WorldWideScience

Sample records for solid earth oceans

  1. Magnetic Fields Induced in the Solid Earth and Oceans

    DEFF Research Database (Denmark)

    Kuvshinov, Alexei; Olsen, Nils

    , utilizing realistic 3-D conductivity models of the oceans, crust and mantle. In addition to these improvements in the prediction of 3-D induction effects, much attention has been paid to identifying magnetic signals of oceanic origin in observatory and satellite data. During the talk we will present...

  2. Inversion of Solid Earth's Varying Shape 2: Using Self-Consistency to Infer Static Ocean Topography

    Science.gov (United States)

    Blewitt, G.; Clarke, P. J.

    2002-12-01

    We have developed a spectral approach to invert for the redistribution of mass on the Earth's surface given precise global geodetic measurements of the solid Earth's geometrical shape. We used the elastic load Love number formalism to characterize the redistributed mass as a spherical harmonic expansion, truncated at some degree and order n. [Clarke and Blewitt, this meeting]. Here we incorporate the additional physical constraint that the sea surface in hydrostatic equilibrium corresponds to an equipotential surface, to infer the non-steric component of static ocean topography. Our model rigorously accounts for self-gravitation of the ocean, continental surface mass, and the deformed solid Earth, such that the sea surface adopts a new equipotential surface consistent with ocean-land mass exchange, deformation of the geoid, deformation of the sea floor, and the geographical configuration of the oceans and continents. We develop a self-consistent spectral inversion method to solve for the distribution of continental surface mass that would generate geographic variations in relative mean sea level such that the total (ocean plus continental) mass distribution agrees with the original geodetic estimates to degree and order n. We apply this theory to study the contribution of seasonal inter-hemispheric (degree-1) mass transfer to seasonal variation in static ocean topography, using a published empirical seasonal model for degree-1 surface loading derived using GPS coordinate time series from the global IGS network [Blewitt et al., Science 294, 2,342-2,345, 2001]. The resulting predictions of seasonal variations of relative sea level strongly depend on location, with peak variations ranging from 3 mm to 19 mm. The largest peak variations are predicted in mid-August around Antarctica and the southern hemisphere in general; the lowest variations are predicted in the northern hemisphere. Corresponding maximum continental loading occurs in Canada and Siberia at the water

  3. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    Science.gov (United States)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  4. The Solid Earth

    Science.gov (United States)

    Fowler, C. M. R.

    2005-02-01

    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  5. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  6. Dynamics of a Snowball Earth ocean.

    Science.gov (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-07

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  7. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  8. Ocean heat content and Earth's radiation imbalance

    International Nuclear Information System (INIS)

    Douglass, David H.; Knox, Robert S.

    2009-01-01

    Earth's radiation imbalance is determined from ocean heat content data and compared with results of direct measurements. Distinct time intervals of alternating positive and negative values are found: 1960-mid-1970s (-0.15), mid-1970s-2000 (+0.15), 2001-present (-0.2 W/m 2 ), and are consistent with prior reports. These climate shifts limit climate predictability.

  9. Impact on the earth, ocean and atmosphere

    International Nuclear Information System (INIS)

    Ahrens, T.J.; O'Keefe, J.D.

    1987-01-01

    Several hundred impact craters produced historically and at times as early as 1.9 x 10/sup 9/ years ago with diameters in the range 10/sup -2/ to 10/sup 2/ km are observed on the surface of the earth. Earth-based and spacecraft observations of the surfaces of all the terrestrial planets and their satellites, as well as many of the icy satellites of the outer planets, indicated that impact cratering was a dominant process on planetary surfaces during the early history of the solar system. Moreover, the recent observation of a circumstellar disk around the nearby star, β-Pictoris, appears to be similar to the authors' own hypothesized protosolar disk. A disk of material around our sun has been hypothesized to have been the source of the solid planetesimals from which the earth and the other planets accreted by infall and capture. Thus it appears that the earth and the other terrestrial planets formed as a result of infall and impact of planetesimals. Although the present planets grew rapidly via accretion to their present size (in --10/sup 7/ years), meteorite impacts continue to occur on the earth and other planets. Until recently meteorite impact has been considered to be a process that was important on the earth and the other planets only early in the history of the solar system. This is no longer true. The Alvarez hypothesis suggests that the extinction of some 90% of all species, including 17 classes of dinosaurs, is associated with the 1 to 150 cm thick layer of noble-element rich dust which is found all over the earth exactly at the Cretaceous-Tertiary boundary. The enrichment of noble elements in this dust is in meteorite-like proportions. This dust is thought to represent the fine impact ejecta from a --10 km diameter asteroid interacting with the solid earth. The Alvarez hypothesis associates the extinction with the physics of a giant impact on the earth

  10. Geomagnetism solid Earth and upper atmosphere perspectives

    CERN Document Server

    Basavaiah, Nathani

    2011-01-01

    This volume elaborates several important aspects of solid Earth geomagnetism. It covers all the basics of the subject, including biomagnetism and instrumentation, and offers a number of practical applications with carefully selected examples and illustrations.

