrogen during deposition, sputtered a-Si forms a rough surface compared to CVD a-Si. Atomic force microscopy points out that the roughness decreases by up to 25% during post-hydrogenation. Nuclear resonant reaction analysis permits the investigation of hydrogen depth profiles and allows determining the diffusion coefficients of several post-hydrogenated samples from of a model developed within this work. A dependency of diffusion coefficients on the duration of post-hydrogenation indicates trapping diffusion as the main diffusion mechanism. Additional Fourier transform infrared spectroscopy measurements show that hardly any interstitial hydrogen exists in the post-hydrogenated a-Si layers. The results of this study open the way for

  9. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  10. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1999-01-01

    Ion implantation is the principal method used to introduce dopants into silicon for fabrication of semiconductor devices. During ion implantation, damage accumulates in the crystalline silicon lattice and amorphisation may occur over the depth range of the ions if the implant dose is sufficiently high. As device dimensions shrink, the need to produce shallower and shallower highly-doped layers increases and the probability of amorphisation also increases. To achieve dopant-activation, the amorphous or damaged material must be returned to the crystalline state by thermal annealing. Amorphous silicon layers can be crystallised by the solid-state process of solid phase epitaxy (SPE) in which the amorphous layer transforms to crystalline silicon (c-Si) layer by layer using the underlying c-Si as a seed. The atomic mechanism that is responsible for the crystallisation is thought to involve highly-localised bond-breaking and rearrangement processes at the amorphous/crystalline (a/c) interface but the defect responsible for these bond rearrangements has not yet been identified. Since the bond breaking process necessarily generates dangling bonds, it has been suggested that the crystallisation process may solely involve the formation and migration of dangling bonds at the interface. One of the key factors which may shed further light on the nature of the SPE defect is the observed dopant-dependence of the rate of crystallisation. It has been found that moderate concentrations of dopants enhance the SPE crystallisation rate while the presence of equal concentrations of an n-type and a p-type dopant (impurity compensation) returns the SPE rate to the intrinsic value. This provides crucial evidence that the SPE mechanism is sensitive to the position of the Fermi level in the bandgap of the crystalline and/or the amorphous silicon phases and may lead to identification of an energy level within the bandgap that can be associated with the defect. This paper gives details of SPE

  11. McPhy-Energy’s proposal for solid state hydrogen storage materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    Jehan, Michel, E-mail: michel.jehan@mcphy.com [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Fruchart, Daniel, E-mail: daniel.fruchart@grenoble.cnrs.fr [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Institut Néel and CRETA, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Mechanical alloying with nano-structurizing highly reactive magnesium metal hydrides particles. •Solid reversible hydrogen storage at scale of kg to tons of hydrogen using MgH{sub 2} composite discs. •Natural Expanded Graphite draining heat of reaction during sorption. •Change Phase Material storing reversibly heat of reaction within tank storage as adiabatic system. •Technology fully adapted for renewable energy storage and network energy peak shavings through H{sub 2}. -- Abstract: The renewable resources related, for instance, to solar energies exhibit two main characteristics. They have no practical limits in regards to the efficiency and their various capture methods. However, their intermittence prevents any direct and immediate use of the resulting power. McPhy-Energy proposes solutions based on water electrolysis for hydrogen generation and storage on reversible metal hydrides to efficiently cover various energy generation ranges from MW h to GW h. Large stationary storage units, based on MgH{sub 2}, are presently developed, including both the advanced materials and systems for a total energy storage from ∼70 to more than 90% efficient. Various designs of MgH{sub 2}-based tanks are proposed, allowing the optional storage of the heat of the Mg–MgH{sub 2} reaction in an adjacent phase changing material. The combination of these operations leads to the storage of huge amounts of hydrogen and heat in our so-called adiabatic-tanks. Adapted to intermittent energy production and consumption from renewable sources (wind, sun, tide, etc.), nuclear over-production at night, or others, tanks distribute energy on demand for local applications (on-site domestic needs, refueling stations, etc.) via turbine or fuel cell electricity production.

  12. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  13. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  14. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    Science.gov (United States)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  15. Use of nuclear method analysis in ultrahigh vacuum. Application to the hydrogen dosage in solids

    International Nuclear Information System (INIS)

    Chartoire, M.

    1982-01-01

    It is possible to determine hydrogen by the 1 H( 15 N,αγ) 12 C nuclear reaction, in an ultra-high vacuum and with sample temperature monitoring, without reducing the detection efficiency of the γ rays emitted. This method is sensitive on the surface of the samples as well as in the core. Further, its resolution in depth on the surface is less than 50 x 10 -4 μm for elements with an atomic number above that of silicon. This surface analysis technique competes with and supplements the performance of the Auger and ESCA spectrometries. The cooling or heating of the samples in-situ from -150 0 C to +450 0 C enables an initial approach to be made to the phenomena of adsorption of the hydrogenated species on the surface of the samples. The possibility of plotting concentration profiles to depths of around a micrometer, also provides a means for studying the sorption of hydrogen in solids. The importance is brought to light of the quality of the residual vacuum and mainly of the partial steam pressure in the curves showing the change in the concentration of surface contamination hydrogen according to the quantity of incident ions. At temperatures above 300 0 C, the radiolysis and desorption phenomena of the species thus created become very significant. These were obtained only by making a study in greater depth of the validity conditions of the model used for describing the effusion of hydrogen under the analytical beam [fr

  16. Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar; Thangamani, Nithyanantham; Anderson, Harlan, U.; Brow, Richard, K.

    2009-06-30

    Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode, respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall

  17. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  18. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  19. Influence of the charge double layer on solid oxide fuel cell stack behavior

    Science.gov (United States)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  20. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    Science.gov (United States)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  1. Operating Point Optimization of a Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Steam Turbine (SOFC-ST Plant

    Directory of Open Access Journals (Sweden)

    Juanjo Ugartemendia

    2013-09-01

    Full Text Available This paper presents a hydrogen powered hybrid solid oxide fuel cell-steam turbine (SOFC-ST system and studies its optimal operating conditions. This type of installation can be very appropriate to complement the intermittent generation of renewable energies, such as wind generation. A dynamic model of an alternative hybrid SOFC-ST configuration that is especially suited to work with hydrogen is developed. The proposed system recuperates the waste heat of the high temperature fuel cell, to feed a bottoming cycle (BC based on a steam turbine (ST. In order to optimize the behavior and performance of the system, a two-level control structure is proposed. Two controllers have been implemented for the stack temperature and fuel utilization factor. An upper supervisor generates optimal set-points in order to reach a maximal hydrogen efficiency. The simulation results obtained show that the proposed system allows one to reach high efficiencies at rated power levels.

  2. High Temperature Oxidation of Ferritic Steels for Solid Oxide Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bentzen, Janet Jonna

    2013-01-01

    atmospheres at 800°C. Four commercially available alloys: Crofer 22 APU, Crofer 22 H, AL29-4, E-Brite were characterized in humidified hydrogen. One alloy, Crofer 22 APU was also characterized in pure oxygen both in the as-prepared state and after application of a protective coating. Best corrosion resistance......Oxidation rates of ferritic steels used as interconnector plates in Solid Oxide Electrolysis Stacks are of concern as they may be determining for the life time of the technology. In this study oxidation experiments were carried out for up to 1000 hours in hydrogen-side and oxygen-side simulated...... in humidified hydrogen atmosphere was observed for Crofer 22 APU and Crofer 22 H alloys. Corrosion rates for Crofer 22 APU measured in humidified hydrogen are similar to the corrosion rates measured in air. Both coatings of plasma sprayed LSM and dual layer coatings (Co3O4/LSM-Co3O4) applied by wet spraying...

  3. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  4. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  5. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  6. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70ºC)

    DEFF Research Database (Denmark)

    Liu, Dawei; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Two continuously stirred tank reactors were operated with household solid waste at 70°C, for hydrogen and methane production. The individual effect of hydraulic retention time (HRT as 1, 2, 3, 4, and 6 days) at pH 7 or pH (5, 5.5, 6, 6.5, 7) at 3-day HRT was investigated on the hydrogen production...... versus methanogenesis. It was found that at pH 7, the maximum hydrogen yield was 107 mL-H2/g VSadded (volatile solid added) but no stable hydrogen production was obtained as after some time methanogenesis was initiated at all tested HRTs. This demonstrated that sludge retention time alone was not enough...... for washing out the methanogens at pH 7 under extreme-thermophilic conditions. Oppositely, we showed that keeping the pH level at 5.5 was enough to inhibit methane and produce hydrogen stably at 3-day HRT. However, the maximum stable hydrogen yield was low at 21 mL-H2/g VSadded. Biotechnol. Bioeng. 2008...

  7. Destructive hydrogenation. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1929-07-15

    Liquid or readily liquefiable products are obtained from solid distillable carbonaceous materials such as coals, oil shales or other bituminous substances by subjecting the said initial materials to destructive hydrogenation under mild conditions so that the formation of benzine is substantially avoided, and then subjecting the treated material to extraction by solvents. By hydrogenating under mild conditions the heavy oils which prevent the asphaltic substances from being precipitated are preserved, and the separation of the liquid products from the solid residue is facilitated. Solid paraffins and high boiling point constituents suitable for the production of lubricating oils may be removed before or after the extraction process. The extraction is preferably carried out under pressure with solvents which do not precipitate asphaltic substances. Brown coal containing 11 per cent ash is passed at 450/sup 0/C, and 200 atmospheres pressure in counter current to hydrogen; 40 per cent of the coal is converted into liquid products which are condensed out of the hydrogen stream; the pasty residue, on extraction with benzene, yields 45 per cent of high molecular weight products suitable for the production of lubricating oil.

  8. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  9. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  10. Hydrogen as a New Alloying Element in Metals

    International Nuclear Information System (INIS)

    Shapovalov, Vladimir

    1999-01-01

    Hydrogen was regarded as a harmful impurity in many alloys and particularly in steels where it gives rise to a specific type of embrittlement and forms various discontinuities like flakes and blowholes. For this reason, the researcher efforts were mainly focused on eliminating hydrogen's negative impacts and explaining its uncommonly high diffusivity in condensed phases. Meanwhile, positive characteristics of hydrogen as an alloying element remained unknown for quite a long time. Initial reports in this field did not appear before the early 1970s. Data on new phase diagrams are given for metal-hydrogen systems where the metal may or may not form hydrides. Various kinds of hydrogen impact on structure formation in solidification, melting and solid-solid transformations are covered. Special attention is given to the most popular alloys based on iron, aluminum, copper, nickel, magnesium and titanium. Detailed is what is called gas-eutectic reaction resulting in a special type of gas-solid structure named gasarite. Properties and applications of gasars - gasaritic porous materials - are dealt with. Various versions of solid-state alloying with hydrogen are discussed that change physical properties and fabrication characteristics of metals. Details are given on a unique phenomenon of anomalous spontaneous deformation due to combination of hydrogen environment and polymorphic transformation. All currently known versions of alloying with hydrogen are categorized for both hydride-forming and non-hydrid forming metals

  11. Hydrogen at extreme pressures (Review Article)

    International Nuclear Information System (INIS)

    Goncharov, Alexander F.; Howie, Ross T.; Gregoryanz Eugene

    2013-01-01

    Here we review recent experimental and theoretical studies of hydrogen approaching metallization regime. Experimental techniques have made great advances over the last several years making it possible to reach previously unachievable conditions of pressure and temperature and to probe hydrogen at these conditions. Theoretical methods have also greatly improved; exemplified through the prediction of new structural and ordered quantum states. Recently, a new solid phase of hydrogen, phase IV, has been discovered in a high-pressure high-temperature domain. This phase is quite unusual structurally and chemically as it represents an intermediate state between common molecular and monatomic configurations. Moreover, it shows remarkable fluxional characteristics related to its quantum nature, which makes it unique among the solid phases, even of light elements. However, phase IV shows the presence of a band gap and exhibits distinct phonon and libron characteristic of classical solids. The quantum behavior of hydrogen in the limit of very high pressure remains an open question. Prospects of studying hydrogen at more extreme conditions by static and combined static-dynamic methods are also presented.

  12. Probing the Conformation of an IgG1 Monoclonal Antibody in Lyophilized Solids Using Solid-State Hydrogen-Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    Science.gov (United States)

    Moussa, Ehab M; Singh, Satish K; Kimmel, Michael; Nema, Sandeep; Topp, Elizabeth M

    2018-02-05

    Therapeutic proteins are often formulated as lyophilized products to improve their stability and prolong shelf life. The stability of proteins in the solid-state has been correlated with preservation of native higher order structure and/or molecular mobility in the solid matrix, with varying success. In the studies reported here, we used solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS) to study the conformation of an IgG1 monoclonal antibody (mAb) in lyophilized solids and related the extent of ssHDX to aggregation during storage in the solid phase. The results demonstrate that the extent of ssHDX correlated better with aggregation rate during storage than did solid-state Fourier-transform infrared (ssFTIR) spectroscopic measurements. Interestingly, adding histidine to sucrose at different formulation pH conditions decreased aggregation of the mAb, an effect that did not correlate with structural or conformational changes as measured by ssFTIR or ssHDX-MS. Moreover, peptide-level ssHDX-MS analysis in four selected formulations demonstrated global changes across the structure of the mAb when lyophilized with sucrose, trehalose, or mannitol, whereas site-specific changes were observed when lyophilized with histidine as the sole excipient.

  13. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  14. Combined Solid State and High Pressure Hydrogen Storage

    DEFF Research Database (Denmark)

    Grube, Elisabeth; Jensen, Torben René

    Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia.......Presented at The First European Early Stage Researcher's Conference on Hydrogen Storage in Belgrade, Serbia....

  15. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  16. Sustainable hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  17. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  18. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  19. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  20. Thin-thick hydrogen target for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nucléaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  1. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  2. Treatment and storage of hydrogen isotopes

    International Nuclear Information System (INIS)

    Jung, H. S.; Lee, H. S.; An, D. H.; Kim, K. R.; Lee, S. H.; Choi, H. J.; Back, S. W.; Kang, H. S.; Eom, K. Y.; Lee, M. S.

    2000-01-01

    Storage of gaseous hydrogen isotopes in a cylinder is a well-established technology. However, Immobilization in the solid form is preferred for long-term storage of radioactive isotope gas because of the concern for leakage of the gas. The experimental thermodynamic p-c-T data show that Ti and U soak up hydrogen isotope gas at a temperature of a few hundred .deg. C and modest pressures. It was found that more hydrogen is dissolved in the metal than deuterium at constant pressure. Thus, the lighter isotope tends to be enriched in the solid phase

  3. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure

    International Nuclear Information System (INIS)

    Ruppalt, Laura B.; Cleveland, Erin R.; Champlain, James G.; Prokes, Sharka M.; Brad Boos, J.; Park, Doewon; Bennett, Brian R.

    2012-01-01

    In this report, we study the effectiveness of hydrogen plasma surface treatments for improving the electrical properties of GaSb/Al 2 O 3 interfaces. Prior to atomic layer deposition of an Al 2 O 3 dielectric, p-GaSb surfaces were exposed to hydrogen plasmas in situ, with varying plasma powers, exposure times, and substrate temperatures. Good electrical interfaces, as indicated by capacitance-voltage measurements, were obtained using higher plasma powers, longer exposure times, and increasing substrate temperatures up to 250 °C. X-ray photoelectron spectroscopy reveals that the most effective treatments result in decreased SbO x , decreased Sb, and increased GaO x content at the interface. This in situ hydrogen plasma surface preparation improves the semiconductor/insulator electrical interface without the use of wet chemical pretreatments and is a promising approach for enhancing the performance of Sb-based devices.

