WorldWideScience

Sample records for solid geometric modeling

  1. Derivative Geometric Modeling of Basic Rotational Solids on CATIA

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-bao; PAN Zi-jian; ZHU Yu-xiang; LI Jun

    2011-01-01

    Hybrid models derived from rotational solids like cylinders, cones and spheres were implemented on CATIA software. Firstly, make the isosceles triangular prism, cuboid, cylinder, cone, sphere, and the prism with tangent conic and curved triangle ends, the cuboid with tangent cylindrical and curved rectangle ends, the cylinder with tangent spherical and curved circular ends as the basic Boolean deference units to the primary cylinders, cones and spheres on symmetrical and some critical geometric conditions, forming a series of variant solid models. Secondly, make the deference units above as the basic union units to the main cylinders, cones, and spheres accordingly, forming another set of solid models. Thirdly, make the tangent ends of union units into oblique conic, cylindrical, or with revolved triangular pyramid, quarterly cylinder and annulus ends on sketch based features to the main cylinders, cones, and spheres repeatedly, thus forming still another set of solid models. It is expected that these derivative models be beneficial both in the structure design, hybrid modeling, and finite element analysis of engineering components and in comprehensive training of spatial configuration of engineering graphics.

  2. A discrete element model for the investigation of the geometrically nonlinear behaviour of solids

    Science.gov (United States)

    Ockelmann, Felix; Dinkler, Dieter

    2018-07-01

    A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.

  3. New software library of geometrical primitives for modelling of solids used in Monte Carlo detector simulations

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    We present our effort for the creation of a new software library of geometrical primitives, which are used for solid modelling in Monte Carlo detector simulations. We plan to replace and unify current geometrical primitive classes in the CERN software projects Geant4 and ROOT with this library. Each solid is represented by a C++ class with methods suited for measuring distances of particles from the surface of a solid and for determination as to whether the particles are located inside, outside or on the surface of the solid. We use numerical tolerance for determining whether the particles are located on the surface. The class methods also contain basic support for visualization. We use dedicated test suites for validation of the shape codes. These include also special performance and numerical value comparison tests for help with analysis of possible candidates of class methods as well as to verify that our new implementation proposals were designed and implemented properly. Currently, bridge classes are u...

  4. Random Process Theory Approach to Geometric Heterogeneous Surfaces: Effective Fluid-Solid Interaction

    Science.gov (United States)

    Khlyupin, Aleksey; Aslyamov, Timur

    2017-06-01

    Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.

  5. Geometrical setting of solid mechanics

    International Nuclear Information System (INIS)

    Fiala, Zdenek

    2011-01-01

    Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.

  6. Geometric data transfer between CAD systems: solid models

    DEFF Research Database (Denmark)

    Kroszynski, Uri; Palstroem, Bjarne; Trostmann, Erik

    1989-01-01

    The first phase of the ESPRIT project CAD*I resulted in a specification for the exchange of solid models as well as in some pilot implementations of processors based on this specification. The authors summarize the CAD*I approach, addressing the structure of neutral files for solids, entities......, and attributes supporting three kinds of representations: facilities for the transfer of parametric designs; referencing library components; and other general mechanisms. They also describe the current state of the specification and processor implementations and include an example of a CAD*I neutral file....... Results from cycle and intersystem solid model transfer tests are presented, showing the practicality of the CAD*I proposal. B-rep model transfer results are discussed in some detail. The relationship of this work to standardization efforts is outlined...

  7. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    CERN Document Server

    Rao, D V; Brunetti, A; Gigante, G E; Takeda, T; Itai, Y; Akatsuka, T

    2002-01-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K alpha radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)

  8. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V.; Cesareo, R.; Brunetti, A. [Sassari University, Istituto di Matematica e Fisica (Italy); Gigante, G.E. [Roma Universita, Dipt. di Fisica (Italy); Takeda, T.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Akatsuka, T. [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering

    2002-10-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K{alpha} radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)

  9. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    Science.gov (United States)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.

    2002-10-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.

  10. 3-D Geometric Modeling for the 21st Century.

    Science.gov (United States)

    Ault, Holly K.

    1999-01-01

    Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)

  11. Experimental realization of universal geometric quantum gates with solid-state spins.

    Science.gov (United States)

    Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M

    2014-10-02

    Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

  12. Study of identification of geometrically shaped solids using colour and range information

    International Nuclear Information System (INIS)

    Ebihara, Kenichi

    1997-05-01

    This report is the revision of the Technical Report (MECSE 1996-7) of Monash University in Melbourne, Australia which has been distributed to the Department Library in this University. The main work which is described in this report was carried out at Intelligent Robotics Research Center (IRRC) in the Department of Electrical and Computer Systems Engineering of Monash University from March in 1995 to March in 1996 and was be supported by a grant from Research Development Corporation of Japan (JRDC). This report describes the study of identification of geometrically shaped solids with unique colour using colour and range information. This study aims at recognition of equipment in nuclear plants. For this purpose, it is hypothesized that equipment in nuclear plants can be represented by combination of geometrically shaped solids with unique colour, such as a sphere, an ellipsoid, a cone, a cylinder, a rectangular solid and a pyramid. In this report, the colour image of geometrically shaped solids could be segmented comparatively easily and effectively into regions of each solid by using colour and range information. The range data of each solid was extracted using the segmented colour image. Thus the extracted range data could be classified into a plane surface or a curved surface by checking its spatial distribution. (author)

  13. Recent Advances in Material and Geometrical Modelling in Dental Applications

    Directory of Open Access Journals (Sweden)

    Waleed M. S. Al Qahtani

    2018-06-01

    Full Text Available This article touched, in brief, the recent advances in dental materials and geometric modelling in dental applications. Most common categories of dental materials as metallic alloys, composites, ceramics and nanomaterials were briefly demonstrated. Nanotechnology improved the quality of dental biomaterials. This new technology improves many existing materials properties, also, to introduce new materials with superior properties that covered a wide range of applications in dentistry. Geometric modelling was discussed as a concept and examples within this article. The geometric modelling with engineering Computer-Aided-Design (CAD system(s is highly satisfactory for further analysis or Computer-Aided-Manufacturing (CAM processes. The geometric modelling extracted from Computed-Tomography (CT images (or its similar techniques for the sake of CAM also reached a sufficient level of accuracy, while, obtaining efficient solid modelling without huge efforts on body surfaces, faces, and gaps healing is still doubtable. This article is merely a compilation of knowledge learned from lectures, workshops, books, and journal articles, articles from the internet, dental forum, and scientific groups' discussions.

  14. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review.

    Science.gov (United States)

    Savio, Gianpaolo; Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  15. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Directory of Open Access Journals (Sweden)

    Gianpaolo Savio

    2018-01-01

    Full Text Available Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed.

  16. Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Science.gov (United States)

    Rosso, Stefano; Meneghello, Roberto; Concheri, Gianmaria

    2018-01-01

    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed. PMID:29487626

  17. Geometric and computer-aided spline hob modeling

    Science.gov (United States)

    Brailov, I. G.; Myasoedova, T. M.; Panchuk, K. L.; Krysova, I. V.; Rogoza, YU A.

    2018-03-01

    The paper considers acquiring the spline hob geometric model. The objective of the research is the development of a mathematical model of spline hob for spline shaft machining. The structure of the spline hob is described taking into consideration the motion in parameters of the machine tool system of cutting edge positioning and orientation. Computer-aided study is performed with the use of CAD and on the basis of 3D modeling methods. Vector representation of cutting edge geometry is accepted as the principal method of spline hob mathematical model development. The paper defines the correlations described by parametric vector functions representing helical cutting edges designed for spline shaft machining with consideration for helical movement in two dimensions. An application for acquiring the 3D model of spline hob is developed on the basis of AutoLISP for AutoCAD environment. The application presents the opportunity for the use of the acquired model for milling process imitation. An example of evaluation, analytical representation and computer modeling of the proposed geometrical model is reviewed. In the mentioned example, a calculation of key spline hob parameters assuring the capability of hobbing a spline shaft of standard design is performed. The polygonal and solid spline hob 3D models are acquired by the use of imitational computer modeling.

  18. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  19. Prevention of unrecognized joint penetration during internal fixation of hip fractures: a geometric model based on Steinmetz Solid.

    Science.gov (United States)

    Mao, Yujiang; Song, Jie; Wei, Jie; Wang, Manyi

    2010-01-01

    Unrecognized joint penetration (UJP) by screw penetration through the articular surface undetectable on routine anteroposterior (AP) and lateral radiographs can cause serious complications. We have developed a geometric model to analyze UJP, and methods for the prevention of the problem. A Steinmetz Solid (SS) is the overlapping portion between two identical, vertically intersecting cylinders. The AP and lateral radiographs of a femoral head (simplified as a sphere) are projections of two cylinder-shaped images. A screw that appears to be within the femoral head in fact only lies within the cylinder. A screw apparently within the femoral head on both AP and lateral images is only confined to the SS generated by two cylinders, but not necessarily confined to the femoral head itself. We have therefore analyzed UJP using a geometric model based on SS. The geometric basis of UJP lies in the fact that the SS is larger than the sphere (femoral head) with a volume ratio of 4: π. The theoretical risk of UJP for any screw therefore can be as high as 21.5% ((4-π)/4). In reality, screws are always carefully placed to ensure a distance between the screw's tip and the edge of femoral head (tip-to-edge distance, or TED). This TED effectively lowers the risk of UJP by reducing the size of the screw-confining SS. When the SS entirely fits into (internally tangential to) the femoral head, the risk of UJP approaches zero. A TED fulfilling this requirement can be regarded as safe (approximately 0.29 x femoral head radius). With a femoral head diameter of 5 cm, the safe TED is approximately 7 mm.

  20. Volume-based geometric modeling for radiation transport calculations

    International Nuclear Information System (INIS)

    Li, Z.; Williamson, J.F.

    1992-01-01

    Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed

  1. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  2. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.

    1999-01-01

    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  3. Pragmatic geometric model evaluation

    Science.gov (United States)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  4. Computational analysis on the electrode geometric parameters for the reversible solid oxide cells

    International Nuclear Information System (INIS)

    Lee, Seoung-Ju; Jung, Chi-Young; Yi, Sung-Chul

    2017-01-01

    Increasing global energy demands have been accelerating the research and development of reversible electrochemical systems that can realize an efficient use of the intermittent renewable energy resources. This paper thus describes a numerical investigation of reversible solid oxide cells (RSOCs), for their high energy efficiency delivered from the high operating temperatures ranging from 600 to 1000 °C. Unlike the previous studies, a model-based strategy is applied for the simultaneous integration of different operating modes (namely, fuel cell and electrolysis cell modes) to enable more realistic predictions on the trade-off behavior of the effects of electrode design parameters on the cell performance. This approach was taken to investigate the effects of various geometric designs and operating parameters (electrode backing layer thickness; interconnector rib size; fuel gas composition) on the current-potential characteristic and the round-trip efficiency. The cell performance was significantly affected by the rib size, particularly when the backing layer was thin, because of the uneven distribution of the reactant species. Overall, this study provides insights into key geometric design parameters that dominate the performance of dual-mode RSOCs.

  5. SOME PROPERTIES OF GEOMETRIC DEA MODELS

    Directory of Open Access Journals (Sweden)

    Ozren Despić

    2013-02-01

    Full Text Available Some specific geometric data envelopment analysis (DEA models are well known to the researchers in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these models were noted by several authors but the models still remain somewhat obscure and rarely used in practice. The purpose of this paper is to show from a mathematical perspective where the geometric DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using geometric DEA in practice of decision making and/or efficiency measurement.

  6. Geometrical model of multiple production

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.

    1988-01-01

    The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given

  7. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M. [Institutefor Chemical Technology and Polymer Chemistry, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany); Heuveline, Vincent; Deutschmann, Olaf [Institute for Applied and Numerical Mathematics, University of Karlsruhe (TH), Kaiserstr. 12, D-76128 Karlsruhe (Germany)

    2008-03-15

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution. (author)

  8. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    Science.gov (United States)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  9. 5th Dagstuhl Seminar on Geometric Modelling

    CERN Document Server

    Brunnett, Guido; Farin, Gerald; Goldman, Ron

    2004-01-01

    In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications

  10. Progressive Conversion from B-rep to BSP for Streaming Geometric Modeling.

    Science.gov (United States)

    Bajaj, Chandrajit; Paoluzzi, Alberto; Scorzelli, Giorgio

    2006-01-01

    We introduce a novel progressive approach to generate a Binary Space Partition (BSP) tree and a convex cell decomposition for any input triangles boundary representation (B-rep), by utilizing a fast calculation of the surface inertia. We also generate a solid model at progressive levels of detail. This approach relies on a variation of standard BSP tree generation, allowing for labeling cells as in, out and fuzzy, and which permits a comprehensive representation of a solid as the Hasse diagram of a cell complex. Our new algorithm is embedded in a streaming computational framework, using four types of dataflow processes that continuously produce, transform, combine or consume subsets of cells depending on their number or input/output stream. A varied collection of geometric modeling techniques are integrated in this streaming framework, including polygonal, spline, solid and heterogeneous modeling with boundary and decompositive representations, Boolean set operations, Cartesian products and adaptive refinement. The real-time B-rep to BSP streaming results we report in this paper are a large step forward in the ultimate unification of rapid conceptual and detailed shape design methodologies.

  11. Representing the Past by Solid Modeling + Golden Ratio Analysis

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes the procedures of reconstructing ancient architecture using solid modeling with geometric analysis, especially the Golden Ratio analysis. In the past the recovery and reconstruction of ruins required bringing together fragments of evidence and vast amount of measurements from archaeological site. Although researchers and…

  12. Geometric programming facilities of EusLisp and assembly goal planner

    International Nuclear Information System (INIS)

    Matsui, Toshihiro; Sakane, Shigeyuki; Hirukawa, Hirohisa

    1994-01-01

    For robots in power plants to accomplish intelligent tasks such as maintenance, inspection, and assembly, the robots must have planning capabilities based on shape models of the environment. Such shape models are defined and manipulated by a program called a geometric modeler or a solid modeler. Although there are commercial solid modelers in the market, they are not always suitable for robotics research, since it is hard to integrate higher level planning functions which frequently access internal model representation. In order to accelerate advanced robotics research, we need a generic, extensible, efficient, and integration-oriented geometric modeler. After reviewing available modelers, we concluded that the object-oriented Lisp can be the best implementation language for solid modeling. The next section introduces the programming language, 'EusLisp', tuned for implementing a solid modeler for intelligent robot programming. The design philosophy and the structure and functions of EusLisp are stated. In the following sections, EusLisp's applications, i.e., viewpoint and light-source location planning, derivation of motion constraint, and assembly goal planning, are discussed. (J.P.N.)

  13. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    International Nuclear Information System (INIS)

    Kalibjian, J.R.

    1985-01-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes

  14. Multiphase flow in geometrically simple fracture intersections

    Science.gov (United States)

    Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.; ,

    2006-01-01

    A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

  15. Geometrical analysis of the interacting boson model

    International Nuclear Information System (INIS)

    Dieperink, A.E.L.

    1983-01-01

    The Interacting Boson Model is considered, in relation with geometrical models and the application of mean field techniques to algebraic models, in three lectures. In the first, several methods are reviewed to establish a connection between the algebraic formulation of collective nuclear properties in terms of the group SU(6) and the geometric approach. In the second lecture the geometric interpretation of new degrees of freedom that arise in the neutron-proton IBA is discussed, and in the third one some further applications of algebraic techniques to the calculation of static and dynamic collective properties are presented. (U.K.)

  16. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    Science.gov (United States)

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  17. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    Science.gov (United States)

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  18. 3DXRD characterization and modeling of solid-state transformation processes

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte; Offerman, S.E.; Sietsma, J.

    2008-01-01

    of metallic microstructures with much more detail than hitherto possible. Among these modeling activities are three-dimensional (3D) geometric modeling, 3D molecular dynamics modeling, 3D phase-field modeling, two-dimensional (2D) cellular automata, and 2D Monte Carlo simulations....... data valuable for validation of various models of microstructural evolution is discussed, Examples of 3DXRD measurements related to recrystallization and to solid-state phase transformations in metals are described. 3DXRD measurements have led to new modeling activity predicting the evolution...

  19. Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.

  20. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  1. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Science.gov (United States)

    Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2014-01-01

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  2. Multiscale geometric modeling of macromolecules I: Cartesian representation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)

    2014-01-15

    This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the

  3. The effects of geometric uncertainties on computational modelling of knee biomechanics

    Science.gov (United States)

    Meng, Qingen; Fisher, John; Wilcox, Ruth

    2017-08-01

    The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.

  4. Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model

    Science.gov (United States)

    Hardianti, D.; Priatna, N.; Priatna, B. A.

    2017-09-01

    This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.

  5. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  6. Geometric Modeling and Reasoning of Human-Centered Freeform Products

    CERN Document Server

    Wang, Charlie C L

    2013-01-01

    The recent trend in user-customized product design requires the shape of products to be automatically adjusted according to the human body’s shape, so that people will feel more comfortable when wearing these products.  Geometric approaches can be used to design the freeform shape of products worn by people, which can greatly improve the efficiency of design processes in various industries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medical devices, etc.). These products are usually composed of very complex geometric shapes (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with free-form shapes or part of human bodies (e.g., wrist, foot, and head models).   Geometric Modeling and Reasoning of Human-Centered Freeform Products introduces the algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improving...

  7. Boundary determinations for trivariate solids

    International Nuclear Information System (INIS)

    Duchaineau, M; Joy, K I

    1999-01-01

    The trivariate tensor-product B-spline solid is a direct extension of the B-spline patch and has been shown to be useful in the creation and visualization of free-form geometric solids. Visualizing these solid objects requires the determination of the boundary surface of the solid, which is a combination of parametric and implicit surfaces. This paper presents a method that determines the implicit boundary surface by examination of the Jacobian determinant of the defining B-spline function. Using an approximation to this determinant, the domain space is adaptively subdivided until a mesh can be determined such that the boundary surface is close to linear in the cells of the mesh. A variation of the marching cubes algorithm is then used to draw the surface. Interval approximation techniques are used to approximate the Jacobian determinant and to approximate the Jacobian determinant gradient for use in the adaptive subdivision methods. This technique can be used to create free-form solid objects, useful in geometric modeling applications

  8. Geometrical scaling vs factorizable eikonal models

    CERN Document Server

    Kiang, D

    1975-01-01

    Among various theoretical explanations or interpretations for the experimental data on the differential cross-sections of elastic proton-proton scattering at CERN ISR, the following two seem to be most remarkable: A) the excellent agreement of the Chou-Yang model prediction of d sigma /dt with data at square root s=53 GeV, B) the general manifestation of geometrical scaling (GS). The paper confronts GS with eikonal models with factorizable opaqueness, with special emphasis on the Chou-Yang model. (12 refs).

  9. Light scattering in porous materials: Geometrical optics and stereological approach

    International Nuclear Information System (INIS)

    Malinka, Aleksey V.

    2014-01-01

    Porous material has been considered from the point of view of stereology (geometrical statistics), as a two-phase random mixture of solid material and air. Considered are the materials having the refractive index with the real part that differs notably from unit and the imaginary part much less than unit. Light scattering in such materials has been described using geometrical optics. These two – the geometrical optics laws and the stereological approach – allow one to obtain the inherent optical properties of such a porous material, which are basic in the radiative transfer theory: the photon survival probability, the scattering phase function, and the polarization properties (Mueller matrix). In this work these characteristics are expressed through the refractive index of the material and the random chord length distribution. The obtained results are compared with the traditional approach, modeling the porous material as a pack of particles of different shapes. - Highlights: • Porous material has been considered from the point of view of stereology. • Properties of a two-phase random mixture of solid material and air are considered. • Light scattering in such materials has been described using geometrical optics. • The inherent optical properties of such a porous material have been obtained

  10. Geometric Models for Collaborative Search and Filtering

    Science.gov (United States)

    Bitton, Ephrat

    2011-01-01

    This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…

  11. Geometrical efficiency in computerized tomography: generalized model

    International Nuclear Information System (INIS)

    Costa, P.R.; Robilotta, C.C.

    1992-01-01

    A simplified model for producing sensitivity and exposure profiles in computerized tomographic system was recently developed allowing the forecast of profiles behaviour in the rotation center of the system. The generalization of this model for some point of the image plane was described, and the geometrical efficiency could be evaluated. (C.G.C.)

  12. Geometric Modelling of Octagonal Lamp Poles

    Science.gov (United States)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  13. The Effects of Computer-assisted and Distance Learning of Geometric Modeling

    Directory of Open Access Journals (Sweden)

    Omer Faruk Sozcu

    2013-01-01

    Full Text Available The effects of computer-assisted and distance learning of geometric modeling and computer aided geometric design are studied. It was shown that computer algebra systems and dynamic geometric environments can be considered as excellent tools for teaching mathematical concepts of mentioned areas, and distance education technologies would be indispensable for consolidation of successfully passed topics

  14. Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics

    Science.gov (United States)

    Strahler, Alan H.; Jupp, David L. B.

    1990-01-01

    Geometric-optical discrete-element mathematical models for forest canopies have been developed using the Boolean logic and models of Serra. The geometric-optical approach is considered to be particularly well suited to describing the bidirectional reflectance of forest woodland canopies, where the concentration of leaf material within crowns and the resulting between-tree gaps make plane-parallel, radiative-transfer models inappropriate. The approach leads to invertible formulations, in which the spatial and directional variance provides the means for remote estimation of tree crown size, shape, and total cover from remotedly sensed imagery.

  15. GEOMETRIC MODELLING OF TREE ROOTS WITH DIFFERENT LEVELS OF DETAIL

    Directory of Open Access Journals (Sweden)

    J. I. Guerrero Iñiguez

    2017-09-01

    Full Text Available This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.

  16. Geometric Modelling of Tree Roots with Different Levels of Detail

    Science.gov (United States)

    Guerrero Iñiguez, J. I.

    2017-09-01

    This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.

  17. Methodology for geometric modelling. Presentation and administration of site descriptive models; Metodik foer geometrisk modellering. Presentation och administration av platsbeskrivande modeller

    Energy Technology Data Exchange (ETDEWEB)

    Munier, Raymond [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan [Golder Associates (Sweden)

    2001-03-01

    This report presents a methodology to construct, visualise and present geoscientific descriptive models based on data from the site investigations, which the SKB currently performs, to build an underground nuclear waste disposal facility in Sweden. It is designed for interaction with SICADA (SKB:s site characterisation database) and RVS (SKB:s Rock Visualisation System). However, the concepts of the methodology are general and can be used with other tools capable of handling 3D geometries and parameters. The descriptive model is intended to be an instrument where site investigation data from all disciplines are put together to form a comprehensive visual interpretation of the studied rock mass. The methodology has four main components: 1. Construction of a geometrical model of the interpreted main structures at the site. 2. Description of the geoscientific characteristics of the structures. 3. Description and geometrical implementation of the geometric uncertainties in the interpreted model structures. 4. Quality system for the handling of the geometrical model, its associated database and some aspects of the technical auditing. The geometrical model forms a basis for understanding the main elements and structures of the investigated site. Once the interpreted geometries are in place in the model, the system allows for adding descriptive and quantitative data to each modelled object through a system of intuitive menus. The associated database allows each geometrical object a complete quantitative description of all geoscientific disciplines, variabilities, uncertainties in interpretation and full version history. The complete geometrical model and its associated database of object descriptions are to be recorded in a central quality system. Official, new and old versions of the model are administered centrally in order to have complete quality assurance of each step in the interpretation process. The descriptive model is a cornerstone in the understanding of the

  18. Geometric modeling for computer aided design

    Science.gov (United States)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  19. A geometrical model for DNA organization in bacteria.

    Directory of Open Access Journals (Sweden)

    Mathias Buenemann

    Full Text Available Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus together with the action of DNA compaction proteins (that organize the chromosome into topological domains are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details. The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.

  20. Approximated empirical correlations to the characterization of physical and geometrical properties of solid particulate biomass: case studies of the elephant grass and sugar cane trash

    Energy Technology Data Exchange (ETDEWEB)

    Olivares Gomez, Edgardo; Cortez, Luis A. Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola. Lab. de Termodinamica e Energia; Alarcon, Guillermo A. Rocca; Perez, Luis E. Brossard [Universidad de Oriente, Santiago de Cuba (Cuba)

    2008-07-01

    Two types of biomass solid particles, elephant grass (Pennisetum purpureum Schum. variety) and sugar cane trash, were studied in laboratory in order to obtain information about several physical and geometrical properties. In the both case, the length, breadth, and thickness of fifty particles selected randomly from each fraction of the size class, obtained by mechanical fractionation through sieves, were measured manually given their size. A geometric model of type rectangular base prism was adopted because based on observations it was demonstrated that the most of particles that were measured exhibited length which was significantly greater that width ( l >> a ). From these measurements average values for other properties were estimated, for example, characteristic dimension of particle, projected area of the rectangular prism, area of the prism rectangular section, volume of the rectangular prism, shape factors, sphericity, particles specific superficial area and equivalent diameter. A statistical analysis was done and proposed empirical and semi-empirical mathematical correlation models obtained by lineal regression, which show a goodness of fit of these equations to the reported experimental data. (author)

  1. Geometric model from microscopic theory for nuclear absorption

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-07-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  2. Geometric model for nuclear absorption from microscopic theory

    International Nuclear Information System (INIS)

    John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained

  3. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  4. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  5. Modeling thermodynamic distance, curvature and fluctuations a geometric approach

    CERN Document Server

    Badescu, Viorel

    2016-01-01

    This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.

  6. Geometric branching model of high-energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chen, W.

    1988-01-01

    A phenomenological model is proposed to describe collisions between hadrons at high energies. In the context of the eikonal formalism, the model consists of two components: soft and hard. The former only involves the production of particles with small transverse momenta; the latter is characterized by jet production. Geometrical scaling is taken as an essential input to describe the geometrical properties of hadrons as extended objects on the one hand, and on the other to define the soft component in both regions below and above the jet threshold. A stochastical Furry branching process is adopted as the mechanism of soft particle production, while the jet fragmentation and gluon initial-state bremsstrahlung are for the production of hadrons in hard collisions. Impact parameter and virtuality are smeared to describe the statistical averaging effects of hadron-hadron collisions. Many otherwise separated issues, ranging from elastic scattering to parton decay function, are connected together in the framework of this model. The descriptions of many prominent features of hadronic collisions are in good agreement with the observed experimental data at all available energies. Multiplicity distributions at all energies are discussed as a major issue in this paper. KNO scaling is achieved for energies within ISR range. The emergence of jets is found to be responsible not only for the violation of both geometrical scaling and KNO scaling, but also for the continuous broadening of the multiplicity distribution with ever increasing energy. It is also shown that the geometrical size of a hadron reaches an asymptote in the energy region of CERN-SppS. A Monte Carlo version of the model for soft production is constructed

  7. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    International Nuclear Information System (INIS)

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-01-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening ε) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  8. A differential-geometric approach to generalized linear models with grouped predictors

    NARCIS (Netherlands)

    Augugliaro, Luigi; Mineo, Angelo M.; Wit, Ernst C.