  11. Dynamic ocean-tide effects on Earth's rotation

    Science.gov (United States)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  12. Analyze satellite-tracking laser data in order to study satellite ephemerides, solid-Earth and ocean tides and laser system performance

    Science.gov (United States)

    Gaposchkin, E. M.

    1981-01-01

    The decrease in the semimajor axis of Lageos is considerably larger than expected. Gravitational effects, reference system effects, solar radiation pressure, Earth albedo pressure, neutral atmospheric drag, the Poynting Robertson Effect, and electrodynamic effects were used in explaining the observations. Quick look data provided are used to determine the Earth's polar motion and length of day. This process is routine, and provides these geophysical data every five days.

  13. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  14. Ocean Color and Earth Science Data Records

    Science.gov (United States)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  15. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    Science.gov (United States)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  16. Eutectic propeties of primitive Earth's magma ocean

    Science.gov (United States)

    Lo Nigro, G.; Andrault, D.; Bolfan-Casanova, N.; Perillat, J.-P.

    2009-04-01

    It is widely accepted that the early Earth was partially molten (if not completely) due to the high energy dissipated by terrestrial accretion [1]. After core formation, subsequent cooling of the magma ocean has led to fractional crystallization of the primitive mantle. The residual liquid corresponds to what is now called the fertile mantle or pyrolite. Melting relations of silicates have been extensively investigated using the multi-anvil press, for pressures between 3 and 25 GPa [2,3]. Using the quench technique, it has been shown that the pressure affects significantly the solidus and liquidus curves, and most probably the composition of the eutectic liquid. At higher pressures, up to 65 GPa, melting studies were performed on pyrolite starting material using the laser-heated diamond anvil cell (LH-DAC) technique [4]. However, the quench technique is not ideal to define melting criteria, and furthermore these studies were limited in pressure range of investigation. Finally, the use of pyrolite may not be relevant to study the melting eutectic temperature. At the core-mantle boundary conditions, melting temperature is documented by a single data point on (Mg,Fe)2SiO4 olivine, provided by shock wave experiments at around 130-140 GPa [5]. These previous results present large uncertainties of ~1000 K. The aim of this study is to determine the eutectic melting temperature in the chemically simplified system composed of the two major lower mantle phases, the MgSiO3 perovskite and MgO periclase. We investigated melting in-situ using the laser-heated diamond anvil cell coupled with angle dispersive X-ray diffraction at the ID27 beamline of the ESRF [6]. Melting relations were investigated in an extended P-T range comparable to those found in the Earth's lower mantle, i.e. from 25 to 120 GPa and up to more than 5000 K. Melting was evidenced from (a) disappearance of one of the two phases in the diffraction pattern, (b) drastic changes of the diffraction image itself, and

  17. B-DEOS: British Dynamics of Earth and Ocean systems- new approaches for a multidisciplinary ocean observing system in the Atlantic and S Ocean

    Science.gov (United States)

    Schultz, A.; Lampitt, R. S.

    2001-12-01

    Advances in theoretical understanding of the natural systems in the sea and in the Earth below have been closely associated with new data sets made possible by technological advances. The plate tectonic revolution, the discovery of hydrothermal circulation, and many other examples can be attributed to the application of innovative new technology to the study of the sea. A consortium of research groups and institutions within the United Kingdom is planning a system of multidisciplinary ocean observatories to study the components of, and linkages between the physical, chemical and biological processes regulating the earth-ocean-atmosphere-biosphere system. An engineering feasibility design study has been completed which has resulted in a robust and flexible design for a telecommunications/power buoy system, and a UK NERC Thematic Programme is in the advanced planning stage. Representatives of the US, Japan, France, Portugal, Spain, Germany and other countries have been involved in consultations, and a coordinated international effort is expected to develop throughout the Atlantic and S Oceans, with collaborations extended to observatories operated by cooperating partners in other regions. The B-DEOS observatory system is designed to allow studies on scales of order cm to 1000 km, as well as to supplement on larger spatial scales the emerging global ocean and seafloor solid earth observatory network. The facility will make it possible to obtain requisite long-term synoptic baseline data, and to monitor natural and man-made changes to this system by: 1) Establishing a long-term, permanent and relocatable network of instrumented seafloor platforms, moorings and profiler vehicles, provided with power from the ocean surface and internal power supplies, and maintaining a real- or near-real time bidirectional Internet link to shore. 2) Examining the time varying properties of these different environments (solid earth, ocean, atmosphere, biosphere), exploring the links

  18. Effects of Long Period Ocean Tides on the Earth's Rotation

    Science.gov (United States)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  19. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  20. The International Solid Earth Research Virtual Observatory

    Science.gov (United States)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  1. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  2. Numerical Simulations of Melting-Crystallisation Processes at the Boundaries Between Magma Oceans and Solid Mantle

    Science.gov (United States)

    Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.

    2017-12-01

    The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8

  3. Global Earth Response to Loading by Ocean Tide Models

    Science.gov (United States)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  4. Impact on the earth, ocean and atmosphere

    Science.gov (United States)

    Ahrens, Thomas J.; O'Keefe, John D.