  4. The thermodynamics and kinetics of interstitial solid solutions

    International Nuclear Information System (INIS)

    Silva, J.R.G. da.

    1976-04-01

    Studies of hydrogen metal systems where the hidrogen is disolved in a solid solution are presented. Particular items of interest are: the thermodynamics of the hydrogen-iron system; the solubility of hidrogen in super pure iron single crytals; the thermodinamic functions of hydrogen in solid solutions of Nb, Ta and V; and the solubility of hydrogen in α-manganese. The diffusion of carbon and nitrogen in BCC iron is also studied

  5. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

    Energy Technology Data Exchange (ETDEWEB)

    Kracker, Michael, E-mail: Michael.Kracker@uni-jena.de; Worsch, Christian; Ruessel, Christian [Otto-Schott-Institut, Jena University (Germany)

    2013-04-15

    Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 Degree-Sign C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.Graphical Abstract.

  6. TiO{sub 2} nanofiber solid-state dye sensitized solar cells with thin TiO{sub 2} hole blocking layer prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jinwei; Chen, Xi; Xu, Weihe [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Nam, Chang-Yong, E-mail: cynam@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Shi, Yong, E-mail: Yong.Shi@stevens.edu [Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2013-06-01

    We incorporated a thin but structurally dense TiO{sub 2} layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO{sub 2} nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO{sub 2} layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO{sub 2} precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO{sub 2} layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO{sub 2} blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO{sub 2} layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime.

  7. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  8. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo

    2014-01-01

    A novel methodology, called in-situ solid state reaction (SSR), is developed and achieved for the densification of gadolinia doped ceria (CGO) barrier layer (BL) within the solid oxide fuel cell (SOFC) technology. The method is based on the combined use of impregnation technique and a designed two...

  9. Surface roughness statistics and temperature step stress effects for D-T solid layers equilibrated inside a 2 mm beryllium torus

    International Nuclear Information System (INIS)

    Sheliak, J.D.; Hoffer, J.K.

    1998-01-01

    Solid D-T layers are equilibrated inside a 2 mm diameter beryllium toroidal cell at temperatures ranging from 19.0 K to 19.6 K, using the beta-layering process. The experimental runs consists of multiple cycles of rapid- or slow-freezing of the initially liquid D-T charge, followed by a lengthy period of beta-layering equilibration, terminated by melting the layer. The temperature was changed in discrete steps at the end of some equilibration cycles in an attempt to simulate actual ICF target conditions. High-precision images of the D-T solid-vapor interface were analyzed to yield the surface roughness σ mns as a sum of modal contributions. Results show an overage σ mns of 1.3 ± 0.3 microm for layers equilibrated at 19.0 K and show an inverse dependence of σ mns on equilibration temperature up to 19.525 K. Inducing sudden temperature perturbations lowered σ mns to 1.0 ± 0.05 microm

  10. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  11. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    Science.gov (United States)

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Non-invasive NMR stratigraphy of a multi-layered artefact: an ancient detached mural painting.

    Science.gov (United States)

    Di Tullio, Valeria; Capitani, Donatella; Presciutti, Federica; Gentile, Gennaro; Brunetti, Brunetto Giovanni; Proietti, Noemi

    2013-10-01

    NMR stratigraphy was used to investigate in situ, non-destructively and non-invasively, the stratigraphy of hydrogen-rich layers of an ancient Nubian detached mural painting. Because of the detachment procedure, a complex multi-layered artefact was obtained, where, besides layers of the original mural painting, also the materials used during the procedure all became constitutive parts of the artefact. NMR measurements in situ enabled monitoring of the state of conservation of the artefact and planning of minimum representative sampling to validate results obtained in situ by solid-state NMR analysis of the samples. This analysis enabled chemical characterization of all organic materials. Use of reference compounds and prepared specimens assisted data interpretation.

  13. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  14. The kinetics of solid phase epitaxy in As-doped buried amorphous silicon layers

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1998-01-01

    The kinetics of dopant-enhanced solid phase epitaxy (SPE) have been measured in buried a-Si layers doped with arsenic. SPE rates were measured over the temperature range 480 - 660 deg C for buried a-Si layers containing ten different As concentrations. In the absence of H-retardation effects, the dopant-enhanced SPE rate is observed to depend linearly on the As concentration over the entire range of concentrations, 1-16 x 10 19 cm -3 covered in the study. The Fermi level energy was calculated as a function of doping and find an equation that can provide good fits to the data. The implications of these results for models of the SPE process is discussed

  15. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  17. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    Science.gov (United States)

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  18. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Balbach, John J. [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Yang Jun; Weliky, David P. [Michigan State University, Department of Chemistry (United States); Steinbach, Peter J. [National Institutes of Health, Center for Molecular Modeling, Center for Information Technology (United States); Tugarinov, Vitali; Anglister, Jacob [Weizmann Institute of Science, Department of Structural Biology (Israel); Tycko, Robert [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2000-04-15

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5{beta}, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with {sup 15}N labels at the {eta} nitrogen positions of arginine side chains and {sup 13}C labels at glycine carbonyl positions and {sup 13}C-detected {sup 13}C-{sup 15}N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5{beta} complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of {phi} and {psi} backbone dihedral angles in the RP135/0.5{beta} complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect {sup 13}C-{sup 15}N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations.

  19. Probing hydrogen bonds in the antibody-bound HIV-1 gp120 V3 loop by solid state NMR REDOR measurements

    International Nuclear Information System (INIS)

    Balbach, John J.; Yang Jun; Weliky, David P.; Steinbach, Peter J.; Tugarinov, Vitali; Anglister, Jacob; Tycko, Robert

    2000-01-01

    We describe solid state NMR measurements on frozen solutions of the complex of the 24-residue HIV-1 gp120 V3 loop peptide RP135 with the Fab fragment of the anti-gp120 antibody 0.5β, using rotational echo double resonance (REDOR). In order to probe possible hydrogen bonding between arginine side chains and glycine backbone carbonyls in the region of the conserved Gly-Pro-Gly-Arg (GPGR) motif of the V3 loop, RP135 samples were prepared with 15 N labels at the η nitrogen positions of arginine side chains and 13 C labels at glycine carbonyl positions and 13 C-detected 13 C- 15 N REDOR measurements were performed on peptide/antibody complexes of these labeled samples. Such hydrogen bonding was previously observed in a crystal structure of the V3 loop peptide/antibody complex RP142/59.1 [Ghiara et al. (1994) Science, 264, 82-85], but is shown by the REDOR measurements to be absent in the RP135/0.5β complex. These results confirm the antibody-dependent conformational differences in the GPGR motif suggested by previously reported solid state NMR measurements of φ and Ψ backbone dihedral angles in the RP135/0.5β complex. In addition, we describe REDOR measurements on the helical synthetic peptide MB(i+4)EK in frozen solution that establish our ability to detect 13 C- 15 N dipole-dipole couplings in the distance range appropriate to these hydrogen bonding studies. We also report the results of molecular modeling calculations on the central portion RP135, using a combination of the solid state NMR restraints of Weliky et al. [Nat. Struct. Biol., 6, 141-145, 1999] and the liquid state NMR restraints of Tugarinov et al. (Nat. Struct. Biol., 6, 331-335, 1999]. The dynamics calculations demonstrate the mutual compatibility of the two sets of experimental structural restraints and reduce ambiguities in the solid state NMR restraints that result from symmetry and signal-to-noise considerations

  20. Weak hydrogen bonding interactions influence slip system activity and compaction behavior of pharmaceutical powders.

    Science.gov (United States)

    Khomane, Kailas S; Bansal, Arvind K

    2013-12-01

    Markedly different mechanical behavior of powders of polymorphs, cocrystals, hydrate/anhydrate pairs, or structurally similar molecules has been attributed to the presence of active slip planes system in their crystal structures. Presence of slip planes in the crystal lattice allows easier slip under the applied compaction pressure. This allows greater plastic deformation of the powder and results into increased interparticulate bonding area and greater tensile strength of the compacts. Thus, based on this crystallographic feature, tableting performance of the active pharmaceutical ingredients can be predicted. Recently, we encountered a case where larger numbers of CH···O type interactions across the proposed slip planes hinder the slip and thus resist plastic deformation of the powder under the applied compaction pressure. Hence, attention must be given to these types of interactions while identifying slip planes by visualization method. Generally, slip planes are visualized as flat layers often strengthened by a two-dimensional hydrogen-bonding network within the layers or planes. No hydrogen bonding should exist between these layers to consider them as slip planes. Moreover, one should also check the presence of CH···O type interactions across these planes. Mercury software provides an option for visualization of these weak hydrogen bonding interactions. Hence, caution must be exercised while selecting appropriate solid form based on this crystallographic feature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  2. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  3. Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells

    DEFF Research Database (Denmark)

    Klemensø, Trine; Boccaccini, Dino; Brodersen, Karen

    2014-01-01

    The conventional solid oxide cell is based on a Ni–YSZ support layer, placed on the fuel side of the cell, also known as the anode supported SOFC. An alternative design, based on a support of porous 3YSZ (3 mol.% Y2O3–doped ZrO2), placed on the oxygen electrode side of the cell, is proposed...... of the support can be done simultaneously with forming the oxygen electrode, since some of the best performing oxygen electrodes are based on infiltrated LSC. The potential of the proposed structure was investigated by testing the mechanical and electrical properties of the support layer. Comparable strength...... properties to the conventional Ni/YSZ support were seen, and sufficient and fairly stable conductivity of LSC infiltrated 3YSZ was observed. The conductivity of 8–15 S cm–1 at 850 °C seen for over 600 h, corresponds to a serial resistance of less than 3.5 m Ω cm2 of a 300 μm thick support layer....

  4. Enhanced Hydrogen Storage Properties and Reversibility of LiBH4 Confined in Two-Dimensional Ti3C2.

    Science.gov (United States)

    Zang, Lei; Sun, Weiyi; Liu, Song; Huang, Yike; Yuan, Huatang; Tao, Zhanliang; Wang, Yijing

    2018-05-30

    LiBH 4 is of particular interest as one of the most promising materials for solid-state hydrogen storage. Herein, LiBH 4 is confined into a novel two-dimensional layered Ti 3 C 2 MXene through a facile impregnation method for the first time to improve its hydrogen storage performance. The initial desorption temperature of LiBH 4 is significantly reduced, and the de-/rehydrogenation kinetics are remarkably enhanced. It is found that the initial desorption temperature of LiBH 4 @2Ti 3 C 2 hybrid decreases to 172.6 °C and releases 9.6 wt % hydrogen at 380 °C within 1 h, whereas pristine LiBH 4 only releases 3.2 wt % hydrogen under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C and under 95 bar H 2 . The nanoconfined effect caused by unique layered structure of Ti 3 C 2 can hinder the particles growth and agglomeration of LiBH 4 . Meanwhile, Ti 3 C 2 could possess superior effect to destabilize LiBH 4 . The synergetic effect of destabilization and nanoconfinement contributes to the remarkably lowered desorption temperature and improved de-/rehydrogenation kinetics.

  5. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    Science.gov (United States)

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  6. Relevance of phosphorus incorporation and hydrogen removal for Si:P {delta}-doped layers fabricated using phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y. [Centre for Quantum Computer Technology, School of Physics, The University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2005-05-01

    We present a study to determine the importance of phosphorus incorporation and hydrogen removal for the electrical activation of phosphorus dopants in Si:P {delta}-doped samples fabricated using phosphine dosing and molecular beam epitaxy (MBE). The carrier densities in these samples were determined from Hall effect measurements at 4 K sample temperature. An anneal to incorporate phosphorus atoms into substitutional lattice sites is critical to achieving full dopant activation after Si encapsulation by MBE. Whilst the presence of hydrogen can degrade the quality of the Si encapsulation layer, we show that it does not adversely impact the electrical activation of the phosphorus dopants. We discuss the relevance of our results to the fabrication of nano-scale Si:P devices. (copyright 2005 WILEY-VCH Verlag GmbH and C o. KGaA, Weinheim) (orig.)

  7. Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage.

    Science.gov (United States)

    Jepsen, Lars H; Ley, Morten B; Filinchuk, Yaroslav; Besenbacher, Flemming; Jensen, Torben R

    2015-04-24

    A series of halide-free ammine manganese borohydrides, Mn(BH4 )2 ⋅nNH3 , n=1, 2, 3, and 6, a new bimetallic compound Li2 Mn(BH4 )4 ⋅6NH3 , and the first ammine metal borohydride solid solution Mg1-x Mnx (BH4 )2 ⋅6NH3 are presented. Four new crystal structures have been determined by synchrotron radiation powder X-ray diffraction and the thermal decomposition is systematically investigated for all the new compounds. The solid-gas reaction between Mn(BH4 )2 and NH3 provides Mn(BH4 )2 ⋅6NH3 . The number of NH3 per Mn has been varied by mechanochemical treatment of Mn(BH4 )2 ⋅6NH3 -Mn(BH4 )2 mixtures giving rise to increased hydrogen purity for n/m≤1 for M(BH4 )m ⋅nNH3 . The structures of Mg(BH4 )2 ⋅3NH3 and Li2 Mg(BH4 )4 ⋅6NH3 have been revisited and new structural models are presented. Finally, we demonstrate that ammonia destabilizes metal borohydrides with low electronegativity of the metal (χp ∼1.6) are generally stabilized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst.

    Science.gov (United States)

    Chen, Zhe; Lu, Jinfeng; Ai, Yuejie; Ji, Yongfei; Adschiri, Tadafumi; Wan, Lijun

    2016-12-28

    Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H 2 SO 4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

  9. Biosurfactant-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of E. coli and Enterobacter aerogenes.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2017-11-01

    The effect of biosurfactants (surfactin and saponin) on the hydrogen production from organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. The biosurfactants were applied in the concentration ranges of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 5.0% each. Cumulative hydrogen production (P), maximum hydrogen production rate (Rmax) and lag phases (λ) were analyzed using modified Gompertz model. Results revealed that both the biosurfactants were effective in hydrogen production enhancement. The maximum cumulative hydrogen production of 743.5±14.4ml and 675.6±12.1ml and volumetric hydrogen production of 2.12L H2 /L substrate and 1.93L H2 /L substrate was recorded at 3.5% surfactin and 3.0% saponin respectively. Corresponding highest hydrogen yields were 79.2mlH 2 /gCarbo initial and 72.0mlH 2 /gCarbo initial respectively. Lag phase decreased from 12.5±2.0h at control to a minimum of 9.0±2.8h and 9.5±2.1h at 3.5% surfactin and 3.0% saponin respectively. Volatile fatty acid generation was increased with biosurfactants addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 1/12-scale physical modeling experiments in support of tank 241-SY- 101 hydrogen mitigation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fort, J.A.; Bamberger, J.A.; Bates, J.M.; Enderlin, C.W.; Elmore, M.R.

    1993-01-01

    Hanford tank 241-SY-101 is a 75-ft-dia double-shell tank that contains approximately 1.1 M gal of radioactive fuel reprocessing waste. Core samples have shown that the tank contents are separated into two main layers, a article laden supernatant liquid at the top of the tank and a more dense slurry on the bottom. Two additional layers may be present, one being a potentially thick sludge lying beneath the slurry at the bottom of the tank and the other being the crust that has formed on the surface of the supernatant liquid. The supernatant is more commonly referred to as the convective layer and the slurry as the non-convective layer. Accumulation of gas (partly hydrogen) in the non-convective layer is suspected to be the key mechanism behind the gas burp phenomena, and several mitigation schemes are being developed to encourage a more uniform gas release rate (Benegas 1992). To support the full-scale hydraulic mitigation test, scaled experiments were performed to satisfy two objectives: 1. provide an experimental database for numerical- model validation; 2. establish operating parameter values required to mobilize the settled solids and maintain the solids in suspension.