    We propose an extension of the differential-geometric least angle regression method to perform sparse group inference in a generalized linear model. An efficient algorithm is proposed to compute the solution curve. The proposed group differential-geometric least angle regression method has important

  9. An investigation the effects of geometric tolerances on the natural frequencies of rotating shafts

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ansarifard

    2015-04-01

    Full Text Available This paper presents the effects of geometric tolerances on the rotating shafts natural frequencies. Due to modeling the tolerances, a code is written in MATLAB 2013 software that produces deviated points. Deviated points are controlled by different geometric tolerances, including cylindricity, total run-out and coaxiality tolerances. Final surfaces and models passing through the points are created using SolidWorks 2013 software and finally modal analysis is carried out with the FE software. It is observed whatever the natural frequency is higher or the geometric tolerances are greater, the real and ideal shafts natural frequencies are more distant. Also difference percentage between ideal and real frequencies is investigated. The results show that the percentage value is approximately constant for every mode shapes.

  10. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  11. Geometric accuracy of wax bade models manufactured in silicon moulds

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article presents the test results of the geometric accuracy of wax blade models manufactured in silicon moulds in the Rapid Tooling process, with the application of the Vacuum Casting technology. In batch production casting waxes are designed for the manufacture of models and components of model sets through injection into a metal die. The objective of the tests was to determine the possibility of using traditional wax for the production of casting models in the rapid prototyping process. Blade models made of five types of casting wax were measured. The definition of the geometric accuracy of wax blade models makes it possible to introduce individual modifications aimed at improving their shape in order to increase the dimensional accuracy of blade models manufactured in the rapid prototyping process.

  12. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  13. Geometrically engineering the standard model: Locally unfolding three families out of E8

    International Nuclear Information System (INIS)

    Bourjaily, Jacob L.

    2007-01-01

    This paper extends and builds upon the results of [J. L. Bourjaily, arXiv:0704.0444.], in which we described how to use the tools of geometrical engineering to deform geometrically engineered grand unified models into ones with lower symmetry. This top-down unfolding has the advantage that the relative positions of singularities giving rise to the many 'low-energy' matter fields are related by only a few parameters which deform the geometry of the unified model. And because the relative positions of singularities are necessary to compute the superpotential, for example, this is a framework in which the arbitrariness of geometrically engineered models can be greatly reduced. In [J. L. Bourjaily, arXiv:0704.0444.], this picture was made concrete for the case of deforming the representations of an SU 5 model into their standard model content. In this paper we continue that discussion to show how a geometrically engineered 16 of SO 10 can be unfolded into the standard model, and how the three families of the standard model uniquely emerge from the unfolding of a single, isolated E 8 singularity

  14. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  15. geometric models for lateritic soil stabilized with cement

    African Journals Online (AJOL)

    user

    stabilized lateritic soil and also to develop geometric models. The compaction, California .... on how effective limited field data are put to use in decision-making. ..... silicates was described as the most important phase of cement and the ...

  16. EVALUATION OF RATIONAL FUNCTION MODEL FOR GEOMETRIC MODELING OF CHANG'E-1 CCD IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-08-01

    Full Text Available Rational Function Model (RFM is a generic geometric model that has been widely used in geometric processing of high-resolution earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this paper, the feasibility and precision of RFM for geometric modeling of China's Chang'E-1 (CE-1 lunar orbiter images is presented. The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of orbital images while keeping the original orbit trajectory data confidential.

  17. Multipartite geometric entanglement in finite size XY model

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.

  18. The perception of geometrical structure from congruence

    Science.gov (United States)

    Lappin, Joseph S.; Wason, Thomas D.

    1989-01-01

    The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.

  19. Geant4.10 simulation of geometric model for metaphase chromosome

    Energy Technology Data Exchange (ETDEWEB)

    Rafat-Motavalli, L., E-mail: rafat@um.ac.ir; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-04-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  20. Geant4.10 simulation of geometric model for metaphase chromosome

    International Nuclear Information System (INIS)

    Rafat-Motavalli, L.; Miri-Hakimabad, H.; Bakhtiyari, E.

    2016-01-01

    In this paper, a geometric model of metaphase chromosome is explained. The model is constructed according to the packing ratio and dimension of the structure from nucleosome up to chromosome. A B-DNA base pair is used to construct 200 base pairs of nucleosomes. Each chromatin fiber loop, which is the unit of repeat, has 49,200 bp. This geometry is entered in Geant4.10 Monte Carlo simulation toolkit and can be extended to the whole metaphase chromosomes and any application in which a DNA geometrical model is needed. The chromosome base pairs, chromosome length, and relative length of chromosomes are calculated. The calculated relative length is compared to the relative length of human chromosomes.

  1. Geometrical setting of solid mechanics

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2011-01-01

    Roč. 326, č. 8 (2011), s. 1983-1997 ISSN 0003-4916 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional research plan: CEZ:AV0Z20710524 Keywords : solid mechanics * Lagrangian system * time-discrete approximation Subject RIV: BE - Theoretical Physics Impact factor: 2.857, year: 2011

  2. Study into Point Cloud Geometric Rigidity and Accuracy of TLS-Based Identification of Geometric Bodies

    Science.gov (United States)

    Klapa, Przemyslaw; Mitka, Bartosz; Zygmunt, Mariusz

    2017-12-01

    Capability of obtaining a multimillion point cloud in a very short time has made the Terrestrial Laser Scanning (TLS) a widely used tool in many fields of science and technology. The TLS accuracy matches traditional devices used in land surveying (tacheometry, GNSS - RTK), but like any measurement it is burdened with error which affects the precise identification of objects based on their image in the form of a point cloud. The point’s coordinates are determined indirectly by means of measuring the angles and calculating the time of travel of the electromagnetic wave. Each such component has a measurement error which is translated into the final result. The XYZ coordinates of a measuring point are determined with some uncertainty and the very accuracy of determining these coordinates is reduced as the distance to the instrument increases. The paper presents the results of examination of geometrical stability of a point cloud obtained by means terrestrial laser scanner and accuracy evaluation of solids determined using the cloud. Leica P40 scanner and two different settings of measuring points were used in the tests. The first concept involved placing a few balls in the field and then scanning them from various sides at similar distances. The second part of measurement involved placing balls and scanning them a few times from one side but at varying distances from the instrument to the object. Each measurement encompassed a scan of the object with automatic determination of its position and geometry. The desk studies involved a semiautomatic fitting of solids and measurement of their geometrical elements, and comparison of parameters that determine their geometry and location in space. The differences of measures of geometrical elements of balls and translations vectors of the solids centres indicate the geometrical changes of the point cloud depending on the scanning distance and parameters. The results indicate the changes in the geometry of scanned objects

  3. Theoretical model of droplet wettability on a low-surface-energy solid under the influence of gravity.

    Science.gov (United States)

    Yonemoto, Yukihiro; Kunugi, Tomoaki

    2014-01-01

    The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.

  4. A Physical – Geometrical Model of an Early Universe

    Directory of Open Access Journals (Sweden)

    Corneliu BERBENTE

    2014-12-01

    Full Text Available A physical-geometrical model for a possible early universe is proposed. One considers an initial singularity containing the energy of the whole universe. The singularity expands as a spherical wave at the speed of light generating space and time. The relations of the special theory of relativity, quantum mechanics and gas kinetics are considered applicable. A structuring of the primary wave is adopted on reasons of geometrical simplicity as well as on satisfying the conservation laws. The evolution is able to lead to particles very close to neutrons as mass and radius. The actually admitted values for the radius and mass of the universe as well as the temperature of the ground radiation (3-5 K can be obtained by using the proposed model.

  5. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  6. Surface-based geometric modelling using teaching trees for advanced robots

    International Nuclear Information System (INIS)

    Nakamura, Akira; Ogasawara, Tsukasa; Tsukune, Hideo; Oshima, Masaki

    2000-01-01

    Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)

  7. Methods for teaching geometric modelling and computer graphics

    Energy Technology Data Exchange (ETDEWEB)

    Rotkov, S.I.; Faitel`son, Yu. Ts.

    1992-05-01

    This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.

  8. AUTOMATIC MESH GENERATION OF 3—D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed, and a schemeto generate mesh for complex 3-D geometric models is given, which consists of 4 steps: (1) createnodes in 3-D models by ball-packing method, (2) connect nodes to generate mesh by 3-D Delaunaytriangulation, (3) retrieve the boundary of the model after Delaunay triangulation, (4) improve themesh.

  9. Radmap: ''as-built'' cad models incorporating geometrical, radiological and material information

    International Nuclear Information System (INIS)

    Piotrowski, L.; Lubawy, J.L.

    2001-01-01

    EDF intends to achieve successful and cost-effective dismantling of its obsolete nuclear plants. To reach this goal, EDF is currently extending its ''as-built'' 3-D modelling system to also include the location and characteristics of gamma sources in the geometrical models of its nuclear installations. The resulting system (called RADMAP) is a complete CAD chain covering 3-D and gamma data acquisitions, CAD modelling and exploitation of the final model. Its aim is to describe completely the geometrical and radiological state of a particular nuclear environment. This paper presents an overall view of RADMAP. The technical and functional characteristics of each element of the chain are indicated and illustrated using real (EDF) environments/applications. (author)

  10. Visualizing the Geometric Series.

    Science.gov (United States)

    Bennett, Albert B., Jr.

    1989-01-01

    Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)

  11. Observation of the geometric phase using photon echoes

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2003-01-01

    The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits

  12. Geometric modeling in the problem of ball bearing accuracy

    Science.gov (United States)

    Glukhov, V. I.; Pushkarev, V. V.; Khomchenko, V. G.

    2017-06-01

    The manufacturing quality of ball bearings is an urgent problem for machine-building industry. The aim of the research is to improve the geometric specifications accuracy of bearings based on evidence-based systematic approach and the method of adequate size, location and form deviations modeling of the rings and assembled ball bearings. The present work addressed the problem of bearing geometric specifications identification and the study of these specifications. The deviation from symmetric planar of rings and bearings assembly and mounting width are among these specifications. A systematic approach to geometric specifications values and ball bearings tolerances normalization in coordinate systems will improve the quality of bearings by optimizing and minimizing the number of specifications. The introduction of systematic approach to the international standards on rolling bearings is a guarantee of a significant increase in accuracy of bearings and the quality of products where they are applied.

  13. Design modelling

    NARCIS (Netherlands)

    Kempen, van A.; Kok, H.; Wagter, H.

    1992-01-01

    In Computer Aided Drafting three groups of three-dimensional geometric modelling can be recognized: wire frame, surface and solid modelling. One of the methods to describe a solid is by using a boundary based representation. The topology of the surface of a solid is the adjacency information between

  14. On bivariate geometric distribution

    Directory of Open Access Journals (Sweden)

    K. Jayakumar

    2013-05-01

    Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.

  15. Lepton and quark generations in the geometrical Rishon model

    International Nuclear Information System (INIS)

    Elbaz, E.; Uschersohn, J.; Meyer, J.

    1981-12-01

    We propose a concrete representation of leptons and quarks in different generations in the geometrical approach to the rishon model where rishons behave as the fundamental representations of the SU(3)sub(C) x SU(3)sub(H) group. The model allows a unified description of both hadronic and leptonic decays of elementary particles

  16. Geometric model for softwood transverse thermal conductivity. Part I

    Science.gov (United States)

    Hong-mei Gu; Audrey Zink-Sharp

    2005-01-01

    Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...

  17. Project-oriented management of industrial production of fire and rescue equipment by means of geometric modelling

    OpenAIRE

    Rak, Iu; Bondarenko, V.

    2013-01-01

    Objective: The objective of the research is to develop a method based on the geometric modelling for the purpose of improving the effectiveness of fire protection project management in industrial production of fire protection technology systems. Methods: The theoretical inheritance mode of effective management in project-organizational structure of fire protection and specialized technical equipment production using geometric modelling. Results: Mathematical and geometric models of project ma...

  18. Galilean generalized Robertson-Walker spacetimes: A new family of Galilean geometrical models

    Science.gov (United States)

    de la Fuente, Daniel; Rubio, Rafael M.

    2018-02-01

    We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.

  19. Geometric metamorphosis.

    Science.gov (United States)

    Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R

    2011-01-01

    Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.

  20. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  1. Software module for geometric product modeling and NC tool path generation

    International Nuclear Information System (INIS)

    Sidorenko, Sofija; Dukovski, Vladimir

    2003-01-01

    The intelligent CAD/CAM system named VIRTUAL MANUFACTURE is created. It is consisted of four intelligent software modules: the module for virtual NC machine creation, the module for geometric product modeling and automatic NC path generation, the module for virtual NC machining and the module for virtual product evaluation. In this paper the second intelligent software module is presented. This module enables feature-based product modeling carried out via automatic saving of the designed product geometric features as knowledge data. The knowledge data are afterwards applied for automatic NC program generation for the designed product NC machining. (Author)

  2. Geometric model of pseudo-distance measurement in satellite location systems

    Science.gov (United States)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  3. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  4. Bounding uncertainty in volumetric geometric models for terrestrial lidar observations of ecosystems.

    Science.gov (United States)

    Paynter, Ian; Genest, Daniel; Peri, Francesco; Schaaf, Crystal

    2018-04-06

    Volumetric models with known biases are shown to provide bounds for the uncertainty in estimations of volume for ecologically interesting objects, observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids, three-dimensional convex hull polygons, voxels, the Outer Hull Model and Square Based Columns (SBCs) are considered for their ability to estimate the volume of temperate and tropical trees, as well as geomorphological features such as bluffs and saltmarsh creeks. For temperate trees, supplementary geometric models are evaluated for their ability to bound the uncertainty in cylinder-based reconstructions, finding that coarser volumetric methods do not currently constrain volume meaningfully, but may be helpful with further refinement, or in hybridized models. Three-dimensional convex hull polygons consistently overestimate object volume, and SBCs consistently underestimate volume. Voxel estimations vary in their bias, due to the point density of the TLS data, and occlusion, particularly in trees. The response of the models to parametrization is analysed, observing unexpected trends in the SBC estimates for the drumlin dataset. Establishing that this result is due to the resolution of the TLS observations being insufficient to support the resolution of the geometric model, it is suggested that geometric models with predictable outcomes can also highlight data quality issues when they produce illogical results.

  5. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  6. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  7. Geometric singularities and spectra of Landau-Ginzburg models

    International Nuclear Information System (INIS)

    Greene, B.R.; Roan, S.S.; Yau, S.T.

    1991-01-01

    Some mathematical and physical aspects of superconformal string compactification in weighted projective space are discussed. In particular, we recast the path integral argument establishing the connection between Landau-Ginsburg conformal theories and Calabi-Yau string compactification in a geometric framework. We then prove that the naive expression for the vanishing of the first Chern class for a complete intersection (adopted from the smooth case) is sufficient to ensure that the resulting variety, which is generically singular, can be resolved to a smooth Calabi-Yau space. This justifies much analysis which has recently been expended on the study of Landau-Ginzburg models. Furthermore, we derive some simple formulae for the determination of the Witten index in these theories which are complementary to those derived using semiclassical reasoning by Vafa. Finally, we also comment on the possible geometrical significance of unorbifolded Landau-Ginzburg theories. (orig.)

  8. Geometrical basis for the Standard Model

    Science.gov (United States)

    Potter, Franklin

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces-the unitary plane C 2, the quaternion space Q, and the real space R 4—as well as the real space R 3 uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2) L × U(1) Y generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The ( u, d) and ( c, s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/ c 2, the b' quark at 80 GeV/ c 2, and the t' quark at 2600 GeV/ c 2.

  9. Asymptotic approach to the pricing of geometric asian options under the CEV model

    International Nuclear Information System (INIS)

    Lee, Min-Ku

    2016-01-01

    This paper studies the pricing of Asian options whose payoffs depend on the average value of an underlying asset during the period to a maturity. Since the Asian option is not so sensitive to the value of underlying asset, the possibility of manipulation is relatively small than the other options such as European vanilla and barrier options. We derive the pricing formula of geometric Asian options under the constant elasticity of variance (CEV) model that is one of local volatility models, and investigate the implication of the CEV model for geometric Asian options.

  10. Modeling the geometric formation and powder deposition mass in laser induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang, Yong Jun; Yuan, Sheng Fa

    2012-01-01

    A new laser induction hybrid cladding technique on cylinder work piece is presented. Based on a series of laser induction hybrid experiments by off axial powder feeding, the predicting models of individual clad geometric formation and powder catchment were developed in terms of powder feeding rate, laser special energy and induction energy density using multiple regression analysis. In addition, confirmation tests were performed to make a comparison between the predicting results and measured ones. Via the experiments and analysis, the conclusions can be lead to that the process parameters have crucial influence on the clad geometric formation and powder catchment, and that the predicting model reflects well the relationship between the clad geometric formation and process parameters in laser induction hybrid cladding

  11. On the Geometric Modeling of the Uplink Channel in a Cellular System

    Directory of Open Access Journals (Sweden)

    K. B. Baltzis

    2008-01-01

    Full Text Available To meet the challenges of present and future wireless communications realistic propagation models that consider both spatial and temporal channel characteristics are used. However, the complexity of the complete characterization of the wireless medium has pointed out the importance of approximate but simple approaches. The geometrically based methods are typical examples of low–complexity but adequate solutions. Geometric modeling idealizes the aforementioned wireless propagation environment via a geometric abstraction of the spatial relationships among the transmitter, the receiver, and the scatterers. The paper tries to present an efficient way to simulate mobile channels using geometrical–based stochastic scattering models. In parallel with an overview of the most commonly used propagation models, the basic principles of the method as well the main assumptions made are presented. The study is focused on three well–known proposals used for the description of the Angle–of –Arrival and Time–of–Arrival statistics of the incoming multipaths in the uplink of a cellular communication system. In order to demonstrate the characteristics of these models illustrative examples are given. The physical mechanism and motivations behind them are also included providing us with a better understanding of the physical insight of the propagation medium.

  12. The geometric content of the interacting boson model for molecular spectra

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1981-12-01

    The recently proposed algebraic model for collective spectra of diatomic molecules is analysed in terms of conventional geometrical degrees of freedom. We present a mapping of the algebraic Hamiltonian onto an exactly solvable geometrical Hamiltonian with the Morse potential. This mapping explains the success of the algebraic model in reproducing the low lying part of molecular spectra. At the same time the mapping shows that the expression for the dipole transition operator in terms of boson operators differs from the simplest IBM expression and in general must include many-body boson terms. The study also provides an insight into the problem of possible interpretations of the bosons in the nuclear IBM. (author)

  13. Induced subgraph searching for geometric model fitting

    Science.gov (United States)

    Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi

    2017-11-01

    In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.

  14. Generating a normalized geometric liver model with warping

    International Nuclear Information System (INIS)

    Boes, J.L.; Weymouth, T.E.; Meyer, C.R.; Quint, L.E.; Bland, P.H.; Bookstein, F.L.

    1990-01-01

    This paper reports on the automated determination of the liver surface in abdominal CT scans for radiation treatment, surgery planning, and anatomic visualization. The normalized geometric model of the liver is generated by averaging registered outlines from a set of 15 studies of normal liver. The outlines have been registered with the use of thin-plate spline warping based on a set of five homologous landmarks. Thus, the model consists of an average of the surface and a set of five anatomic landmarks. The accuracy of the model is measured against both the set of studies used in model generation and an alternate set of 15 normal studies with use of, as an error measure, the ratio of nonoverlapping model and study volume to total model volume

  15. Geometrical parton

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education

    1976-06-01

    The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.

  16. A geometric construction of traveling waves in a bioremediation model

    NARCIS (Netherlands)

    Beck, M.A.; Doelman, A.; Kaper, T.J.

    2006-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  17. Geometrical origin of tricritical points of various U(1) lattice models

    International Nuclear Information System (INIS)

    Janke, W.; Kleiert, H.

    1989-01-01

    The authors review the dual relationship between various compact U(1) lattice models and Abelian Higgs models, the latter being the disorder field theories of line-like topological excitations in the system. The authors point out that the predicted first-order transitions in the Abelian Higgs models (Coleman-Weinberg mechanism) are, in three dimensions, in contradiction with direct numerical investigations in the compact U(1) formulation since these yield continuous transitions in the major part of the phase diagram. In four dimensions, there are indications from Monte Carlo data for a similar situation. Concentrating on the strong-coupling expansion in terms of geometrical objects, surfaces or lines, with certain statistical weights, the authors present semi-quantitative arguments explaining the observed cross-over from first-order to continuous transitions by the balance between the lowest two weights (2:1 ratio) of these geometrical objects

  18. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Shariat, Bashir S; Liu, Yinong; Rio, Gerard

    2013-01-01

    To improve actuation controllability of a NiTi shape memory alloy component in applications, it is desirable to create a wide stress window for the stress-induced martensitic transformation in the alloy. One approach is to create functionally graded NiTi with a geometric gradient in the actuation direction. This geometric gradient leads to transformation load and displacement gradients in the structure. This paper reports a study of the pseudoelastic behaviour of geometrically graded NiTi by means of mechanical model analysis and experimentation using three types of sample geometry. Closed-form solutions are obtained for nominal stress–strain variation of such components under cyclic tensile loading and the predictions are validated with experimental data. The geometrically graded NiTi samples exhibit a distinctive positive stress gradient for the stress-induced martensitic transformation and the slope of the stress gradient can be adjusted by sample geometry design. (paper)

  19. Simulating Solid-Solid Phase Transition in Shape-Memory Alloy Microstructure by Face-Offsetting Method

    International Nuclear Information System (INIS)

    Bellur Ramaswamy, Ravi S.; Tortorelli, Daniel A.; Fried, Eliot; Jiao Xiangmin

    2008-01-01

    Advances in the understanding of martensitic transformations (diffusionless, solid-solid phase transformations) have been instrumental to the recent discovery of new low hysteresis alloys. However, some key fundamental issues must be better understood to design still better alloys. Restricting attention to antiplane shear, we use finite element analysis to model the shape-memory alloy microstructure within the Abeyaratne-Knowles continuum thermomechanical framework and use an interface kinetic relation of the kind proposed by Rosakis and Tsai. Geometric singularities and topological changes associated with microstructural evolution pose significant numerical challenges. We address such challenges with a recently developed front-tracking scheme called the face-offsetting method (FOM) to explicitly model phase interfaces. Initial results demonstrate the effectiveness of FOM in resolving needle-like twinned microstructures

  20. Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Wu, Jing; Wang, Xiliang; Liu, Zhongbing; Wu, Zhenghong

    2017-01-01

    A system model that can accurately simulate the instantaneous solar transmittance through multilayer glazing façade (MGF) and shading device can provide a solid foundation for the thermal and daylighting performance calculation of MGF as well as indoor visual comfort evaluation. Traditional optical models for venetian blind and glazing façade meet with their limitations to analyze new prototype of shading blind like photovoltaic (PV) blind which has quite different surface optical properties compared with conventional venetian blind. The present study proposed a new system model for MGF using shading blind with arbitrary geometrical and optical features which is suitable for a wide range of applications. Three major calculation types for modeling of shading blinds cover all the possible situations in application. Guess Integer-Valued Function is adopted for delivering a general description on direct radiation transport. The direct-direct, direct-diffuse and diffuse-diffuse radiation transports are separately considered. A series of experiments were carried out to validate the model under various parameter settings and different weather conditions. Parametric study revealed some new findings in the evaluations of influence of ambient radiation situations, geometrical and optical features of blind space on both solar transmittance and solar absorption by blind layer. - Highlights: • Solar transport through glazing façades with PV blind with arbitrary geometry is simulated. • Ray-tracing and radiosity method are coupled in calculation. • Guess Integer-Valued Function is used in calculation of direct radiation transport. • Experiment and simulated data are compared for model validation. • Parametric study is conducted for evaluating the impact of different factors on the system.

  1. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  2. Two-Phase Flow Modeling of Solid Dissolution in Liquid for Nutrient Mixing Improvement in Algal Raceway Ponds

    Directory of Open Access Journals (Sweden)

    Haider Ali

    2018-04-01

    Full Text Available Achieving optimal nutrient concentrations is essential to increasing the biomass productivity of algal raceway ponds. Nutrient mixing or distribution in raceway ponds is significantly affected by hydrodynamic and geometric properties. The nutrient mixing in algal raceway ponds under the influence of hydrodynamic and geometric properties of ponds is yet to be explored. Such a study is required to ensure optimal nutrient concentrations in algal raceway ponds. A novel computational fluid dynamics (CFD model based on the Euler–Euler numerical scheme was developed to investigate nutrient mixing in raceway ponds under the effects of hydrodynamic and geometric properties. Nutrient mixing was investigated by estimating the dissolution of nutrients in raceway pond water. Experimental and CFD results were compared and verified using solid–liquid mass transfer coefficient and nutrient concentrations. Solid–liquid mass transfer coefficient, solid holdup, and nutrient concentrations in algal pond were estimated with the effects of pond aspect ratios, water depths, paddle wheel speeds, and particle sizes of nutrients. From the results, it was found that the proposed CFD model effectively simulated nutrient mixing in raceway ponds. Nutrient mixing increased in narrow and shallow raceway ponds due to effective solid–liquid mass transfer. High paddle wheel speeds increased the dissolution rate of nutrients in raceway ponds.

  3. Geometric Aspects of Force Controllability for a Swimming Model

    International Nuclear Information System (INIS)

    Khapalov, A. Y.

    2008-01-01

    We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids

  4. Modeling geophysical complexity: a case for geometric determinism

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2007-01-01

    Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.

  5. Analysis of Data from a Series of Events by a Geometric Process Model

    Institute of Scientific and Technical Information of China (English)

    Yeh Lam; Li-xing Zhu; Jennifer S. K. Chan; Qun Liu

    2004-01-01

    Geometric process was first introduced by Lam[10,11]. A stochastic process {Xi, i = 1, 2,…} is called a geometric process (GP) if, for some a > 0, {ai-1Xi, i = 1, 2,…} forms a renewal process. In thispaper, the GP is used to analyze the data from a series of events. A nonparametric method is introduced forthe estimation of the three parameters in the GP. The limiting distributions of the three estimators are studied.Through the analysis of some real data sets, the GP model is compared with other three homogeneous andnonhomogeneous Poisson models. It seems that on average the GP model is the best model among these fourmodels in analyzing the data from a series of events.