    1987-01-01

    On the basis of finite-difference techniques, cratering flow calculations are used to obtain the spatial attenuation of shock pressure with radius along the impact axis for the impact of silicate rock and iron impactors on a silicate half-space at speeds of 5 to 45 km/sec. Upon impact of a 10 to 30 km diameter silicate or water object onto a 5 km deep ocean overlying a silicate half-space planet at 30 km/sec, it is found that from 12 to 15 percent of the incident energy is coupled into the water. The mass of atmosphere lost due to impacts of 1 to 5 km radius projectiles is calculated.

  5. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  6. ForM@Ter: a solid Earth thematic pole

    Science.gov (United States)

    Ostanciaux, Emilie; Jamet, Olivier; Mandea, Mioara; Diament, Michel

    2014-05-01

    Over the last years, several notable initiatives have been developed to provide Solid Earth sciences with an efficient research e-infrastructure. The EPOS project (European Plate Observing System) was included in the EFSRI roadmap in 2008. The 7th European frame program funded an e-science environment such as the Virtual Earthquake and Seismology Research Community in Europe (VERCE). GEO supports the development of the Geohazard SuperSites and Natural Laboratories portal, while the ESA SSEP project (SuperSites exploitation plateform) is developing as an Helix Nebula usecase. Meanwhile, operational use of space data for emergency management is in constant progress, within the Copernicus services. This rich activity is still leaving some gaps between the data availability and its scientific use, either for technical reasons (big data issues) or due to the need for a better support in term of expert knowledge on the data, of software availability, or of data cost. French infrastructures for data distribution are organized around National Observatory Services (in situ data), scientific services participating to the International association of geodesy data centres and wider research infrastructures such as the Réseau Sismologique et géodésique Français (RESIF) that is contributing to EPOS. The need for thematic cooperative platforms has been underlined over tha last years. In 2009, after a scientific prospective of the French national space agency (CNES) it becomes clear the urgent need to create thematic centres designed to federate the scientific community of Earth observation. Four thematic data centres are currently developing in France in the field of ocean , atmosphere, critical zone and solid Earth sciences. For Solid Earth research, the project - named ForM@Ter - was initiated at the beginning of 2012 to design, with the scientific community, the perimeter, structure and functions of such a thematic centre. It was launched by the CNES and the National

  7. Electromagnetic Coupling of Ocean Flow with the Earth System

    Directory of Open Access Journals (Sweden)

    Robert Tyler

    2015-01-01

    Full Text Available The ocean is electromagnetically coupled with the Earth System. This results in momentum transfer, as well as a participation by the ocean in the _ observable electric and magnetic fields. The coupling is typically quite weak and quantitative analyses indicate that many of these connections may be discounted when considering the transfer of momentum. But because of systematic effects there are also cases where an immediate discount is not justified and electromagnetic transfer of ocean momentum should remain within the realm of consideration. For practical considerations, even if the coupling is weak these effects are phenomenologically important because the electric and magnetic fields associated with this coupling offer an observational means for inferring the ocean flow. While in situ measurements of the electric field have long been used to measure ocean transport, new opportunities for remote sensing ocean flow through ground and space magnetic observatories are now being considered. In this article a brief update of the status of these observational methods is given. Extending beyond these established elements of the _ electromagnetic involvement, an attempt is made to provide a quantitative discussion of lesser considered elements of the _ electromagnetic coupling with the mantle and fluid core.

  8. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  9. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    Science.gov (United States)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  10. What can earth tide measurements tell us about ocean tides or earth structure?

    Science.gov (United States)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  11. Rare earth elements in the Pacific and Atlantic Oceans

    International Nuclear Information System (INIS)

    Baar, H.J.W. de; Bacon, M.P.; Brewer, P.G.; Bruland, K.W.

    1985-01-01

    The first profiles of Pr, Tb, Ho, Tm and Lu in the Pacific Ocean, as well as profiles of La, Ce, Nd, Sm, Eu, Gd and Yb are reported. Concentrations of REE (except Ce) in the deep water are two to three times higher than those observed in the deep Atlantic Ocean. Surface water concentrations are typically lower than in the Atlantic Ocean, especially for the heavier elements Ho,Tm,Yb and Lu. Cerium is strongly depleted in the Pacific water column, but less so in the oxygen minimum zone. The distribution of the REE group is consistent with two simultaneous processes: (1) cycling similar to that of opal and calcium carbonate, and (2) adsorptive scavenging by settling particles and possibly by uptake at ocean boundaries. However, the first process can probably not be sustained by the low REE contents of shells, unless additional adsorption on surfaces is invoked. The second process, adsorptive scavenging, largely controls the oceanic distribution and typical seawater pattern of the rare earths. (author)

  12. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms

    DEFF Research Database (Denmark)

    Xie, Zhinan; Matzen, René; Cristini, Paul

    2016-01-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent a......A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range......-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique....... The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation...