  11. On Secondary Electron Emission from Solid H2 and D2

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.

    1978-01-01

    The emission of secondary electrons from solid hydrogen (H2 , D2, T2) is often considered to be of importance for the interaction between a fusion plasma and pellets of solid hydrogens. A set-up was therefore built for studies of interactions between energetic particles and solid hydrogens. Studies...... of secondary electron emission (SEE) from solid H2 and D2 were made for incidence of electrons up to 3 keV and for incidence of ions of hydrogen, deuterium, and helium up to 10 keV. The measurements were made for normal incidence, and in some cases also for oblique incidence. The SEE coefficients for solid H2...... is always 0.65-0.70 times that for solid D2. This difference is attributed to different losses to vibrational states in H2 and D2 for the low energy electrons. Measurements were also made on solid para-H2 with both electrons and hydrogen ions. There was no difference from the results for normal H2, which...

  12. Ablation of Solid Hydrogen in a Plasma

    DEFF Research Database (Denmark)

    Jørgensen, L. W.; Sillesen, Alfred Hegaard

    1979-01-01

    Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment.......Several hydrogen pellet ablation models based on the formation of a shielding neutral cloud have been reported by different authors. The predicted ablation rates are shown to follow almost the same scaling law and this is used to explain the authors' ablation experiment....

  13. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    Science.gov (United States)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  14. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Investigation of solid solution of hydrogen in α-manganese by neutron diffraction and inelastic neutron scattering

    International Nuclear Information System (INIS)

    Fedotov, V.K.; Antonov, V.E.; Kolesnikov, A.I.; Kornell, K.; Vipf, G.; Grosse, G.; Vagner, F.Eh.; Sikolenko, V.V.; Sumin, V.V.; )

    1997-01-01

    The FCC-lattice of the solid solution α-MnH 0.073 with the mass of 8.45 g is investigated by the neutron diffraction method and the inelastic neutron scattering technique. The neutron diffraction measurements are made by the diffractometer D1B with pyrographite monochromator and the high-resolution Fourier diffractometer HRFD at 300 K. The study of the inelastic incoherent neutron scattering is carried out by means of the inverse geometry spectrometer KDSOG-M at 90 K. The comparative analysis of α-MnH 0.073 and α-Mn spectra is fulfilled for the more correct separation of effects of hydrogen introduction. It is found out that the structure of the solid solution α-MnH 0.073 belongs to the same spatial group I-43m as the structure of α-Mn [ru

  16. Solvent fractionation of rambutan (Nephelium lappaceum L. kernel fat for production of non-hydrogenated solid fat: Influence of time and solvent type

    Directory of Open Access Journals (Sweden)

    Busakorn Mahisanunt

    2017-01-01

    Full Text Available The present study performed isothermal (25 °C solvent fractionation of rambutan (Nephelium lappaceum L. kernel fat (RKF to obtain the fat fraction that had melting properties comparable to a commercial hydrogenated solid fat. The effect of two fractionation parameters, holding time (12, 18 and 24 h and solvent types (acetone and ethanol, on the properties of fractionated fat were investigated. The results showed that a fractionation time increase caused an increased yield and decreased iodine value for the high melting or stearin fractions. The thermal behaviors and solid fat index (SFI of these stearin fractions were different from the original fat, especially for stearin from acetone fractionation. The major fatty acid in this stearin fraction was arachidic acid (C20:0 consisting of more than 90%. Overall, we demonstrated that acetone fractionation of RKF at 25 °C for 24 h is effective for producing a solid fat fraction, which has comparable crystallizing and melting properties to commercial hydrogenated fat. The fractionated rambutan fat obtained by this process may lead to its potential use in specific food products.

  17. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  18. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. HYDROGEN IN THE EARTH’S OUTER CORE, AND ITS ROLE IN THE DEEP EARTH GEODYNAMICS

    Directory of Open Access Journals (Sweden)

    V. N. Rumyantsev

    2016-01-01

    Full Text Available The content of hydrogen in the outer core of the Earth is roughly quantified from the dependence of the density of iron (viewed as the main component of the core on the amount of hydrogen dissolved in the core, with account of the most likely presence of iron hydrogen in the outer core, and the matter’s density jumps at the boundaries between the outer liquid core and the internal solid core (that is devoid of hydrogen and the mantle. Estimations for the outer liquid core show that the hydrogen content varies from 0.67 wt. % at the boundary with the solid inner core to 3.04 wt. % at the boundary with the mantle.Iron occlusion is viewed as the most likely mechanism for the iron–nickel core to capture such a significant amount of hydrogen. Iron occlusion took place at the stage of the young sun when the metallic core emerged in the cooling protoplanetary cloud containing hydrogen in high amounts, and non-volatile hydrogen was accumulated. Absorption (occlusion of molecular hydrogen was preceded by dissociation of molecules into atoms and ionization of the atoms, as proved by results of studies focused on Fe–H2 system, and hydrogen dissipation was thus prevented. The core matter was subject to gravitational compression at high pressures that contributed to the forced rapprochement of protons and electrons which interaction resulted by the formation of hydrogen atoms. Highly active hydrogen atoms reacted with metals and produced hydrides of iron and nickel, FeH and NiH. While the metallic core and then the silicate mantle were growing and consolidating, the stability of FeH and NiH was maintained due to pressures that were steadily increasing. Later on, due to the impacts of external forces on the Earth, marginal layers at the mantle–core boundary were detached and displaced, pressures decreased in the system, and iron and nickel hydrides were decomposed to produce molecular hydrogen. Consequences of the hydrides transformation into

  20. Hydrogen permeability through metals

    International Nuclear Information System (INIS)

    Pisarev, A.A.; Tsvetkov, I.V.; Marenkov, E.D.; Yarko, S.S.

    2011-01-01

    The mechanisms of hydrogen permeability through one-layer and multi-layer membranes are considered. The effect of surface roughness, crystal defects, cracks and pores is described. Mathematical description of the processes is given [ru

  1. Researches concerning the use of mixed Hydrogen in the combustion of dense biomass

    International Nuclear Information System (INIS)

    Negreanu, Gabriel-Paul; Mihaescu, Lucian; Pisa, Ionel; Berbece, Viorel; Lazaroiu, Gheorghe

    2014-01-01

    The paper deals with theoretical basis and experimental tests of mixed hydrogen diffusion in the dense system of biomass. Research regarding hydrogen diffusion in the porous system of biomass is part of wider research focusing on using hydrogen as an active medium for solid biomass combustion. In parallel with hydrogen diffusion in solid biomass, tests regarding biomass combustion previously subjected to a hydrogen flux will be carried out. Keywords: biomass, hydrogen diffusion, combustion, experimental tests

  2. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  3. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  4. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  5. Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates.

    Science.gov (United States)

    Marler, B; Wang, Y; Song, J; Gies, H

    2014-07-21

    Five different hydrous layer silicates (HLSs) containing fer layers (ferrierite-type layers) were obtained by hydrothermal syntheses from mixtures of silicic acid, water and tetraalkylammonium/tetraalkylphosphonium hydroxides. The organic cations had been added as structure directing agents (SDA). A characteristic feature of the structures is the presence of strong to medium strong hydrogen bonds between the terminal silanol/siloxy groups of neighbouring layers. The five-layered silicates differ chemically only with respect to the organic cations. Structurally, they differ with respect to the arrangement of the fer layers relative to each other, which is distinct for every SDA-fer-layer system. RUB-20 (containing tetramethylammonium) and RUB-40 (tetramethylphosphonium) are monoclinic with stacking sequence AAA and shift vectors between successive layers 1a0 + 0b0 + 0.19c0 and 1a0 + 0b0 + 0.24c0, respectively. RUB-36 (diethyldimethylammonium), RUB-38 (methyltriethylammonium) and RUB-48 (trimethylisopropylammonium) are orthorhombic with stacking sequence ABAB and shift vectors 0.5a0 + 0b0± 0.36c0, 0.5a0 + 0b0 + 0.5c0 and 0.5a0 + 0b0± 0.39c0, respectively. Unprecedented among the HLSs, two monoclinic materials are made up of fer layers which possess a significant amount of ordered defects within the layer. The ordered defects involve one particular Si-O-Si bridge which is, to a fraction of ca. 50%, hydrolyzed to form nests of two ≡Si-OH groups. When heated to 500-600 °C in air, the HLSs condense to form framework silicates. Although all layered precursors were moderately to well ordered, the resulting framework structures were of quite different crystallinity. The orthorhombic materials RUB-36, -38 and -48, general formula SDA4Si36O72(OH)4, which possess very strong hydrogen bonds (d[O···O] ≈ 2.4 Å), transform into a fairly or well ordered CDO-type silica zeolite RUB-37. The monoclinic materials RUB-20 and -40, general formula SDA2Si18O36(OH)2OH, possessing

  6. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  7. Nickel foam/polyaniline-based carbon/palladium composite electrodes for hydrogen storage

    International Nuclear Information System (INIS)

    Skowronski, Jan M.; Urbaniak, Jan

    2008-01-01

    The sandwich-like nickel/palladium/carbon electrodes exhibiting ability to absorb hydrogen in alkaline solution are presented. Electrodes were prepared by successive deposition of palladium and polyaniline layers on nickel foam substrate followed by heat treatment to give Ni/Pd/C electrode. It was shown that thermal conversion of polymer into carbon layer and subsequent thermal activation of carbon component bring about the modification of the mechanism of reversible hydrogen sorption. It was proven that carbon layer, interacting with Pd catalyst, plays a considerable role in the process of hydrogen storage. In the other series of experiments, Pd particles were dispersed electrochemically on carbon coating leading to Ni/C/Pd system. The adding of the next carbon layer resulted in Ni/C/Pd/C electrodes. Electrochemical properties of the electrodes depend on both the sequence of Pd and C layers and the preparation/activation of carbon coating. Electrochemical behavior of sandwich-like electrodes in the reaction of hydrogen sorption/desorption was characterized in 6 M KOH using the cyclic voltammetry method and the results obtained were compared to those for Ni/Pd electrode. The anodic desorption of hydrogen from electrodes free and containing carbon layer was considered after the potentiodynamic as well as potentiostatic sorption of hydrogen. The influence of the sorption potential and the time of rest of electrodes at a cut-off circuit on the kinetics of hydrogen recovery were examined. The results obtained for Ni/Pd/C electrodes indicate that the displacement of hydrogen between C and Pd phase takes place during the rest at a cut-off circuit. Electrodes containing carbon layer require longer time for hydrogen electrosorption. On the other hand, the presence of carbon layer in electrodes is advantageous because a considerable longer retention of hydrogen is possible, as compared to Pd/Ni electrode. Hydrogen stored in sandwich-like electrodes can instantly be

  8. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  9. Hydrogen and helium adsorption on potassium

    International Nuclear Information System (INIS)

    Garcia, R.; Mulders, N.; Hess, G.

    1995-01-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium

  10. Latent hazard related to a hydrogen liquefaction installation

    International Nuclear Information System (INIS)

    Spoendlin, R.

    1961-01-01

    In this note, the author reports an attempt of analysis of hazards which could be related to a hydrogen liquefaction installation in order to identify the most appropriate safety measures. In order to do so, experiments have been performed on electrostatic charges born by solid crystals in liquid hydrogen, and explosion tests have been performed on a mixture of solid oxygen and liquid hydrogen. Moreover, the author tried to analyse accidents which occurred in this field by performing a survey among scientists working in laboratories in different countries

  11. Solid hydrogen structure

    International Nuclear Information System (INIS)

    Collins, G.W.; Unites, W.G.; Mapoles, E.R.; Magnotta, F.; Bernat, T.P.

    1994-11-01

    The J=0->2 Raman signal from solid J=0 D 2 or H 2 reveals HCP structure when deposited at a rate 0.1 ≤ R(μ/min) ≤ 40 onto MgF 2 at T d /T tp > 0.3, a mixture of HCP and FCC crystals at 0.2 d /T tp d /T tp tp is the triple point temperature. Non-HCP crystals transform to HCP continuously and irreversibly with increasing T. Finally, the crystal size decreases with decreasing T d and increasing R, from ∼ 1 mm at T d ∼ 0.8 T tp and R ∼ 2 μ/min to ∼ 1 μm at 0.25 T tp and R ∼ 40 μ/min

  12. Strontium D-Glutamate Hexahydrate and Strontium Di(hydrogen L-glutamate) Pentahydrate

    DEFF Research Database (Denmark)

    Christgau, Stephan; Odderhede, Jette; Stahl, Kenny

    2005-01-01

    Sr(C5H7NO4)] center dot 6H(2)O, ( I), and [Sr(C5H8NO4)(2)] center dot 5H(2)O, (II), both crystallize with similar strontium - glutamate - water layers. In ( I), the neutral layers are connected through hydrogen bonds by water molecules, while in ( II), the positively charged layers are connected...... through hydrogen bonds and electrostatic interactions by interleaving layers of hydrogen glutamate anions and water molecules....

  13. A comparative parametric study of a catalytic plate methane reformer coated with segmented and continuous layers of combustion catalyst for hydrogen production

    Science.gov (United States)

    Mundhwa, Mayur; Parmar, Rajesh D.; Thurgood, Christopher P.

    2017-03-01

    A parametric comparison study is carried out between segmented and conventional continuous layer configurations of the coated combustion-catalyst to investigate their influence on the performance of methane steam reforming (MSR) for hydrogen production in a catalytic plate reactor (CPR). MSR is simulated on one side of a thin plate over a continuous layer of nickel-alumina catalyst by implementing an experimentally validated surface microkinetic model. Required thermal energy for the MSR reaction is supplied by simulating catalytic methane combustion (CMC) on the opposite side of the plate over segmented and continuous layer of a platinum-alumina catalyst by implementing power law rate model. The simulation results of both coating configurations of the combustion-catalyst are compared using the following parameters: (1) co-flow and counter-flow modes between CMC and MSR, (2) gas hourly space velocity and (3) reforming-catalyst thickness. The study explains why CPR designed with the segmented combustion-catalyst and co-flow mode shows superior performance not only in terms of high hydrogen production but also in terms of minimizing the maximum reactor plate temperature and thermal hot-spots. The study shows that the segmented coating requires 7% to 8% less combustion-side feed flow and 70% less combustion-catalyst to produce the required flow of hydrogen (29.80 mol/h) on the reforming-side to feed a 1 kW fuel-cell compared to the conventional continuous coating of the combustion-catalyst.

  14. Neutronographic measurements of the motion of hydrogen and hydrogeneous substances in liquids and solids

    International Nuclear Information System (INIS)

    Zeilinger, A.; Pochman, W.A.; Rauch, H.; Suleiman, M.

    1976-01-01

    Earlier measurements of hydrogen motion in liquids by neutron radiography have been extended to obtain additional parameters of governing the mixing behavior of light and heavy water. Furthermore motion of water in concrete was measured leading to a determination of (1) the vapor diffusion coefficient of water in concrete, (2) the porosity of the concrete, and (3) the mass transfer coefficient of vapor from the concrete to the environment. Recently the ability of neutron radiography to measure the hydrogen motion in metals was demonstrated and the diffusion coefficients of hydrogen in V, Ta, Nb and beta-Ti was determined. In addition, some work on resolution measurements of neutron radiography will be reported. (author)

  15. Ion backscattering from layered targets

    International Nuclear Information System (INIS)

    Oen, O.S.; Robinson, M.T.