  6. A geometric model for magnetizable bodies with internal variables

    Directory of Open Access Journals (Sweden)

    Restuccia, L

    2005-11-01

    Full Text Available In a geometrical framework for thermo-elasticity of continua with internal variables we consider a model of magnetizable media previously discussed and investigated by Maugin. We assume as state variables the magnetization together with its space gradient, subjected to evolution equations depending on both internal and external magnetic fields. We calculate the entropy function and necessary conditions for its existence.

  7. Automatic paper sliceform design from 3D solid models.

    Science.gov (United States)

    Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N

    2013-11-01

    A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.

  8. Diquark structure in heavy quark baryons in a geometric model

    International Nuclear Information System (INIS)

    Paria, Lina; Abbas, Afsar

    1996-01-01

    Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs

  9. A new approach for handling longitudinal count data with zero-inflation and overdispersion: poisson geometric process model.

    Science.gov (United States)

    Wan, Wai-Yin; Chan, Jennifer S K

    2009-08-01

    For time series of count data, correlated measurements, clustering as well as excessive zeros occur simultaneously in biomedical applications. Ignoring such effects might contribute to misleading treatment outcomes. A generalized mixture Poisson geometric process (GMPGP) model and a zero-altered mixture Poisson geometric process (ZMPGP) model are developed from the geometric process model, which was originally developed for modelling positive continuous data and was extended to handle count data. These models are motivated by evaluating the trend development of new tumour counts for bladder cancer patients as well as by identifying useful covariates which affect the count level. The models are implemented using Bayesian method with Markov chain Monte Carlo (MCMC) algorithms and are assessed using deviance information criterion (DIC).

  10. Geometric phase in a split-beam experiment measured with coupled neutron interference loops

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Zawisky, M.; Rauch, H.; Ioffe, A.

    1996-01-01

    A geometric phase factor is derived for a split-beam experiment as an example of cyclic evolutions. The geometric phase is given by one half of the solid angle independent of the spin of the beam. We observe this geometric phase with a two-loop neutron interferometer, where a reference beam can be added to the beam from one interference loop. All the experimental results show complete agreement with our theoretical treatment. (author)

  11. Time evolution in a geometric model of a particle

    International Nuclear Information System (INIS)

    Atiyah, M.F.; Franchetti, G.; Schroers, B.J.

    2015-01-01

    We analyse the properties of a (4+1)-dimensional Ricci-flat spacetime which may be viewed as an evolving Taub-NUT geometry, and give exact solutions of the Maxwell and gauged Dirac equation on this background. We interpret these solutions in terms of a geometric model of the electron and its spin, and discuss links between the resulting picture and Dirac’s Large Number Hypothesis.

  12. Modeling of Geometric Error in Linear Guide Way to Improved the vertical three-axis CNC Milling machine’s accuracy

    Science.gov (United States)

    Kwintarini, Widiyanti; Wibowo, Agung; Arthaya, Bagus M.; Yuwana Martawirya, Yatna

    2018-03-01

    The purpose of this study was to improve the accuracy of three-axis CNC Milling Vertical engines with a general approach by using mathematical modeling methods of machine tool geometric errors. The inaccuracy of CNC machines can be caused by geometric errors that are an important factor during the manufacturing process and during the assembly phase, and are factors for being able to build machines with high-accuracy. To improve the accuracy of the three-axis vertical milling machine, by knowing geometric errors and identifying the error position parameters in the machine tool by arranging the mathematical modeling. The geometric error in the machine tool consists of twenty-one error parameters consisting of nine linear error parameters, nine angle error parameters and three perpendicular error parameters. The mathematical modeling approach of geometric error with the calculated alignment error and angle error in the supporting components of the machine motion is linear guide way and linear motion. The purpose of using this mathematical modeling approach is the identification of geometric errors that can be helpful as reference during the design, assembly and maintenance stages to improve the accuracy of CNC machines. Mathematically modeling geometric errors in CNC machine tools can illustrate the relationship between alignment error, position and angle on a linear guide way of three-axis vertical milling machines.

  13. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  14. Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2014-01-01

    An analytical, 1-dimensional impedance model for a composite solid oxide fuel cell cathode is derived. It includes geometrical parameters of the cathode, e.g., the internal surface area and the electrode thickness, and also material parameters, e.g., the surface reaction rate and the vacancy...... diffusion coefficient. The model is successfully applied to a total of 42 impedance spectra, obtained in the temperature range 555°C–852°C and in the oxygen partial pressure range 0.028 atm–1.00 atm for a cathode consisting of a 50/50 wt% mixture of (La0.6Sr0.4)0.99CoO3 − δ and Ce0.9Gd0.1O1.95 − δ...... and providing both qualitative and quantitative information on the evolution of the impedance spectra of cathodes with changing parameters....

  15. Theoretical frameworks for the learning of geometrical reasoning

    OpenAIRE

    Jones, Keith

    1998-01-01

    With the growth in interest in geometrical ideas it is important to be clear about the nature of geometrical reasoning and how it develops. This paper provides an overview of three theoretical frameworks for the learning of geometrical reasoning: the van Hiele model of thinking in geometry, Fischbein’s theory of figural concepts, and Duval’s cognitive model of geometrical reasoning. Each of these frameworks provides theoretical resources to support research into the development of geometrical...

  16. Modelling the influence of the gas to melt ratio on the fraction solid of the surface in spray formed billets

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini

    2006-01-01

    the atomisation stage taking thermal coupling into consideration and the deposition of the droplets at the surface of the billet taking geometrical aspects such as shading into account. The coupling between these two models is accomplished by ensuring that the total droplet size distribution of the spray......In this paper, the relationship between the Gas to Melt Ratio (GMR) and the solid fraction of an evolving billet surface is investigated numerically. The basis for the analysis is a recently developed integrated procedure for modelling the entire spray forming process. This model includes...... is the summation of “local” droplet size distributions along the r-axis of the spray cone. The criterion for a successful process has been a predefined process window characterised by a desired solid fraction range at a certain distance from the atomizer. Inside this process window, the gas and melt flows have...

  17. Accuracy of geometrical modelling of heat transfer from tissue to blood vessels

    NARCIS (Netherlands)

    Leeuwen, van G.M.J.; Kotte, A.N.T.J.; Bree, de J.; Koijk, van der J.F.; Crezee, J.; Lagendijk, J.J.W.

    1997-01-01

    We have developed a thermal model in which blood vessels are described as geometrical objects, 3D curves with associated diameters. Here the behaviour of the model is examined for low resolutions compared with the vessel diameter and for strongly curved vessels. The tests include a single straight

  18. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  19. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  20. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  1. A geometric model for Hochschild homology of Soergel bimodules

    DEFF Research Database (Denmark)

    Webster, Ben; Williamson, Geordie

    2008-01-01

    An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B–equivariant intersection cohomology...... on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen....

  2. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    Science.gov (United States)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  3. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  4. The Transmuted Geometric-Weibull distribution: Properties, Characterizations and Regression Models

    Directory of Open Access Journals (Sweden)

    Zohdy M Nofal

    2017-06-01

    Full Text Available We propose a new lifetime model called the transmuted geometric-Weibull distribution. Some of its structural properties including ordinary and incomplete moments, quantile and generating functions, probability weighted moments, Rényi and q-entropies and order statistics are derived. The maximum likelihood method is discussed to estimate the model parameters by means of Monte Carlo simulation study. A new location-scale regression model is introduced based on the proposed distribution. The new distribution is applied to two real data sets to illustrate its flexibility. Empirical results indicate that proposed distribution can be alternative model to other lifetime models available in the literature for modeling real data in many areas.

  5. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    DEFF Research Database (Denmark)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig

    2016-01-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...... the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated...... and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall...

  6. Accuracy increase of the coordinate measurement based on the model production of geometrical parts specifications

    Science.gov (United States)

    Zlatkina, O. Yu

    2018-04-01

    There is a relationship between the service properties of component parts and their geometry; therefore, to predict and control the operational characteristics of parts and machines, it is necessary to measure their geometrical specifications. In modern production, a coordinate measuring machine is the advanced measuring instrument of the products geometrical specifications. The analysis of publications has shown that during the coordinate measurements the problems of choosing locating chart of parts and coordination have not been sufficiently studied. A special role in the coordination of the part is played by the coordinate axes informational content. Informational content is the sum of the degrees of freedom limited by the elementary item of a part. The coordinate planes of a rectangular coordinate system have different informational content (three, two, and one). The coordinate axes have informational content of four, two and zero. The higher the informational content of the coordinate plane or axis, the higher its priority for reading angular and linear coordinates is. The geometrical model production of the coordinate measurements object taking into account the information content of coordinate planes and coordinate axes allows us to clearly reveal the interrelationship of the coordinates of the deviations in location, sizes and deviations of their surfaces shape. The geometrical model helps to select the optimal locating chart of parts for bringing the machine coordinate system to the part coordinate system. The article presents an algorithm the model production of geometrical specifications using the example of the piston rod of a compressor.

  7. An extended geometric criterion for chaos in the Dicke model

    International Nuclear Information System (INIS)

    Li Jiangdan; Zhang Suying

    2010-01-01

    We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.

  8. Optimal control for mathematical models of cancer therapies an application of geometric methods

    CERN Document Server

    Schättler, Heinz

    2015-01-01

    This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.

  9. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Science.gov (United States)

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  10. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Directory of Open Access Journals (Sweden)

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  11. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...

  12. Geometrical scaling, furry branching and minijets

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-01-01

    Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs

  13. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  14. Research on geometrical model and mechanism for metal deformation based on plastic flow

    International Nuclear Information System (INIS)

    An, H P; Li, X; Rui, Z Y

    2015-01-01

    Starting with general conditions of metal plastic deformation, it analyses the relation between the percentage spread and geometric parameters of a forming body with typical machining process are studied. A geometrical model of deforming metal is set up according to the characteristic of a flowing metal particle. Starting from experimental results, the effect of technological parameters and friction between workpiece and dies on plastic deformation of a material were studied and a slippage deformation model of mass points within the material was proposed. Finally, the computing methods for strain and deformation energy and temperature rise are derived from homogeneous deformation. The results can be used to select technical parameters and compute physical quantities such as strain, deformation energy, and temperature rise. (paper)

  15. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  16. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  17. The geometric phase and the Schwinger term in some models

    International Nuclear Information System (INIS)

    Grosse, H.; Langmann, E.

    1991-01-01

    We discuss quantization of fermions interacting with external fields and observe the occurrence of equivalent as well as inequivalent representations of the canonical anticommutation relations. Implementability of gauge and axial gauge transformations leads to generators which fulfill an algebra of charges with Schwinger term. This term can be written as a cocycle and leads to the boson-fermion correspondence. Transport of a quantum mechanical system along a closed loop of parameter space may yield a geometric mechanical system along a closed loop of parameter space may yield a geometric phase. We discuss models for which nonintegrable phase factors are obtained from the adiabatic parallel transport. After second quantization one obtains, in addition, a Schwinger term. Depending on the type of transformation a subtle relationship between these two obstructions can occur. We indicate finally how we may transport density matrices along closed loops in parameter space. (authors)

  18. Analysis of an ideal amorphous solid

    International Nuclear Information System (INIS)

    To, L.T.; Stachurski, Z.H.

    2004-01-01

    Full text: In geometrical terms, amorphous solids are fundamentally different from crystalline solids in that they can not be constructed by the crystallographic method of translation of the basis along a lattice. Therefore, to study amorphous structures we must invoke concepts and use measures different to those used for ordered structures. Nevertheless, an ideal amorphous solid must share together with the ideal crystalline solid in the same definition of the term 'ideal'. In both cases it must be a perfect body, in which perfection is carried through in every detail to an unlimited (infinite) size without fault or defect. The latest results on this research will be presented. To qualify for a solid, rigid body, close packing of the spheres is required. For an ideal amorphous solids composed of hard spheres of identical size, we impose a stricter condition for the packing, namely, to be such that all spheres are in fixed positions (no loose spheres). To define the ideal solid, we must define what we mean by a perfect amorphous structure. Here, perfection is defined by, first the definition of imperfections, and next by the requirement of absence of imperfections of any kind. We envisage two types of defects: (i) geometrical, and (ii) statistical. Geometrical defects are: a sphere of different size, a loose sphere, and a vacancy. A statistical defect is defined with respect to two statistical functions: Ψ(N C ), and Φ(S β ). The former describes the probability of a given sphere having nc number of touching contacts, and the latter describes the disposition of the contacts on the surface of the sphere. Defects relating to the two functions will be described. The results for the functions, Ψ(N C ), and Φ(S β ), for the corresponding radial distribution function, and so called blocking number will be presented from simulations of an ideal amorphous solid

  19. From the geometric quantization to conformal field theory

    International Nuclear Information System (INIS)

    Alekseev, A.; Shatashvili, S.

    1990-01-01

    Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)

  20. The geometric Schwinger model on the torus. Pt. 1

    International Nuclear Information System (INIS)

    Joos, H.

    1990-01-01

    The author analyzes the Euclidean version of the geometric Schwinger model on the torus. After the calculation of the zero mode wave functions associated with the different topological sectors, which can be expressed by θ functions defined on the two-dimensional torus, he determines the regularized effective action and discusses the propagator related to it. Finally he studies applications to the standard questions like the particle spectrum, the screening of the static potential, and the appearance of the anomaly. (HSI)

  1. A population based statistical model for daily geometric variations in the thorax

    NARCIS (Netherlands)

    Szeto, Yenny Z.; Witte, Marnix G.; van Herk, Marcel; Sonke, Jan-Jakob

    2017-01-01

    To develop a population based statistical model of the systematic interfraction geometric variations between the planning CT and first treatment week of lung cancer patients for inclusion as uncertainty term in future probabilistic planning. Deformable image registrations between the planning CT and

  2. A Discrete Approach to Meshless Lagrangian Solid Modeling

    Directory of Open Access Journals (Sweden)

    Matthew Marko

    2017-07-01

    Full Text Available The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with smooth particle applied mechanics by having the solid particles apply stresses expected with Hooke’s law, as opposed to using a smoothing function for neighboring solid particles. This method has been tested successfully with a bar in tension, compression, and shear, as well as a disk compressed into a flat plate, and the numerical model consistently matched the analytical Hooke’s law as well as Hertz contact theory for all examples. The solid modeling numerical method was then built into a 2-D model of a pressure vessel, which was tested with liquid water particles under pressure and simulated with smoothed particle hydrodynamics. This simulation was stable, and demonstrated the feasibility of Lagrangian specification modeling for fluid–solid interactions.

  3. 3D geometric modeling and simulation of laser propagation through turbulence with plenoptic functions

    Science.gov (United States)

    Wu, Chensheng; Nelson, William; Davis, Christopher C.

    2014-10-01

    Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing

  4. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  5. Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

    Directory of Open Access Journals (Sweden)

    Nurilla Avazov

    2012-01-01

    Full Text Available We propose a wideband multiple-input multiple-output (MIMO car-to-car (C2C channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS and non-LOS (NLOS propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF, the two-dimensional (2D space CCF, the time-frequency CCF (TF-CCF, the temporal autocorrelation function (ACF, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOCs channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.

  6. Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: Theoretical formulation.

    Science.gov (United States)

    Zhong, P; Chuong, C J

    1993-07-01

    To understand the physical process of the impingement of cavitation microjet and the resultant shock wave propagation in an elastic solid, a theoretical model using geometrical acoustics was developed. Shock waves induced in both the jet head (water) and the solid were analyzed during a tri-supersonic impact configuration when the contact edge between the jet head and the elastic boundary expands faster than the longitudinal wave speed in the solid. Impact pressure at the boundary was solved using continuity conditions along the boundary normal. Reflection and refraction of shock waves from a solid-water interface were also included in the model. With this model, the impact pressure at the solid boundary and the stress, strain as well as velocity discontinuities at the propagating shock fronts were calculated. A comparison with results from previous studies shows that this model provides a more complete and general solution for the jet impact problem.

  7. An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations

    Science.gov (United States)

    Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.

    2013-12-01

    In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations

  8. Geometric modeling in probability and statistics

    CERN Document Server

    Calin, Ovidiu

    2014-01-01

    This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...

  9. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    International Nuclear Information System (INIS)

    Abbaspour, Ali; Luo Jingli; Nandakumar, K.

    2010-01-01

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  10. Geometrical optics modeling of the grating-slit test.

    Science.gov (United States)

    Liang, Chao-Wen; Sasian, Jose

    2007-02-19

    A novel optical testing method termed the grating-slit test is discussed. This test uses a grating and a slit, as in the Ronchi test, but the grating-slit test is different in that the grating is used as the incoherent illuminating object instead of the spatial filter. The slit is located at the plane of the image of a sinusoidal intensity grating. An insightful geometrical-optics model for the grating-slit test is presented and the fringe contrast ratio with respect to the slit width and object-grating period is obtained. The concept of spatial bucket integration is used to obtain the fringe contrast ratio.

  11. Exponentiated Lomax Geometric Distribution: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Amal Soliman Hassan

    2017-09-01

    Full Text Available In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and hazard functions are derived. Various structural properties of the new model are derived including; quantile function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni curves. The estimation of the model parameters is performed by maximum likelihood method and inference for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some other distributions are shown via an application to a real data set. We hope that the new model will be an adequate model for applications in various studies.

  12. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  13. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    Science.gov (United States)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  14. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  15. Three-dimensional geometric model of the middle segment of the thoracic spine based on graphical images for finite element analysis

    Directory of Open Access Journals (Sweden)

    Rozilene Maria Cota Aroeira

    2017-05-01

    Full Text Available Abstract Introduction: Biomedical studies involve complex anatomical structures, which require specific methodology to generate their geometric models. The middle segment of the thoracic spine (T5-T10 is the site of the highest incidence of vertebral deformity in adolescents. Traditionally, its geometries are derived from computed tomography or magnetic resonance imaging data. However, this approach may restrict certain studies. The study aimed to generate two 3D geometric model of the T5-T10 thoracic spine segment, obtained from graphical images, and to create mesh for finite element studies. Methods A 3D geometric model of T5-T10 was generated using two anatomical images of T6 vertebra (side and top. The geometric model was created in Autodesk® Maya® 3D 2013, and the mesh process in HiperMesh and MeshMixer (v11.0.544 Autodesk. Results The T5-T10 thoracic segment model is presented with its passive components, bones, intervertebral discs and flavum, intertransverse and supraspinous ligaments, in different views, as well as the volumetric mesh. Conclusion The 3D geometric model generated from graphical images is suitable for application in non-patient-specific finite element model studies or, with restrictions, in the use of computed tomography or magnetic resonance imaging. This model may be useful for biomechanical studies related to the middle thoracic spine, the most vulnerable site for vertebral deformations.

  16. AUGMENTING 3D CITY MODEL COMPONENTS BY GEODATA JOINS TO FACILITATE AD-HOC GEOMETRIC-TOPOLOGICALLY SOUND INTEGRATION

    Directory of Open Access Journals (Sweden)

    R. Kaden

    2012-07-01

    Full Text Available Virtual 3D city models are integrated complex compositions of spatial data of different themes, origin, quality, scale, and dimensions. Within this paper, we address the problem of spatial compatibility of geodata aiming to provide support for ad-hoc integration of virtual 3D city models including geodata of different sources and themes like buildings, terrain, and city furniture. In contrast to related work which is dealing with the integration of redundant geodata structured according to different data models and ontologies, we focus on the integration of complex 3D models of the same representation (here: CityGML but regarding to the geometric-topological consistent matching of non-homologous objects, e.g. a building is connected to a road, and their geometric homogenisation. Therefore, we present an approach including a data model for a Geodata Join and the general concept of an integration procedure using the join information. The Geodata Join aims to bridge the lack of information between fragmented geodata by describing the relationship between adjacent objects from different datasets. The join information includes the geometrical representation of those parts of an object, which have a specific/known topological or geometrical relationship to another object. This part is referred to as a Connector and is either described by points, lines, or surfaces of the existing object geometry or by additional join geometry. In addition, the join information includes the specification of the connected object in the other dataset and the description of the topological and geometrical relationship between both objects, which is used to aid the matching process. Furthermore, the Geodata Join contains object-related information like accuracy values and restrictions of movement and deformation which are used to optimize the integration process. Based on these parameters, a functional model including a matching algorithm, transformation methods, and

  17. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  18. Geometric model of topological insulators from the Maxwell algebra

    Science.gov (United States)

    Palumbo, Giandomenico

    2017-11-01

    We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.

  19. CAD-based Monte Carlo automatic modeling method based on primitive solid

    International Nuclear Information System (INIS)

    Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang

    2016-01-01

    Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.

  20. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  1. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  2. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    Science.gov (United States)

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  3. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  4. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  5. Inelasticity in hadron-nucleus collisions in the geometrical two-chain model

    International Nuclear Information System (INIS)

    Wibig, T.; Sobczynska, D.

    1995-01-01

    Two features of great importance registered in experiments on hadron-nucleus collisions are the decreased inelasticity and multiplicity in intranucleus collisions. In this paper we show that such behaviour is a natural consequence of the geometrical two-chain model of multi-particle production processes: only the forward-going chain can undergo secondary interactions in the nucleus. A quantitative comparison with the data is presented. (author)

  6. Stock price prediction using geometric Brownian motion

    Science.gov (United States)

    Farida Agustini, W.; Restu Affianti, Ika; Putri, Endah RM

    2018-03-01

    Geometric Brownian motion is a mathematical model for predicting the future price of stock. The phase that done before stock price prediction is determine stock expected price formulation and determine the confidence level of 95%. On stock price prediction using geometric Brownian Motion model, the algorithm starts from calculating the value of return, followed by estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast MAPE, calculating the stock expected price and calculating the confidence level of 95%. Based on the research, the output analysis shows that geometric Brownian motion model is the prediction technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.

  7. Geometric Reasoning for Automated Planning

    Science.gov (United States)

    Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel

    2012-01-01

    An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.

  8. Thermoeconomic Modeling and Parametric Study of Hybrid Solid Oxide Fuel Cell â Gas Turbine â Steam Turbine Power Plants Ranging from 1.5 MWe to 10 MWe

    OpenAIRE

    Arsalis, Alexandros

    2007-01-01

    Detailed thermodynamic, kinetic, geometric, and cost models are developed, implemented, and validated for the synthesis/design and operational analysis of hybrid solid oxide fuel cell (SOFC) â gas turbine (GT) â steam turbine (ST) systems ranging in size from 1.5 MWe to 10 MWe. The fuel cell model used in this thesis is based on a tubular Siemens-Westinghouse-type SOFC, which is integrated with a gas turbine and a heat recovery steam generator (HRSG) integrated in turn with a steam turbi...

  9. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  10. A Geometrical View of Higgs Effective Theory

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, W_L scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, with the curvature a signal of the scale of new physics.

  11. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    Science.gov (United States)

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  12. An integrated introduction to computer graphics and geometric modeling

    CERN Document Server

    Goldman, Ronald

    2009-01-01

    … this book may be the first book on geometric modelling that also covers computer graphics. In addition, it may be the first book on computer graphics that integrates a thorough introduction to 'freedom' curves and surfaces and to the mathematical foundations for computer graphics. … the book is well suited for an undergraduate course. … The entire book is very well presented and obviously written by a distinguished and creative researcher and educator. It certainly is a textbook I would recommend. …-Computer-Aided Design, 42, 2010… Many books concentrate on computer programming and soon beco

  13. Modeling cotton (Gossypium spp) leaves and canopy using computer aided geometric design (CAGD)

    Science.gov (United States)

    The goal of this research is to develop a geometrically accurate model of cotton crop canopies for exploring changes in canopy microenvironment and physiological function with leaf structure. We develop an accurate representation of the leaves, including changes in three-dimensional folding and orie...

  14. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  15. Studies on a Double Poisson-Geometric Insurance Risk Model with Interference

    Directory of Open Access Journals (Sweden)

    Yujuan Huang

    2013-01-01

    Full Text Available This paper mainly studies a generalized double Poisson-Geometric insurance risk model. By martingale and stopping time approach, we obtain adjustment coefficient equation, the Lundberg inequality, and the formula for the ruin probability. Also the Laplace transformation of the time when the surplus reaches a given level for the first time is discussed, and the expectation and its variance are obtained. Finally, we give the numerical examples.

  16. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.

    Science.gov (United States)

    Dustan, A C; Cohen, B; Petrie, J G

    2005-05-30

    An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.

  17. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model

    International Nuclear Information System (INIS)

    Chen Changyong; Zhang Xiaolong; Deng Zhijiao; Gao Kelin; Feng Mang

    2006-01-01

    We introduce a general displacement operator to investigate the unconventional geometric quantum computation with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms, based on a previous scheme [S.-B. Zheng, Phys. Rev. A 70, 052320 (2004)] for the large-detuning interaction of the atoms with the cavity mode. The analytical results we present will be helpful for experimental realization of geometric quantum computation in real cavities

  18. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  19. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  20. Geometrical modelling of scanning probe microscopes and characterization of errors

    International Nuclear Information System (INIS)

    Marinello, F; Savio, E; Bariani, P; Carmignato, S

    2009-01-01

    Scanning probe microscopes (SPMs) allow quantitative evaluation of surface topography with ultra-high resolution, as a result of accurate actuation combined with the sharpness of tips. SPMs measure sequentially, by scanning surfaces in a raster fashion: topography maps commonly consist of data sets ideally reported in an orthonormal rectilinear Cartesian coordinate system. However, due to scanning errors and measurement distortions, the measurement process is far from the ideal Cartesian condition. The paper addresses geometrical modelling of the scanning system dynamics, presenting a mathematical model which describes the surface metric x-, y- and z- coordinates as a function of the measured x'-, y'- and z'-coordinates respectively. The complete mathematical model provides a relevant contribution to characterization and calibration, and ultimately to traceability, of SPMs, when applied for quantitative characterization

  1. Wax Precipitation Modeled with Many Mixed Solid Phases

    DEFF Research Database (Denmark)

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan

    2005-01-01

    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub......-temperature and low-temperature forms, are pure. Model calculations compare well with the data of Pauly et al. for C18 to C30 waxes precipitating from n-decane solutions. (C) 2004 American Institute of Chemical Engineers....

  2. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  3. Riemannian geometry and geometric analysis

    CERN Document Server

    Jost, Jürgen

    2017-01-01

    This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research.  The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...