  13. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    Science.gov (United States)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  14. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  15. Ocean tide models for satellite geodesy and Earth rotation

    Science.gov (United States)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  16. Terrestrial magma ocean and core segregation in the earth

    Science.gov (United States)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower

  17. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  18. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  19. Explicit Modeling of Solid Ocean Floor in Shallow Underwater Explosions

    Directory of Open Access Journals (Sweden)

    A.P. Walters

    2013-01-01

    Full Text Available Current practices for modeling the ocean floor in underwater explosion simulations call for application of an inviscid fluid with soil properties. A method for modeling the ocean floor as a Lagrangian solid, vice an Eulerian fluid, was developed in order to determine its effects on underwater explosions in shallow water using the DYSMAS solver. The Lagrangian solid bottom model utilized transmitting boundary segments, exterior nodal forces acting as constraints, and the application of prestress to minimize any distortions into the fluid domain. For simplicity, elastic materials were used in this current effort, though multiple constitutive soil models can be applied to improve the overall accuracy of the model. Even though this method is unable to account for soil cratering effects, it does however provide the distinct advantage of modeling contoured ocean floors such as dredged channels and sloped bottoms absent in Eulerian formulations. The study conducted here showed significant differences among the initial bottom reflections for the different solid bottom contours that were modeled. The most important bottom contour effect was the distortion to the gas bubble and its associated first pulse timing. In addition to its utility in bottom modeling, implementation of the non-reflecting boundary along with realistic material models can be used to drastically reduce the size of current fluid domains.

  20. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet

    Science.gov (United States)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.

    2017-12-01

    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  1. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    Science.gov (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  2. Estimation of solid earth tidal parameters and FCN with VLBI

    International Nuclear Information System (INIS)

    Krásná, H.

    2012-01-01

    Measurements of a space-geodetic technique VLBI (Very Long Baseline Interferometry) are influenced by a variety of processes which have to be modelled and put as a priori information into the analysis of the space-geodetic data. The increasing accuracy of the VLBI measurements allows access to these parameters and provides possibilities to validate them directly from the measured data. The gravitational attraction of the Moon and the Sun causes deformation of the Earth's surface which can reach several decimetres in radial direction during a day. The displacement is a function of the so-called Love and Shida numbers. Due to the present accuracy of the VLBI measurements the parameters have to be specified as complex numbers, where the imaginary parts describe the anelasticity of the Earth's mantle. Moreover, it is necessary to distinguish between the single tides within the various frequency bands. In this thesis, complex Love and Shida numbers of twelve diurnal and five long-period tides included in the solid Earth tidal displacement modelling are estimated directly from the 27 years of VLBI measurements (1984.0 - 2011.0). In this work, the period of the Free Core Nutation (FCN) is estimated which shows up in the frequency dependent solid Earth tidal displacement as well as in a nutation model describing the motion of the Earth's axis in space. The FCN period in both models is treated as a single parameter and it is estimated in a rigorous global adjustment of the VLBI data. The obtained value of -431.18 ± 0.10 sidereal days differs slightly from the conventional value -431.39 sidereal days given in IERS Conventions 2010. An empirical FCN model based on variable amplitude and phase is determined, whose parameters are estimated in yearly steps directly within VLBI global solutions. (author) [de

  3. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  4. Uncertainty analysis of atmospheric friction torque on the solid Earth

    Directory of Open Access Journals (Sweden)

    Haoming Yan

    2016-05-01

    Full Text Available The wind stress acquired from European Centre for Medium-Range Weather Forecasts (ECMWF, National Centers for Environmental Prediction (NCEP climate models and QSCAT satellite observations are analyzed by using frequency-wavenumber spectrum method. The spectrum of two climate models, i.e., ECMWF and NCEP, is similar for both 10 m wind data and model output wind stress data, which indicates that both the climate models capture the key feature of wind stress. While the QSCAT wind stress data shows the similar characteristics with the two climate models in both spectrum domain and the spatial distribution, but with a factor of approximately 1.25 times larger than that of climate models in energy. These differences show the uncertainty in the different wind stress products, which inevitably cause the atmospheric friction torque uncertainties on solid Earth with a 60% departure in annual amplitude, and furtherly affect the precise estimation of the Earth's rotation.

  5. Application of TOPEX Altimetry for Solid Earth Deformation Studies

    Directory of Open Access Journals (Sweden)

    Hyongki Lee

    2008-01-01

    Full Text Available This study demonstrates the use of satellite radar altimetry to detect solid Earth deformation signals such as Glacial Isostatic Adjustment (GIA. Our study region covers moderately flat land surfaces seasonally covered by snow/ice/vegetation. The maximum solid Earth uplift of ~10 mm yr-1 is primarily due to the incomplete glacial isostatic rebound that occurs around Hudson Bay, North America. We use decadal (1992 - 2002 surface height measurements from TOPEX/POSEIDON radar altimetry to generate height changes time series for 12 selected locations in the study region. Due to the seasonally varying surface characteristics, we first perform radar waveform shape classification and have found that most of the waveforms are quasi-diffuse during winter/spring and specular during summer/fall. As a result, we used the NASA £]-retracker for the quasi-diffuse waveforms and the Offset Center of Gravity or the threshold retracker for the specular waveforms, to generate the surface height time series. The TOPEX height change time series exhibit coherent seasonal signals (higher amplitude during the winter and lower amplitude during the summer, and the estimated deformation rates agree qualitatively well with GPS vertical velocities, and with altimeter/tide gauge combined vertical velocities around the Great Lakes. The TOPEX observations also agree well with various GIA model predictions, especially with the ICE-5G (VM2 model with differences at 0.2 ¡_ 1.4 mm yr-1, indicating that TOPEX has indeed observed solid Earth deformation signals manifested as crustal uplift over the former Laurentide Ice Sheet region.