    1985-01-01

    The present work investigated the reflection of hydrogen atoms, whose incident energy ranged from 0.01 to 1 keV, from layered targets. The calculations used the binary collisions computer program MARLOWE modified to treat layered target structures. Briefly, the projectile ion strikes the surface normally and is followed collision-by-collision until it leaves the surface again or until its energy falls below a present value (1 eV). Each collision consists of an elastic and an inelastic part. The elastic part is treated by classical scattering mechanics using the Moliere approximation to the Thomas-Fermi interatomic potential with the screening lengths proposed by Firsov. The inelastic part is described by the (nonlocal) electronic stopping theory of Lindhard et al. The calculations were made using MARLOWE to simulate amorphous solids, and a typical run consisted of following the motions of 1000-2000 incident particles. The targets studied were chosen to have large differences between the atomic numbers of the overlayer and the substrate in order to emphasize possible reflection differences from that of monoatomic targets

  16. Hydrogen diffusion, dissolution and permeation of nonmetallic solids

    International Nuclear Information System (INIS)

    Elleman, T.S.; Rao, D.; Verghese, K.; Zumwalt, L.

    1979-01-01

    A review of hydrogen diffusion, dissolution and permeation in metal oxides, carbides, nitrides, halides and hydrides is presented. Results are organized by compound and an effort has been made to resolve differences between measured results where wide disparities exist. The document has been prepared to provide needed data for the development of fusion reactor blankets but the results should be generally useful in technologies that involve interactions between hydrogen and non-metals

  17. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more pro...... pronounced than that for hydrogen projectiles in the same energy range....

  18. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    International Nuclear Information System (INIS)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U.

    2006-01-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm 2 of geometrical area) with a maximum hydrogen production of 1 Nm 3 /h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  19. Limits for hydrogen production of a solar - hydrogen system in Cuernavaca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, H.L.G.; Gutierrez, S.L.; Cano, U. [Instituto de Investigaciones Electricas Av. Reforma 113, col. Palmira c.p.62490 Cuernavaca Morelos (Mexico)

    2006-07-01

    In this work experimental data are used in order to estimate the production of hydrogen as a function of irradiance of a direct-interconnection of solar panel system with a SPE (Solid Polymer Electrolyte) electrolyzer (also Solar-Hydrogen system). The solar - hydrogen system, consists of a photovoltaic solar array of 36 panels (75 Watts each) of monocrystalline silicon interconnected with an electrolyzer stack of 25 cells (around 100 cm{sup 2} of geometrical area) with a maximum hydrogen production of 1 Nm{sup 3}/h. By the use of voltage, current density, energy consumption values of the whole solar-hydrogen system, an average efficiency up to 5% was estimated and an average of 3,800 NL of hydrogen per day can be expected. Also the maximum hydrogen production for the months of July and December (sunniest and least sunny months in the location) is predicted. (authors)

  20. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  1. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    International Nuclear Information System (INIS)

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-01-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL

  2. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  3. Neutronic studies of a liquid hydrogen-water composite moderator

    International Nuclear Information System (INIS)

    Tahara, T.; Ooi, M.; Iwasa, H.; Kiyanagi, Y.; Iverson, E.B.; Crabtree, J.A.; Lucas, A.T.

    2001-01-01

    A liquid hydrogen-liquid water composite moderator may provide performance like liquid methane at high-power spallation sources where liquid methane is impractical. We have measured the neutronic properties of such a composite moderator, where a hydrogen layer 1.25 cm thick was closely backed by water layers of 1.75 cm and 3.75 cm thickness. We also studied a moderator in which a 1.75 cm water layer was closely backed by a 1.25 cm hydrogen layer. We further performed simulations for each of these systems for comparison to the experimental results. We observed enhancement of the spectral intensity in the 'thermal' energy range as compared to the spectrum from a conventional liquid hydrogen moderator. This enhancement grew more significant as the water thickness increased, although the pulse shapes became wider as well. (author)

  4. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  5. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example......, we show that it can store 9.1% hydrogen by weight in the form of ammonia. The storage is completely reversible, and by combining it with an ammonia decomposition catalyst, hydrogen can be delivered at temperatures below 620 K....

  6. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  7. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad

    2017-08-08

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  8. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad; Shinagawa, Tatsuya; Tsiapis, Nikolaos; Takanabe, Kazuhiro

    2017-01-01

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  9. Impact of heavy metals on hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. Coli.

    Science.gov (United States)

    Sharma, Preeti; Melkania, Uma

    2018-05-01

    In the present study, the effect of heavy metals (lead, mercury, copper, and chromium) on the hydrogen production from the organic fraction of municipal solid waste (OFMSW) was investigated using co-culture of facultative anaerobes Enterobacter aerogenes and E. coli. Heavy metals were applied at concentration range of 0.5, 1, 2, 5, 10, 20, 50 and 100 mg/L. The results revealed that lead, mercury, and chromium negatively affected hydrogen production for the range of concentrations applied. Application of copper slightly enhanced hydrogen production at low concentration and resulted in the hydrogen yield of 36.0 mLH 2 /gCarbo initial with 10 mg/L copper supplementation as compared to 24.2 mLH 2 /gCarbo initial in control. However, the higher concentration of copper (>10 mg/L) declined hydrogen production. Hydrogen production inhibition potential of heavy metals can be arranged in the following increasing order: Cu 2+  metal addition. Thus, the present study reveals that the presence of heavy metals in the feedstock is detrimental for the hydrogen production. Therefore, it is essential to remove the toxic heavy metals prior to anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Ovonic Renewable Hydrogen (ORH) - low temperature hydrogen production from renewable fuels

    International Nuclear Information System (INIS)

    Reichman, B.; Mays, W.; Strebe, J.; Fetcenko, M.

    2009-01-01

    'Full text': ECD has developed a new technology to produce hydrogen from various organic matters. In this technology termed Ovonic Renewable Hydrogen (ORH), base material such as NaOH is used as a reactant to facilitate the reforming of the organic matters to hydrogen gas. This Base-Facilitated Reforming (BFR) process is a one-step process and has number of advantages over the conventional steam reforming and gasification processes including lower operation temperature and lower heat consumption. This paper will describe the ORH process and discuss its technological and economics advantages over the conventional hydrogen production processes. ORH process has been studied and demonstrated on variety of renewable fuels including liquid biofuels and solid biomass materials. Results of these studies will be presented. (author)

  11. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  12. Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007

    Science.gov (United States)

    Fischer, H.; Pozzer, A.; Schmitt, T.; Jöckel, P.; Klippel, T.; Taraborrelli, D.; Lelieveld, J.

    2015-06-01

    In the OOMPH (Ocean Organics Modifying Particles in both Hemispheres) project a ship measurement cruise took place in the late austral summer from 01 to 23 March 2007. The French research vessel Marion Dufresne sailed from Punta Arenas, Chile (70.85° W, 53.12° S), to Réunion island (55.36° E, 21.06° S) across the South Atlantic Ocean. In situ measurements of hydrogen peroxide, methylhydroperoxide and ozone were performed and are compared to simulations with the atmospheric chemistry global circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry). The model generally reproduces the measured trace gas levels, but it underestimates hydrogen peroxide mixing ratios at high wind speeds, indicating too-strong dry deposition to the ocean surface. An interesting feature during the cruise is a strong increase of hydrogen peroxide, methylhydroperoxide and ozone shortly after midnight off the west coast of Africa due to an increase in the boundary layer height, leading to downward transport from the free troposphere, which is qualitatively reproduced by the model.

  13. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    Directory of Open Access Journals (Sweden)

    Laura B. Ruppalt

    2014-12-01

    Full Text Available In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD high-k dielectric stacks with device-quality p-type GaSb(001 epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H2/Ar plasma treatment and subsequently removed to air. High-k HfO2 and Al2O3/HfO2 bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H2-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H2-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  14. A novel accelerated oxidative stability screening method for pharmaceutical solids.

    Science.gov (United States)

    Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang

    2011-08-01

    Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.

  15. Stress distributions due to hydrogen concentrations in electrochemically charged and aged austenitic stainless steel

    International Nuclear Information System (INIS)

    Rozenak, P.; Loew, A.

    2008-01-01

    As a result of hydrogen concentration gradients in type austenitic stainless steels, formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses were developed. These stresses were measured by X-ray technique and the crack formation thus induced could be studied using equilibrium stress equations. After various electrochemical charging and aging times, X-ray diffraction patterns obtained from samples indicated that the reflected and broadened diffraction peaks are the result of the formation of a non-uniform but continuous solid solution in the austenitic matrix. Since both hydrogen penetrations during charging and hydrogen release during aging are diffusion controlled processes and huge hydrogen concentration gradients in the thin surface layer, at depths comparable with the depth of X-ray penetration, are observed. The non-uniform hydrogen concentration in the austenitic matrix, results to the non-uniform expansion of the atomic microstructure and latter inevitably leads to the development of internal stresses. The internal stresses development formulae's are very similar to those relating to non-uniform heating of the materials, where thermal stresses appear due to non-uniform expansion or contraction. The relevant well developed theory is applicable in our case of non-uniform hydrogen concentrations in a solid solution of electrochemically charged and aged austenitic matrix. A few cracks were present on the surface after some minutes of electrochemical charging and the severity of cracking increased as hydrogen was lost during subsequent aging. This is consistent with the expectation of high compressive stresses in the bulk of the specimen during charging and high tensile surface stresses (at the level of 1 x 10 11 Pa) during the aging process. These stresses can induce the formation of surface cracks during the aging process after electrochemical charging in the AISI 316 stainless steel

  16. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    International Nuclear Information System (INIS)

    Song, J.-L.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Kremer, R.K.; Clearfield, Abraham

    2004-01-01

    Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO 2 CCH 2 N(CH 2 PO 3 H 2 ) 2 ) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2 [O 2 CCH 2 N(CH 2 PO 3 )(CH 2 PO 3 H)]·H 2 O (1) and {NH 3 CH 2 CH 2 NH 3 }{Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ](H 2 O) 2 } 2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ][H 2 O] 2 } - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected

  17. Ablation of Hydrogen Pellets in Hydrogen and Helium Plasmas

    DEFF Research Database (Denmark)

    Jørgensen, L W; Sillesen, Alfred Hegaard; Øster, Flemming

    1975-01-01

    Measurements on the interaction between solid hydrogen pellets and rotating plasmas are reported. The investigations were carried out because of the possibility of refuelling fusion reactors by the injection of pellets. The ablation rate found is higher than expected on the basis of a theory...

  18. Physico-chemical studies on samarium soaps in solid state

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1989-01-01

    The physico-chemical characteristics of samarium soaps (caproate and caprate) in solid state were investigated by IR, X-ray diffraction and TGA measurements. The IR results revealed that the fatty acids exist in dimeric state through hydrogen bonding and samarium soaps possess partial ionic character. The X-ray diffraction measurements were used to calculate the long spacings and the results confirmed the double layer structure of samarium soaps. The decomposition reaction was found kinetically of zero order and the values of energy of activation for the decomposition process for caproate and caprate were found to be 8,0 and 7,8 kcal mol -1 , respectively. (Authors)

  19. Surface decontamination of Type 304L stainless steel with electrolytically generated hydrogen: Design and operation of the electrolyzer

    International Nuclear Information System (INIS)

    Bellanger, G.

    1993-01-01

    The surface of tritiated Type 304L stainless steel is decontaminated by isotopic exchange with the hydrogen generated in an electrolyzer. This steel had previously been exposed to tritium in a tritium gas facility for several years. The electrolyzer for the decontamination uses a conducting solid polymer electrolyte made of a Nafion membrane. The cathode where the hydrogen is formed is nickel deposited on one of the polymer surfaces. This cathode is placed next to the region of the steel to be decontaminated. The decontamination involves, essentially, the tritiated oxide layers of which the initial radioactivity is ∼ 5 kBq/cm 2 . After treatment for 1 h, the decontamination factor is 8. 9 refs., 16 figs., 2 tabs

  20. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  1. Design and exergetic analysis of a novel carbon free tri-generation system for hydrogen, power and heat production from natural gas, based on combined solid oxide fuel and electrolyser cells

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, N.; Hofmann, Ph.; Spyrakis, S. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece); Kakaras, E. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, 9 Heroon Polytechniou Ave., Zografou, 15780 Athens (Greece); Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km N.R. Ptolemais-Kozani, P.O. Box 95, 50200 Ptolemais (Greece)

    2010-03-15

    The Solid Oxide Cells (SOCs) are able to operate in two modes: (a) the Solid Oxide Fuel Cells (SOFCs) that produce electricity and heat and (b) the Solid Oxide Electrolyser Cells (SOEC) that consume electricity and heat to electrolyse water and produce hydrogen and oxygen. The present paper presents a carbon free SOEC/SOFC combined system for the production of hydrogen, electricity and heat (tri-generation) from natural gas fuel. Hydrogen can be locally used as automobile fuel whereas the oxygen produced in the SOEC is used to combust the depleted fuel from the SOFC, which is producing electricity and heat from natural gas. In order to achieve efficient carbon capture in such a system, water steam should be used as the SOEC anode sweep gas, to allow the production of nitrogen free flue gases. The SOEC and SOFC operations were matched through modeling of all components in Aspenplus trademark. The exergetic efficiency of the proposed decentralised system is 28.25% for power generation and 18.55% for production of hydrogen. The system is (a) carbon free because it offers an almost pure pressurised CO{sub 2} stream to be driven for fixation via parallel pipelines to the natural gas feed, (b) does not require any additional water for its operation and (c) offers 26.53% of its energetic input as hot water for applications. (author)

  2. Hydrogen adsorption on partially oxidised microporous carbons

    International Nuclear Information System (INIS)

    J B Parra; C O Ania; C J Duran Valle; M L Sanchez; C Otero Arean

    2005-01-01

    The search for cost effective adsorbents for large scale gas separation, storage and transport constitutes a present day strategic issue in the energy sector, propelled mainly by the potential use of hydrogen as an energy vector in a sustainable (and cleaner) energy scenario. Both, activated carbons and carbon based nano-structured materials have been proposed as potential candidates for reversible hydrogen storage in cryogenically cooled vessels. For that purpose, surface modification so as to enhance the gas solid interaction energy is desirable. We report on hydrogen adsorption on microporous (active) carbons which have been partially oxidised with nitric acid and ammonium persulfate. From the corresponding hydrogen adsorption isotherms (Fig. 1) an isosteric heat of about 3 kJ mol -1 was derived. This value is in agreement with that of about 3 to 4 kJ mol -1 obtained by quantum chemical calculations on the interaction between the hydrogen molecule and simple model systems (Fig. 2) of both, hydroxyl and carboxyl groups. Further research is in progress with a view to further increases the gas solid interaction energy. However, the values so far obtained are significantly larger than the liquefaction enthalpy of hydrogen: 0.90 kJ mol -1 ; and this is relevant to both, hydrogen separation from gas mixtures and cryogenic hydrogen storage. (authors)

  3. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  4. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    Science.gov (United States)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  5. Influence of nitrogen ion implantation on hydrogen permeation in an extra mild steel

    International Nuclear Information System (INIS)

    Brass, A.M.; Chene, J.; Pivin, J.C.

    1989-01-01

    This paper presents the first results on the effect of nitrogen implantation on hydrogen permeation in steels. Nitrogen can modify superficially the steel's chemistry and/or microstructure depending on the fluence and thereby affect the processes of hydrogen diffusion and trapping. The implantations were performed on low carbon steel specimens with different nominal doses (1% to 10% and 33% nitrogen in a superficial layer of approximately 100 to 120 nm). The corresponding microstructures were characterized and permeation tests were conducted at room temperature in a double electrolytic cell. The nitrogen implanted layers on iron affects the electrochemical behaviour of the surface and the permeation in the material. This effect depends on the nitrogen concentration in the layer and on the corresponding microstructure. A continuous Fe 2 N layer acts as an efficient barrier to hydrogen entry and permeation when the layer is located on the entry face of the permeation membrane. This effect is stronger when the implanted layer is on the downstream face of the membrane. The low permeability values are mainly attributed to a lower hydrogen solubility in the implanted layer, whereas hydrogen trapping on defects and nitride precipitates delay hydrogen penetration. (author)

  6. Effect of layer thickness on the thermal release from Be-D co-deposited layers

    Science.gov (United States)

    Baldwin, M. J.; Doerner, R. P.