  4. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    Science.gov (United States)

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  5. On N = 1 gauge models from geometric engineering in M-theory

    International Nuclear Information System (INIS)

    Belhaj, A; Drissi, L B; Rasmussen, J

    2003-01-01

    We study geometric engineering of four-dimensional N = 1 gauge models from M-theory on a seven-dimensional manifold with G 2 holonomy. The manifold is constructed as a K3 fibration over a three-dimensional base space with ADE geometry. The resulting gauge theory is discussed in the realm of (p, q) webs. We discuss how the anomaly cancellation condition translates into a condition on the associated affine ADE Lie algebras

  6. Modeling bidirectional radiance measurements collected by the advanced solid-state array spectroradiometer (ASAS) over Oregon transect conifer forests

    International Nuclear Information System (INIS)

    Abuelgasim, A.A.; Strahler, A.H.

    1994-01-01

    A geometric-optical model of the bidirectional reflectance of a forest canopy, developed by Li and Strahler, fits observed directional radiance measurements with good accuracy. This model treats the forest cover as a scene of discrete, three-dimensional objects (trees) that are illuminated and viewed from different positions in the hemisphere. The shapes of the objects, their count densities and patterns of placement, are the driving variables, and they condition the mixture of sunlit and shaded objects and background that are observed from a particular viewing direction, given a direction of illumination. This mixture, in turn, controls the brightness apparent to an observer or a radiometric instrument. The Advanced Solid-State Array Spectroradiometer (ASAS) was used to validate this model. This aircraft sensor presently acquires images in 29 spectral bands in the range (465–871 nm) and is pointable fore-and-aft, allowing directional measurements of radiance as a target is approached and imaged at view angles ranging ± 45° from nadir. Through atmospheric correction, ASAS radiances were reduced to bidirectional reflectance factors (BRFs). These were compared to corresponding BRF values computed from the Li-Strahler model using, wherever possible, ground measured component BRFs for calibration. The comparisons showed a good match between the modeled and measured reflectance factors for four of the five Oregon Transect Sites. Thus, the geometric-optical approach provides a realistic model for the bidirectional reflectance distribution function of such natural vegetation canopies. Further modifications are suggested to improve the predicted BRFs and yield still better results. (author)

  7. The representation of manipulable solid objects in a relational database

    Science.gov (United States)

    Bahler, D.

    1984-01-01

    This project is concerned with the interface between database management and solid geometric modeling. The desirability of integrating computer-aided design, manufacture, testing, and management into a coherent system is by now well recognized. One proposed configuration for such a system uses a relational database management system as the central focus; the various other functions are linked through their use of a common data repesentation in the data manager, rather than communicating pairwise to integrate a geometric modeling capability with a generic relational data managemet system in such a way that well-formed questions can be posed and answered about the performance of the system as a whole. One necessary feature of any such system is simplification for purposes of anaysis; this and system performance considerations meant that a paramount goal therefore was that of unity and simplicity of the data structures used.

  8. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    Science.gov (United States)

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Initial singularity and pure geometric field theories

    Science.gov (United States)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  10. A Morphological Approach to the Voxelization of Solids

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Sramek, Milos; Christensen, Niels Jørgen

    2000-01-01

    In this paper we present a new, morphological criterion for determining whether a geometric solid is suitable for voxelization at a given resolution. The criterion embodies two conditions, namely that the curvature of the solid must be bounded and the critical points of the distance field must be...

  11. Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field

    International Nuclear Information System (INIS)

    Liu, Jian; Qin, Hong

    2011-01-01

    We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The rst part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena.

  12. Mathematical model of solid food pasteurization by ohmic heating: influence of process parameters.

    Science.gov (United States)

    Marra, Francesco

    2014-01-01

    Pasteurization of a solid food undergoing ohmic heating has been analysed by means of a mathematical model, involving the simultaneous solution of Laplace's equation, which describes the distribution of electrical potential within a food, the heat transfer equation, using a source term involving the displacement of electrical potential, the kinetics of inactivation of microorganisms likely to be contaminating the product. In the model, thermophysical and electrical properties as function of temperature are used. Previous works have shown the occurrence of heat loss from food products to the external environment during ohmic heating. The current model predicts that, when temperature gradients are established in the proximity of the outer ohmic cell surface, more cold areas are present at junctions of electrodes with lateral sample surface. For these reasons, colder external shells are the critical areas to be monitored, instead of internal points (typically geometrical center) as in classical pure conductive heat transfer. Analysis is carried out in order to understand the influence of pasteurisation process parameters on this temperature distribution. A successful model helps to improve understanding of these processing phenomenon, which in turn will help to reduce the magnitude of the temperature differential within the product and ultimately provide a more uniformly pasteurized product.

  13. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector - 15271

    International Nuclear Information System (INIS)

    Saas, L.; Le Tellier, R.; Bajard, S.

    2015-01-01

    In this document, we present a simplified geometrical model (0D model) for both the in-core corium propagation transient and the characterization of the mode of corium transfer from the core to the vessel. A degraded core with a formed corium pool is used as an initial state. This initial state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate...). During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4

  14. Expanding the Use of Solid Modeling throughout the Engineering Curriculum.

    Science.gov (United States)

    Baxter, Douglas H.

    2001-01-01

    Presents the initial work that Rensselaer Polytechnic Institute has done to integrate solid modeling throughout the engineering curriculum. Aims to provide students the opportunity to use their solid modeling skills in several courses and show students how solid modeling tools can be used to help solve a variety of engineering problems.…

  15. Geometric modeling of controlled third-class hinged mechanisms with a stand in one extreme position for cyclic automatic machines

    Science.gov (United States)

    Khomchenko, V. G.; Varepo, L. G.; Glukhov, V. I.; Krivokhatko, E. A.

    2017-06-01

    The geometric model for the synthesis of third-class lever mechanisms is proposed, which allows, by changing the length of the auxiliary link and the position of its fixed hinge, to rearrange the movement of the working organ onto the cyclograms with different predetermined dwell times. It is noted that with the help of the proposed model, at the expense of the corresponding geometric constructions, the best uniform Chebyshev approximation can be achieved at the interval of the standstill.

  16. Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

    Science.gov (United States)

    Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C

    2017-04-26

    Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly

  17. Solid Waste Management Holistic Decision Modeling

    OpenAIRE

    World Bank

    2008-01-01

    This study provides support to the Bank's ability to conduct client dialogue on solid waste management technology selection, and will contribute to client decision-making. The goal of the study was to fully explore the use of the United States Environmental Protection Agency and the Research Triangle Institute (EPA/RTI) holistic decision model to study alternative solid waste systems in a ...

  18. Geometric Least Square Models for Deriving [0,1]-Valued Interval Weights from Interval Fuzzy Preference Relations Based on Multiplicative Transitivity

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2015-01-01

    Full Text Available This paper presents a geometric least square framework for deriving [0,1]-valued interval weights from interval fuzzy preference relations. By analyzing the relationship among [0,1]-valued interval weights, multiplicatively consistent interval judgments, and planes, a geometric least square model is developed to derive a normalized [0,1]-valued interval weight vector from an interval fuzzy preference relation. Based on the difference ratio between two interval fuzzy preference relations, a geometric average difference ratio between one interval fuzzy preference relation and the others is defined and employed to determine the relative importance weights for individual interval fuzzy preference relations. A geometric least square based approach is further put forward for solving group decision making problems. An individual decision numerical example and a group decision making problem with the selection of enterprise resource planning software products are furnished to illustrate the effectiveness and applicability of the proposed models.

  19. Measurement system and model for simultaneously measuring 6DOF geometric errors.

    Science.gov (United States)

    Zhao, Yuqiong; Zhang, Bin; Feng, Qibo

    2017-09-04

    A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.

  20. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.

    Science.gov (United States)

    Dass, Amala

    2012-04-07

    Thiolated gold nanomolecules show a power correlation between the number of gold atoms and the thiolate ligands with a 2/3 scaling similar to Platonic and Archimedean solids. Nanomolecule stability is influenced by a universal geometric factor that is foundational to its stability through the Euclidean surface rule, in addition to the electronic shell closing factor and staple motif requirements. This journal is © The Royal Society of Chemistry 2012

  1. State-of-the-Art Solid Waste Management Life-Cycle Modeling Workshop

    DEFF Research Database (Denmark)

    Damgaard, Anders; Levis, James W.

    There are many alternatives for the management of solid waste including recycling, biological treatment, thermal treatment and landfill disposal. In many cases, solid waste management systems include the use of several of these processes. Solid waste life-cycle assessment models are often used...... to evaluate the environmental consequences of various waste management strategies. The foundation of every life-cycle model is the development and use of process models to estimate the emissions from solid waste unit processes. The objective of this workshop is to describe life-cycle modeling of the solid...... waste processes and systems. The workshop will begin with an introduction to solid waste life-cycle modeling and available models, which will be followed by sessions on life-cycle process modeling for individual processes (e.g., landfills, biological treatment, and thermal treatment). The first part...

  2. Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Zaczek-Peplinska Janina

    2015-02-01

    Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.

  3. A Novel Geometrical Height Gain Model for Line-of-Sight Urban Micro Cells Below 6 GHz

    DEFF Research Database (Denmark)

    Rodriguez, Ignacio; Nguyen, Huan Cong; Sørensen, Troels Bundgaard

    2016-01-01

    This paper presents a novel height gain model applicable to line-of-sight urban micro cell scenarios and frequencies below 6 GHz. The model is knife-edge diffraction-based, and it is founded on simple geometrical and physical relationships. Typical system level simulator scenario parameters...

  4. Geometric information provider platform

    Directory of Open Access Journals (Sweden)

    Meisam Yousefzadeh

    2015-07-01

    Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge.  The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.

  5. Experimental investigations and modeling of direct internal reforming of biogases in tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanzini, A.; Leone, P.; Pieroni, M.; Santarelli, M. [Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129, Torino (Italy); Beretta, D.; Ginocchio, S. [Centro Ricerca e Sviluppo, Edison S.p.a, Via La Pira 2, IT-10028 Trofarello, Torino (Italy)

    2011-10-15

    Biogas-fed Solid Oxide Fuel Cell (SOFC) systems can be considered as interesting integrated systems in the framework of distributed power generation. In particular, bio-methane and bio-hydrogen produced from anaerobic digestion of organic wastes represent renewable carbon-neutral fuels for high efficiency electrochemical generators. With such non-conventional mixtures fed to the anode of the SOFC, the interest lies in understanding the multi-physics phenomena there occurring and optimizing the geometric and operation parameters of the SOFC, while avoiding operating and fuel conditions that can lead to or accelerate degradation processes. In this study, an anode-supported (Ni-YSZ) tubular SOFC was considered; the tubular geometry enables a relatively easy separation of the air and fuel reactants and it allows one to evaluate the temperature field of the fuel gas inside the tube, which is strictly related to the electrochemical and heterogeneous chemical reactions occurring within the anode volume. The experiments have been designed to analyze the behavior of the cell under different load and fuel utilization (FU) conditions, providing efficiency maps for both fuels. The experimental results were used to validate a multi-physics model of the tubular cell. The model showed to be in good agreement with the experimental data, and was used to study the sensitive of some selected geometrical parameters modification over the cell performances. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Geometric control theory and sub-Riemannian geometry

    CERN Document Server

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  7. Geometric efficiency calculations for solid state track detectors (SSTD) in radon measurements

    International Nuclear Information System (INIS)

    Gil, L.R.; Marques, A.; Rivera, A.

    1992-01-01

    Geometric efficiencies for SSTD cut into rectangular pieces are calculated by simulation technique. The procedure involves introducing a sampling volume that depends on α-ray ranges in air which has to be used in converting observed number of tracks into activity concentrations. A quick procedure for computing ranges in air at different meteorological conditions is also included. (author). 6 refs, 5 figs, 2 tabs

  8. Series-NonUniform Rational B-Spline (S-NURBS) model: a geometrical interpolation framework for chaotic data.

    Science.gov (United States)

    Shao, Chenxi; Liu, Qingqing; Wang, Tingting; Yin, Peifeng; Wang, Binghong

    2013-09-01

    Time series is widely exploited to study the innate character of the complex chaotic system. Existing chaotic models are weak in modeling accuracy because of adopting either error minimization strategy or an acceptable error to end the modeling process. Instead, interpolation can be very useful for solving differential equations with a small modeling error, but it is also very difficult to deal with arbitrary-dimensional series. In this paper, geometric theory is considered to reduce the modeling error, and a high-precision framework called Series-NonUniform Rational B-Spline (S-NURBS) model is developed to deal with arbitrary-dimensional series. The capability of the interpolation framework is proved in the validation part. Besides, we verify its reliability by interpolating Musa dataset. The main improvement of the proposed framework is that we are able to reduce the interpolation error by properly adjusting weights series step by step if more information is given. Meanwhile, these experiments also demonstrate that studying the physical system from a geometric perspective is feasible.

  9. Rapid world modeling: Fitting range data to geometric primitives

    International Nuclear Information System (INIS)

    Feddema, J.; Little, C.

    1996-01-01

    For the past seven years, Sandia National Laboratories has been active in the development of robotic systems to help remediate DOE's waste sites and decommissioned facilities. Some of these facilities have high levels of radioactivity which prevent manual clean-up. Tele-operated and autonomous robotic systems have been envisioned as the only suitable means of removing the radioactive elements. World modeling is defined as the process of creating a numerical geometric model of a real world environment or workspace. This model is often used in robotics to plan robot motions which perform a task while avoiding obstacles. In many applications where the world model does not exist ahead of time, structured lighting, laser range finders, and even acoustical sensors have been used to create three dimensional maps of the environment. These maps consist of thousands of range points which are difficult to handle and interpret. This paper presents a least squares technique for fitting range data to planar and quadric surfaces, including cylinders and ellipsoids. Once fit to these primitive surfaces, the amount of data associated with a surface is greatly reduced up to three orders of magnitude, thus allowing for more rapid handling and analysis of world data

  10. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.; Goriely, A.

    2013-01-01

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can

  11. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-06-01

    Full Text Available A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1 feature extraction; (2 similarity measure; and matching, and (3 estimating exterior orientation parameters (EOPs of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  12. Geometric Model of Topological Insulators from the Maxwell Algebra

    Science.gov (United States)

    Palumbo, Giandomenico

    I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

  13. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  14. Geometric U-folds in four dimensions

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-01-01

    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  15. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  16. Standalone visualization tool for three-dimensional DRAGON geometrical models

    International Nuclear Information System (INIS)

    Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E.

    2008-01-01

    DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)

  17. Innovative three-dimensional neutronics analyses directly coupled with cad models of geometrically complex fusion systems

    International Nuclear Information System (INIS)

    Sawan, M.; Wilson, P.; El-Guebaly, L.; Henderson, D.; Sviatoslavsky, G.; Bohm, T.; Kiedrowski, B.; Ibrahim, A.; Smith, B.; Slaybaugh, R.; Tautges, T.

    2007-01-01

    Fusion systems are, in general, geometrically complex requiring detailed three-dimensional (3-D) nuclear analysis. This analysis is required to address tritium self-sufficiency, nuclear heating, radiation damage, shielding, and radiation streaming issues. To facilitate such calculations, we developed an innovative computational tool that is based on the continuous energy Monte Carlo code MCNP and permits the direct use of CAD-based solid models in the ray-tracing. This allows performing the neutronics calculations in a model that preserves the geometrical details without any simplification, eliminates possible human error in modeling the geometry for MCNP, and allows faster design iterations. In addition to improving the work flow for simulating complex 3- D geometries, it allows a richer representation of the geometry compared to the standard 2nd order polynomial representation. This newly developed tool has been successfully tested for a detailed 40 degree sector benchmark of the International Thermonuclear Experimental Reactor (ITER). The calculations included determining the poloidal variation of the neutron wall loading, flux and nuclear heating in the divertor components, nuclear heating in toroidal field coils, and radiation streaming in the mid-plane port. The tool has been applied to perform 3-D nuclear analysis for several fusion designs including the ARIES Compact Stellarator (ARIES-CS), the High Average Power Laser (HAPL) inertial fusion power plant, and ITER first wall/shield (FWS) modules. The ARIES-CS stellarator has a first wall shape and a plasma profile that varies toroidally within each field period compared to the uniform toroidal shape in tokamaks. Such variation cannot be modeled analytically in the standard MCNP code. The impact of the complex helical geometry and the non-uniform blanket and divertor on the overall tritium breeding ratio and total nuclear heating was determined. In addition, we calculated the neutron wall loading variation in

  18. Optimization of geometric parameters of heat exchange pipes pin finning

    Science.gov (United States)

    Akulov, K. A.; Golik, V. V.; Voronin, K. S.; Zakirzakov, A. G.

    2018-05-01

    The work is devoted to optimization of geometric parameters of the pin finning of heat-exchanging pipes. Pin fins were considered from the point of view of mechanics of a deformed solid body as overhang beams with a uniformly distributed load. It was found out under what geometric parameters of the nib (diameter and length); the stresses in it from the influence of the washer fluid will not exceed the yield strength of the material (aluminum). Optimal values of the geometric parameters of nibs were obtained for different velocities of the medium washed by them. As a flow medium, water and air were chosen, and the cross section of the nibs was round and square. Pin finning turned out to be more than 3 times more compact than circumferential finning, so its use makes it possible to increase the number of fins per meter of the heat-exchanging pipe. And it is well-known that this is the main method for increasing the heat transfer of a convective surface, giving them an indisputable advantage.

  19. Mathematical modeling of current density distribution in composite cathode of solid oxide fuel cells. Paper no. IGEC-1-099

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2005-01-01

    Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)

  20. Modeling when people quit: Bayesian censored geometric models with hierarchical and latent-mixture extensions.

    Science.gov (United States)

    Okada, Kensuke; Vandekerckhove, Joachim; Lee, Michael D

    2018-02-01

    People often interact with environments that can provide only a finite number of items as resources. Eventually a book contains no more chapters, there are no more albums available from a band, and every Pokémon has been caught. When interacting with these sorts of environments, people either actively choose to quit collecting new items, or they are forced to quit when the items are exhausted. Modeling the distribution of how many items people collect before they quit involves untangling these two possibilities, We propose that censored geometric models are a useful basic technique for modeling the quitting distribution, and, show how, by implementing these models in a hierarchical and latent-mixture framework through Bayesian methods, they can be extended to capture the additional features of specific situations. We demonstrate this approach by developing and testing a series of models in two case studies involving real-world data. One case study deals with people choosing jokes from a recommender system, and the other deals with people completing items in a personality survey.

  1. Studies in geometric quantization

    International Nuclear Information System (INIS)

    Tuynman, G.M.

    1988-01-01

    This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs

  2. Impact of small-scale geometric roughness on wetting behavior.

    Science.gov (United States)

    Kumar, Vaibhaw; Errington, Jeffrey R

    2013-09-24

    We examine the extent to which small-scale geometric substrate roughness influences the wetting behavior of fluids at solid surfaces. Molecular simulation is used to construct roughness wetting diagrams wherein the progression of the contact angle is traced from the Cassie to Wenzel to impregnation regime with increasing substrate strength for a collection of systems with rectangularly shaped grooves. We focus on the evolution of these diagrams as the length scale of the substrate features approaches the size of a fluid molecule. When considering a series of wetting diagrams for substrates with fixed shape and variable feature periodicity, we find that the diagrams progressively shift away from a common curve as the substrate features become smaller than approximately 10 fluid diameters. It is at this length scale that the macroscopic models of Cassie and Wenzel become unreliable. Deviations from the macroscopic models are attributed to the manner in which the effective substrate-fluid interaction strength evolves with periodicity and the important role that confinement effects play for substrates with small periodicities.

  3. Speed Geometric Quantum Logical Gate Based on Double-Hamiltonian Evolution under Large-Detuning Cavity QED Model

    International Nuclear Information System (INIS)

    Chen Changyong; Liu Zongliang; Kang Shuai; Li Shaohua

    2010-01-01

    We introduce the double-Hamiltonian evolution technique approach to investigate the unconventional geometric quantum logical gate with dissipation under the model of many identical three-level atoms in a cavity, driven by a classical field. Our concrete calculation is made for the case of two atoms for the large-detuning interaction of the atoms with the cavity mode. The main advantage of our scheme is of eliminating the photon flutuation in the cavity mode during the gating. The corresponding analytical results will be helpful for experimental realization of speed geometric quantum logical gate in real cavities. (general)

  4. Information Geometric Complexity of a Trivariate Gaussian Statistical Model

    Directory of Open Access Journals (Sweden)

    Domenico Felice

    2014-05-01

    Full Text Available We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of available pieces of information but also on the manner in which such pieces are correlated. Finally, we uncover that, for certain correlational structures, the impossibility of reaching the most favorable configuration from an entropic inference viewpoint seems to lead to an information geometric analog of the well-known frustration effect that occurs in statistical physics.

  5. Morphing of geometric composites via residual swelling.

    Science.gov (United States)

    Pezzulla, Matteo; Shillig, Steven A; Nardinocchi, Paola; Holmes, Douglas P

    2015-08-07

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by preparing geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we present an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  6. Geometrical Model of Solar Radiation Pressure Based on High-Performing Galileo Clocks - First Geometrical Mapping of the Yarkowsky effect

    Science.gov (United States)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Steigenberger, Peter; Ziebart, Marek

    2014-05-01

    Solar radiation pressure is the main source of errors in the precise orbit determination of GNSS satellites. All deficiencies in the modeling of Solar radiation pressure map into estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geometrically map radial orbit perturbations of GNSS satellites using highly-performing clocks on board the first Galileo satellites. Only a linear model (time bias and time drift) needs to be removed from the estimated clock parameters and the remaining clock residuals map all radial orbit perturbations along the orbit. With the independent SLR measurements, we show that a Galileo clock is stable enough to map radial orbit perturbations continuously along the orbit with a negative sign in comparison to SLR residuals. Agreement between the SLR residuals and the clock residuals is at the 1 cm RMS for an orbit arc of 24 h. Looking at the clock parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR bias in Galileo and GPS orbits can be explained by the translation of the determined orbit in the orbital plane towards the Sun. This orbit translation is due to thermal re-radiation and not accounting for the Sun elevation in the parameterization of the estimated Solar radiation pressure parameters. SLR ranging to GNSS satellites takes place typically at night, e.g. between 6 pm and 6 am local time when the Sun is in opposition to the satellite. Therefore, SLR observes only one part of the GNSS orbit with a negative radial orbit error that is mapped as an artificial bias in SLR observables. The Galileo clocks clearly show orbit translation for all Sun elevations: the radial orbit error is positive when the Sun is in conjuction (orbit noon) and negative when the Sun is in opposition (orbit midnight). The magnitude of this artificial negative SLR bias

  7. Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk

    International Nuclear Information System (INIS)

    Vinogradov, S.

    2012-01-01

    Silicon Photomultipliers (SiPM), also called Solid State Photomultipliers (SSPM), are based on Geiger mode avalanche breakdown that is limited by a strong negative feedback. An SSPM can detect and resolve single photons due to the high gain and ultra-low excess noise of avalanche multiplication in this mode. Crosstalk and afterpulsing processes associated with the high gain introduce specific excess noise and deteriorate the photon number resolution of the SSPM. The probabilistic features of these processes are widely studied because of its significance for the SSPM design, characterization, optimization and application, but the process modeling is mostly based on Monte Carlo simulations and numerical methods. In this study, crosstalk is considered to be a branching Poisson process, and analytical models of probability distribution and excess noise factor (ENF) of SSPM signals based on the Borel distribution as an advance on the geometric distribution models are presented and discussed. The models are found to be in a good agreement with the experimental probability distributions for dark counts and a few photon spectrums in a wide range of fired pixels number as well as with observed super-linear behavior of crosstalk ENF.

  8. Inference-based procedural modeling of solids

    KAUST Repository

    Biggers, Keith

    2011-11-01

    As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple sketch. Our algorithm uses an inference-based approach to incrementally fit patches together in a consistent fashion to define the boundary of an object. This algorithm samples and extracts surface patches from input models, and develops a Petri net structure that describes the relationship between patches along an imposed parameterization. Then, given a new parameterized line or curve, we use the Petri net to logically fit patches together in a manner consistent with the input model. This allows us to easily construct objects of varying sizes and configurations using arbitrary articulation, repetition, and interchanging of parts. The result of our process is a solid model representation of the constructed object that can be integrated into a simulation-based environment. © 2011 Elsevier Ltd. All rights reserved.

  9. Effects of neutron streaming and geometric models on molten fuel recriticality accidents

    International Nuclear Information System (INIS)

    McLaughlin, T.P.

    1975-10-01

    A postulated fast reactor accident which has been extant for many years is a recriticality following partial or complete core melting. Independently of the cause or probability of such a situation, certain cases can be defined and some facets of the dynamic history of these cases can be described with more than enough accuracy for safety considerations. Calculations were made with the PAD code for systems with 10 vol percent voids and varying reactivity insertion rates. Additionally, two distinct geometric and equation of state models were investigated in conjunction with a model which accounted for possible neutron streaming reactivity effects. Significant results include fission and kinetic energy, temperatures and pressures

  10. Converting boundary representation solid models to half-space representation models for Monte Carlo analysis

    International Nuclear Information System (INIS)

    Davis, J. E.; Eddy, M. J.; Sutton, T. M.; Altomari, T. J.

    2007-01-01

    Solid modeling computer software systems provide for the design of three-dimensional solid models used in the design and analysis of physical components. The current state-of-the-art in solid modeling representation uses a boundary representation format in which geometry and topology are used to form three-dimensional boundaries of the solid. The geometry representation used in these systems is cubic B-spline curves and surfaces - a network of cubic B-spline functions in three-dimensional Cartesian coordinate space. Many Monte Carlo codes, however, use a geometry representation in which geometry units are specified by intersections and unions of half-spaces. This paper describes an algorithm for converting from a boundary representation to a half-space representation. (authors)

  11. A simple geometrical model describing shapes of soap films suspended on two rings

    Science.gov (United States)

    Herrmann, Felix J.; Kilvington, Charles D.; Wildenberg, Rebekah L.; Camacho, Franco E.; Walecki, Wojciech J.; Walecki, Peter S.; Walecki, Eve S.

    2016-09-01

    We measured and analysed the stability of two types of soap films suspended on two rings using the simple conical frusta-based model, where we use common definition of conical frustum as a portion of a cone that lies between two parallel planes cutting it. Using frusta-based we reproduced very well-known results for catenoid surfaces with and without a central disk. We present for the first time a simple conical frusta based spreadsheet model of the soap surface. This very simple, elementary, geometrical model produces results surprisingly well matching the experimental data and known exact analytical solutions. The experiment and the spreadsheet model can be used as a powerful teaching tool for pre-calculus and geometry students.