  6. The inverse problem: Ocean tides derived from earth tide observations

    Science.gov (United States)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  7. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  8. Tsunamis: A large-scale earth and ocean phenomena

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    by a particle, as also its speed, decreases with depth, and beyond a certain depth, the motion associated with the wave decays to a negligible value. Wind waves are called surface gravity waves because the gravita- tional pull of the Earth plays... start moving. Earth?s gravity pulls the water particles back towards equilibrium. In the resulting motion, the sum of the kinetic energy and potential energy due to gravitational pull of the Earth is conserved. Another kind of surface gravity waves...

  9. Massive Hydrothermal Flows of Fluids and Heat: Earth Constraints and Ocean World Considerations

    Science.gov (United States)

    Fisher, A. T.

    2018-05-01

    This presentation reviews the hydrogeologic nature of Earth's ocean crust and evidence for massive flows of low-temperature (≤70°C), seafloor hydrothermal circulation through ridge flanks, including the influence of crustal relief and crustal faults.

  10. Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.

    1999-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.

  11. Detection and Modeling of Non-Tidal Oceanic Effects on the Earth's Rotation Rate

    Science.gov (United States)

    Marcus, S. L.; Chao, Y.; Dickey, J. O.; Gegout, P.

    1998-01-01

    Sub-decadal changes in the Earth's rotation rate, and hence in the length-of-day (LOD), are largely controlled by variations in atmospheric angular momentum. Results from two oceanic general circulation models (OGCMs), forced by observed wind stress and heat flux for the years 1992-1994, show that ocean current and mass distribution changes also induce detectable LOD variations.

  12. Isotope composition and volume of Earth´s early oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hyd...... in Earth´s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.......Oxygen and hydrogen isotope compositions of Earth´s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs......, but hydrogen´s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as Î...

  13. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  14. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  15. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  16. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  17. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    Science.gov (United States)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  18. The mechanics of large meteoroid impacts in the earth's oceans

    Science.gov (United States)

    Melosh, H. J.

    1982-01-01

    The sequence of events subsequent to the impact of a large meteoroid in an ocean differs in several respects from an impact on land. Even if the meteoroid is large enough to produce a crater on the sea floor (that is, larger than a few km in diameter), the presence of water affects the character of the early-time events. The principal difference between land and oceanic impacts is the expansion of shock-vaporized water following an oceanic impact. A steam explosion follows the meteoroid's deposition of energy in the target. Shocked water expands from an initial pressure of 3 to 6 Mbar for 20-30 km/second impacts, ejecting water vapor and dust from the vaporized meteoroid several hundred km into the atmosphere. The violent vapor plume thus formed may explain how dust with a dominantly meteoritic composition can be dispersed to form a world-wide dust layer, as required by the Alvarez hypothesis.

  19. Ocean carbon and heat variability in an Earth System Model

    Science.gov (United States)

    Thomas, J. L.; Waugh, D.; Gnanadesikan, A.

    2016-12-01

    Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.

  20. ForM@Ter: a French Solid Earth Research Infrastructure Project

    Science.gov (United States)

    Mandea, M.; Diament, M.; Jamet, O.; Deschamps-Ostanciaux, E.

    2017-12-01

    Recently, some noteworthy initiatives to develop efficient research e-infrastructures for the study of the Earth's system have been set up. However, some gaps between the data availability and their scientific use still exists, either because technical reasons (big data issues) or because of the lack of a dedicated support in terms of expert knowledge of the data, software availability, or data cost. The need for thematic cooperative platforms has been underlined over the last years, as well as the need to create thematic centres designed to federate the scientific community of Earth's observation. Four thematic data centres have been developed in France, covering the domains of ocean, atmosphere, land, and solid Earth sciences. For the Solid Earth science community, a research infrastructure project named ForM@Ter was launched by the French Space Agency (CNES) and the National Centre for Scientific Research (CNRS), with the active participation of the National institute for geographical and forestry information (IGN). Currently, it relies on the contributions of scientists from more than 20 French Earth science laboratories.Preliminary analysis have showed that a focus on the determination of the shape and movements of the Earth surface (ForM@Ter: Formes et Mouvements de la Terre) can federate a wide variety of scientific areas (earthquake cycle, tectonics, morphogenesis, volcanism, erosion dynamics, mantle rheology, geodesy) and offers many interfaces with other geoscience domains, such as glaciology or snow evolution. This choice motivates the design of an ambitious data distribution scheme, including a wide variety of sources - optical imagery, SAR, GNSS, gravity, satellite altimetry data, in situ observations (inclinometers, seismometers, etc.) - as well as a wide variety of processing techniques. In the evolving context of the current and forthcoming national and international e-infrastructures, the challenge of the project is to design a non

  1. High-latitude ocean ventilation and its role in Earth's climate transitions.

    Science.gov (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  2. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    Science.gov (United States)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  3. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    Science.gov (United States)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  4. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Abbot, Dorian S.