    2014-08-01

    The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967-70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D2 release from co-deposited Be-(0.05)D layers produced at ˜323 K. Bake desorption of layers of thickness 0.2-0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be-D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction.

  7. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  8. Secondary electron emission from solid HD and a solid H2-D2 mixture

    DEFF Research Database (Denmark)

    Sørensen, H.; Børgesen, P.; Hao-Ming, Chen

    1983-01-01

    Secondary electron emission from solid HD and a solid 0.6 H2 + 0.4 D2 mixture has been studied for electron and hydrogen ion bombardment at primary energies from 0.5 to 3 keV and 2 to 10 keV/amu, respectively. The yield for solid HD is well explained by a simple stoichiometric model of the low...

  9. Enhanced resolution imaging of ultrathin ZnO layers on Ag(111) by multiple hydrogen molecules in a scanning tunneling microscope junction

    Science.gov (United States)

    Liu, Shuyi; Shiotari, Akitoshi; Baugh, Delroy; Wolf, Martin; Kumagai, Takashi

    2018-05-01

    Molecular hydrogen in a scanning tunneling microscope (STM) junction has been found to enhance the lateral spatial resolution of the STM imaging, referred to as scanning tunneling hydrogen microscopy (STHM). Here we report atomic resolution imaging of 2- and 3-monolayer (ML) thick ZnO layers epitaxially grown on Ag(111) using STHM. The enhanced resolution can be obtained at a relatively large tip to surface distance and resolves a more defective structure exhibiting dislocation defects for 3-ML-thick ZnO than for 2 ML. In order to elucidate the enhanced imaging mechanism, the electric and mechanical properties of the hydrogen molecular junction (HMJ) are investigated by a combination of STM and atomic force microscopy. It is found that the HMJ shows multiple kinklike features in the tip to surface distance dependence of the conductance and frequency shift curves, which are absent in a hydrogen-free junction. Based on a simple modeling, we propose that the junction contains several hydrogen molecules and sequential squeezing of the molecules out of the junction results in the kinklike features in the conductance and frequency shift curves. The model also qualitatively reproduces the enhanced resolution image of the ZnO films.

  10. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  11. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    International Nuclear Information System (INIS)

    Xiang Yanxun; Deng Mingxi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)

  12. Hydrogenizing oils, asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    1925-03-14

    The hydrogenation of carbonaceous solids in presence of combined sulfur, e.g., sulfides as described in the parent specification is applied to the treatment of rock oils, shale oils, resins, ozokerite, asphalt, and the like, or fractions, residues, or acid sludge or other conversion products thereof, alone or mixed. Preferably the hydrogen or other reducing gas is in excess and under pressure, and is either circuited or led through a series of treatment vessels, hydrogen being added for that used. In an example, residues from American crude oil are passed continuously with hydrogen at 200 atmospheres and 450 to 500/sup 0/C over pressed precipitated cobalt sulfide, the issuing gases being cooled to condense the light oil produced.

  13. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  14. Hydrogen with intrinsic CO{sub 2} sequestration: the ENI 'One Step Hydrogen' process

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, S.; Cornaro, U.; Mizia, F.; Malandrino, A.; Piccoli, V. [Enitecnologie SpA, S. Donata Milanese (Italy); Sanfilippo, D.; Miracca, I. [Snamprogetti SpA, S. Donato Milanese (Italy)

    2003-07-01

    The new process, under development in our companies, is aimed to hydrogen production with intrinsic carbon dioxide sequestration. This is made possible combining in a cycle the water oxidative potential with a reverse action by a reducing agent like hydrocarbons, the preferred being natural gas. In the first step a suitable oxide takes up the oxygen from water splitting producing hydrogen. The solid act as an oxygen storage medium. Such 'lattice' oxygen is in turn released through one or more elemental steps. The process fits very well with a circulating fluid bed reactor which allows the movement of the solid from one reactive environment to the other. (orig.)

  15. Hydrogen storage using borohydrides

    International Nuclear Information System (INIS)

    Bernard BONNETOT; Laetitia LAVERSENNE

    2006-01-01

    The possibilities of hydrogen storage using borohydrides are presented and discussed specially in regard of the recoverable hydrogen amount and related to the recovering conditions. A rapid analysis of storage possibilities is proposed taking in account the two main ways for hydrogen evolution: the dehydrogenation obtained through thermal decomposition or the hydrolysis of solids or solutions. The recoverable hydrogen is related to the dehydrogenation conditions and the real hydrogen useful percentage is determined for each case of use. The high temperature required for dehydrogenation even when using catalyzed compounds lead to poor outlooks for this storage way. The hydrolysis conditions direct the chemical yield of the water consuming, and this must be related to the experimental conditions which rule the storage capacity of the 'fuel' derived from the borohydride. (authors)

  16. Studies on keV and eV electrons in solids

    International Nuclear Information System (INIS)

    Schou, J.

    1979-10-01

    The interaction between keV or eV electrons and solids was studied. The results presented mostly concern problems in connection with electron irradiation of solids, but to some extent they also include ion-induced secondary electron emission. The experiments were mainly performed on solidified gases using 1 - 3 keV electrons. The projected range of electrons was determined in solid hydrogen, deuterium and nitrogen. The true secondary electron emission coefficient and the electron reflection coefficient of solid hydrogen, deuterium and nitrogen were measured. The escape depth of the true secondary electrons in nitrogen was determined. The angular dependence of both the reflection coefficient and the true secondary electron emission coefficient of solid hydrogen and deuterium was investigated. Both ion- and electron-induced secondary electron emission were treated theoretically on the basis of ionization cascade theory. (Auth.)

  17. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  18. FLUENT calculations of the hydrogen distribution in a containment during the OECD-NEA THAI HM-2 experiment

    International Nuclear Information System (INIS)

    Visser, D.C.; Komen, E.M.J.; Houkema, M.; Siccama, N.B.; Kyttaelae, Juha; Huhtanen, Risto; Takasuo, Eveliina

    2009-01-01

    Hydrogen may be released into the containment atmosphere of a nuclear power plant during a severe accident. Locally, high hydrogen concentrations may be reached that can possibly cause fast deflagration or even detonation and put the integrity of the containment at risk. Therefore, the distribution and mixing of hydrogen is an important safety issue for nuclear power plants. Computer codes can be applied to predict the hydrogen distribution in the containment within the course of a hypothetical severe accident and get an estimate of the local hydrogen concentration in the various zones of the containment. In this way the risk associated with the hydrogen safety issue can be determined, and safety related measurements and procedures could be assessed. In order to validate the existing computer codes in the context of hydrogen distribution in the containment of a nuclear power plant, experimental benchmark studies have been performed in the German Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI) facility in the framework of the OECD-NEA THAI project. In order to demonstrate the capabilities of the commercial Computational Fluid Dynamics (CFD) code FLUENT the THAI HM-2 test was simulated independently by NRG and VTT. In the first phase of the HM-2 test a stratified hydrogen rich light gas layer was established in the upper part of the THAI containment. In the second phase steam was injected at a lower position inducing a rising plume that gradually dissolved the stratified hydrogen-rich layer from below. Thermo-dynamic phenomena like natural convection, mixing, condensation, heat transfer and distribution in different zones that are expected in severe accidents are involved. The calculated results by NRG and VTT (on hydrogen concentration, temperature, pressure and flow velocity) are compared to the experimental results. The most important differences between the CFD model of NRG and VTT are the computational mesh, condensation model and treatment of the solid

  19. Solid-state amorphization of SmFe3 by hydrogenation

    International Nuclear Information System (INIS)

    Mueller, K.H.; Kubis, M.; Handstein, A.; Gutfleisch, O.

    2000-01-01

    Hydrogen-induced amorphization (HIA) has received much attention as a method for the preparation of amorphous compounds since its discovery by Yeh et al. Meanwhile it has been observed for a large number of intermetallic compounds with C15, C23, B8 2 , DO 19 and L1 2 structures. E.G. the C15 Laves-type compounds (MgCu 2 -type structure) of rare earth (R) - transition metal (T) compounds RT 2 show HIA for R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er. Aoki et al. postulated that new amorphizing compounds can be expected at high hydrogen pressures. In this work, the structural changes of SmFe 3 (PuNi 3 -type structure) during heating in high hydrogen pressures are reported

  20. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  1. Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers

    International Nuclear Information System (INIS)

    Frigeri, C.; Nasi, L.; Serenyi, M.; Khanh, N.Q.; Csik, A.; Szekrenyes, Zs.; Kamaras, K.

    2012-01-01

    Complete text of publication follows. Among the present available renewable energy sources, energy harvesting from sunlight by means of photovoltaic cells is the most attractive one. In order to win over the traditional energy resources both efficiency and cost effectiveness of photovoltaic conversion must be optimized as far as possible. Efficiency is basically improved by the use of multijunction cells containing semiconductors with different band-gap. In this respect, the III-V compounds guarantee the highest efficiency, up to 41.6 %, but they are quite expensive. The latter drawback also affects other compounds like CdTe and CuIn 1-x Ga x Se 2 (CIGS). Si based solar devices have lower efficiency but are much more cost effective. They can use either crystalline or amorphous Si thin layers or Si nanoparticles. As to the thin films, amorphous Si (a-Si) is preferred to crystalline Si as it has a wider band-gap (1.7 instead of 1.1 eV) thus harvesting a larger portion of solar energy. A tandem cell is formed by using a-SiGe which has a smaller band-gap tunable between 1.1 and 1.7 eV depending on the Ge content. The best value should be 1.4 eV since the material properties seem to degrade below this value whilst the photo-conductivity drops after light soaking if the band gap exceeds 1.4 eV. A key issue of amorphous Si, Ge and SiGe is the high density of defects in the band-gap mostly due to dangling bonds whose density is particularly high (even up to 5 x10 19 cm -3 ) since the lattice is significantly disordered with distorted bond angles and lengths. This increases the probability of rupture of the Si-Si (Ge-Ge) bonds, i.e., formation of dangling bonds. Owing to the fact that hydrogen with its single electron structure can close the dangling bonds, their density can be reduced even by 4 orders of magnitude by doping with hydrogen. However, H is unstable in the host lattice. In fact, several findings showed its evolution from the thin layer upon annealing and that

  2. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  3. Hydrogen in metals

    International Nuclear Information System (INIS)

    1986-01-01

    The report briefly describes the results of the single projects promoted by the German Council of Research (DFG). The subjects deal with diffusion, effusion, permeation and solubility of hydrogen in metals. They are interesting for many disciplines: metallurgy, physical metallurgy, metal physics, materials testing, welding engineering, chemistry, nuclear physics and solid-state physics. The research projects deal with the following interrelated subjects: solubility of H 2 in steel and effects on embrittlement, influence of H 2 on the fatigue strength of steel as well as the effect of H 2 on welded joints. The studies in solid-state research can be divided into methodological and physico-chemical studies. The methodological studies mainly comprise investigations on the analytical determination of H 2 by means of nuclear-physical reactions (e.g. the 15 N method) and the application of the Moessbauer spectroscopy. Physico-chemical problems are mainly dealt with in studies on interfacial reactions in connection with the absorption of hydrogen and on the diffusion of H 2 in different alloy systems. The properties of materials used for hydrogen storage were the subject of several research projects. 20 contributions were separately recorded for the data bank 'Energy'. (MM) [de

  4. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  5. Effect of layer thickness on the thermal release from Be–D co-deposited layers

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2014-01-01

    The results of previous work (Baldwin et al 2013 J. Nucl. Mater. 438 S967–70 and Baldwin et al 2014 Nucl. Fusion 54 073005) are extended to explore the influence of layer thickness on the thermal D 2 release from co-deposited Be–(0.05)D layers produced at ∼323 K. Bake desorption of layers of thickness 0.2–0.7 µm are explored with a view to examine the influence of layer thickness on the efficacy of the proposed ITER bake procedure, to be carried out at the fixed temperatures of 513 K on the first wall and 623 K in the divertor. The results of experiment and modelling with the TMAP-7 hydrogen transport code, show that thicker Be–D co-deposited layers are relatively more difficult to desorb (time-wise) than thinner layers with the same concentrations of intrinsic traps and retained hydrogen isotope fraction. (paper)

  6. Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations

    International Nuclear Information System (INIS)

    Gondor, G.; Lexcellent, Ch.

    2007-01-01

    In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)

  7. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  8. The reductive decomposition of calcium sulphate I. Kinetics of the apparent solid-solid reaction

    NARCIS (Netherlands)

    Kamphuis, B.; Potma, A.W.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    The reductive decomposition of calcium sulphate by hydrogen is used for the regeneration of calcium-based atmospheric fluidized bed combustion (AFBC) SO2 sorbents. The apparent solid¿solid reaction between CaS and CaSO4, one of the steps involved in the reaction mechanism of the reductive

  9. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    International Nuclear Information System (INIS)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-01-01

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  10. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    International Nuclear Information System (INIS)

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  11. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    International Nuclear Information System (INIS)

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A.

    2016-01-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H 2 S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H 2 S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H 2 S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H 2 S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H 2 S by base adsorption was effective for mitigating inhibition. H 2 S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H 2 S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H 2 S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H 2 S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H 2 S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the

  12. Solid hydrogen and deuterium. I. Ground-state energy calculated by a lowest order constrained-variation method

    International Nuclear Information System (INIS)

    Pettersen, G.; Oestgaard, E.

    1988-01-01

    The ground-state energy of solid hydrogen and deuterium is calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp H 2 and D 2 are considered, and the calculations are done for five different two-body potentials. For solid H 2 we obtain theoretical results for the ground-state binding energy per particle from -74.9 K at an equilibrium particle density of 0.700 σ -3 or a molar volume of 22.3 cm 3 /mole to -91.3 K at a particle density of 0.725 σ -3 or a molar volume of 21.5 cm 3 /mole, where σ = 2.958 A. The corresponding experimental result is -92.3 K at a particle density of 0.688 σ -3 or a molar volume of 22.7 cm 3 /mole. For solid D 2 we obtain theoretical results for the ground-state binding energy per particle from -125.7 K at an equilibrium particle density of 0.830 σ -3 or a molar volume of 18.8 cm 3 /mole to -140.1 K at a particle density of 0.843 σ -3 or a molar volume of 18.5 cm 3 /mole. The corresponding experimental result is -137.9 K at a particle density of 0.797 σ -3 or a molar volume of 19.6 cm 3 /mole

  13. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  14. Preparing interesting hydrocarbons by hydrogenation, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-02-15

    Now, it has been found that gasoline and a combustible oil are produced by destructive hydrogenation of pastes prepared from solid carbonaceous materials and mixtures of middle oils and the mud in question, by regulating the composition of the products removed as vapors in a way that they contain at least the total new heavy oil formed in the course of the destructive hydrogenation and in using as mixing agent for the new raw material the mud proceeding from the operation and middle oil, having withdrawn from this mud all or part of the solid constituents. This destructive hydrogenation is carried out in a converter where a constant level of liquid is maintained, the vapors escaping at the top of the converter and the mud being drawn off at one or more places from the column of liquid undergoing reaction.

  15. Liquid hydrogen production via hydrogen sulfide methane reformation

    Science.gov (United States)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  16. Adsorption and diffusion of hydrogen in Zircaloy-4

    International Nuclear Information System (INIS)

    Torres, E.; Desquines, J.; Baietto, M.C.; Coret, M.; Wehling, F.; Blat-Yrieix, M.; Ambard, A.