  12. Geometrical approach to tumor growth.

    Science.gov (United States)

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  13. Analysis of the geometric parameters of a solitary waves-based harvester to enhance its power output

    Science.gov (United States)

    Rizzo, Piervincenzo; Li, Kaiyuan

    2017-07-01

    We present a harvester formed by a metamaterial, an isotropic medium bonded to the metamaterial, and a wafer-type transducer glued to the medium. The harvester conveys the distributed energy of a mechanical oscillator into a focal point where this energy is converted into electricity. The metamaterial is made with an array of granular chains that host the propagation of highly nonlinear solitary waves triggered by the impact of the oscillator. At the interface between the chains and the isotropic solid, part of the acoustic energy refracts into the solid where it triggers the vibration of the solid and coalesces at a point. Here, the transducer converts the focalized stress wave and the waves generated by the reverberation with the edges into electric potential. The effects of the harvester’s geometric parameters on the amount of electrical power that can be harvested are quantified numerically. The results demonstrate that the power output of the harvester increases a few orders of magnitude when the appropriate geometric parameters are selected.

  14. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  15. The geometric semantics of algebraic quantum mechanics.

    Science.gov (United States)

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Liang, Hongbo; You, Shijun; Zhang, Huan

    2016-01-01

    A PTC (parabolic trough solar collector) focuses direct solar radiation reflected by the reflector onto a receiver located on its focal line. The solar flux distribution on the absorber is non-uniform generally, thus it needs to carry out optical simulation to analyze the concentrated flux density and optical performance. In this paper, three different optical models based on ray tracing for a PTC were proposed and compared in detail. They were proved to be feasible and reliable in comparison with other literature. Model 1 was based on MCM (Monte Carlo Method). Model 2 initialized photon distribution with FVM (Finite Volume Method), and calculated reflection, transmission, and absorption by means of MCM. Model 3 utilized FVM to determine ray positions initially, while it changed the photon energy by multiplying reflectivity, transmissivity and absorptivity. The runtime and computation effort of Model 3 were approximately 40% and 60% of that of Model 1 in the present work. Moreover, the simulation result of Model 3 was not affected by the algorithm for generating random numbers, however, it needed to take account of suitable grid configurations for different sections of the system. Additionally, effects of varying the geometric parameters for a PTC on optical efficiency were estimated. Effect of offsetting the absorber in width direction of aperture was greater than that in its normal direction at the same offset distance, which was more obvious with offset distance increasing. Furthermore, absorber offset at the opposite direction of tracking error was beneficial for improving optical performance. The larger rim angle (≤90°) was, the less sensitive optical efficiency was to tracking error for the same aperture width of a PTC. In contrast, a larger aperture width was more sensitive to tracking error for a certain rim angle. - Highlights: • Three different optical models for parabolic trough solar collectors were derived. • Their running time, computation

  17. Soft hadronic production by ECCO in the geometrical branching model

    International Nuclear Information System (INIS)

    Pan, J.; Hwa, R.C.

    1993-01-01

    Soft production of hadrons in hadronic collisions is described in the geometrical branching model and implemented by the eikonal cascade code (ECCO). It is shown that the major global features of multiparticle production can be reproduced by one essential characterization of the dynamics of branching, namely, a scaling law for the mass distribution of daughter clusters. Without further adjustment of any parameters, the event generator can produce local features of multiplicity fluctuations in agreement with the NA22 intermittency data. The scaling exponent ν is determined to be 1.522 at √s =22 GeV, independent of the dimensionality of the intermittency analysis. It is shown that ν is approximately independent of the collision energy

  18. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  19. HTTR criticality calculations with SCALE6: Studies of various geometric and unit-cell options in modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. Y.; Chiang, M. H.; Sheu, R. J.; Liu, Y. W. H. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., Hsinchu 30013, Taiwan (China)

    2012-07-01

    The fuel element of the High Temperature Engineering Test Reactor (HTTR) presents a doubly heterogeneous geometry, where tiny TRISO fuel particles dispersed in a graphite matrix form the fuel region of a cylindrical fuel rod, and a number of fuel rods together with moderator or reflector then constitute the lattice design of the core. In this study, a series of full-core HTTR criticality calculations were performed with the SCALE6 code system using various geometric and unit-cell options in order to systematically investigate their effects on neutronic analysis. Two geometric descriptions (ARRAY or HOLE) in SCALE6 can be used to construct a complicated and repeated model. The result shows that eliminating the use of HOLE in the HTTR geometric model can save the computation time by a factor of 4. Four unit-cell treatments for resonance self-shielding corrections in SCALE6 were tested to create problem-specific multigroup cross sections for the HTTR core model. Based on the same ENDF/B-VII cross-section library, their results were evaluated by comparing with continuous-energy calculations. The comparison indicates that the INFHOMMEDIUM result overestimates the system multiplication factor (k{sub eff}) by 55 mk, whereas the LATTICECELL and MULTIREGION treatments predict the k{sub eff} values with similar biases of approximately 10 mk overestimation. The DOUBLEHET result shows a more satisfactory agreement, about 4.2 mk underestimation in the k{sub eff} value. In addition, using cell-weighted cross sections instead of an explicit modeling of TRISO particles in fuel region can further reduce the computation time by a factor of 5 without sacrificing accuracy. (authors)

  20. WATEQ3 geochemical model: thermodynamic data for several additional solids

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs

  1. Geometric analysis

    CERN Document Server

    Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa

    2015-01-01

    This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.

  2. SPATIAL MODELING OF SOLID-STATE REGULAR POLYHEDRA (SOLIDS OF PLATON IN AUTOCAD SYSTEM

    Directory of Open Access Journals (Sweden)

    P. V. Bezditko

    2009-03-01

    Full Text Available This article describes the technology of modeling regular polyhedra by graphic methods. The authors came to the conclusion that in order to create solid models of regular polyhedra the method of extrusion is best to use.

  3. A general modeling method for I-V characteristics of geometrically and electrically configured photovoltaic arrays

    International Nuclear Information System (INIS)

    Liu Guangyu; Nguang, Sing Kiong; Partridge, Ashton

    2011-01-01

    Highlights: → A novel and general method is proposed for modeling PV arrays or modules. → A robust algorithm is used for the first time to improve the convergence to solution. → Auxiliary functions in other general methods are not compulsory in our method. → It is novel that geometric configuration is also incorporated. → A case study is performed to show the approach's advantages and unique features. - Abstract: A general method for modeling typical photovoltaic (PV) arrays and modules is proposed to find the exact current and voltage relationship of PV arrays or modules of geometrically and electrically different configurations. Nonlinear characteristic equations of electrical devices in solar array or module systems are numerically constructed without adding any virtual electrical components. Then, a robust damped Newton method is used to find exact I-V relationship of these general nonlinear equations, where the convergence is guaranteed. The model can deal with different mismatch effects such as different configurations of bypass diodes, and partial shading. Geometry coordinates of PV components are also considered to facilitate the modeling of the actual physical configuration. Simulation of a PV array with 48 modules, partially shaded by a concrete structure, is performed to verify the effectiveness and advantages of the proposed method.

  4. Modeling all-solid-state Li-ion batteries

    NARCIS (Netherlands)

    Danilov, D.; Niessen, R.A.H.; Notten, P.H.L.

    2011-01-01

    A mathematical model for all-solid-state Li-ion batteries is presented. The model includes the charge transfer kinetics at the electrode/electrolyte interface, diffusion of lithium in the intercalation electrode, and diffusion and migration of ions in the electrolyte. The model has been applied to

  5. Geological modeling of a stratified deposit with CAD-Based solid model automation

    Directory of Open Access Journals (Sweden)

    Ayten Eser

    Full Text Available Abstract The planning stages of mining activities require many comprehensive and detailed analyses. Determining the correct orebody model is the first stage and one of the most important. Three-dimensional solid modeling is one of the significant methods that can examine the position and shape of the ore deposit. Although there are many different types of mining software for determining a solid model, many users try to build geological models in the computer without knowing how these software packages work. As researchers on the subject, we wanted to answer the question "How would we do it". For this purpose, a system was developed for generating solid models using data obtained from boreholes. Obtaining this model in an AutoCAD environment will be important for geologists and engineers. Developed programs were first tested with virtual borehole data belonging to a virtual deposit. Then the real borehole data of a cement raw material site were successfully applied. This article allows readers not only to see a clear example of the programming approach to layered deposits but also to produce more complicated software in this context. Our study serves as a window to understanding the geological modeling process.

  6. Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes

    Science.gov (United States)

    Ishimoto, Yukitaka; Morishita, Yoshihiro

    2014-11-01

    In order to describe two-dimensionally packed cells in epithelial tissues both mathematically and physically, there have been developed several sorts of geometrical models, such as the vertex model, the finite element model, the cell-centered model, and the cellular Potts model. So far, in any case, pressures have not neatly been dealt with and the curvatures of the cell boundaries have been even omitted through their approximations. We focus on these quantities and formulate them in the vertex model. Thus, a model with the curvatures is constructed, and its algorithm for simulation is provided. The possible extensions and applications of this model are also discussed.

  7. Contribution to the modelling of gas-solid reactions and reactors

    International Nuclear Information System (INIS)

    Patisson, F.

    2005-09-01

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  8. Scan-To Output Validation: Towards a Standardized Geometric Quality Assessment of Building Information Models Based on Point Clouds

    Science.gov (United States)

    Bonduel, M.; Bassier, M.; Vergauwen, M.; Pauwels, P.; Klein, R.

    2017-11-01

    The use of Building Information Modeling (BIM) for existing buildings based on point clouds is increasing. Standardized geometric quality assessment of the BIMs is needed to make them more reliable and thus reusable for future users. First, available literature on the subject is studied. Next, an initial proposal for a standardized geometric quality assessment is presented. Finally, this method is tested and evaluated with a case study. The number of specifications on BIM relating to existing buildings is limited. The Levels of Accuracy (LOA) specification of the USIBD provides definitions and suggestions regarding geometric model accuracy, but lacks a standardized assessment method. A deviation analysis is found to be dependent on (1) the used mathematical model, (2) the density of the point clouds and (3) the order of comparison. Results of the analysis can be graphical and numerical. An analysis on macro (building) and micro (BIM object) scale is necessary. On macro scale, the complete model is compared to the original point cloud and vice versa to get an overview of the general model quality. The graphical results show occluded zones and non-modeled objects respectively. Colored point clouds are derived from this analysis and integrated in the BIM. On micro scale, the relevant surface parts are extracted per BIM object and compared to the complete point cloud. Occluded zones are extracted based on a maximum deviation. What remains is classified according to the LOA specification. The numerical results are integrated in the BIM with the use of object parameters.

  9. A geometrical model of VY Canis Majoris for SiO maser lines

    International Nuclear Information System (INIS)

    Zhou Zhen-Pu; Kaifu, N.

    1984-01-01

    A new geometrical model of VY CMa is proposed to explain the three-peaked spectra of transition upsilon=1,2 J=1-0 of SiO maser emission. In this model the circumstellar envelope of VY CMa is a rotating disk of gas and dust seen nearly edge-on. The disk consists of two regions: a decelerated steady stream near the photosphere of the star and an accelerated one further away. Other geometries are discussed and eliminated. Calculated profiles of SiO maser lines fit well the observations. It is possible to explain the three-peaked profiles of SiO maser lines emitted by NML Cyg, RR Aql, NML Tau, etc. (orig.)

  10. The study on the import of the geometric body by GDML in GEANT4

    International Nuclear Information System (INIS)

    Sun Baodong; Liu Huilan; Sun Dawang; Xie Zhaoyang; Song Yushou

    2014-01-01

    Geometry Description Markup Language (GDML) can be used as an application interface program to import the geometric body into GEANT4. It greatly simplifies the detector construction work with high reliability. With this mechanism the geometric data of a detector is described in an XML file and read by the XML parser embedded in GEANT4. The geometric structure of a detector is designed in CAD toolkit Solidworks and saved as a standard STEP file. Then, by FastRad the STEP file is transformed into XML script, which is readable for GEANT4. In comparison with the detectors constructed by Constructed Solid Geometry (CSG) provided by GEANT4, those imported by GDML also satisfies the requests of general simulation application. At the same time, some solutions and tips for several common problems during the progress constructing the detectors by GDML are given. (authors)

  11. Monomial geometric programming with an arbitrary fuzzy relational inequality

    Directory of Open Access Journals (Sweden)

    E. Shivanian

    2015-11-01

    Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.

  12. Pulse Jet Mixing Tests With Noncohesive Solids

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro; Bailey, Sharon A.; Bower, John C.; Denslow, Kayte M.; Eakin, David E.; Elmore, Monte R.; Gauglitz, Phillip A.; Guzman, Anthony D.; Hatchell, Brian K.; Hopkins, Derek F.; Hurley, David E.; Johnson, Michael D.; Kirihara, Leslie J.; Lawler, Bruce D.; Loveland, Jesse S.; Mullen, O Dennis; Pekour, Mikhail S.; Peters, Timothy J.; Robinson, Peter J.; Russcher, Michael S.; Sande, Susan; Santoso, Christian; Shoemaker, Steven V.; Silva, Steve M.; Smith, Devin E.; Su, Yin-Fong; Toth, James J.; Wiberg, John D.; Yu, Xiao-Ying; Zuljevic, Nino

    2009-05-11

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important to release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy

  13. Geometric analysis of the solutions of two-phase flows: two-fluid model

    International Nuclear Information System (INIS)

    Kestin, J.; Zeng, D.L.

    1984-01-01

    This report contains a lightly edited draft of a study of the two-fluid model in two-phase flow. The motivation for the study stems from the authors' conviction that the construction of a computer code for any model should be preceded by a geometrical analysis of the pattern of trajectories in the phase space appropriate for the model. Such a study greatly facilitates the understanding of the phenomenon of choking and anticipates the computational difficulties which arise from the existence of singularities. The report contains a derivation of the six conservation equations of the model which includes a consideration of the simplifications imposed on a one-dimensional treatment by the presence of boundary layers at the wall and between the phases. The model is restricted to one-dimensional adiabatic flows of a single substance present in two phases, but thermodynamic equilibrium between the phases is not assumed. The role of closure conditions is defined but no specific closure conditions, or explicit equations of state, are introduced

  14. Critical comparison of hydrodynamic models for gas-solid fluidized beds - Part II: freely bubbling gas-solid fluidized beds

    NARCIS (Netherlands)

    Patil, D.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Correct prediction of spontaneous bubble formation in freely bubbling gas¿solid fluidized beds using Eulerian models, strongly depends on the description of the internal momentum transfer in the particulate phase. In this part, the comparison of the simple classical model, describing the solid phase

  15. Geometric analysis of alternative models of faulting at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Young, S.R.; Stirewalt, G.L.; Morris, A.P.

    1993-01-01

    Realistic cross section tectonic models must be retrodeformable to geologically reasonable pre-deformation states. Furthermore, it must be shown that geologic structures depicted on cross section tectonic models can have formed by kinematically viable deformation mechanisms. Simple shear (i.e., listric fault models) is consistent with extensional geologic structures and fault patterns described at Yucca Mountain, Nevada. Flexural slip models yield results similar to oblique simple shear mechanisms, although there is no strong geological evidence for flexural slip deformation. Slip-line deformation is shown to generate fault block geometrics that are a close approximation to observed fault block structures. However, slip-line deformation implies a degree of general ductility for which there is no direct geological evidence. Simple and hybrid 'domino' (i.e., planar fault) models do not adequately explain observed variations of fault block dip or the development of 'rollover' folds adjacent to major bounding faults. Overall tectonic extension may be underestimated because of syn-tectonic deposition (growth faulting) of the Tertiary pyroclastic rocks that comprise Yucca Mountain. A strong diagnostic test of the applicability of the domino model may be provided by improved knowledge of Tertiary volcanic stratigraphy

  16. Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Padilla Cabal, Fatima, E-mail: fpadilla@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba); Lopez-Pino, Neivy; Luis Bernal-Castillo, Jose; Martinez-Palenzuela, Yisel; Aguilar-Mena, Jimmy; D' Alessandro, Katia; Arbelo, Yuniesky; Corrales, Yasser; Diaz, Oscar [Instituto Superior de Tecnologias y Ciencias Aplicadas, ' Quinta de los Molinos' Ave. Salvador Allende, esq. Luaces, Plaza de la Revolucion, Ciudad de la Habana, CP 10400 (Cuba)

    2010-12-15

    A procedure to optimize the geometrical model of an n-type detector is described. Sixteen lines from seven point sources ({sup 241}Am, {sup 133}Ba, {sup 22}Na, {sup 60}Co, {sup 57}Co, {sup 137}Cs and {sup 152}Eu) placed at three different source-to-detector distances (10, 20 and 30 cm) were used to calibrate a low-background gamma spectrometer between 26 and 1408 keV. Direct Monte Carlo techniques using the MCNPX 2.6 and GEANT 4 9.2 codes, and a semi-empirical procedure were performed to obtain theoretical efficiency curves. Since discrepancies were found between experimental and calculated data using the manufacturer parameters of the detector, a detail study of the crystal dimensions and the geometrical configuration is carried out. The relative deviation with experimental data decreases from a mean value of 18-4%, after the parameters were optimized.

  17. Inference-based procedural modeling of solids

    KAUST Repository

    Biggers, Keith; Keyser, John

    2011-01-01

    As virtual environments become larger and more complex, there is an increasing need for more automated construction algorithms to support the development process. We present an approach for modeling solids by combining prior examples with a simple

  18. GEOMETRIC CONTEXT AND ORIENTATION MAP COMBINATION FOR INDOOR CORRIDOR MODELING USING A SINGLE IMAGE

    Directory of Open Access Journals (Sweden)

    A. B. Jahromi

    2016-06-01

    Full Text Available Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected

  19. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  20. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  1. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  2. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    Science.gov (United States)

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  3. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  4. Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries

    NARCIS (Netherlands)

    van Leeuwen, G. M.; Kotte, A. N.; Crezee, J.; Lagendijk, J. J.

    1997-01-01

    We have developed a thermal model, for use in hyperthermia treatment planning, in which blood vessels are described as geometrical objects; 3D curves with associated diameters. For the calculation of the heat exchange with the tissue an analytic result is used. To arrive at this result some

  5. Geometric Aspects and Some Uses of Deformed Models of Thermostatistics

    Directory of Open Access Journals (Sweden)

    Alexandre Gavrilik

    2018-02-01

    Full Text Available We consider diverse deformed Bose gas models (DBGMs focusing on distributions and correlations of any order, and also on deformed thermodynamics. For so-called μ -deformed Bose gas model ( μ -DBGM, main thermodynamic aspects are treated: total number of particles, deformed partition function, etc. Using a geometric approach, we confirm the existence of critical behavior—Bose-like condensation; we find the critical temperature T c ( μ depending on μ so that T c ( μ > T c ( Bose for μ > 0 . This fact and other advantages of μ -DBGM relative to the usual Bose gas, e.g., stronger effective inter-particle attraction (controlled by the parameter μ , allow us to consider the condensate in μ -DBGM as a candidate for modeling dark matter. As another, quite successful application we discuss the usage of the two-parameter ( μ ˜ , q -deformed BGM for effective description of the peculiar (non-Bose like behavior of two-pion correlations observed in the STAR experiment at RHIC (Brookhaven. Herein, we point out the transparent role of the two deformation parameters μ ˜ and q as being responsible for compositeness and (effective account of interactions of pions, respectively.

  6. The Study of Birefringent Homogenous Medium with Geometric Phase

    International Nuclear Information System (INIS)

    Banerjee, Dipti

    2010-12-01

    The property of linear and circular birefringence at each point of the optical medium has been evaluated here from differential matrix N using the Jones calculus. This matrix lies on the OAM sphere for l = 1 orbital angular momentum. The geometric phase is developed by twisting the medium uniformly about the direction of propagation of the light ray. The circular birefringence of the medium, is visualized through the solid angle and the angular twist per unit thickness of the medium, k, that is equivalent to the topological charge of the optical element. (author)

  7. Geometric Scaling in New Combined Hadron-Electron Ring Accelerator Data

    International Nuclear Information System (INIS)

    Zhou Xiao-Jiao; Qi Lian; Kang Lin; Xiang Wen-Chang; Zhou Dai-Cui

    2014-01-01

    We study the geometric scaling in the new combined data of the hadron-electron ring accelerator by using the Golec-Biernat—Wüsthoff model. It is found that the description of the data is improved once the high accurate data are used to determine the model parameters. The value of x 0 extracted from the fit is larger than the one from the previous study, which indicates a larger saturation scale in the new combined data. This makes more data located in the saturation region, and our approach is more reliable. This study lets the saturation model confront such high precision new combined data, and tests geometric scaling with those data. We demonstrate that the data lie on the same curve, which shows the geometric scaling in the new combined data. This outcome seems to support that the gluon saturation would be a relevant mechanism to dominate the parton evolution process in deep inelastic scattering, due to the fact that the geometric scaling results from the gluon saturation mechanism

  8. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  9. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  10. A Thermodynamic Mixed-Solid Asphaltene Precipitation Model

    DEFF Research Database (Denmark)

    Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar

    1998-01-01

    A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...

  11. A porous flow model for the geometrical form of volcanoes - Critical comments

    Science.gov (United States)

    Wadge, G.; Francis, P.

    1982-01-01

    A critical evaluation is presented of the assumptions on which the mathematical model for the geometrical form of a volcano arising from the flow of magma in a porous medium of Lacey et al. (1981) is based. The lack of evidence for an equipotential surface or its equivalent in volcanoes prior to eruption is pointed out, and the preference of volcanic eruptions for low ground is attributed to the local stress field produced by topographic loading rather than a rising magma table. Other difficulties with the model involve the neglect of the surface flow of lava under gravity away from the vent, and the use of the Dupuit approximation for unconfined flow and the assumption of essentially horizontal magma flow. Comparisons of model predictions with the shapes of actual volcanoes reveal the model not to fit lava shield volcanoes, for which the cone represents the solidification of small lava flows, and to provide a poor fit to composite central volcanoes.

  12. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  13. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    International Nuclear Information System (INIS)

    Horn, Martin Erik

    2014-01-01

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics

  14. Comparison of two different Radiostereometric analysis (RSA) systems with markerless elementary geometrical shape modeling for the measurement of stem migration.

    Science.gov (United States)

    Li, Ye; Röhrl, Stephan M; Bøe, B; Nordsletten, Lars

    2014-09-01

    Radiostereometric analysis (RSA) is the gold standard of measurement for in vivo 3D implants migration. The aim of this study was to evaluate the in vivo precision of 2 RSA marker-based systems compared with that of marker-free, elementary geometrical shape modeling RSA. Stem migration was measured in 50 patients recruited from an on-going Randomized Controlled Trial. We performed marker-based analysis with the Um RSA and RSAcore systems and compared these results with those of the elementary geometrical shape RSA. The precision for subsidence was 0.118 mm for Um RSA, 0.141 mm for RSAcore, and 0.136 mm for elementary geometrical shape RSA. The precision for retroversion was 1.3° for elementary geometrical shape RSA, approximately 2-fold greater than that for the other methods. The intraclass correlation coefficient between the marker-based systems and elementary geometrical shape RSA was approximately 0.5 for retroversion. All 3 methods yielded ICCs for subsidence and varus-valgus rotation above 0.9. We found an excellent correlation between marker-based RSA and elementary geometrical shape RSA for subsidence and varus-valgus rotation, independent of the system used. The precisions for out-of-plane migration were inferior for elementary geometrical shape RSA. Therefore, as a mechanism of failure, retroversion may be more difficult to detect early. This is to our knowledge the first study to compare different RSA systems with or without markers on the implant. Marker-based RSA has high precision in all planes, independent of the system used. Elementary geometrical shape RSA is inferior in out-of-plane migration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Implementation and efficiency of two geometric stiffening approaches

    International Nuclear Information System (INIS)

    Lugris, Urbano; Naya, Miguel A.; Perez, Jose A.; Cuadrado, Javier

    2008-01-01

    When the modeling of flexible bodies is required in multibody systems, the floating frame of reference formulations are probably the most efficient methods available. In the case of beams undergoing high speed rotations, the geometric stiffening effect can appear due to geometric nonlinearities, and it is often not captured by the aforementioned methods, since it is common to linearize the elastic forces assuming small deformations. The present work discusses the implementation of different existing methods developed to consider such geometric nonlinearities within a floating frame of reference formulation in natural coordinates, making emphasis on the relation between efficiency and accuracy of the resulting algorithms, seeking to provide practical criteria of use

  16. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  17. Evaluation of geometrically personalized THUMS pedestrian model response against sedan-pedestrian PMHS impact test data.

    Science.gov (United States)

    Chen, Huipeng; Poulard, David; Forman, Jason; Crandall, Jeff; Panzer, Matthew B

    2018-07-04

    Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.01) was compared to the cadaveric response in vehicle-pedestrian impacts using geometrically personalized models. The AM50 THUMS PFEM was used as the baseline model, and 2 morphed PFEM were created to the anthropometric specifications of 2 obese PMHS used in a previous pedestrian impact study with a mid-size sedan. The same measurements as those obtained during the PMHS tests were calculated from the simulations (kinematics, accelerations, strains), and biofidelity metrics based on signals correlation (correlation and analysis, CORA) were established to compare the response of the models to the experiments. Injury outcomes were predicted deterministically (through strain-based threshold) and probabilistically (with injury risk functions) and compared with the injuries reported in the necropsy. The baseline model could not accurately capture all aspects of the PMHS kinematics, strain, and injury risks, whereas the morphed models reproduced biofidelic response in terms of trajectory (CORA score = 0.927 ± 0.092), velocities (0.975 ± 0.027), accelerations (0.862 ± 0.072), and strains (0.707 ± 0.143). The personalized THUMS models also generally predicted injuries consistent with those identified during posttest autopsy. The study highlights the need to control for pedestrian anthropometry when validating pedestrian human body models against PMHS data. The information provided in the current study could be useful for improving model biofidelity for vehicle-pedestrian impact scenarios.

  18. A model based estimate of the geometrical acceptance of the e+e- experiment on the HYPERON spectrometer

    International Nuclear Information System (INIS)

    Cerny, V.

    1983-01-01

    A model based estimate is presented of the geometrical acceptance of the HYPERON spectrometer for the detection of the e + e - pairs in the proposed lepton experiment. The results of the Monte Carlo calculation show that the expected acceptance is fairly high. (author)

  19. Geometric modular action and transformation groups

    International Nuclear Information System (INIS)

    Summers, S.J.

    1996-01-01

    We study a weak form of geometric modular action, which is naturally associated with transformation groups of partially ordered sets and which provides these groups with projective representations. Under suitable conditions it is shown that these groups are implemented by point transformations of topological spaces serving as models for space-times, leading to groups which may be interpreted as symmetry groups of the space-times. As concrete examples, it is shown that the Poincare group and the de Sitter group can be derived from this condition of geometric modular action. Further consequences and examples are discussed. (orig.)