    2014-01-01

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  5. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Earth and Planetary Sciences, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Abbot, Dorian S., E-mail: n-cowan@northwestern.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-01-20

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  6. Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks

    Directory of Open Access Journals (Sweden)

    Vondrák J.

    2015-01-01

    Full Text Available In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouёl 2008, Malkin 2013. We (Ron et al. 2015 used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation. We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994 with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  7. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    Science.gov (United States)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  8. A look at the ocean in the EC-Earth climate model

    Energy Technology Data Exchange (ETDEWEB)

    Sterl, Andreas; Bintanja, Richard; Severijns, Camiel [Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, De Bilt (Netherlands); Brodeau, Laurent [Stockholm University, Department of Meteorology, Stockholm (Sweden); Gleeson, Emily; Semmler, Tido [Met Eireann, Dublin (Ireland); Koenigk, Torben; Wyser, Klaus [Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden); Schmith, Torben; Yang, Shuting [Danish Meteorological Institute (DMI), Copenhagen (Denmark)

    2012-12-15

    EC-Earth is a newly developed global climate system model. Its core components are the Integrated Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) as the atmosphere component and the Nucleus for European Modelling of the Ocean (NEMO) developed by Institute Pierre Simon Laplace (IPSL) as the ocean component. Both components are used with a horizontal resolution of roughly one degree. In this paper we describe the performance of NEMO in the coupled system by comparing model output with ocean observations. We concentrate on the surface ocean and mass transports. It appears that in general the model has a cold and fresh bias, but a much too warm Southern Ocean. While sea ice concentration and extent have realistic values, the ice tends to be too thick along the Siberian coast. Transports through important straits have realistic values, but generally are at the lower end of the range of observational estimates. Exceptions are very narrow straits (Gibraltar, Bering) which are too wide due to the limited resolution. Consequently the modelled transports through them are too high. The strength of the Atlantic meridional overturning circulation is also at the lower end of observational estimates. The interannual variability of key variables and correlations between them are realistic in size and pattern. This is especially true for the variability of surface temperature in the tropical Pacific (El Nino). Overall the ocean component of EC-Earth performs well and helps making EC-Earth a reliable climate model. (orig.)

  9. Excitation of the Earth's Chandler wobble by a turbulent oceanic double-gyre

    Science.gov (United States)

    Naghibi, S. E.; Jalali, M. A.; Karabasov, S. A.; Alam, M.-R.

    2017-04-01

    We develop a layer-averaged, multiple-scale spectral ocean model and show how an oceanic double-gyre can communicate with the Earth's Chandler wobble. The overall transfers of energy and angular momentum from the double-gyre to the Chandler wobble are used to calibrate the turbulence parameters of the layer-averaged model. Our model is tested against a multilayer quasi-geostrophic ocean model in turbulent regime, and base states used in parameter identification are obtained from mesoscale eddy resolving numerical simulations. The Chandler wobble excitation function obtained from the model predicts a small role of North Atlantic ocean region on the wobble dynamics as compared to all oceans, in agreement with the existing observations.

  10. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  11. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean

    CSIR Research Space (South Africa)

    Mtshali, TN

    2012-11-01

    Full Text Available Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation...

  12. COLORS OF A SECOND EARTH: ESTIMATING THE FRACTIONAL AREAS OF OCEAN, LAND, AND VEGETATION OF EARTH-LIKE EXOPLANETS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Taruya, Atsushi; Fukuda, Satoru; Nakajima, Teruyuki; Turner, Edwin L.

    2010-01-01

    Characterizing the surfaces of rocky exoplanets via their scattered light will be an essential challenge in investigating their habitability and the possible existence of life on their surfaces. We present a reconstruction method for fractional areas of different surface types from the colors of an Earth-like exoplanet. We create mock light curves for Earth without clouds using empirical data. These light curves are fitted to an isotropic scattering model consisting of four surface types: ocean, soil, snow, and vegetation. In an idealized situation where the photometric errors are only photon shot noise, we are able to reproduce the fractional areas of those components fairly well. The results offer some hope for detection of vegetation via the distinct spectral feature of photosynthesis on Earth, known as the red edge. In our reconstruction method, Rayleigh scattering due to the atmosphere plays an important role, and for terrestrial exoplanets with an atmosphere similar to our Earth, it is possible to estimate the presence of oceans and an atmosphere simultaneously.

  13. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  14. Ferromanganese nodules and their associated sediments from the Central Indian Ocean Basin: Rare earth element geochemistry

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Rao, Ch.M.; Migdisov, A.A.; Colley, S.; Higgs, N.C.; Demidenko, L.