    2015-01-01

    Hydrogen in zirconium alloys is considered in many nuclear safety issues. Below 500 Celsius degrees, rather limited knowledge is available on the combined hydrogen adsorption at the sample surface and diffusion in the metal. A modeling of hydrogen gaseous charging has been established starting with a set of relevant laws and parameters derived from open literature. Simulating the hydrogen charging process requires simultaneous analysis of gaseous surface adsorption, hydrogen solid-solution diffusion and precipitation, when exceeding the material solubility limit. The modeling has been extended to reproduce the solid-gas exchange. Gaseous charging experiments have been performed at 420 C. degrees on Stress Relieved Annealed (SRA) Zircaloy-4 cladding samples to validate the model. The sample hydrogen content has been systematically measured after charging and compared to the calculated value thus providing a validation of the adsorption modeling. Complementary tests have been carried out on Recrystallized Annealed (RXA) Zircaloy-4 rods to characterize the combined diffusion and adsorption process. The hydrogen concentration distribution has been characterized using an inverse technique based on destructive analyses of the samples. This additional set of data was relevant for the validation of the hydrogen combined adsorption/diffusion modeling up to 420 C. degrees. (authors)

  17. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Y. [Radioisotope Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)]. E-mail: yoya@ric.u-tokyo.ac.jp; Hirohata, Y. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanabe, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibahara, T. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, H. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Oyaidzu, M. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Arai, T. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Masaki, K. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Gotoh, Y. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Okuno, K. [Faculty of Science, Shizuoka University, Shizuoka 422-8529 (Japan); Miya, N. [Naka Fusion Establishment, Japan Atomic Energy Research Institute, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Hino, T. [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Tanaka, S. [Graduate School of Engineering, University of Tokyo, Tokyo 113-8656 (Japan)

    2005-11-15

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature.

  18. Hydrogen isotope distributions and retentions in the inner divertor tile of JT-60U

    International Nuclear Information System (INIS)

    Oya, Y.; Hirohata, Y.; Tanabe, T.; Shibahara, T.; Kimura, H.; Oyaidzu, M.; Arai, T.; Masaki, K.; Gotoh, Y.; Okuno, K.; Miya, N.; Hino, T.; Tanaka, S.

    2005-01-01

    Retention profiles of hydrogen and deuterium in graphite tiles placed in the inner divertor region of JT-60U were analyzed by secondary ion mass spectroscopy (SIMS) and thermal desorption spectroscopy (TDS). The difference in hydrogen and deuterium retention behaviour is discussed considering the frequency of the strike-point hit and history of NBI heating power. It was found that most of hydrogen/deuterium was retained in the deposited layers, HH deposition layers/DD deposition layers or co-deposited with carbon. Owing to the higher heating power of DD discharges, the deuterium concentration in the DD deposition layers was much lower than that of hydrogen in the HH deposition layers. On the area showing no deposition, very shallow profile of deuterium dominated hydrogen profile. These results indicate that the tritium retention is strongly influenced by the history of discharge and temperatures. Tritium retention on graphite tiles and deposition layers could be significantly reduced with increasing the operation temperature

  19. Preventing the embrittling by hydrogen when galvanizing high-grade steel

    Energy Technology Data Exchange (ETDEWEB)

    Paatsch, W.

    1987-09-01

    Galvanic precipitation of a double layer consisting of a dull nickel layer overlaid with a brilliant zinc layer on low-alloyed high-strength steel grades leads to the forming of zinc-nickel alloy layers during the subsequent heat treatment. According to traction tests carried out on high-strength steel grades, as well as to hydrogen permeability tests, this process prevents embrittling by hydrogen which might be caused by galvanic process sequences - and creates a diffusion block at the same time. The alloy layers have an excellent corrosion resistance and temperature stability.

  20. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  1. SOLID-STATE STORAGE DEVICE FLASH TRANSLATION LAYER

    DEFF Research Database (Denmark)

    2017-01-01

    Embodiments of the present invention include a method for storing a data page d on a solid-state storage device, wherein the solid-state storage device is configured to maintain a mapping table in a Log-Structure Merge (LSM) tree having a C0 component which is a random access memory (RAM) device...

  2. Structure modification of Mg-Nb films under hydrogen sorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Barucca, G.; Majni, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Bazzanella, N.; Checchetto, R.; Miotello, A. [Dipartimento di Fisica, Universita di Trento, Via Sommarive, I-38123 Povo (Italy)

    2011-09-15

    Research highlights: > Influence of Nb additions on the hydrogen kinetics of Mg layers. > Structure modification of the Mg matrix during hydrogen cycling. > Lattice strains induced by Nb tends to decrease during hydrogen cycling. > Nb nanoparticles form during hydrogen cycling. > Nb enhances the porous structure of the Mg layer formed during hydrogen cycling. - Abstract: In the present work we focus our attention on the structural modifications induced by repeated absorption/desorption cycles on Mg-Nb layers. Samples consisting of a 30 {mu}m thick pure Mg or Mg-5 at.% Nb doped films, coated with a 20 nm thick Pd layer were submitted to repeated H{sub 2} sorption cycles in a volumetric apparatus. Isothermal desorption analysis at 350 deg. C was performed to evaluate the amount of absorbed hydrogen. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and electron microscopy techniques (SEM and TEM) were used for the structural characterisation of the samples. Analyses show a deep modification of the material upon cycling. The presence of Nb enhances the structural modifications and induces an initial lattice contraction of the Mg matrix that tends to decrease on cycling via the formation of Nb nanoparticles (with average size of {approx}10 nm). SEM and TEM observations performed in cross section evidenced the formation of a porous structure.

  3. Gradiently Polymerized Solid Electrolyte Meets with Micro/Nano-Structured Cathode Array.

    Science.gov (United States)

    Dong, Wei; Zeng, Xian-Xiang; Zhang, Xu-Dong; Li, Jin-Yi; Shi, Ji-Lei; Xiao, Yao; Shi, Yang; Wen, Rui; Yin, Ya-Xia; Wang, Tai-Shan; Wang, Chun-Ru; Guo, Yu-Guo

    2018-05-02

    The poor contact between the solid-state electrolyte and cathode materials leads to high interfacial resistance, severely limiting the rate capability of solid Li metal batteries. Herein, an integrative battery design is introduced with a gradiently polymerized solid electrolyte (GPSE), a micro-channel current collector array and nano-sized cathode particles. In-situ formed GPSE encapsulates cathode nanoparticles in the micro-channel with ductile inclusions to lower interfacial impedance, and the stiff surface layer of GPSE toward anode suppresses Li dendrites growth. Li metal batteries based on GPSE and Li-free hydrogenated V2O5 (V2O5-H) cathode exhibit an outstanding high-rate response of up to 5 C (the capacity ratio of 5 C / 1 C is 90.3%) and an ultralow capacity fade rate of 0.07% per cycle over 300 cycles. Other Li-containing cathodes as LiFePO4 and LiNi0.5Mn0.3Co0.2O2 can also operate effectively at 5 C and 2 C rate, respectively. Such an ingenious design may provide new insights into other solid metal batteries through interfacial engineering manipulation at micro and nano level.

  4. Oils; destructive hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    1928-03-01

    Coals, oil-shales, or other carbonaceous solids are dissolved in or extracted by solvents at temperatures over 200/sup 0/C, and under pressure, preferably over 30 atmospheres, in presence of halogens, hydrogen halides, or compounds setting free the halogen or halide under the conditions.

  5. Extraction products of solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-04

    A method is described for the manufacture of liquid products from pressure extracts of solid carbon-containing material by destructive hydrogenation, characterized in that the pressure extracts are hydrogenated in admixture with products of high-molecular weight formed during a previous destructive hydrogenation of another part of the same or other pressure extract and which has been collected as liquid without extensive cooling of the hot products of the reaction, which came from the reaction chamber where the previous destructive hydrogenation took place.

  6. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd

    2010-01-01

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15 N-T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s -1 . Backbone amide 15 N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D 2 O is employed as a solvent for sample preparation. Due to the intrinsically long 15 N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  7. NiCo_2O_4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    International Nuclear Information System (INIS)

    Wang, Ruiqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Highlights: • NiCo_2O_4 nanostructures are prepared via a simple hydrothermal method. • Outer shell of TiN is then grown through conformal atomic layer deposition. • Electrodes exhibit significantly enhanced rate capability with TiN coating. • Solid-state polymer electrolyte is employed to improve cycling stability. • Full devices show a stack power density of 58.205 mW cm"−"3 at 0.061 mWh cm"−"3. - Abstract: Ternary transition metal oxides such as NiCo_2O_4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo_2O_4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo_2O_4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo_2O_4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo_2O_4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm"−"3 at a stack energy density of 0.061 mWh cm"−"3. To the best of our knowledge, these values are the highest of any NiCo_2O_4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo_2O_4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm"−"2. These results illustrate the promise of ALD-assisted hybrid NiCo_2O_4@TiN electrodes within sustainable and integrated energy storage applications.

  8. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, A.R. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)], E-mail: a.r.cowen@leeds.ac.uk; Kengyelics, S.M.; Davies, A.G. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)

    2008-05-15

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  9. Analysis of the vertical penetration of a heated fluid layer in a solid, miscible bed

    International Nuclear Information System (INIS)

    Eck, G.

    1982-03-01

    The present study investigates the mass and heat transfer for the vertical penetration of a heated fluid layer in a solid, miscible bed using water-salt solutions (ZnBr 2 , NaBr) and polyethylenglycol 1500 (PEG) as simulation materials. The time depending spatial distribution of the molten material (PEG) has been measured for the first time with conductivity probes. The dependence of the downward heat flux on the density ratio rho*, i.e. the density of the fluid / the density of the molten solid, has been investigated with two different methods of heating, planar heating with a heat exchanger in a defined initial distance to the PEG-surface and electrolytical volume heating with a defined and timely constant power input. For 1 2 two layers have been observed in the fluid. This phenomenon is caused among other things by an anomality of the mixture density of the system salt solution-PEG. This process affects the downward heat flux so strongly, that it is impossible to transfer the results of such a system in this region of rho* to another system, for example to a corecatcher. The discrepancies between the measured heat fluxes and heat transfer coefficients of this study and that of other authors can be explained by the different construction of the planar heater, or by different boundary conditions in the case of volume heating. (orig.) [de

  10. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles

    International Nuclear Information System (INIS)

    Zlotea, Claudia; Oumellal, Yassine; Provost, Karine; Ghimbeu, Camelia Matei

    2016-01-01

    Recent advances on synthesis, characterization, and hydrogen absorption properties of ultrasmall metal nanoparticles (defined here as objects with average size ≤3 nm) are briefly reviewed in the first part of this work. The experimental challenges encountered in performing accurate measurements of hydrogen absorption in Mg- and noble metal-based ultrasmall nanoparticles are addressed. The second part of this work reports original results obtained for ultrasmall bulk-immiscible Pd–Rh nanoparticles. Carbon-supported Pd–Rh nanoalloys in the whole binary chemical composition range have been successfully prepared by liquid impregnation method followed by reduction at 300°C. EXAFS investigations suggested that the local structure of these nanoalloys is partially segregated into Rh-rich core and Pd-rich surface coexisting within the same nanoparticles. Downsizing to ultrasmall dimensions completely suppresses the hydride formation in Pd-rich nanoalloys at ambient conditions, contrary to bulk and larger nanosized (5–6 nm) counterparts. The ultrasmall Pd 90 Rh 10 nanoalloy can absorb hydrogen-forming solid solutions under these conditions, as suggested by in situ X-ray diffraction (XRD). Apart from this composition, common laboratory techniques, such as in situ XRD, DSC, and PCI, failed to clarify the hydrogen interaction mechanism: either adsorption on developed surfaces or both adsorption and absorption with formation of solid solutions. Concluding insights were brought by in situ EXAFS experiments at synchrotron: ultrasmall Pd 75 Rh 25 and Pd 50 Rh 50 nanoalloys absorb hydrogen-forming solid solutions at ambient conditions. Moreover, the hydrogen solubility in these solid solutions is higher with increasing Pd content, and this trend can be understood in terms of hydrogen preferential occupation in the Pd-rich regions, as suggested by in situ EXAFS. The Rh-rich nanoalloys (Pd 25 Rh 75 and Pd 10 Rh 90 ) only adsorb hydrogen on the developed surface of ultrasmall

  11. GAT 4 production and storage of hydrogen. Report July 2004; GAT 4 procduction et stockage de l'hydrogene. Rapport juillet 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  12. The car on hydrogen: problems and solutions

    International Nuclear Information System (INIS)

    Koroteev, A.S.; Smolyarov, V.A.

    2004-01-01

    Development of the hydrogen power for transformation of the most power-consumption branch of the industry and transport into new power source - hydrogen as strategy direction for the reduction of pollution of environment and deficit of oil motor fuel is considered. On the basis of comparison of different type of electrochemical generators conclusion on advantages of electrochemical generator with solid polymer membrane was made. Different systems of hydrogen storage in automobile are considered. The system of the gaseous hydrogen storage at high pressure in cistern from composite materials is the most promise [ru

  13. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  14. Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-01

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN x /Si-rich SiN x stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10 12 cm −2 , which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN x films deposited with H 2 dilution show better passivation quality of SiN x /Si-rich SiN x stacked layers than those prepared without H 2 dilution. Effective minority carrier lifetime (τ eff ) in c-Si passivated by SiN x /Si-rich SiN x stacked layers is as high as 5.1 ms when H 2 is added during Si-rich SiN x deposition, which is much higher than the case of using Si-rich SiN x films prepared without H 2 dilution showing τ eff of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN x /SiN x stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H 2 gas during Si-rich SiN x film deposition greatly enhances effective minority carrier lifetime (τ eff ). • For a Si-rich SiN x film with refractive index of 2.92, τ eff improves from 3.3 to 5.1 ms by H 2 addition

  15. Hydrogen Car Cartridges: A New Strategy for Hydrogen Storage, Delivering and Refueling

    Energy Technology Data Exchange (ETDEWEB)

    Prosini, Pier Paolo

    2007-07-01

    The purpose of the project is to introduce a sustainable model in the automotive field, guarantying the Kyoto agreements. The aim of the project is to develop an innovative hydrogen tank able to power an hydrogen fuel cell car with the same performance of liquid fuelled cars. Most of the system performance are expected to satisfy the Department of Energy (DOE) goals for 2015. The hydrogen releasing system is based on solid NaBH4 which is hydrolyzed with water or steam to obtain hydrogen. Sodium borate is obtained as by-product and it has to be recycled. Pure and humidified hydrogen, ready to be utilized in a fuel cell, is obtained by a simple and sure way. Hydrogen is produced only when it is requested and therefore there is never pressurized hydrogen or hydrogen overproduction The system works at atmospheric pressure avoiding the problems related to handling and storing pressurized gas. The car fuelling could be performed in area like the present service stations. The used cartridges can be removed and substituted by new cartridges. Contemporarily a water tank should be refilled. To improve the total energetic yield it was also proposed a NaBH4 regeneration process directly starting from the products of hydrolysis. (auth)

  16. Fabrication of highly oriented D03-Fe3Si nanocrystals by solid-state dewetting of Si ultrathin layer

    International Nuclear Information System (INIS)

    Naito, Muneyuki; Nakagawa, Tatsuhiko; Machida, Nobuya; Shigematsu, Toshihiko; Nakao, Motoi; Sudoh, Koichi

    2013-01-01

    In this paper, highly oriented nanocrystals of Fe 3 Si with a D0 3 structure are fabricated on SiO 2 using ultrathin Si on insulator substrate. First, (001) oriented Si nanocrystals are formed on the SiO 2 layer by solid state dewetting of the top Si layer. Then, Fe addition to the Si nanocrystals is performed by reactive deposition epitaxy and post-deposition annealing at 500 °C. The structures of the Fe–Si nanocrystals are analyzed by cross-sectional transmission electron microscopy and nanobeam electron diffraction. We observe that Fe 3 Si nanocrystals with D0 3 , B2, and A2 structures coexist on the 1-h post-annealed samples. Prolonged annealing at 500 °C is effective in obtaining Fe 3 Si nanocrystals with a D0 3 single phase, thereby promoting structural ordering in the nanocrystals. We discuss the formation process of the highly oriented D0 3 -Fe 3 Si nanocrystals on the basis of the atomistic structural information. - Highlights: • Highly oriented Fe–Si nanocrystals (NCs) are fabricated by reactive deposition. • Si NCs formed by solid state dewetting of Si thin layers are used as seed crystals. • The structures of Fe–Si NCs are analyzed by nanobeam electron diffraction. • Most of Fe–Si NCs possess the D0 3 structure after post-deposition annealing

  17. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  18. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  19. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  20. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  1. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mei, E-mail: msun8@uncc.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Sun, Wenjie, E-mail: wsun@smu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States); Department of Civil and Environmental Engineering, Southern Methodist University, PO Box 750340, Dallas, TX (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC (United States)

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H{sub 2}S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H{sub 2}S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H{sub 2}S produced by different types of sulfur-containing wastes in a relatively fast (30 days) and inexpensive (125 mL serum bottles) batch assay. This study confirmed the toxic effect of H{sub 2}S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H{sub 2}S by base adsorption was effective for mitigating inhibition. H{sub 2}S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30 days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8 mL H{sub 2}S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H{sub 2}S yield. A 60 day incubation in selected samples resulted in 39–86% additional sulfide production. H{sub 2}S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H{sub 2}S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating

  2. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  3. Can aqueous hydrogen peroxide be used as a stand-alone energy source?