  20. Geometric analysis of alloreactive HLA α-helices.

    Science.gov (United States)

    Ribarics, Reiner; Karch, Rudolf; Ilieva, Nevena; Schreiner, Wolfgang

    2014-01-01

    Molecular dynamics (MD) is a valuable tool for the investigation of functional elements in biomolecules, providing information on dynamic properties and processes. Previous work by our group has characterized static geometric properties of the two MHC α-helices comprising the peptide binding region recognized by T cells. We build upon this work and used several spline models to approximate the overall shape of MHC α-helices. We applied this technique to a series of MD simulations of alloreactive MHC molecules that allowed us to capture the dynamics of MHC α-helices' steric configurations. Here, we discuss the variability of spline models underlying the geometric analysis with varying polynomial degrees of the splines.

  1. Modelling Gas Adsorption in Porous Solids: Roles of Surface ...

    Indian Academy of Sciences (India)

    Modelling the adsorption of small molecule gases such as N2, CH4 and CO2 in porous solids can ... fusive properties of CO2 adsorbed in the solids have been examined using ..... exhibit a wide range of physical behavior.78,79 The intro-.

  2. Geometric and Colour Data Fusion for Outdoor 3D Models

    Directory of Open Access Journals (Sweden)

    Ricardo Chacón

    2012-05-01

    Full Text Available This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera and environmental (rain, dampness, changing illumination conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture, we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.

  3. Connecting Majorana phases to the geometric parameters of the Majorana unitarity triangle in a neutrino mass matrix model

    Science.gov (United States)

    Verma, Surender; Bhardwaj, Shankita

    2018-05-01

    We have investigated a possible connection between the Majorana phases and geometric parameters of Majorana unitarity triangle (MT) in two-texture zero neutrino mass matrix. Such analytical relations can, also, be obtained for other theoretical models viz. hybrid textures, neutrino mass matrix with vanishing minors and have profound implications for geometric description of C P violation. As an example, we have considered the two-texture zero neutrino mass model to obtain a relation between Majorana phases and MT parameters that may be probed in various lepton number violating processes. In particular, we find that Majorana phases depend on only one of the three interior angles of the MT in each class of two-texture zero neutrino mass matrix. We have also constructed the MT for class A , B , and C neutrino mass matrices. Nonvanishing areas and nontrivial orientations of these Majorana unitarity triangles indicate nonzero C P violation as a generic feature of this class of mass models.

  4. Geometrical primitives reconstruction from image sequence in an interactive context

    International Nuclear Information System (INIS)

    Monchal, L.; Aubry, P.

    1995-01-01

    We propose a method to recover 3D geometrical shape from image sequence, in a context of man machine co-operation. The human operator has to point out the edges of an object in the first image and choose a corresponding geometrical model. The algorithm tracks each relevant 2D segments describing surface discontinuities or limbs, in the images. Then, knowing motion of the camera between images, the positioning and the size of the virtual object are deduced by minimising a function. The function describes how well the virtual objects is linked to the extracted segments of the sequence, its geometrical model and pieces of information given by the operator. (author). 13 refs., 7 figs., 8 tabs

  5. Numerical and experimental investigation of geometric parameters in projection welding

    DEFF Research Database (Denmark)

    Kristensen, Lars; Zhang, Wenqi; Bay, Niels

    2000-01-01

    parameters by numerical modeling and experimental studies. SORPAS, an FEM program for numerical modeling of resistance welding, is developed as a tool to help in the phase of product design and process optimization in both spot and projection welding. A systematic experimental investigation of projection...... on the numerical and experimental investigations of the geometric parameters in projection welding, guidelines for selection of the geometry and material combinations in product design are proposed. These will be useful and applicable to industry.......Resistance projection welding is widely used for joining of workpieces with almost any geometric combination. This makes standardization of projection welding impossible. In order to facilitate industrial applications of projection welding, systematic investigations are carried out on the geometric...

  6. Experimental investigation of a draft tube spouted bed for effects of geometric parameters on operation

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin; Lin, Weigang; Dam-Johansen, Kim

    2016-01-01

    Experiments are performed in a draft tube spouted bed (DTSB) to investigate effects of the operating conditions and the geometric parameters on the hydrodynamics. Geometry parameters, such as heights of the entrained zone, draft tube inner diameter, inner angle of the conical section were studied....... Increasing the draft tube inner diameter, sharper inner angle of the conical section and higher height of entrained zone increase the internal solid circulation rate and the pressure drop. Even though, for all different configurations, higher gas feeding rate leads to higher internal solid circulation rate...

  7. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    Science.gov (United States)

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  8. Statistical and Geometrical Way of Model Selection for a Family of Subdivision Schemes

    Institute of Scientific and Technical Information of China (English)

    Ghulam MUSTAFA

    2017-01-01

    The objective of this article is to introduce a generalized algorithm to produce the m-point n-ary approximating subdivision schemes (for any integer m,n ≥ 2).The proposed algorithm has been derived from uniform B-spline blending functions.In particular,we study statistical and geometrical/traditional methods for the model selection and assessment for selecting a subdivision curve from the proposed family of schemes to model noisy and noisy free data.Moreover,we also discuss the deviation of subdivision curves generated by proposed family of schemes from convex polygonal curve.Furthermore,visual performances of the schemes have been presented to compare numerically the Gibbs oscillations with the existing family of schemes.

  9. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    Science.gov (United States)

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  10. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using Solid-by-Solid model: Application to via and trench filling

    International Nuclear Information System (INIS)

    Kaneko, Yutaka; Hiwatari, Yasuaki; Ohara, Katsuhiko; Asa, Fujio

    2013-01-01

    In this paper we present the Kinetic Monte Carlo simulation system for the simulation of three-dimensional shape evolution with void formation as a model for electrodeposition. The basic system is the Solid-by-Solid model which is an extension of the conventional Solid-on-Solid model for crystal growth to include void formation. The advantage of the Solid-by-Solid model is that complex three-dimensional shape evolution accompanying void formation (from point defects to macro voids) can be simulated without the difficulty of treating moving boundaries. This model has been extended to include the solution part in which the migration of ions is simulated by the coarse-grained random walk. A multi-scale method is employed to generate the concentration gradient in the diffusion layer. The extended model is applied to the simulation of via and trench fillings by copper electrodeposition. Three kinds of additives are included: suppressors, accelerators and chloride ions. The mechanism of void formation, effects of additives and their influence on the bottom-up filling are discussed within the framework of this model

  11. DETERMINATION ALGORITHM OF OPTIMAL GEOMETRICAL PARAMETERS FOR COMPONENTS OF FREIGHT CARS ON THE BASIS OF GENERALIZED MATHEMATICAL MODELS

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2013-10-01

    Full Text Available Purpose. Presentation of features and example of the use of the offered determination algorithm of optimum geometrical parameters for the components of freight cars on the basis of the generalized mathematical models, which is realized using computer. Methodology. The developed approach to search for optimal geometrical parameters can be described as the determination of optimal decision of the selected set of possible variants. Findings. The presented application example of the offered algorithm proved its operation capacity and efficiency of use. Originality. The determination procedure of optimal geometrical parameters for freight car components on the basis of the generalized mathematical models was formalized in the paper. Practical value. Practical introduction of the research results for universal open cars allows one to reduce container of their design and accordingly to increase the carrying capacity almost by100 kg with the improvement of strength characteristics. Taking into account the mass of their park this will provide a considerable economic effect when producing and operating. The offered approach is oriented to the distribution of the software packages (for example Microsoft Excel, which are used by technical services of the most enterprises, and does not require additional capital investments (acquisitions of the specialized programs and proper technical staff training. This proves the correctness of the research direction. The offered algorithm can be used for the solution of other optimization tasks on the basis of the generalized mathematical models.

  12. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Science.gov (United States)

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  13. Geometric measures of multipartite entanglement in finite-size spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-09-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  14. Geometric measures of multipartite entanglement in finite-size spin chains

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F

    2010-01-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  15. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.

    2008-01-01

    We use the Li-Strahler geometric-optical model combined with a scaling-based approach to detect forest structural changes in the Three Gorges region of China. The physical-based Li-Strahler model can be inverted to retrieve forest structural properties. One of the main input variables for the

  16. The need for the solid modelling of structure in the archaeology of buildings

    Directory of Open Access Journals (Sweden)

    Robert Daniels

    1997-03-01

    Full Text Available Three-dimensional modelling is an attempt to represent the world in three dimensions, simplifying through deliberate assumptions. In archaeology, this has developed as an extension of the traditional use of three-dimensional drawings to help present and record data. The debate in the archaeological literature over whether surface or solid modellers should be used is one based on the premise that the purpose of three-dimensional modelling is data visualisation. This concentration on perception modelling has been at the expense of research on the modelling of structure. Surface and Solid Modellers are introduced and defined. I argue that developments in modelling software mean that there is no longer a clear distinction between the two types of software along application lines. We should think of models in terms of their applications rather than the software which generates them. Although data visualisation (including virtual reality is an important part of three-dimensional modelling, I argue that it should be explicitly divorced from the related field of photo-realism at a research level. Perception modelling can be performed by surface or solid modellers. Modelling structure is better performed with a solid modeller, if we wish to be as explicit as possible in our modelling. A structural model can be used as a spatial database. If we wish to ask questions about the physical properties of a structure, then we must use solid modellers. In addition to the engineering properties of structures, solid modellers can also be used to answer questions about the economics of construction. For historical reasons, the construction industry has preferred to use surface modellers, but I argue for the advantages of solid modelling in the archaeological study of construction.

  17. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    Science.gov (United States)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  18. Urbanisation and 3d Spatial - a Geometric Approach

    Science.gov (United States)

    Duncan, E. E.; Rahman, A. Abdul

    2013-09-01

    Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.

  19. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  20. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  1. Hexahedral connection element based on hybrid-stress theory for solid structures

    International Nuclear Information System (INIS)

    Wu, D; Sze, K Y; Lo, S H

    2010-01-01

    For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.

  2. Image understanding using geometric context

    Science.gov (United States)

    Zhang, Xiaochun; Liu, Chuancai

    2017-07-01

    A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.

  3. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    Science.gov (United States)

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  4. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Geometric group theory

    CERN Document Server

    Druţu, Cornelia

    2018-01-01

    The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...

  6. Optimization of biotechnological systems through geometric programming

    Directory of Open Access Journals (Sweden)

    Torres Nestor V

    2007-09-01

    Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into

  7. Calculating the bidirectional reflectance of natural vegetation covers using Boolean models and geometric optics

    Science.gov (United States)

    Strahler, Alan H.; Li, Xiao-Wen; Jupp, David L. B.

    1991-01-01

    The bidirectional radiance or reflectance of a forest or woodland can be modeled using principles of geometric optics and Boolean models for random sets in a three dimensional space. This model may be defined at two levels, the scene includes four components; sunlight and shadowed canopy, and sunlit and shadowed background. The reflectance of the scene is modeled as the sum of the reflectances of the individual components as weighted by their areal proportions in the field of view. At the leaf level, the canopy envelope is an assemblage of leaves, and thus the reflectance is a function of the areal proportions of sunlit and shadowed leaf, and sunlit and shadowed background. Because the proportions of scene components are dependent upon the directions of irradiance and exitance, the model accounts for the hotspot that is well known in leaf and tree canopies.

  8. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  9. Modeling of urban solid waste management system: The case of Dhaka city

    International Nuclear Information System (INIS)

    Sufian, M.A.; Bala, B.K.

    2007-01-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city of Dhaka, Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are projected to increase with time for Dhaka city. Simulated results also show that increasing the budget for collection capacity alone does not improve environmental quality; rather an increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a computer laboratory for urban solid waste management (USWM) policy analysis

  10. Modeling of urban solid waste management system: the case of Dhaka city

    International Nuclear Information System (INIS)

    Sufian, M.A.; Bala, B.K.

    2005-01-01

    This paper presents a system dynamics computer model to predict solid waste generation, collection capacity and electricity generation from solid waste and to assess the needs for waste management of the urban city Dhaka Bangladesh. Simulated results show that solid waste generation, collection capacity and electricity generation potential from solid waste increase with time. Population, uncleared waste, untreated waste, composite index and public concern are increasing with time for Dhaka city. Simulated results also show that increasing the budge for collection capacity alone does not improve the environmental quality rather increased budget is required for both collection and treatment of solid wastes of Dhaka city. Finally, this model can be used as a compute laboratory for urban solid waste management (USWM) policy analysis. (author)

  11. Cell-model prediction of the melting of a Lennard-Jones solid

    International Nuclear Information System (INIS)

    Holian, B.L.

    1980-01-01

    The classical free energy of the Lennard-Jones 6-12 solid is computed from a single-particle anharmonic cell model with a correction to the entropy given by the classical correlational entropy of quasiharmonic lattice dynamics. The free energy of the fluid is obtained from the Hansen-Ree analytic fit to Monte Carlo equation-of-state calculations. The resulting predictions of the solid-fluid coexistence curves by this corrected cell model of the solid are in excellent agreement with the computer experiments

  12. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    Science.gov (United States)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  13. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Science.gov (United States)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  14. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  15. Geometrical interpretation of extended supergravity

    International Nuclear Information System (INIS)

    Townsend, P.K.; Nieuwenhuizen, P.van

    1977-01-01

    SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)

  16. Geometrical (Degree 0 Modelling of a FP3+3×RTR+MP3 Type Parallel Topology Robotic Guiding Device, Using the „Pair of Frames” (PF Concept

    Directory of Open Access Journals (Sweden)

    Calin Miclosina

    2005-01-01

    Full Text Available The geometrical (degree 0 model of a parallel topology robotic guiding device represents the position-orientation matrix of the mobile platform (MP versus the fixed one (FP; this model refers to generalized displacements. The kinematical scheme of a FP3+3×RTR+MP3 type mechanism is presented, as well as the manner of choice of the attached pair of frames (PF to the links. In the case of direct geometrical modelling, for certain displacements of the actuated translational joints, the position-orientation matrix of the mobile platform versus the fixed one is determined. For inverse geometrical modelling, the position-orientation matrix of MP versus FP is known and the displacements of the actuated translational joints are determined.

  17. Solid images for geostructural mapping and key block modeling of rock discontinuities

    Science.gov (United States)

    Assali, Pierre; Grussenmeyer, Pierre; Villemin, Thierry; Pollet, Nicolas; Viguier, Flavien

    2016-04-01

    Rock mass characterization is obviously a key element in rock fall hazard analysis. Managing risk and determining the most adapted reinforcement method require a proper understanding of the considered rock mass. Description of discontinuity sets is therefore a crucial first step in the reinforcement work design process. The on-field survey is then followed by a structural modeling in order to extrapolate the data collected at the rock surface to the inner part of the massif. Traditional compass survey and manual observations can be undoubtedly surpassed by dense 3D data such as LiDAR or photogrammetric point clouds. However, although the acquisition phase is quite fast and highly automated, managing, handling and exploiting such great amount of collected data is an arduous task and especially for non specialist users. In this study, we propose a combined approached using both 3D point clouds (from LiDAR or image matching) and 2D digital images, gathered into the concept of ''solid image''. This product is the connection between the advantages of classical true colors 2D digital images, accessibility and interpretability, and the particular strengths of dense 3D point clouds, i.e. geometrical completeness and accuracy. The solid image can be considered as the information support for carrying-out a digital survey at the surface of the outcrop without being affected by traditional deficiencies (lack of data and sampling difficulties due to inaccessible areas, safety risk in steep sectors, etc.). Computational tools presented in this paper have been implemented into one standalone software through a graphical user interface helping operators with the completion of a digital geostructural survey and analysis. 3D coordinates extraction, 3D distances and area measurement, planar best-fit for discontinuity orientation, directional roughness profiles, block size estimation, and other tools have been experimented on a calcareous quarry in the French Alps.

  18. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  19. Modeling steel deformation in the semi-solid state

    CERN Document Server

    Hojny, Marcin

    2017-01-01

    This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and...

  20. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  1. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  2. Effect analysis of geometric parameters of floating raft on isolation performance

    Directory of Open Access Journals (Sweden)

    LI Shangda

    2017-12-01

    Full Text Available [Objectives] This paper focuses on the effects of the geometric parameters of a floating raft on isolation performance.[Methods] Based on the idea that the weight of a floating raft remains constant, a parametric finite element model is established using geometric parameters, and the effects of the geometric parameters when isolation performance is measured by vibration level difference are discussed.[Results] The effects of the geometric parameters of a floating raft on isolation performance are mainly reflected in the middle and high frequency areas. The most important geometric parameters which have an impact on isolation performance are the raft's height, length to width ratio and number of ribs. Adjusting the geometric parameters of the raft is one effective way to avoid the vibration frequency of mechanical equipment.[Conclusions] This paper has some practical value for the engineering design of floating raft isolation systems.

  3. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

    Science.gov (United States)

    Farkašovský, Pavol

    2018-05-01

    The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

  4. Modelling elasticity in solids using active cubes - application to simulated operations

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1995-01-01

    The paper describes an approach to elastic modelling of human tissue based on the use of 3D solid active models-active cubes (M. Bro-Nielsen, 1994)-and a shape description based on the metric tensor in a solid. Active cubes are used because they provide a natural parameterization of the surface a...

  5. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  6. Contribution to the modelling of gas-solid reactions and reactors; Contribution a la modelisation des reactions et des reacteurs gaz-solide

    Energy Technology Data Exchange (ETDEWEB)

    Patisson, F

    2005-09-15

    Gas-solid reactions control a great number of major industrial processes involving matter transformation. This dissertation aims at showing that mathematical modelling is a useful tool for both understanding phenomena and optimising processes. First, the physical processes associated with a gas-solid reaction are presented in detail for a single particle, together with the corresponding available kinetic grain models. A second part is devoted to the modelling of multiparticle reactors. Different approaches, notably for coupling grain models and reactor models, are illustrated through various case studies: coal pyrolysis in a rotary kiln, production of uranium tetrafluoride in a moving bed furnace, on-grate incineration of municipal solid wastes, thermogravimetric apparatus, nuclear fuel making, steel-making electric arc furnace. (author)

  7. Geometrical tile design for complex neighborhoods.

    Science.gov (United States)

    Czeizler, Eugen; Kari, Lila

    2009-01-01

    Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.

  8. Modelling of air flows in pleated filters and of their clogging by solid particles

    International Nuclear Information System (INIS)

    Del Fabbro, L.

    2002-01-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  9. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  10. A simplified geometrical model for transient corium propagation in core for LWR with heavy reflector

    Directory of Open Access Journals (Sweden)

    Saas Laurent

    2017-01-01

    Full Text Available In the context of the simulation of the Severe Accidents (SA in Light Water Reactors (LWR, we are interested on the in-core corium pool propagation transient in order to evaluate the corium relocation in the vessel lower head. The goal is to characterize the corium and debris flows from the core to accurately evaluate the corium pool propagation transient in the lower head and so the associated risk of vessel failure. In the case of LWR with heavy reflector, to evaluate the corium relocation into the lower head, we have to study the risk associated with focusing effect and the possibility to stabilize laterally the corium in core with a flooded down-comer. It is necessary to characterize the core degradation and the stratification of the corium pool that is formed in core. We assume that the core degradation until the corium pool formation and the corium pool propagation could be modeled separately. In this document, we present a simplified geometrical model (0D model for the in-core corium propagation transient. A degraded core with a formed corium pool is used as an initial state. This state can be obtained from a simulation computed with an integral code. This model does not use a grid for the core as integral codes do. Geometrical shapes and 0D models are associated with the corium pool and the other components of the degraded core (debris, heavy reflector, core plate…. During the transient, these shapes evolve taking into account the thermal and stratification behavior of the corium pool and the melting of the core surrounding components. Some results corresponding to the corium pool propagation in core transients obtained with this model on a LWR with a heavy reflector are given and compared to grid approach of the integral codes MAAP4.

  11. A Model of Solid State Gas Sensors

    Science.gov (United States)

    Woestman, J. T.; Brailsford, A. D.; Shane, M.; Logothetis, E. M.

    1997-03-01

    Solid state gas sensors are widely used to measure the concentrations of gases such as CO, CH_4, C_3H_6, H_2, C_3H8 and O2 The applications of these sensors range from air-to-fuel ratio control in combustion processes including those in automotive engines and industrial furnaces to leakage detection of inflammable and toxic gases in domestic and industrial environments. As the need increases to accurately measure smaller and smaller concentrations, problems such as poor selectivity, stability and response time limit the use of these sensors. In an effort to overcome some of these limitations, a theoretical model of the transient behavior of solid state gas sensors has been developed. In this presentation, a model for the transient response of an electrochemical gas sensor to gas mixtures containing O2 and one reducing species, such as CO, is discussed. This model accounts for the transport of the reactive species to the sampling electrode, the catalyzed oxidation/reduction reaction of these species and the generation of the resulting electrical signal. The model will be shown to reproduce the results of published steady state models and to agree with experimental steady state and transient data.

  12. High-energy pp and p-barp scattering and the model of geometric scaling

    International Nuclear Information System (INIS)

    Fischer, J.; Jakes, P.; Novak, M.

    1982-10-01

    The model of geometric scaling is used to predict the evolution of the diffractive dip-peak structure of pp and p-barp differential cross-sections with increasing energy. Previous calculation for pp scattering made by Dias de Deus and Kroll is carried out with new data and their predictions confirmed. Recent data on p-barp scattering are used to make an analogous analysis for this process as well. It turns out that the p-barp differential cross-section behaves analogously, the main difference being that, in the p-barp case, the dip-peak structure should not completely disappear with increasing energy. (author)

  13. Modeling Philippine Stock Exchange Composite Index Using Weighted Geometric Brownian Motion Forecasts

    Directory of Open Access Journals (Sweden)

    Gayo Willy

    2016-01-01

    Full Text Available Philippine Stock Exchange Composite Index (PSEi is the main stock index of the Philippine Stock Exchange (PSE. PSEi is computed using a weighted mean of the top 30 publicly traded companies in the Philippines, called component stocks. It provides a single value by which the performance of the Philippine stock market is measured. Unfortunately, these weights, which may vary for every trading day, are not disclosed by the PSE. In this paper, we propose a model of forecasting the PSEi by estimating the weights based on historical data and forecasting each component stock using Monte Carlo simulation based on a Geometric Brownian Motion (GBM assumption. The model performance is evaluated and its forecast compared is with the results using a direct GBM forecast of PSEi over different forecast periods. Results showed that the forecasts using WGBM will yield smaller error compared to direct GBM forecast of PSEi.

  14. Customized Finite Element Modelling of the Human Cornea.

    Directory of Open Access Journals (Sweden)

    Irene Simonini

    Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.

  15. Geometric Model of Induction Heating Process of Iron-Based Sintered Materials

    Science.gov (United States)

    Semagina, Yu V.; Egorova, M. A.

    2018-03-01

    The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.

  16. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  17. Geometric singular perturbation analysis of systems with friction

    DEFF Research Database (Denmark)

    Bossolini, Elena

    This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter......, two mechanical problems with two different formulations of the friction force are introduced and analysed. The first mechanical problem is a one-dimensional spring-block model describing earthquake faulting. The dynamics of earthquakes is naturally a multiple timescale problem: the timescale...... scales. The action of friction is generally explained as the loss and restoration of linkages between the surface asperities at the molecular scale. However, the consequences of friction are noticeable at much larger scales, like hundreds of kilometers. By using geometric singular perturbation theory...

  18. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  19. Effects of source shape on the numerical aperture factor with a geometrical-optics model.

    Science.gov (United States)

    Wan, Der-Shen; Schmit, Joanna; Novak, Erik

    2004-04-01

    We study the effects of an extended light source on the calibration of an interference microscope, also referred to as an optical profiler. Theoretical and experimental numerical aperture (NA) factors for circular and linear light sources along with collimated laser illumination demonstrate that the shape of the light source or effective aperture cone is critical for a correct NA factor calculation. In practice, more-accurate results for the NA factor are obtained when a linear approximation to the filament light source shape is used in a geometric model. We show that previously measured and derived NA factors show some discrepancies because a circular rather than linear approximation to the filament source was used in the modeling.

  20. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  1. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    Science.gov (United States)

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  2. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  3. Formation enthalpies of Al–Fe–Zr–Nd system calculated by using geometric and Miedema's models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Mathematics and Information Science, Guangxi College of Education, Nanning 530023 (China); Wang, Rongcheng; Tao, Xiaoma; Guo, Hui; Chen, Hongmei [College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Ouyang, Yifang, E-mail: ouyangyf@gxu.edu.cn [College of Physical Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-04-15

    Formation enthalpy is important for the phase stability and amorphous forming ability of alloys. The formation enthalpies of Fe{sub 17}RE{sub 2} (RE=Ce, Pr, Nd, Gd and Er) obtained by Miedema's theory are in good agreement with those of the experiments. The dependence of formation enthalpy on concentration of Al for intermetallic (Al{sub x}Fe{sub 1−x}){sub 17}Nd{sub 2} have been calculated by Miedema's theory and the geometric model. The solid solubility of Al in (Al{sub x}Fe{sub 1−x}){sub 17}Nd{sub 2} is coincident with the concentration dependence of formation enthalpy. The mixing enthalpies of liquid alloys and formation enthalpies of alloys for Al–Fe–Zr–Nd system have been predicted. The calculated mixing enthalpy indicates that the adding of Fe or Nd decreases monotonously the magnitude of enthalpy. The formation enthalpies of Al–Fe–Zr–Nd system indicate that the shape of the enthalpy contour map changes when the content of Al is less than 50.0 at% and then it remains unchanged except the decrease of magnitude. The formation enthalpy of Al–Fe–Zr–Nd increases with the increase of Fe and/or Nd content. The negative formation enthalpy indicates that Al–Fe–Zr–Nd system has higher amorphous forming ability and wide amorphous forming range. The certain contents of Zr and/or Al are beneficial for the formation of Al–Fe–Zr–Nd intermetallics.

  4. Life-cycle assessment of municipal solid wastes: Development of the WASTED model

    International Nuclear Information System (INIS)

    Diaz, R.; Warith, M.