    FerromanganeseNodulesandtheirAssociatedSedimentsfromtheCentralIndianOceanBasin:RareEarthElementGeochemistry J.N.PATTANCH.M.RAONationalInstituteofOceanography,DonaPaula Goa,IndiaA.A.MIGDISOV InstituteofGeochemistry,RussianAcademyofSciencesMoscow,Russia S.COLLEY,N.C.HIGGSSouthamptonOceanographyCentre,EmpressDockSouthampton...

  15. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  16. Assimilation of Earth rotation parameters into a global ocean model (FESOM)

    Science.gov (United States)

    Androsov, A.; Schröter, J.; Brunnabend, S.; Saynisch, J.

    2012-04-01

    Earth Rotation Parameters (ERP) are used to improve estimates of the ocean circulation and mass budget. GRACE data can be used for verification or for further improvements. The Finite Element Sea-ice Ocean Model (FESOM) is used to simulate weekly ocean circulation and mass variations. The FESOM model is a hydrostatic ocean circulation model with a fully non-linear free surface. It solves the hydrostatic primitive equations with volume (Boussinesq approximation) and mass (Greatbatch correction) conservation. Fresh water exchange with the atmosphere and land is modelled as mass flux. This flux is the weakest part of the mass budget as it is the difference of large and uncertain quantities: evaporation, precipitation and river runoff. All uncertainties included in these parameters are directly reflected in the model results. ERP help in closing the budget in a realistic manner. Our strategy is designed for testing parametric estimation on a weekly basis. First, Oceanographic Earth rotation parameters (OERP) are calculated by subtracting atmospheric and hydrologic estimates from observed ERP. They are compared to OERP derived from a global ocean circulation model. The difference can be inverted to diagnose a correction of the oceanic mass budget. Additionally mass variations measured by GRACE are used for verification. In a second step, the global mass correction parameter, derived by the inversion, is used to improve the fresh water budget of FESOM.

  17. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations

    Science.gov (United States)

    Gross, Richard S.; Fukumori, Ichiro; Menemenlis, Dimitris

    2005-09-01

    The contribution of atmospheric wind and surface pressure and oceanic current and bottom pressure variations during 1949-2002 to exciting changes in the Earth's orientation on decadal timescales is investigated using an atmospheric angular momentum series computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and an oceanic angular momentum series computed from a near-global ocean model that was forced by surface fluxes from the NCEP/NCAR reanalysis project. Not surprisingly, since decadal-scale variations in the length of day are caused mainly by interactions between the mantle and core, the effect of the atmosphere and oceans is found to be only about 14% of that observed. More surprisingly, it is found that the effect of atmospheric and oceanic processes on decadal-scale changes in polar motion is also only about 20% (x component) and 38% (y component) of that observed. Therefore redistribution of mass within the atmosphere and oceans does not appear to be the main cause of the Markowitz wobble. It is also found that on timescales between 10 days and 4 years the atmospheric and oceanic angular momentum series used here have very little skill in explaining Earth orientation variations before the mid to late 1970s. This is attributed to errors in both the Earth orientation observations prior to 1976 when measurements from the accurate space-geodetic techniques became available and to errors in the modeled atmospheric fields prior to 1979 when the satellite era of global weather observing systems began.

  18. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  19. Plan for Living on a Restless Planet Sets NASA's Solid Earth Agenda

    Science.gov (United States)

    Solomon, Sean C.; Baker, Victor R.; Bloxham, Jeremy; Booth, Jeffrey; Donnellan, Andrea; Elachi, Charles; Evans, Diane; Rignot, Eric; Burbank, Douglas; Chao, Benjamin F.; Chave, Alan; Gillespie, Alan; Herring, Thomas; Jeanloz, Raymond; LaBrecque, John; Minster, Bernard; Pittman, Walter C., III; Simons, Mark; Turcotte, Donald L.; Zoback, Mary Lou C.

    What are the most important challenges facing solid Earth science today and over the next two decades? And what is the best approach for NASA, in partnership with other agencies, to address those challenges? A new report, Living on a Restless Planet, provides a blueprint for answering these questions. The top priority for a new spacecraft mission in the area of solid Earth science over the next 5 years, according to this report, is a satellite dedicated to Interferometric Synthetic Aperture Radar (InSAR). At the request of NASA, the Solid Earth Science Working Group (SESWG) developed a strategy for the highest priority objectives in solid Earth science for the space agency over the next 25 years. The strategy addresses six challenges that are of fundamental scientific importance, have strong implications for society, and are amenable to substantial progress through a concerted series of scientific observations from space.

  20. Zero drift and solid Earth tide extracted from relative gravimetric data with principal component analysis

    OpenAIRE

    Hongjuan Yu; Jinyun Guo; Jiulong Li; Dapeng Mu; Qiaoli Kong

    2015-01-01

    Zero drift and solid Earth tide corrections to static relative gravimetric data cannot be ignored. In this paper, a new principal component analysis (PCA) algorithm is presented to extract the zero drift and the solid Earth tide, as signals, from static relative gravimetric data assuming that the components contained in the relative gravimetric data are uncorrelated. Static relative gravity observations from Aug. 15 to Aug. 23, 2014 are used as statistical variables to separate the signal and...