    International Nuclear Information System (INIS)

    Disselkamp, Robert S.

    2010-01-01

    A novel electrochemical scheme to convert a stand-alone supply of aqueous hydrogen peroxide into a fuel cell-ready stream of hydrogen gas plus aqueous hydrogen peroxide is described. The electrochemical cell, consisting of a solid base and solid acid electrocatalyst, together with a proton exchange membrane, comprise the system that converts aqueous hydrogen peroxide into separate gas streams of oxygen and hydrogen. Aqueous hydrogen peroxide is contained in the anode compartment only and exists in the region where oxygen gas is formed, whereas the cathode compartment is where hydrogen gas is generated and therefore exists in a reduced state. A near zero theoretical over-potential can be achieved by the choice of basicity and acidity of the electrode materials. The primary cost of the electrochemical cell is electrode construction and the aqueous hydrogen peroxide energy storage compound. Additional research effort is required to experimentally validate the concept and explore the full economic impact should initial studies, based on the design presented here, prove promising. (author)

  4. Layer-by-Layer Formation of Block-Copolymer-Derived TiO2 for Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Guldin, Stefan

    2011-12-15

    Morphology control on the 10 nm length scale in mesoporous TiO 2 films is crucial for the manufacture of high-performance dye-sensitized solar cells. While the combination of block-copolymer self-assembly with sol-gel chemistry yields good results for very thin films, the shrinkage during the film manufacture typically prevents the build-up of sufficiently thick layers to enable optimum solar cell operation. Here, a study on the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination is presented. The in-situ investigation of the shrinkage process enables the establishment of a simple and fast protocol for the fabrication of thicker films. When used as photoanodes in solid-state dye-sensitized solar cells, the mesoporous networks exhibit significantly enhanced transport and collection rates compared to the state-of-the-art nanoparticle-based devices. As a consequence of the increased film thickness, power conversion efficiencies above 4% are reached. Fabrication of sufficiently thick mesoporous TiO 2 photoelectrodes with morphology control on the 10 nm length scale is essential for solid-state dye-sensitized solar cells (ss-DSC). This study of the temporal evolution of block-copolymer-directed mesoporous TiO 2 films during annealing and calcination enables the build-up of sufficiently thick films for high-performance ssDSC devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  6. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  7. Liquid hydrogen production via hydrogen sulfide methane reformation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [University of Central Florida, Florida Solar Energy Center, 1769 Clearlake Road, Cocoa, FL 32922 (United States)

    2008-01-03

    Hydrogen sulfide (H{sub 2}S) methane (CH{sub 4}) reformation (H{sub 2}SMR) (2H{sub 2}S + CH{sub 4} = CS{sub 2} + 4H{sub 2}) is a potentially viable process for the removal of H{sub 2}S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H{sub 2}SMR produces carbon disulfide (CS{sub 2}), a liquid under ambient temperature and pressure - a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H{sub 2}SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH{sub 4} to H{sub 2}S ratios are needed. In this paper, we analyze H{sub 2}SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H{sub 2}SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively. (author)

  8. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  9. On the solid phase crystallization of In{sub 2}O{sub 3}:H transparent conductive oxide films prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Macco, Bart; Verheijen, Marcel A.; Black, Lachlan E.; Melskens, J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Barcones, Beatriz [NanoLab@TU/e, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kessels, Wilhelmus M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Solliance Solar Research, High Tech Campus 5, 5656 AE Eindhoven (Netherlands)

    2016-08-28

    Hydrogen-doped indium oxide (In{sub 2}O{sub 3}:H) has emerged as a highly transparent and conductive oxide, finding its application in a multitude of optoelectronic devices. Recently, we have reported on an atomic layer deposition (ALD) process to prepare high quality In{sub 2}O{sub 3}:H. This process consists of ALD of In{sub 2}O{sub 3}:H films at 100 °C, followed by a solid phase crystallization step at 150–200 °C. In this work, we report on a detailed electron microscopy study of this crystallization process which reveals new insights into the crucial aspects for achieving the large grain size and associated excellent properties of the material. The key finding is that the best optoelectronic properties are obtained by preparing the films at the lowest possible temperature prior to post-deposition annealing. Electron microscopy imaging shows that such films are mostly amorphous, but feature a very low density of embedded crystallites. Upon post-deposition annealing, crystallization proceeds merely from isotropic crystal grain growth of these embedded crystallites rather than by the formation of additional crystallites. The relatively high hydrogen content of 4.2 at. % in these films is thought to cause the absence of additional nucleation, thereby rendering the final grain size and optoelectronic properties solely dependent on the density of embedded crystallites. The temperature-dependent grain growth rate has been determined, from which an activation energy of (1.39 ± 0.04) eV has been extracted. Finally, on the basis of the observed crystallization mechanism, a simple model to fully describe the crystallization process has been developed. This model has been validated with a numerical implementation thereof, which accurately predicts the observed temperature-dependent crystallization behaviour.

  10. Dissolved hydrogen and oxygen sensors using semiconductor devices

    International Nuclear Information System (INIS)

    Hara, Nobuyoshi; Sugimoto, Katsuhisa

    1995-01-01

    The concentrations of DH and DO in aqueous solution are the factors that determine the equilibrium potential of hydrogen and oxygen electrode reactions, respectively, and are the quantities which directly related to the rates of hydrogen generation type and oxygen consumption type corrosion reactions, therefore, they have the important meaning in the electrochemistry of corrosion. In the hydrogen injection into BWR cooling water, the concentration of hydrogen must be controlled strictly, accordingly DH and DO sensors and electrochemical potential sensors are required. For the chemical sensors used in reactor cooling water, the perfectly solid state sensors made of high corrosion resistance materials, which are small size and withstand high temperature and high pressure, must be developed. The structure and the characteristics of the semiconductor devices used as gas sensors, and the principles of DH and DO sensors are described. If the idea of porous or discontinuous membrane gate is developed, the ion sensor of solid structure with one-body reference electrode may be made. (K.I.)

  11. The electronic structures of solids

    CERN Document Server

    Coles, B R

    2013-01-01

    The Electronic Structures of Solids aims to provide students of solid state physics with the essential concepts they will need in considering properties of solids that depend on their electronic structures and idea of the electronic character of particular materials and groups of materials. The book first discusses the electronic structure of atoms, including hydrogen atom and many-electron atom. The text also underscores bonding between atoms and electrons in metals. Discussions focus on bonding energies and structures in the solid elements, eigenstates of free-electron gas, and electrical co

  12. A study on 2% PdO/Al2O3 by means of free positron annihilation technique in the solid surface layer

    International Nuclear Information System (INIS)

    Shi Zikang; Huang Cunping

    1992-01-01

    The relationship between heat treatment and space structure of the PdO layer in 2% PdO/Al 2 O 3 was studied by the positrons from 2 2N a radiative source, and grain size was calculated by the positron annihilation parameters, demonstrating that the free positron annihilation technique for the solid surface layer can be applied can be applied to catalyst research

  13. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  14. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Re-fermentation of washed spent solids from batch hydrogenogenic fermentation for additional production of biohydrogen from the organic fraction of municipal solid waste.

    Science.gov (United States)

    Muñoz-Páez, Karla M; Ríos-Leal, Elvira; Valdez-Vazquez, Idania; Rinderknecht-Seijas, Noemí; Poggi-Varaldo, Héctor M

    2012-03-01

    In the first batch solid substrate anaerobic hydrogenogenic fermentation with intermittent venting (SSAHF-IV) of the organic fraction of municipal solid waste (OFMSW), a cumulative production of 16.6 mmol H(2)/reactor was obtained. Releases of hydrogen partial pressure first by intermittent venting and afterward by flushing headspace of reactors with inert gas N(2) allowed for further hydrogen production in a second to fourth incubation cycle, with no new inoculum nor substrate nor inhibitor added. After the fourth cycle, no more H(2) could be harvested. Interestingly, accumulated hydrogen in 4 cycles was 100% higher than that produced in the first cycle alone. At the end of incubation, partial pressure of H(2) was near zero whereas high concentrations of organic acids and solvents remained in the spent solids. So, since approximate mass balances indicated that there was still a moderate amount of biodegradable matter in the spent solids we hypothesized that the organic metabolites imposed some kind of inhibition on further fermentation of digestates. Spent solids were washed to eliminate organic metabolites and they were used in a second SSAHF-IV. Two more cycles of H(2) production were obtained, with a cumulative production of ca. 2.4 mmol H(2)/mini-reactor. As a conclusion, washing of spent solids of a previous SSAHF-IV allowed for an increase of hydrogen production by 15% in a second run of SSAHF-IV, leading to the validation of our hypothesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Structural isotopic effect of the α/β-phase transition in the vanadium hydride and its influence on the equilibrium coefficient of separation of hydrogen isotopes in the gas-solid system

    International Nuclear Information System (INIS)

    Magomedbekov, Eh.P.; Bochkarev, A.V.

    1999-01-01

    Equilibrium coefficient of hydrogen isotope separation (α H-D ) in the system of vanadium hydride VH n (solid, n ∼ 0.7)-H 2 (g) is measured by the counterbalancing method in a circulation facility and by the method of laser desorption at 298, 373, and 437 K. It is shown that the combination of highly anharmonic potential in the lattice octahedral sites and in significant difference in the energy of hydrogen atom coordination for tetra- and octahedral sites is the reason for unusual behaviour of the hydrogen isotope separation coefficient and the difference in crystal structures of vanadium hydride and deuteride [ru

  17. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  18. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  19. Calculations of Total and Differential Solid Angles for a Proton Recoil Solid State Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A; Tollander, B

    1963-08-15

    The solid angles have been computed for a proton recoil counter consisting of a circular hydrogenous foil viewed by an isotropic neutron point source at different distances from the target foil. Tables are given for the total subtended solid angle as well as the differential energy distribution function of the proton recoil spectrum. The influence of finite foil thickness has also been studied.

  20. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  1. Influence of the solid-gas interface on the effective thermal parameters of a two-layer structure in photoacoustic experiments

    International Nuclear Information System (INIS)

    Aguirre, N Munoz; Perez, L MartInez; Garibay-Febles, V; Lozada-Cassou, M

    2004-01-01

    From the theoretical point of view, the influence of the solid-gas interface on the effective thermal parameters in a two-layer structure of the photoacoustic technique is discussed. It is shown that the effective thermal parameters depend strongly upon the thermal resistance value associated with the solid-gas interface. New expressions for the effective thermal conductivity and thermal diffusivity in the low frequency limit are obtained. In the high frequency limit, the 'resonant' behaviour of the effective thermal diffusivity is maintained and a new complex dependence on frequency of the effective thermal conductivity is shown

  2. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi

    2016-03-04

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  3. NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors

    KAUST Repository

    Wang, Renqi; Xia, Chuan; Wei, Nini; Alshareef, Husam N.

    2016-01-01

    Ternary transition metal oxides such as NiCo2O4 show great promise as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core–shell nanostructures for all-solid-state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm−3 at a stack energy density of 0.061 mWh cm−3. To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm−2. These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes for sustainable and integrated energy storage applications.

  4. Muonium and hydrogen defect centres in solids

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1990-12-01

    Hydrogen and its light isotope, muonium, may both be observed in insulating crystals as trapped interstitial atoms. Their difference in mass gives rise to a small dynamic isotope effect in hyperfine coupling constant and a large difference in diffusive behaviour - muonium showing in some lattices a striking minimum in mobility versus temperature. Muonium may still be detected as isolated paramagnetic centres in the semiconductors whereas information on hydrogen in these materials is restricted to diamagnetic states in association with other impurities. Arguably one of the most significant findings of the muonium spin rotation technique is the coexistence of two distinct types of muonium centre in many of the tetrahedrally co-ordinated lattices. In literature spanning more than a decade, the isotropic state was described as ''normal'' muonium and assigned to the tetrahedral interstitial site, while the nature of the ''anomalous'' anisotropic state remained a puzzle. Within the last few years the situation has entirely reversed: the anisotropic state has been recognised as the more stable of the two and its electronic structure and (bond-centre) location have been well established, whereas the precise location of the isotropic state and the nature of its metastability have become open questions. (author)

  5. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    Science.gov (United States)

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  6. Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS2 for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Dai, Xiaoping; Li, Zhanzhao; Du, Kangli; Sun, Hui; Yang, Ying; Zhang, Xin; Ma, Xingyu; Wang, Jie

    2015-01-01

    Graphical abstract: In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal reduction. The resulting MoS 2 /N–rGO–HA by N 2 H 4 ·H 2 O and NH 3 ·H 2 O as co-reductant exhibits high activity and remarkable stability for hydrogen evolution reaction (HER). The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. Display Omitted -- Highlights: • In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal co-reduction. • The resulting MoS 2 /N–rGO–HA exhibits high activity and remarkable stability for HER. • The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. -- Abstract: A facile one–step synthetic strategy by combinating chemical and hydrothermal reduction of graphene oxide and Mo precursor is proposed to fabricate in–situ nitrogenated graphene–few layer MoS 2 composite (MoS 2 /N–rGO–HA) for hydrogen evolution reaction (HER). The N–doping graphene nanosheets and highly dispersed MoS 2 nanosheets by ammonia and hydrozine as co–reductant have greatly promoted the N content, concentrations of pyridinic and graphitic N, the electron transport in electrodes, and assure high catalytic efficiency. The MoS 2 /N–rGO–HA composite exhibits extremely high activity in acidic solutions with a small onset potential of 100 mV and Tafel slope of 45 mV/dec, as well as a current density about 32.4 mA cm −2 at overpotential about 0.2 V. Moreover, such MoS 2 /N–rGO–HA electroncatalyst also shows an excellent stability during 1000 cycles with negligible loss of the cathodic current. This facile hydrothermal method could provide a promising strategy for the synthesis of in–situ nitrogen–doping graphene sheets and few–layer

  7. Solid-state amorphization of SmFe{sub 3} by hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.H.; Kubis, M.; Handstein, A.; Gutfleisch, O.