    2006-01-01

    This paper describes the development of the Waste Analysis Software Tool for Environmental Decisions (WASTED) model. This model provides a comprehensive view of the environmental impacts of municipal solid waste management systems. The model consists of a number of separate submodels that describe a typical waste management process: waste collection, material recovery, composting, energy recovery from waste and landfilling. These submodels are combined to represent a complete waste management system. WASTED uses compensatory systems to account for the avoided environmental impacts derived from energy recovery and material recycling. The model is designed to provide solid waste decision-makers and environmental researchers with a tool to evaluate waste management plans and to improve the environmental performance of solid waste management strategies. The model is user-friendly and compares favourably with other earlier models

  5. Investigating conceptual models for physical property couplings in solid solution models of cement

    International Nuclear Information System (INIS)

    Benbow, Steven; Watson, Claire; Savage, David

    2005-11-01

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste

  6. Model of sustainable utilization of organic solids waste in Cundinamarca, Colombia

    Directory of Open Access Journals (Sweden)

    Solanyi Castañeda Torres

    2017-05-01

    Full Text Available Introduction: This article considers a proposal of a model of use of organic solids waste for the department of Cundinamarca, which responds to the need for a tool to support decision-making for the planning and management of organic solids waste. Objective: To perform an approximation of a conceptual technical and mathematician optimization model to support decision-making in order to minimize environmental impacts. Materials and methods: A descriptive study was applied due to the fact that some fundamental characteristics of the studied homogeneous phenomenon are presented and it is also considered to be quasi experimental. The calculation of the model for plants of the department is based on three axes (environmental, economic and social, that are present in the general equation of optimization. Results: A model of harnessing organic solids waste in the techniques of biological treatment of composting aerobic and worm cultivation is obtained, optimizing the system with the emissions savings of greenhouse gases spread into the atmosphere, and in the reduction of the overall cost of final disposal of organic solids waste in sanitary landfill. Based on the economic principle of utility that determines the environmental feasibility and sustainability in the plants of harnessing organic solids waste to the department, organic fertilizers such as compost and humus capture carbon and nitrogen that reduce the tons of CO2.

  7. a model for the determination of the critical buckling load of self

    African Journals Online (AJOL)

    HP

    Considering the widespread use of this type of structure and the critical role it ... proposed by the model for the critical buckling load of self- supporting lattice tower, whose equivalent solid beam- ... stiffness, both material and geometric, [5, 6].

  8. A geometric theory for Lévy distributions

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2014-01-01

    Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT

  9. A geometric theory for Lévy distributions

    Science.gov (United States)

    Eliazar, Iddo

    2014-08-01

    Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.

  10. Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions

    Directory of Open Access Journals (Sweden)

    A.P. Walters

    2013-01-01

    Full Text Available Current practices for modeling the ocean floor in underwater explosion simulations call for application of an inviscid fluid with soil properties. A method for modeling the ocean floor as a Lagrangian solid, vice an Eulerian fluid, was developed in order to determine its effects on underwater explosions in shallow water using the DYSMAS solver. The Lagrangian solid bottom model utilized transmitting boundary segments, exterior nodal forces acting as constraints, and the application of prestress to minimize any distortions into the fluid domain. For simplicity, elastic materials were used in this current effort, though multiple constitutive soil models can be applied to improve the overall accuracy of the model. Even though this method is unable to account for soil cratering effects, it does however provide the distinct advantage of modeling contoured ocean floors such as dredged channels and sloped bottoms absent in Eulerian formulations. The study conducted here showed significant differences among the initial bottom reflections for the different solid bottom contours that were modeled. The most important bottom contour effect was the distortion to the gas bubble and its associated first pulse timing. In addition to its utility in bottom modeling, implementation of the non-reflecting boundary along with realistic material models can be used to drastically reduce the size of current fluid domains.

  11. On mass in 4π solid angle around song CsI scintillator aboard coronas-I satellite

    International Nuclear Information System (INIS)

    Bucik, R.; Kudela, K.

    2003-01-01

    The complex geometric setup around the SONG CsI scintillator aboard the CORONAS-1 satellite has been modelled, to evaluate the mass thickness passed through by the cosmic ray particle striking the detector. The analytic functional form giving the amount of matter traversed in absorbers for an arbitrary incident directions is present. The population mean and variance of the mass thickness are estimated by random sampling of the uniformly distributed particle trajectories in the several solid angles (Authors)

  12. A geometric renormalization group in discrete quantum space-time

    International Nuclear Information System (INIS)

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  13. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  14. Regional integrated solid waste management: an optimization model for northern Lebanon

    International Nuclear Information System (INIS)

    Abou Najm, M.; El Fadel, M.; El-Taha, M.; Ayoub, G.; Al-Awar

    2000-01-01

    Full text.Increased environmental concerns and the emphasis on material and energy recovery are gradually changing the orientation of municipal solid waste (MSW) management and planning. In this context, the application of optimization techniques have been introduced to design the least cost solid waste management systems, considering the variety of management processes (recycling, composting, anaerobic digestion, incineration and land filling) and the existence of uncertainties associated with the number of system components and their interrelations. This study presents a model that was developed and applied to serve as a solid socio-economic and environmental considerations. The model accounts for solid waste generation rates, composition, collection, treatment, disposal as well as potential environmental impacts of various MSW management techniques. The model follows a linear programming formulation with the framework of dynamic optimization. The model can serve as a tool to evaluate various MSW management alternatives and obtain the optimal combination of technologies for the handling, treatment and disposal of MSW in an economic and environmentally sustainable way. The sensitivity of various waste management policies is also addressed. Finally, the region of Northern Lebanon was considered as a case study with data collected for the year 2000, to demonstrate the applicability of the model

  15. Geometrically exact nonlinear analysis of pre-twisted composite rotor blades

    Directory of Open Access Journals (Sweden)

    Li'na SHANG

    2018-02-01

    Full Text Available Modeling of pre-twisted composite rotor blades is very complicated not only because of the geometric non-linearity, but also because of the cross-sectional warping and the transverse shear deformation caused by the anisotropic material properties. In this paper, the geometrically exact nonlinear modeling of a generalized Timoshenko beam with arbitrary cross-sectional shape, generally anisotropic material behavior and large deflections has been presented based on Hodges’ method. The concept of decomposition of rotation tensor was used to express the strain in the beam. The variational asymptotic method was used to determine the arbitrary warping of the beam cross section. The generalized Timoshenko strain energy was derived from the equilibrium equations and the second-order asymptotically correct strain energy. The geometrically exact nonlinear equations of motion were established by Hamilton’s principle. The established modeling was used for the static and dynamic analysis of pre-twisted composite rotor blades, and the analytical results were validated based on experimental data. The influences of the transverse shear deformation on the pre-twisted composite rotor blade were investigated. The results indicate that the influences of the transverse shear deformation on the static deformation and the natural frequencies of the pre-twisted composite rotor blade are related to the length to chord ratio of the blade. Keywords: Geometrically exact, Nonlinear, Pre-twisted composite blade, Transverse shear deformation, Variational asymptotic, Warping

  16. Procedimiento de corte en cuerpos sólidos poliédricos // Section procedure in solid polyhedral bodies.

    Directory of Open Access Journals (Sweden)

    A. Miguel Iznaga Benítez

    2000-10-01

    Full Text Available El conocimiento de la estructura de datos de los modelos geométricos ha posibilitado el desarrollo de algoritmos parasolucionar problemas complejos. Estos algoritmos han facilitado a su vez, la automatización en las oficinas de diseño através de los medios computacionales.Por tal motivo, se presenta el desarrollo de un algoritmo para la obtención de cortes y secciones en cuerpos geométricospoliédricos, se plantean las etapas fundamentales del algoritmo y a través de un ejercicio se ejemplifica el mismo.Este algoritmo puede ser utilizado en la creación de software que ayuden al proceso docente.Palabras claves: enseñanza, gráfica, separación de sólidos, geometría, dibujo, algoritmo, CAD._________________________________________________________________________Abstract:The knowledge of data structure in geometric models has facilitated the development of algorithms to solve complexproblems. These algorithms have facilitated in turn, the automation in the design by computational means. For such reason,is presented the development of an algorithm for the obtaining of sections in polyhedral geometric bodies, the fundamentalstages of the algorithm are stated and illustrated using an example.This algorithm can be use in the software creation that will help to the educational processKey words: section, separation of solids, algorithm, geometric modeling, graphic, CAD. teaching.

  17. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  18. Geometrical optical illusionists.

    Science.gov (United States)

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  19. Experimental and Theoretical Investigations on the Validity of Geometrical Optics Model for Calculating the Stability of Optical Traps

    NARCIS (Netherlands)

    Bakker schut, T.C.; Bakker Schut, Tom C.; Hesselink, Gerlo; Hesselink, Gerlo; de Grooth, B.G.; Greve, Jan

    1991-01-01

    We have developed a computer program based on the geometrical optics approach proposed by Roosen to calculate the forces on dielectric spheres in focused laser beams. We have explicitly taken into account the polarization of the laser light and thd divergence of the laser beam. The model can be used

  20. Geometric Constructions with the Computer.

    Science.gov (United States)

    Chuan, Jen-chung

    The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…

  1. Solid mechanics theory, modeling, and problems

    CERN Document Server

    Bertram, Albrecht

    2015-01-01

    This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.

  2. The importance of tumor volume in the prognosis of patients with glioblastoma. Comparison of computerized volumetry and geometric models

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Misailidou, Despina; Selviaridis, Panagiotis; Chatzisotiriou, Athanasios; Kalogera-Fountzila, Anna; Fragkoulidi, Anna; Fountzilas, George; Baltas, Dimos; Tselis, Nikolaos; Zamboglou, Nikolaos

    2009-01-01

    Background and purpose: the importance of tumor volume as a prognostic factor in high-grade gliomas is highly controversial and there are numerous methods estimating this parameter. In this study, a computer-based application was used in order to assess tumor volume from hard copies and a survival analysis was conducted in order to evaluate the prognostic significance of preoperative volumetric data in patients harboring glioblastomas. Patients and methods: 50 patients suffering from glioblastoma were analyzed retrospectively. Tumor volume was determined by the various geometric models as well as by an own specialized software (Volumio). Age, performance status, type of excision, and tumor location were also included in the multivariate analysis. Results: the spheroid and rectangular models overestimated tumor volume, while the ellipsoid model offered the best approximation. Volume failed to attain any statistical significance in prognosis, while age and performance status confirmed their importance in progression-free and overall survival of patients. Conclusion: geometric models provide a rough approximation of tumor volume and should not be used, as accurate determination of size is of paramount importance in order to draw safe conclusions in oncology. Although the significance of volumetry was not disclosed, further studies are definitely required. (orig.)

  3. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.

    Science.gov (United States)

    Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M

    1989-08-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.

  4. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids

    International Nuclear Information System (INIS)

    Urbain, J.L.; Mortelmans, L.; Cutsem, E. van; Maegdenbergh, V. van den; Roo, M. de

    1989-01-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111 In-DTPA water and 1 scrambled egg labeled with 99m Tc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal. (orig.) [de

  5. Geometric transitions on non-Kaehler manifolds

    International Nuclear Information System (INIS)

    Knauf, A.

    2007-01-01

    We study geometric transitions on the supergravity level using the basic idea of an earlier paper (M. Becker et al., 2004), where a pair of non-Kaehler backgrounds was constructed, which are related by a geometric transition. Here we embed this idea into an orientifold setup. The non-Kaehler backgrounds we obtain in type IIA are non-trivially fibered due to their construction from IIB via T-duality with Neveu-Schwarz flux. We demonstrate that these non-Kaehler manifolds are not half-flat and show that a symplectic structure exists on them at least locally. We also review the construction of new non-Kaehler backgrounds in type I and heterotic theory. They are found by a series of T- and S-duality and can be argued to be related by geometric transitions as well. A local toy model is provided that fulfills the flux equations of motion in IIB and the torsional relation in heterotic theory, and that is consistent with the U-duality relating both theories. For the heterotic theory we also propose a global solution that fulfills the torsional relation because it is similar to the Maldacena-Nunez background. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Investigating conceptual models for physical property couplings in solid solution models of cement

    Energy Technology Data Exchange (ETDEWEB)

    Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)

    2005-11-15

    The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.

  7. Transformation of a Foucault shadowgram into the geometrical model of a shear interferogram by means of isophotometry

    Science.gov (United States)

    Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.

    2014-06-01

    The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.

  8. Geometrical Optimization Approach to Isomerization: Models and Limitations.

    Science.gov (United States)

    Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R

    2017-11-02

    We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.

  9. Geometrical error calibration in reflective surface testing based on reverse Hartmann test

    Science.gov (United States)

    Gong, Zhidong; Wang, Daodang; Xu, Ping; Wang, Chao; Liang, Rongguang; Kong, Ming; Zhao, Jun; Mo, Linhai; Mo, Shuhui

    2017-08-01

    In the fringe-illumination deflectometry based on reverse-Hartmann-test configuration, ray tracing of the modeled testing system is performed to reconstruct the test surface error. Careful calibration of system geometry is required to achieve high testing accuracy. To realize the high-precision surface testing with reverse Hartmann test, a computer-aided geometrical error calibration method is proposed. The aberrations corresponding to various geometrical errors are studied. With the aberration weights for various geometrical errors, the computer-aided optimization of system geometry with iterative ray tracing is carried out to calibration the geometrical error, and the accuracy in the order of subnanometer is achieved.

  10. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  11. Analytical sensitivity analysis of geometric errors in a three axis machine tool

    International Nuclear Information System (INIS)

    Park, Sung Ryung; Yang, Seung Han

    2012-01-01

    In this paper, an analytical method is used to perform a sensitivity analysis of geometric errors in a three axis machine tool. First, an error synthesis model is constructed for evaluating the position volumetric error due to the geometric errors, and then an output variable is defined, such as the magnitude of the position volumetric error. Next, the global sensitivity analysis is executed using an analytical method. Finally, the sensitivity indices are calculated using the quantitative values of the geometric errors

  12. Community Learning Process: A Model of Solid Waste Reduction and Separation

    Directory of Open Access Journals (Sweden)

    Jittree Pothimamaka

    2008-07-01

    Full Text Available The main purpose of this research was to study and develop an appropriate model of waste reduction and separation in the community under the community learning process. This is a research and development (R&D study with mixed methodology consisting of four steps. Step One: Research was conducted to obtain information on solid waste disposal in Bang Sue District, Bangkok Metropolis, Thailand, employing group discussions with community members and data collection from the field. Step Two: The activities for development of the model consisted of group discussions, workshops, and development of a test of knowledge and behaviors concerning solid waste disposal using the 1A3R practice concept. Step Three : Experimentation with the model consisting of pre testing and post testing of knowledge and behaviors concerning solid waste disposal ; door to door imparting of appropriate knowledge and behaviors concerning solid waste disposal ; and collecting of data on the rate and amount of generated waste, and waste separation. Step Four: Evaluation of the developed model consisting of assessments based on physical indicators of the waste, opinions of experts, and impacts on participating communities. The findings revealed that (1 the post experiment knowledge and behavior mean scores of community members in the sample significantly increased over their pre experiment counterparts; and (2 the rate of waste generation decreased while waste separation increased. The proposed model of solid waste reduction and separation was accepted, and has four main components:(1 Community Practice: solid waste should be separated in the household into three types: food waste, marketable waste and non marketable waste must be clearly separated from household waste.(2 Knowledge sharing: door to door imparting of knowledge and behaviors on solid waste reduction and separation based on the 1A3R practice concept should be promoted.(3 Community mastery: the community organization

  13. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

    Science.gov (United States)

    Calvimontes, Alfredo

    2018-05-01

    A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

  14. A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE

    International Nuclear Information System (INIS)

    Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.

    2010-01-01

    Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.

  15. Knot soliton in DNA and geometric structure of its free-energy density.

    Science.gov (United States)

    Wang, Ying; Shi, Xuguang

    2018-03-01

    In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.

  16. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    International Nuclear Information System (INIS)

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-01-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes

  17. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    Energy Technology Data Exchange (ETDEWEB)

    Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne (Australia); Te Marvelde, Luc [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Mengersen, Kerrie [School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane (Australia); Foroudi, Farshad [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Eade, Thomas [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Northern Clinical School, University of Sydney (Australia); Pham, Daniel [Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne (Australia); Caine, Hannah [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Kron, Tomas [The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  18. A Divergence Median-based Geometric Detector with A Weighted Averaging Filter

    Science.gov (United States)

    Hua, Xiaoqiang; Cheng, Yongqiang; Li, Yubo; Wang, Hongqiang; Qin, Yuliang

    2018-01-01

    To overcome the performance degradation of the classical fast Fourier transform (FFT)-based constant false alarm rate detector with the limited sample data, a divergence median-based geometric detector on the Riemannian manifold of Heimitian positive definite matrices is proposed in this paper. In particular, an autocorrelation matrix is used to model the correlation of sample data. This method of the modeling can avoid the poor Doppler resolution as well as the energy spread of the Doppler filter banks result from the FFT. Moreover, a weighted averaging filter, conceived from the philosophy of the bilateral filtering in image denoising, is proposed and combined within the geometric detection framework. As the weighted averaging filter acts as the clutter suppression, the performance of the geometric detector is improved. Numerical experiments are given to validate the effectiveness of our proposed method.

  19. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    Science.gov (United States)

    Samadi, Reza

    Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters

  20. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  1. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  2. Process for computing geometric perturbations for probabilistic analysis

    Science.gov (United States)

    Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX

    2012-04-10

    A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.

  3. Spreadsheet Modeling of Electron Distributions in Solids

    Science.gov (United States)

    Glassy, Wingfield V.

    2006-01-01

    A series of spreadsheet modeling exercises constructed as part of a new upper-level elective course on solid state materials and surface chemistry is described. The spreadsheet exercises are developed to provide students with the opportunity to interact with the conceptual framework where the role of the density of states and the Fermi-Dirac…

  4. Microstructural model for the plasticity of amorphous solids

    NARCIS (Netherlands)

    Hütter, M.; Breemen, van L.C.A.

    2012-01-01

    Based on the concept of localized shear transformation zones (STZ), a thermodynamically consistent model for the viscoplastic deformation of amorphous solids is developed. The approach consists of a dynamic description of macroscopic viscoplasticity that is enriched by the evolution of number

  5. Geometric Generalisation of Surrogate Model-Based Optimisation to Combinatorial and Program Spaces

    Directory of Open Access Journals (Sweden)

    Yong-Hyuk Kim

    2014-01-01

    Full Text Available Surrogate models (SMs can profitably be employed, often in conjunction with evolutionary algorithms, in optimisation in which it is expensive to test candidate solutions. The spatial intuition behind SMs makes them naturally suited to continuous problems, and the only combinatorial problems that have been previously addressed are those with solutions that can be encoded as integer vectors. We show how radial basis functions can provide a generalised SM for combinatorial problems which have a geometric solution representation, through the conversion of that representation to a different metric space. This approach allows an SM to be cast in a natural way for the problem at hand, without ad hoc adaptation to a specific representation. We test this adaptation process on problems involving binary strings, permutations, and tree-based genetic programs.

  6. Agustin de Betancourt’s Wind Machine for Draining Marshy Ground: Approach to Its Geometric Modeling with Autodesk Inventor Professional

    Directory of Open Access Journals (Sweden)

    José Ignacio Rojas-Sola

    2016-12-01

    Full Text Available The present study shows the process followed in making the three-dimensional model and geometric documentation of a historical invention of the renowned Spanish engineer Agustin de Betancourt y Molina, which forms part of his rich legacy. Specifically, this was a wind machine for draining marshy ground, designed in 1789. The present research relies on the computer-aided design (CAD techniques using Autodesk Inventor Professional software, based on the scant information provided by the only two drawings of the machine, making it necessary to propose a number of dimensional and geometric hypotheses as well as a series of movement restrictions (degrees of freedom, to arrive at a consistent design. The results offer a functional design for this historic invention.

  7. On unified field theories, dynamical torsion and geometrical models: II

    International Nuclear Information System (INIS)

    Cirilo-Lombardo, D.J.

    2011-01-01

    We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion

  8. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  9. Inflation and dark energy arising from geometrical tachyons

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2006-01-01

    We study the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical setup. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of cosmic microwave background due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by cosmic microwave background anisotropies. However, the geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field

  10. Geometric Algorithms for Part Orienting and Probing

    NARCIS (Netherlands)

    Panahi, F.

    2015-01-01

    In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in

  11. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...... such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been...

  12. Geometrical study of phyllotactic patterns by Bernoulli spiral lattices.

    Science.gov (United States)

    Sushida, Takamichi; Yamagishi, Yoshikazu

    2017-06-01

    Geometrical studies of phyllotactic patterns deal with the centric or cylindrical models produced by ideal lattices. van Iterson (Mathematische und mikroskopisch - anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Verlag von Gustav Fischer, Jena, 1907) suggested a centric model representing ideal phyllotactic patterns as disk packings of Bernoulli spiral lattices and presented a phase diagram now called Van Iterson's diagram explaining the bifurcation processes of their combinatorial structures. Geometrical properties on disk packings were shown by Rothen & Koch (J. Phys France, 50(13), 1603-1621, 1989). In contrast, as another centric model, we organized a mathematical framework of Voronoi tilings of Bernoulli spiral lattices and showed mathematically that the phase diagram of a Voronoi tiling is graph-theoretically dual to Van Iterson's diagram. This paper gives a review of two centric models for disk packings and Voronoi tilings of Bernoulli spiral lattices. © 2017 Japanese Society of Developmental Biologists.

  13. Geometric database maintenance using CCTV cameras and overlay graphics

    Science.gov (United States)

    Oxenberg, Sheldon C.; Landell, B. Patrick; Kan, Edwin

    1988-01-01

    An interactive graphics system using closed circuit television (CCTV) cameras for remote verification and maintenance of a geometric world model database has been demonstrated in GE's telerobotics testbed. The database provides geometric models and locations of objects viewed by CCTV cameras and manipulated by telerobots. To update the database, an operator uses the interactive graphics system to superimpose a wireframe line drawing of an object with known dimensions on a live video scene containing that object. The methodology used is multipoint positioning to easily superimpose a wireframe graphic on the CCTV image of an object in the work scene. An enhanced version of GE's interactive graphics system will provide the object designation function for the operator control station of the Jet Propulsion Laboratory's telerobot demonstration system.

  14. Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.

    Science.gov (United States)

    Kutzner, R; Brombach, H; Geiger, W F

    2007-01-01

    Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!

  15. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    International Nuclear Information System (INIS)

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-01-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models. (paper)

  16. Revisiting low-fidelity two-fluid models for gas–solids transport

    Energy Technology Data Exchange (ETDEWEB)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    2016-08-15

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  17. Revisiting low-fidelity two-fluid models for gas–solids transport

    International Nuclear Information System (INIS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-01-01

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  18. Revisiting low-fidelity two-fluid models for gas-solids transport

    Science.gov (United States)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  19. The investigation of platonic solids symmetry operations with clifford algebra

    International Nuclear Information System (INIS)

    Kilic, A.

    2005-01-01

    The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated

  20. Decision support models for solid waste management: Review and game-theoretic approaches

    International Nuclear Information System (INIS)

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-01-01

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed

  1. Decision support models for solid waste management: Review and game-theoretic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece); Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence (Greece); Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece)

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  2. Topological charge on the lattice: a field theoretical view of the geometrical approach

    International Nuclear Information System (INIS)

    Rastelli, L.; Rossi, P.; Vicari, E.

    1997-01-01

    We construct sequences of ''field theoretical'' lattice topological charge density operators which formally approach geometrical definitions in 2D CP N-1 models and 4D SU(N) Yang-Mills theories. The analysis of these sequences of operators suggests a new way of looking at the geometrical method, showing that geometrical charges can be interpreted as limits of sequences of field theoretical (analytical) operators. In perturbation theory, renormalization effects formally tend to vanish along such sequences. But, since the perturbative expansion is asymptotic, this does not necessarily lead to well-behaved geometrical limits. It indeed leaves open the possibility that non-perturbative renormalizations survive. (orig.)

  3. Effect of variation of geometric parameters on the flow within a synthetic models of lower human airways

    Science.gov (United States)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2017-11-01

    The effects of variation of two geometric parameters, such as bifurcation angle and carina rounding radius, during the respiratory inhalation process, are studied numerically using two synthetic models of lower human airways. Laminar flow simulations were performed for six angles and three rounding radius, for 500, 1000, 1500 and 2000 for Reynolds numbers. Numerical results showed the existence of a direct relationship between the deformation of the velocity profiles (effect produced by the bifurcation) and the vortical structures observed through the secondary flow patterns. It is observed that the location of the vortices (and their related saddle point) is associated with the displacement of the velocity peak. On the other hand, increasing the angle and the rounding radius seems to bring about a growth of the pressure drop, which in turn displaces the distribution and peaks of the maximum shear stresses of the carina, that is, of the bifurcation point. Some physiological effects associated with the phenomena produced by these geometric variations are also discussed.

  4. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    Science.gov (United States)

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  5. Neuro-fuzzy model for estimating race and gender from geometric distances of human face across pose

    Science.gov (United States)

    Nanaa, K.; Rahman, M. N. A.; Rizon, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Classifying human face based on race and gender is a vital process in face recognition. It contributes to an index database and eases 3D synthesis of the human face. Identifying race and gender based on intrinsic factor is problematic, which is more fitting to utilizing nonlinear model for estimating process. In this paper, we aim to estimate race and gender in varied head pose. For this purpose, we collect dataset from PICS and CAS-PEAL databases, detect the landmarks and rotate them to the frontal pose. After geometric distances are calculated, all of distance values will be normalized. Implementation is carried out by using Neural Network Model and Fuzzy Logic Model. These models are combined by using Adaptive Neuro-Fuzzy Model. The experimental results showed that the optimization of address fuzzy membership. Model gives a better assessment rate and found that estimating race contributing to a more accurate gender assessment.

  6. Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking

    Directory of Open Access Journals (Sweden)

    Shengjun Tang

    2018-05-01

    Full Text Available Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.

  7. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Së ma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating

  8. Development and implementation of computational geometric model for simulation of plate type fuel fabrication process with microspheres dispersed in metallic matrix

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Reis, Sergio C.; Braga, Daniel M.; Santos, Armindo; Ferraz, Wilmar B.

    2005-01-01

    In this report it is presented the development of a geometric model to simulate the plate type fuel fabrication process with fuels microspheres dispersed in metallic matrix, as well as its software implementation. The developed geometric model encloses the steps of pellets pressing and sintering, as well as the plate rolling passes. The model permits the simulation of structures, where the values of the various variables of the fabrication processes can be studied and modified. The following variables were analyzed: microspheres diameters, density of the powder/microspheres mixing, microspheres density, fuel volume fraction, sintering densification, and rolling passes number. In the model implementation, which was codified in DELPHI programming language, systems of structured analysis techniques were utilized. The structures simulated were visualized utilizing the AutoCAD applicative, what permitted to obtain planes sections in diverse directions. The objective of this model is to enable the analysis of the simulated structures and supply information that can help in the improvement of the dispersion microspheres fuel plates fabrication process, now in development at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) in cooperation with the CTMSP (Centro Tecnologico da Marinha em Sao Paulo). (author)

  9. Comparison of the effect of annular and solid electron beams on linear and nonlinear traveling wave tube

    Directory of Open Access Journals (Sweden)

    F. Sheykhe

    Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix

  10. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  11. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  12. The Most Common Geometric and Semantic Errors in CityGML Datasets

    Science.gov (United States)

    Biljecki, F.; Ledoux, H.; Du, X.; Stoter, J.; Soon, K. H.; Khoo, V. H. S.