    2000-05-10

    Hydrogen-induced amorphization (HIA) has received much attention as a method for the preparation of amorphous compounds since its discovery by Yeh et al. Meanwhile it has been observed for a large number of intermetallic compounds with C15, C23, B8{sub 2}, DO{sub 19} and L1{sub 2} structures. E.G. the C15 Laves-type compounds (MgCu{sub 2}-type structure) of rare earth (R) - transition metal (T) compounds RT{sub 2} show HIA for R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Er. Aoki et al. postulated that new amorphizing compounds can be expected at high hydrogen pressures. In this work, the structural changes of SmFe{sub 3} (PuNi{sub 3}-type structure) during heating in high hydrogen pressures are reported.

  8. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.; Min, Shixiong; Hedhili, Mohamed N.; Ming, Jun; Li, Lain-Jong; Huang, Kuo-Wei

    2016-01-01

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  9. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.

    2016-08-18

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  10. The growth of silica and silica-clad nanowires using a solid-state reaction mechanism on Ti, Ni and SiO2 layers

    International Nuclear Information System (INIS)

    Sharma, Parul; Anguita, J V; Stolojan, V; Henley, S J; Silva, S R P

    2010-01-01

    A large area compatible and solid-state process for growing silica nanowires is reported using nickel, titanium and silicon dioxide layers on silicon. The silica nanowires also contain silicon, as indicated by Raman spectroscopy. The phonon confinement model is employed to measure the diameter of the Si rich tail for our samples. The measured Raman peak shift and full width at half-maximum variation with the nanowire diameter qualitatively match with data available in the literature. We have investigated the effect of the seedbed structure on the nanowires, and the effect of using different gas conditions in the growth stages. From this, we have obtained the growth mechanism, and deduced the role of each individual substrate seedbed layer in the growth of the nanowires. We report a combined growth mechanism, where the growth is initiated by a solid-liquid-solid process, which is then followed by a vapour-liquid-solid process. We also report on the formation of two distinct structures of nanowires (type I and type II). The growth of these can be controlled by the use of titanium in the seedbed. We also observe that the diameter of the nanowires exhibits an inverse relation with the catalyst thickness.

  11. Hydrogen storage in graphite nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Park, C.; Tan, C.D.; Hidalgo, R.; Baker, R.T.K.; Rodriguez, N.M. [Northeastern Univ., Boston, MA (United States). Chemistry Dept.

    1998-08-01

    Graphite nanofibers (GNF) are a type of material that is produced by the decomposition of carbon containing gases over metal catalyst particles at temperatures around 600 C. These molecularly engineered structures consist of graphene sheets perfectly arranged in a parallel, perpendicular or at angle orientation with respect to the fiber axis. The most important feature of the material is that only edges are exposed. Such an arrangement imparts the material with unique properties for gas adsorption because the evenly separated layers constitute the most ordered set of nanopores that can accommodate an adsorbate in the most efficient manner. In addition, the non-rigid pore walls can also expand so as to accommodate hydrogen in a multilayer conformation. Of the many varieties of structures that can be produced the authors have discovered that when gram quantities of a selected number of GNF are exposed to hydrogen at pressures of {approximately} 2,000 psi, they are capable of adsorbing and storing up to 40 wt% of hydrogen. It is believed that a strong interaction is established between hydrogen and the delocalized p-electrons present in the graphite layers and therefore a new type of chemistry is occurring within these confined structures.

  12. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  13. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    Science.gov (United States)

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.

  14. Modification and intercalation of layered zirconium phosphates: a solid-state NMR monitoring.

    Science.gov (United States)

    Bakhmutov, Vladimir I; Kan, Yuwei; Sheikh, Javeed Ahmad; González-Villegas, Julissa; Colón, Jorge L; Clearfield, Abraham

    2017-07-01

    Several layered zirconium phosphates treated with Zr(IV) ions, modified by monomethoxy-polyethyleneglycol-monophosphate and intercalated with doxorubicin hydrochloride have been studied by solid-state MAS NMR techniques. The organic components of the phosphates have been characterized by the 13 C{ 1 H} CP MAS NMR spectra compared with those of initial compounds. The multinuclear NMR monitoring has provided to establish structure and covalent attachment of organic/inorganic moieties to the surface and interlayer spaces of the phosphates. The MAS NMR experiments including kinetics of proton-phosphorus cross polarization have resulted in an unusual structure of zirconium phosphate 6 combining decoration of the phosphate surface by polymer units and their partial intercalation into the interlayer space. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  16. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  17. Wire rod coating process of gas diffusion layers fabrication for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A.M.; Sadananda, S.; Parker, D.; Munukutla, L. [Electronic Systems Department, Arizona State University, 7001 E Williams Field Road, Mesa, AZ 85212 (United States); Wertz, J. [Hollingsworth and Vose Co., A.K. Nicholson Research Lab, 219 Townsend Road West Groton, MA 01472 (United States); Thommes, M. [Quantachrome Instruments, 1900 Corporate Drive, Boynton Beach, FL 33426 (United States)

    2008-03-15

    Gas diffusion layers (GDLs) were fabricated using non-woven carbon paper as a macro-porous layer substrate developed by Hollingsworth and Vose Company. A commercially viable coating process was developed using wire rod for coating micro-porous layer by a single pass. The thickness as well as carbon loading in the micro-porous layer was controlled by selecting appropriate wire thickness of the wire rod. Slurry compositions with solid loading as high as 10 wt.% using nano-chain and nano-fiber type carbons were developed using dispersion agents to provide cohesive and homogenous micro-porous layer without any mud-cracking. The surface morphology, wetting characteristics and pore size distribution of the wire rod coated GDLs were examined using FESEM, Goniometer and Hg porosimetry, respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions (temperature and RH) using hydrogen and air as reactants. It was observed that the wire rod coated micro-porous layer with 10 wt.% nano-fibrous carbon based GDLs showed the highest fuel cell performance at 85 C using H{sub 2} and air at 50% RH, compared to all other compositions. (author)

  18. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  19. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Municipal Solid Waste (MSW) can be considered a valid biomass to be used in a power plant. The major advantage is the reduction of pollutants and greenhouse gases emissions not only within large cities but also globally. Another advantage is that by th eir use it is possible to reduce the waste...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification......, waste is subject to chemical treatments through air or/and steam utilization; the result is a synthesis gas, called “Syngas” which is principally composed of hydrogen and carbon monoxide. Traces of hydrogen sulfide could also be present which can easily be separated in a desulfurization reactor...

  20. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    Science.gov (United States)

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

  1. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  2. Magnetic studies on Layered solid solution Lix(Ni0.4Mn0.6)2-xO2

    International Nuclear Information System (INIS)

    Nakao, K; Nakamura, T; Yamada, Y; Koshiba, N

    2011-01-01

    Li x (Ni 0.4 Mn 0.6 ) 2-x O 2 (1.09≤x≤1.23) were prepared by the solid-state reaction using LiOH and coprecipitated mixed hydroxide as raw materials. All the compounds have a layered rock-salt structure, and the cation mixing degree (Ni 2+ occupancy in the Li-layer) decreases with an increase in x. From the low-temperature magnetic measurement, they all have negative Weiss temperature and spontaneous magnetization, that is, they are ferromagnetic materials. Both the Curie temperature and the spontaneous magnetization at 4.2K decrease with an increase in x. These magnetic variations are attributed to the lowering of the cation mixing degree: the magnetic interaction network turns to two-dimensional one with the loss of the inert-layer coupling. These situations may be considered semi-quantitatively using the ferromagnetic cluster model. Additionally, the cation mixing degree has an influence on their electrochemical properties such as cycle fading and rate capability.

  3. GAT 4 production and storage of hydrogen. Report July 2004

    International Nuclear Information System (INIS)

    2004-01-01

    This paper concerns two aspects of the hydrogen: the production and the storage. For both parts the challenges and a state of the art are presented. It discusses also the hydrogen production by renewable energies, by solar energy, the hydrogen of hydrocarbons reforming purification, active phases development, thermal transfer simulation. Concerning the hydrogen storage the hydrogen adsorption by large surface solid, the storage by metallic hydrides, the alanates and light hydrides, the adsorption on carbon nano-tubes, the storage in nano-structures, the thermal and mechanical simulation of the hydrogen are presented. (A.L.B.)

  4. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    Science.gov (United States)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  5. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    International Nuclear Information System (INIS)

    Meezan, N. B.; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.

    2015-01-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10 15 neutrons, 40% of the 1D simulated yield

  6. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  7. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  8. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  9. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  10. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    Ramesh, C.; Periaswami, G.; Mathews, C.K.; Shankar, P.

    1993-01-01

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  11. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Deces-Petit, Cyrille [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC (Canada); Kesler, Olivera [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON (Canada)

    2008-12-01

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 C in H{sub 2}/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 m{omega} cm{sup 2} h{sup -1} at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode. (author)

  12. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    Science.gov (United States)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Decès-Petit, Cyrille; Kesler, Olivera

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 °C in H 2/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 mΩ cm 2 h -1 at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode.

  13. MgO-hybridized TiO{sub 2} interfacial layers assisting efficiency enhancement of solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nobuya; Ikegami, Masashi; Miyasaka, Tsutomu, E-mail: miyasaka@toin.ac.jp [Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8502 (Japan)

    2014-02-10

    Interfacial modification of a thin TiO{sub 2} compact layer (T-CL) by hybridization with MgO enhanced the quantum conversion efficiency of solid-state dye-sensitized solar cells (ssDSSCs) comprising a multilayer structure of transparent electrode/T-CL/dye-sensitized mesoporous TiO{sub 2}/hole conductor/metal counter electrode. The Mg(CH{sub 3}COO){sub 2} treatment was employed to introduce a MgO-TiO{sub 2} CL (T/M-CL), which enhanced the physical connection and conduction between the CL and mesoporous semiconductor layer as a consecutive interface, owing to the dehydration reaction of Mg(CH{sub 3}COO){sub 2}. The photocurrent density of ssDSSC was increased 33% by the T/M-CL compared with the T-CL, using an equivalent amount of adsorbed dye. The ssDSSC with the T/M-CL yielded the highest efficiency of 4.02% under irradiation at 100 mW cm{sup −2}. The electrical impedance spectroscopy showed that the charge-transfer resistance (R{sub ct}) of the photoelectrode with T/M-CL was reduced by 300 Ω from the reference non-treated T-CL electrode. Characterized by the intrinsically low R{sub ct} of the compact layer, the T/M-CL is capable of improving the photovoltaic performance of solid-state sensitized mesoscopic solar cells.

  14. The behavior of hydrogen in metals

    International Nuclear Information System (INIS)

    Hirabayashi, Makoto

    1975-01-01

    Explanation is made on the equilibrium diagrams of metal-hydrogen systems and the state of hydrogen in metals. Some metals perform exothermic reaction with hydrogen, and the others endothermic reaction. The former form stable hydrides and solid solutions over a wide range of composition. Hydrogen atoms in fcc and bcc metals are present at the interstitial positions of tetrahedron lattice and octahedron lattice. For example, hydrogen atoms in palladium are present at the intersititial positions of octahedron. When the ratio of the composition of hydrogen and palladium is 1:1, the structure becomes NaCl type. Hydrogen atoms in niobium and vanadium and present interstitially in tetrahedron lattice. Metal hydrides with high hydrogen concentration are becoming important recently as the containers of hydrogen. Hydrogen atoms diffuse in metals quite easily. The activation energy of the diffusion of hydrogen atoms in Nb and V is about 2-3 kcal/g.atom. The diffusion coefficient is about 10 -5 cm 2 /sec in alpha phase at room temperature. The number of jumps of a hydrogen atom between neighboring lattice sites is 10 11 --10 12 times per second. This datum is almost the same as that of liquid metals. Discussion is also made on the electronic state of hydrogen in metals. (Fukutomi, T.)

  15. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  16. Hydrogen-induced metallicity and strengthening of MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yakovkin, I.N., E-mail: yakov@iop.kiev.ua; Petrova, N.V.

    2014-04-15

    Highlights: • Hydrogen inserted into MoS{sub 2} bilayers increases the interlayer interaction. • Adsorbed or intercalated H monolayer makes the surface metallic. • Fermi surface of the H/MoS{sub 2} shows a significant nesting. - Abstract: The performed DFT calculations for MoS{sub 2} layers with adsorbed and intercalated hydrogen indicate that the atomic hydrogen monolayer makes the surface metallic. The physisorbed H{sub 2} does not affect electronic properties of the MoS{sub 2} monolayer, which remains a direct gap semiconductor. Due to forming S–H–S bonds, hydrogen atoms, intercalated into the space between MoS{sub 2} layers, increase the interlayer interaction from 0.12 eV to 0.60 eV. The related increase of the stiffness of the Mo–H–Mo layered system is of a primary importance for the interpretation of images of the surface obtained with the Ultrasonic Force Microscopy (Kolosov and Yamanaka, 1993) [42].

  17. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  18. Petrographic characterization of the solid products of coal- pitch coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.; Kybett, B.D.; McDougall, W.J.; Nambudiri, E.M.V.; Rahimi, P.; Price, J.T.

    1986-06-01

    Petrographic studies were conducted on four solid residues resulting from the hydrogenation process of 1) Forestburg sub- bituminous coal alone, 2) the coal with a non-coking solvent (anthracene oil), 3) pitch (Cold Lake vacuum-bottom deposits), and 4) a mixture of coal and pitch. The purpose was to determine the amounts of coal and pitch-derived solids in the residues. All the residues were produced under identical severe conditions of liquefaction to promote the formation of solids. The coal processed with anthracene oil gives a residue consisting mainly of isotropic huminitic solids. If the coal is hydrogenated under similar conditions but without a solvent, the predominant residual solids are anisotropic semicokes displaying coarse mosaic textures, which form from vitroplast. The residual products from the hydrogenated Cold Lake vacuum- bottom deposits are also dominantly anisotropic semicokes; these display coarse mosaics and flow textures, and form by the growth and coalescence of mesophase spherules. Both coal- and pitch-derived solids are identified in a residue produced by coprocessing the Forestburg coal with the pitch from the Cold Lake vacuum-bottom deposits. It is concluded that the huminite macerals in the coal generate the fine-grained, mosaic-textured semicokes, whereas the pitch produces the coarse mosaics and flow-textured semicokes.

  19. The methods of hydrogen storage

    International Nuclear Information System (INIS)

    Joubert, J.M.; Cuevas, F.; Latroche, M.; Percheron-Guegan, A.

    2005-01-01

    Hydrogen may be an excellent energy vector owing to its high specific energy. Its low density is however a serious drawback for its storage. Three techniques exist to store hydrogen. Storage under pressure is now performed in composite tanks under pressures around 700 bar. Liquid storage is achieved at cryogenic temperatures. Solid storage is possible in reversible metal hydrides or on high surface area materials. The three storage means are compared in terms of performance, energetic losses and risk. (authors)

  20. High mobility In2O3:H transparent conductive oxides prepared by atomic layer deposition and solid phase crystallization

    NARCIS (Netherlands)

    Macco, B.; Wu, Y.; Vanhemel, D.; Kessels, W.M.M.

    2014-01-01

    The preparation of high-quality In2O3:H, as transparent conductive oxide (TCO), is demonstrated at low temperatures. Amorphous In2O3:H films were deposited by atomic layer deposition at 100 °C, after which they underwent solid phase crystallization by a short anneal at 200 °C. TEM analysis has shown