    2016-10-01

    To be used as input in most simulation and modelling software, 3D city models should be geometrically and topologically valid, and semantically rich. We investigate in this paper what is the quality of currently available CityGML datasets, i.e. we validate the geometry/topology of the 3D primitives (Solid and MultiSurface), and we validate whether the semantics of the boundary surfaces of buildings is correct or not. We have analysed all the CityGML datasets we could find, both from portals of cities and on different websites, plus a few that were made available to us. We have thus validated 40M surfaces in 16M 3D primitives and 3.6M buildings found in 37 CityGML datasets originating from 9 countries, and produced by several companies with diverse software and acquisition techniques. The results indicate that CityGML datasets without errors are rare, and those that are nearly valid are mostly simple LOD1 models. We report on the most common errors we have found, and analyse them. One main observation is that many of these errors could be automatically fixed or prevented with simple modifications to the modelling software. Our principal aim is to highlight the most common errors so that these are not repeated in the future. We hope that our paper and the open-source software we have developed will help raise awareness for data quality among data providers and 3D GIS software producers.

  13. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania

    1987-01-01

    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  14. Geometrical analysis of cytochrome c unfolding

    Science.gov (United States)

    Urie, Kristopher G.; Pletneva, Ekaterina; Gray, Harry B.; Winkler, Jay R.; Kozak, John J.

    2011-01-01

    A geometrical model has been developed to study the unfolding of iso-1 cytochrome c. The model draws on the crystallographic data reported for this protein. These data were used to calculate the distance between specific residues in the folded state, and in a sequence of extended states defined by n = 3, 5, 7, 9, 11, 13, and 15 residue units. Exact calculations carried out for each of the 103 residues in the polypeptide chain demonstrate that different regions of the chain have different unfolding histories. Regions where there is a persistence of compact structures can be identified, and this geometrical characterization is fully consistent with analyses of time-resolved fluorescence energy-transfer (TrFET) data using dansyl-derivatized cysteine side-chain probes at positions 39, 50, 66, 85, and 99. The calculations were carried out assuming that different regions of the polypeptide chain unfold synchronously. To test this assumption, lattice Monte Carlo simulations were performed to study systematically the possible importance of asynchronicity. Calculations show that small departures from synchronous dynamics can arise if displacements of residues in the main body of the chain are much more sluggish than near-terminal residues.

  15. Expression of the degree of polarization based on the geometrical optics pBRDF model.

    Science.gov (United States)

    Wang, Kai; Zhu, Jingping; Liu, Hong; Du, Bingzheng

    2017-02-01

    An expression of the degree of polarization (DOP) based on the geometrical optics polarimetric bidirectional reflectance distribution function model is presented. In this expression, the DOP is related to the surface roughness and decreases at different reflection angles because diffuse reflection is taken into consideration. A shadowing/masking function introduced into the specular reflection expression makes the DOP values decrease as the angle of incidence or observation approaches grazing. Different kinds of materials were measured to validate the accuracy of this DOP expression. The measured results suggest that the errors of the DOP are reduced significantly, and the polarized reflection characteristics can be described more reasonably and accurately.

  16. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect

    International Nuclear Information System (INIS)

    Song, William; Battista, Jerry; Van Dyk, Jake

    2004-01-01

    The convolution method can be used to model the effect of random geometric uncertainties into planned dose distributions used in radiation treatment planning. This is effectively done by linearly adding infinitesimally small doses, each with a particular geometric offset, over an assumed infinite number of fractions. However, this process inherently ignores the radiobiological dose-per-fraction effect since only the summed physical dose distribution is generated. The resultant potential error on predicted radiobiological outcome [quantified in this work with tumor control probability (TCP), equivalent uniform dose (EUD), normal tissue complication probability (NTCP), and generalized equivalent uniform dose (gEUD)] has yet to be thoroughly quantified. In this work, the results of a Monte Carlo simulation of geometric displacements are compared to those of the convolution method for random geometric uncertainties of 0, 1, 2, 3, 4, and 5 mm (standard deviation). The α/β CTV ratios of 0.8, 1.5, 3, 5, and 10 Gy are used to represent the range of radiation responses for different tumors, whereas a single α/β OAR ratio of 3 Gy is used to represent all the organs at risk (OAR). The analysis is performed on a four-field prostate treatment plan of 18 MV x rays. The fraction numbers are varied from 1-50, with isoeffective adjustments of the corresponding dose-per-fractions to maintain a constant tumor control, using the linear-quadratic cell survival model. The average differences in TCP and EUD of the target, and in NTCP and gEUD of the OAR calculated from the convolution and Monte Carlo methods reduced asymptotically as the total fraction number increased, with the differences reaching negligible levels beyond the treatment fraction number of ≥20. The convolution method generally overestimates the radiobiological indices, as compared to the Monte Carlo method, for the target volume, and underestimates those for the OAR. These effects are interconnected and attributed

  17. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  18. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  19. Geometrical approach to tumor growth

    OpenAIRE

    Escudero, Carlos

    2006-01-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...

  20. Analysis of a solid desiccant cooling system with indirect evaporative cooling

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo

    investigates the performance of a solid desiccant cooling system implementing in-direct evaporative cooling processes. The aim is to quantify the system thermal and electrical performance for varying component dimensions and operating conditions, and to identify its range of applicability. This information...... evaporative cooler. Detailed steady state numerical models are developed and implemented in MATLAB. The models need to be accurate and require low computational effort, for analysing the internal heat and mass transfer processes, as well as carrying out repetitive design and optimization simulations......-to-air heat exchanger for enhancing cooling capacity and thermal performance. The system perfor-mance is investigated considering regeneration temperatures between 50 ºC and 90 ºC, which enable low temperature heat sources, such as solar energy or waste heat, to be used. The effects of several geometrical...

  1. Modelling of fluid-solid interaction using two stand-alone codes

    CSIR Research Space (South Africa)

    Grobler, Jan H

    2010-01-01

    Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...

  2. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  3. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  4. Computer-aided design model for anaerobic-phased-solids digester system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Zhang, R. [University of California, Davis, CA (United States); Tiangco, V. [California Energy Commission, Sacramento, CA (United States)

    1999-07-01

    The anaerobic-phased-solids (APS) digester system is a newly developed anaerobic digestion system for converting solid wastes, such as crop residues and food wastes, into biogas for power and heat generation. A computer-aided engineering design model has been developed to design the APS-digester system and study the heat transfer from the reactors and energy production of the system. Simulation results of a case study are presented by using the model to predict the heating energy requirement and biogas energy production for anaerobic digestion of garlic waste. The important factors, such as environmental conditions, insulation properties, and characteristics of the wastes, on net energy production are also investigated. (author)

  5. Geometric Potential Assessment for ZY3-02 Triple Linear Array Imagery

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2017-06-01

    Full Text Available ZiYuan3-02 (ZY3-02 is the first remote sensing satellite for the development of China’s civil space infrastructure (CCSI and the second satellite in the ZiYuan3 series; it was launched successfully on 30 May 2016, aboard the CZ-4B rocket at the Taiyuan Satellite Launch Center (TSLC in China. Core payloads of ZY3-02 include a triple linear array camera (TLC and a multi-spectral camera, and this equipment will be used to acquire space geographic information with high-resolution and stereoscopic observations. Geometric quality is a key factor that affects the performance and potential of satellite imagery. For the purpose of evaluating comprehensively the geometric potential of ZY3-02, this paper introduces the method used for geometric calibration of the TLC onboard the satellite and a model for sensor corrected (SC products that serve as basic products delivered to users. Evaluation work was conducted by making a full assessment of the geometric performance. Furthermore, images of six regions and corresponding reference data were collected to implement the geometric calibration technique and evaluate the resulting geometric accuracy. Experimental results showed that the direct location performance and internal accuracy of SC products increased remarkably after calibration, and the planimetric and vertical accuracies with relatively few ground control points (GCPs were demonstrated to be better than 2.5 m and 2 m, respectively. Additionally, the derived digital surface model (DSM accuracy was better than 3 m (RMSE for flat terrain and 5 m (RMSE for mountainous terrain. However, given that several variations such as changes in the thermal environment can alter the camera’s installation angle, geometric performance will vary with the geographical location and imaging time changes. Generally, ZY3-02 can be used for 1:50,000 stereo mapping and can produce (and update larger-scale basic geographic information products.

  6. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  7. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  8. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  9. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  10. Solid waste integrated cost analysis model: 1991 project year report. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The purpose of the City of Houston`s 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA`s Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  11. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    Science.gov (United States)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the

  12. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  13. A simple model for low energy ion-solid interactions

    International Nuclear Information System (INIS)

    Mohajerzadeh, S.; Selvakumar, C.R.

    1997-01-01

    A simple analytical model for ion-solid interactions, suitable for low energy beam depositions, is reported. An approximation for the nuclear stopping power is used to obtain the analytic solution for the deposited energy in the solid. The ratio of the deposited energy in the bulk to the energy deposited in the surface yields a ceiling for the beam energy above which more defects are generated in the bulk resulting in defective films. The numerical evaluations agree with the existing results in the literature. copyright 1997 American Institute of Physics

  14. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    Science.gov (United States)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  15. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.; Pottmann, Helmut

    2011-01-01

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area

  16. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  17. Reduced order modeling, statistical analysis and system identification for a bladed rotor with geometric mistuning

    Science.gov (United States)

    Vishwakarma, Vinod

    Modified Modal Domain Analysis (MMDA) is a novel method for the development of a reduced-order model (ROM) of a bladed rotor. This method utilizes proper orthogonal decomposition (POD) of Coordinate Measurement Machine (CMM) data of blades' geometries and sector analyses using ANSYS. For the first time ROM of a geometrically mistuned industrial scale rotor (Transonic rotor) with large size of Finite Element (FE) model is generated using MMDA. Two methods for estimating mass and stiffness mistuning matrices are used a) exact computation from sector FE analysis, b) estimates based on POD mistuning parameters. Modal characteristics such as mistuned natural frequencies, mode shapes and forced harmonic response are obtained from ROM for various cases, and results are compared with full rotor ANSYS analysis and other ROM methods such as Subset of Nominal Modes (SNM) and Fundamental Model of Mistuning (FMM). Accuracy of MMDA ROM is demonstrated with variations in number of POD features and geometric mistuning parameters. It is shown for the aforementioned case b) that the high accuracy of ROM studied in previous work with Academic rotor does not directly translate to the Transonic rotor. Reasons for such mismatch in results are investigated and attributed to higher mistuning in Transonic rotor. Alternate solutions such as estimation of sensitivities via least squares, and interpolation of mass and stiffness matrices on manifolds are developed, and their results are discussed. Statistics such as mean and standard deviations of forced harmonic response peak amplitude are obtained from random permutations, and are shown to have similar results as those of Monte Carlo simulations. These statistics are obtained and compared for 3 degree of freedom (DOF) lumped parameter model (LPM) of rotor, Academic rotor and Transonic rotor. A state -- estimator based on MMDA ROM and Kalman filter is also developed for offline or online estimation of harmonic forcing function from

  18. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  19. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    Science.gov (United States)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  20. Geometric phase modulation for stellar interferometry

    International Nuclear Information System (INIS)

    Roy, M.; Boschung, B.; Tango, W.J.; Davis, J.

    2002-01-01

    Full text: In a long baseline optical interferometer, the fringe visibility is normally measured by modulation of the optical path difference between the two arms of the instruments. To obtain accurate measurements, the spectral bandwidth must be narrow, limiting the sensitivity of the technique. The application of geometric phase modulation technique to stellar interferometry has been proposed by Tango and Davis. Modulation of the geometric phase has the potential for improving the sensitivity of optical interferometers, and specially the Sydney University Stellar Interferometer (SUSI), by allowing broad band modulation of the light signals. This is because a modulator that changes the geometric phase of the signal is, in principle, achromatic. Another advantage of using such a phase modulator is that it can be placed in the common path traversed by the two orthogonally polarized beams emerging from the beam combiner in a stellar interferometer. Thus the optical components of the modulator do not have to be interferometric quality and could be relatively easily introduced into SUSI. We have investigated the proposed application in a laboratory-based experiment using a Mach-Zehnder interferometer with white-light source. This can be seen as a small model of an amplitude stellar interferometer where the light source takes the place of the distant star and two corner mirrors replaces the entrance pupils of the stellar interferometer

  1. Geometric treatment of conduction electron scattering by crystal lattice strains and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Koushik, E-mail: kviswana@purdue.edu [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States); Chandrasekar, Srinivasan [Center for Materials Processing and Tribology, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-12-28

    The problem of conduction electron scattering by inhomogeneous crystal lattice strains is addressed using a tight-binding formalism and the differential geometric treatment of deformations in solids. In this approach, the relative positions of neighboring atoms in a strained lattice are naturally taken into account, even in the presence of crystal dislocations, resulting in a fully covariant Schrödinger equation in the continuum limit. Unlike previous work, the developed formalism is applicable to cases involving purely elastic strains as well as discrete and continuous distributions of dislocations—in the latter two cases, it clearly demarcates the effects of the dislocation strain field and core. It also differentiates between elastic and plastic strain contributions, respectively. The electrical resistivity due to the strain field of edge dislocations is then evaluated and the resulting numerical estimate for Cu shows good agreement with reported experimental values. This indicates that the electrical resistivity of edge dislocations in metals is not entirely due to the core, contrary to current models. Application to the study of strain effects in constrained quantum systems is also discussed.

  2. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregul...... 2-D waves. On the basis of the first part of these tests an exponential overtopping expression for a linear slope, including the effect of limited draught and varying slope angle, is presented. The plans for further tests with other slope geometries are described....

  3. Parametric FEM for geometric biomembranes

    Science.gov (United States)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  4. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon ...

  5. Operational geometric phase for mixed quantum states

    International Nuclear Information System (INIS)

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  6. Space modeling with SolidWorks and NX

    CERN Document Server

    Duhovnik, Jože; Drešar, Primož

    2015-01-01

    Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space – a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while SolidWorks or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric, and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free fo...

  7. Anterior, posterior, left anterior oblique, and geometric mean views in gastric emptying studies using a glucose solution

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.T. [Dept. of Radiology, Univ. of Texas Health Science Center, San Antonio, TX (United States); McMahan, C.A. [Dept. of Pathology, Univ. of Texas Health Science Center, San Antonio, TX (United States); Lasher, J.C. [Dept. of Radiology, Univ. of Texas Health Science Center, San Antonio, TX (United States); Blumhardt, M.R. [Dept. of Pathology, Univ. of Texas Health Science Center, San Antonio, TX (United States); Schwartz, J.G. [Dept. of Pathology, Univ. of Texas Health Science Center, San Antonio, TX (United States)

    1995-02-01

    Previous research has shown that the single anterior view of the stomach overestimates the gastric half-emptying time of a solid meal compared to the geometric mean of the anterior and posterior views. Little research has been performed comparing the various views of gastric emptying of a glucose solution. After an overnight fast, 49 nondiabetic subjects were given a 450 ml solution containing 50 g of glucose and 200 {mu}Ci of technetium-99m sulfur colloid. Sequential 1-min anterior, posterior, and left anterior oblique views were obtained every 15 min. The mean percent solution remaining in the stomach for all three views differed from the geometric mean by 1.9% or less at all time points. Average gastric half-emptying times were: geometric mean, 62.7{+-}3.3 min; anterior, 61.9{+-}3.2 min; posterior, 63.5{+-}3.5 min; and left anterior oblique, 61.6{+-}3.3 min. These half-emptying times were not statistically different. For individual patients, differences between all three views and the geometric mean were not clinically important. Approximately 95% of all patients are expected to have gastric half-emptying times measured by any of the three single views within 17 min of the gastric half-emptying time obtained using the geometric mean. The imaging of gastric emptying using glucose solutions can be performed using a convenient single view which allows continuous dynamic imaging. (orig.)

  8. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  9. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  10. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Directory of Open Access Journals (Sweden)

    Elmira Shamshiry

    2011-01-01

    Full Text Available The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  11. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    Science.gov (United States)

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  12. The Geometric Nonlinear Generalized Brazier Effect

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars

    2016-01-01

    that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... mainly are in the direction of the beam axis. The generalized Brazier effect is calculated as a linear load case based on these stresses....

  13. Geometrical factors in the perception of sacredness

    DEFF Research Database (Denmark)

    Costa, Marco; Bonetti, Leonardo

    2016-01-01

    Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....

  14. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    Science.gov (United States)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  15. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

    Science.gov (United States)

    Waldner, Peter

    2017-08-01

    All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

  16. Curcumin-Artemisinin Coamorphous Solid: Xenograft Model Preclinical Study

    Directory of Open Access Journals (Sweden)

    M. K. Chaitanya Mannava

    2018-01-01

    Full Text Available Curcumin is a natural compound present in Indian spice turmeric. It has diverse pharmacological action but low oral solubility and bioavailability continue to limit its use as a drug. With the aim of improving the bioavailability of Curcumin (CUR, we evaluated Curcumin-Pyrogallol (CUR-PYR cocrystal and Curcumin-Artemisinin (CUR-ART coamorphous solid. Both of these solid forms exhibited superior dissolution and pharmacokinetic behavior compared to pure CUR, which is practically insoluble in water. CUR-ART coamorphous solid showed two fold higher bioavailability than CUR-PYR cocrystal (at 200 mg/kg oral dose. Moreover, in simulated gastric and intestinal fluids (SGF and SIF, CUR-ART is stable up to 3 and 12 h, respectively. In addition, CUR-PYR and CUR-ART showed no adverse effects in toxicology studies (10 times higher dose at 2000 mg/kg. CUR-ART showed higher therapeutic effect and inhibited approximately 62% of tumor growth at 100 mg/kg oral dosage of CUR in xenograft models, which is equal to the positive control drug, doxorubicin (2 mg/kg by i.v. administration.

  17. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  18. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  19. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  20. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  1. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  2. Experimental Characterisation and Modelling of Homogeneous Solid Suspension in an Industrial Stirred Tank

    Directory of Open Access Journals (Sweden)

    Sébastien Calvo

    2013-01-01

    Full Text Available In this work, we study the conditions needed to reach homogeneous distribution of aluminium salts particles in water inside a torispherical bottom shaped stirred tank of 70 L equipped with a Pfaudler RCI type impeller and three equispaced vertical baffles. The aim of the present study is to develop a CFD model describing the quality of particle distribution in industrial scale tanks. This model, validated with experimental data, is used afterwards to develop scale-up and scale-down correlations to predict the minimum impeller speed needed to reach homogeneous solid distribution Nhs. The commercial CFD software Fluent 14 is used to model the fluid flow and the solid particle distribution in the tank. Sliding Mesh approach is used to take the impeller motion into account. Assuming that the discrete solid phase has no influence on the continuous liquid phase behaviour, the fluid flow dynamics is simulated independently using the well-known k-∊ turbulence model. The liquid-solid mixture behaviour is then described by implementing the Eulerian Mixture model. Computed liquid velocity fields are validated by comparison with PIV measurements. Computed Nhs were found to be in good agreement with experimental measurements. Results from different scales allowed correlating Nhs values to the volumetric power consumption.

  3. Co-digestion of solid waste: Towards a simple model to predict methane production.

    Science.gov (United States)

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  5. Origin of parameter degeneracy and molecular shape relationships in geometric-flow calculations of solvation free energies

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Michael D. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Chun, Jaehun [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Heredia-Langner, Alejandro [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wei, Guowei [Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (United States); Baker, Nathan A. [Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2013-11-28

    Implicit solvent models are important tools for calculating solvation free energies for chemical and biophysical studies since they require fewer computational resources but can achieve accuracy comparable to that of explicit-solvent models. In past papers, geometric flow-based solvation models have been established for solvation analysis of small and large compounds. In the present work, the use of realistic experiment-based parameter choices for the geometric flow models is studied. We find that the experimental parameters of solvent internal pressure p = 172 MPa and surface tension γ = 72 mN/m produce solvation free energies within 1 RT of the global minimum root-mean-squared deviation from experimental data over the expanded set. Our results demonstrate that experimental values can be used for geometric flow solvent model parameters, thus eliminating the need for additional parameterization. We also examine the correlations between optimal values of p and γ which are strongly anti-correlated. Geometric analysis of the small molecule test set shows that these results are inter-connected with an approximately linear relationship between area and volume in the range of molecular sizes spanned by the data set. In spite of this considerable degeneracy between the surface tension and pressure terms in the model, both terms are important for the broader applicability of the model.

  6. Modelling of interactions between variable mass and density solid particles and swirling gas stream

    International Nuclear Information System (INIS)

    Wardach-Święcicka, I; Kardaś, D; Pozorski, J

    2011-01-01

    The aim of this work is to investigate the solid particles - gas interactions. For this purpose, numerical modelling was carried out by means of a commercial code for simulations of two-phase dispersed flows with the in-house models accounting for mass and density change of solid phase. In the studied case the particles are treated as spherical moving grains carried by a swirling stream of hot gases. Due to the heat and mass transfer between gas and solid phase, the particles are losing their mass and they are changing their volume. Numerical simulations were performed for turbulent regime, using two methods for turbulence modelling: RANS and LES.

  7. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  8. Geometric Semantic Genetic Programming Algorithm and Slump Prediction

    OpenAIRE

    Xu, Juncai; Shen, Zhenzhong; Ren, Qingwen; Xie, Xin; Yang, Zhengyu

    2017-01-01

    Research on the performance of recycled concrete as building material in the current world is an important subject. Given the complex composition of recycled concrete, conventional methods for forecasting slump scarcely obtain satisfactory results. Based on theory of nonlinear prediction method, we propose a recycled concrete slump prediction model based on geometric semantic genetic programming (GSGP) and combined it with recycled concrete features. Tests show that the model can accurately p...

  9. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng

    2015-07-16

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  10. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2015-01-01

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton's method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  11. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  12. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches

    Science.gov (United States)

    Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.

    2017-12-01

    Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.

  13. Coated sphere scattering by geometric optics approximation.

    Science.gov (United States)

    Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang

    2014-10-01

    A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.

  14. Three-dimensional geometric simulations of random anisotropic growth during transformation phenomena

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner; Rios, P.R.; Vandermeer, Roy Allen

    2008-01-01

    In this paper, the effects of anisotropic growth during transformation processes are investigated by geometric simulations of randomly oriented shape preserved ellipsoids in three dimensions and the applicability of idealized models are tested. Surprisingly, the results show that the models can...

  15. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  16. Modelling of air flows in pleated filters and of their clogging by solid particles; Modelisation des ecoulements d'air et du colmatage des filtres plisses par des aerosols solides

    Energy Technology Data Exchange (ETDEWEB)

    Del Fabbro, L

    2002-07-01

    The devices of air cleaning against particles are widely spread in various branches of industry: nuclear, motor, food, electronic,...; among these devices, numerous are constituted by pleated porous media to increase the surface of filtration and thus to reduce the pressure drop, for given air flow. The objective of our work is to compensate a lack evident of knowledge on the evolution of the pressure drop of pleated filter during the clogging and to deduct a modelling from it, on the basis of experiments concerning industrial filters of nuclear and car types. The obtained model is a function of characteristics of the filtering medium and pleats, of the characteristics of solid particles deposited on the filter, of the mass of particles and of the aeraulic conditions of air flow. It also depends on data on the clogging of flat filters of equivalent medium. To elaborate this model of pressure drop, an initial stage was carried out in order to characterize, experimentally and numerically, the pressure drop and the distribution of air flow in clean pleated filters of nuclear (high efficiency particulate air filter, in fiberglasses) and car (mean efficiency filter, in fibers of cellulose) types. The numerical model allowed to understand the fundamental role played by the aeraulic resistance of the filtering medium. From an non-dimensional approach, we established a semi-empirical model of pressure drop for a clean pleated filter valid for both studied types of medium; this model is used of first base for the development of the final model of clogging. The study of the clogging of the filters showed the complexity of the phenomenon dependent mainly on a reduction of the surface of filtration. This observation brings us to propose a clogging of pleated filters in three phases. Both first phases are similar in those observed for flat filters, while last phase corresponds to a reduction of the surface of filtration and leads a strong increase of the filter pressure drop

  17. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  18. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  19. Performance Assessment and Geometric Calibration of RESOURCESAT-2

    Science.gov (United States)

    Radhadevi, P. V.; Solanki, S. S.; Akilan, A.; Jyothi, M. V.; Nagasubramanian, V.

    2016-06-01

    Resourcesat-2 (RS-2) has successfully completed five years of operations in its orbit. This satellite has multi-resolution and multi-spectral capabilities in a single platform. A continuous and autonomous co-registration, geo-location and radiometric calibration of image data from different sensors with widely varying view angles and resolution was one of the challenges of RS-2 data processing. On-orbit geometric performance of RS-2 sensors has been widely assessed and calibrated during the initial phase operations. Since then, as an ongoing activity, various geometric performance data are being generated periodically. This is performed with sites of dense ground control points (GCPs). These parameters are correlated to the direct geo-location accuracy of the RS-2 sensors and are monitored and validated to maintain the performance. This paper brings out the geometric accuracy assessment, calibration and validation done for about 500 datasets of RS-2. The objectives of this study are to ensure the best absolute and relative location accuracy of different cameras, location performance with payload steering and co-registration of multiple bands. This is done using a viewing geometry model, given ephemeris and attitude data, precise camera geometry and datum transformation. In the model, the forward and reverse transformations between the coordinate systems associated with the focal plane, payload, body, orbit and ground are rigorously and explicitly defined. System level tests using comparisons to ground check points have validated the operational geo-location accuracy performance and the stability of the calibration parameters.

  20. Reconstruction of the spatial dependence of dielectric and geometrical properties of adhesively bonded structures

    International Nuclear Information System (INIS)

    Mackay, C; Hayward, D; Mulholland, A J; McKee, S; Pethrick, R A

    2005-01-01

    An inverse problem motivated by the nondestructive testing of adhesively bonded structures used in the aircraft industry is studied. Using transmission line theory, a model is developed which, when supplied with electrical and geometrical parameters, accurately predicts the reflection coefficient associated with such structures. Particular attention is paid to modelling the connection between the structures and the equipment used to measure the reflection coefficient. The inverse problem is then studied and an optimization approach employed to recover these electrical and geometrical parameters from experimentally obtained data. In particular the approach focuses on the recovery of spatially varying geometrical parameters as this is paramount to the successful reconstruction of electrical parameters. Reconstructions of structure geometry using this method are found to be in close agreement with experimental observations