  1. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  2. Revised predictions of long-period ocean tidal effects on Earth's rotation rate

    Science.gov (United States)

    Dickman, S. R.; Nam, Young S.

    1995-01-01

    The rotational response of Earth to long-period tidal forces, embodied in a 'zonal response function,' can be expected to vary with frequency because of variable contributions by the oceans, mantle, and core. The zonal response function has been estimated from 9 years of International Radio Interferometric Surveying (IRIS) universal time (UT1) data and compared with theoretical predictions, using a spherical harmonic tide model to compute the oceans' dynamic response, at semiannual, monthly, fortnightly, and 9-day lunisolar tidal frequencies. Different amounts of mantle anelasticity have been considered for both the oceanic and soild earth responses; predictions have been made assuming axial core-mantle coupling which is either complete or absent. Additionally, an extensive recalibration of the ocean model's frictional parameters was performed using constraints derived in part from Space92 polar motion data; zonal response function predictions have also been made employing this recalibrated ocean tide model. Our results indicate that any amount of core coupling can be ruled out at a fortnightly period and probably at a 9-day period, but not at a monthly period. Our results also suggest that the mantle responds purely elastically at a 9-day period but may behave increasingly anelastically at longer periods. A simple dispersive rule is postulated for periods ranging up to the 14-month Chandler wobble period.

  3. Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.

    Science.gov (United States)

    Righter, Kevin

    2015-09-01

    A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.

  4. Ertel Potential Vorticity versus Bernoulli Streamfunction in Earth's Southern Ocean: Comparison with the Atmospheres of Earth, Mars, Jupiter and Saturn

    Science.gov (United States)

    Dowling, Timothy E.; Stanley, Geoff; Bradley, Mary Elizabeth; Marshall, David P.

    2017-10-01

    We are working to expand the comparative planetology of vorticity-streamfunction correlations established for the atmospheres of Earth, Mars, Jupiter and Saturn to include Earth’s Antarctic Circumpolar Current (ACC), which is the only oceanic jet that encircles the planet. Interestingly, the ACC and its eddies scale like atmospheric jets and eddies on Jupiter and Saturn---the Southern Ocean is a “giant planet” with a zonal jet stream. Our input is the Southern Ocean State Estimate (SOSE; Mazloff et al 2010, J. Phys. Ocean. 40, 880-899), an optimal combination of observations and primitive-equation model that spans 2005-2010. Two hurdles not encountered in atmospheric work arise from the nonlinear equation of state of ocean water: non-zero helicity, which prevents the existence of truly neutral (analogous to adiabatic) surfaces, and the lack of a geostrophic streamfunction in general. We follow de Szoeke et al (2000, J. Phys. Ocean. 30, 2830-2852) to overcome these hurdles, regionally, by using orthobaric density as the vertical coordinate. In agreement with results for all atmospheres analyzed to date, scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, on orthobaric density surfaces in the Southern Ocean are well correlated. The general shape of the correlation is like a hockey stick, with the “blade” corresponding to a broad horizontal region that spans the ACC, and the “handle” corresponding to shallow water. The same linear-regression Q versus B model employed for Mars is applied to the ACC (“blade”) signal. Results include that the deeper water on the equatorward side of the ACC is most prone to shear instability, and elsewhere the ACC is “supersonic” such that the net propagation of vorticity waves is eastward, not the usual westward. During the 6-year span of the SOSE data, there is a steady drift of the correlation to larger values at the top of the vertical profile, and to smaller values in the middle of

  5. Dumping of solid packaged radioactivity in the deep oceans

    International Nuclear Information System (INIS)

    Forster, Wm. O.; Van As, D.

    1980-01-01

    With the increasing use of nuclear energy, the quantity of radioactive wastes which are generated is also increasing. Their treatment and disposal is causing a concern in further development of nuclear energy. World's oceans are considered as a possible location for these wastes. A convention on the prevention of marine pollution caused by dumping of wastes and other matter into oceans was adopted at the Intergovernmental Conference held at London in November 1972. The convention prohibits dumping of high-level radioactive wastes in the oceans and has entrusted the IAEA the tasks of defining the high level radioactive wastes and providing recommendations for the issue of special permits for dumping of the radioactive materials which do not fall into the category of high-level wastes. A provisional definition and recommendations formulated by the IAEA and adopted by contractin.o. parties in 1976 are outlined. On the basis of an oceanographic model developed by Shepherd (1976) and considered to be the best available, a revised definition and revised recommendations were formulated. Their salient features are mentioned. The key parameters for specific site assessments are mentioned. The Nuclear Energy Agency also formulated guidelines on sea-disposal packages for radioactive wastes in 1974 and revised them in 1978. Finally it is noted that criteria have not been established for dumping of non-radioactive wastes in the ocean, though such criteria are contained in the IAEA recommendations in case of radioactive wastes. (M.G.B.)

  6. False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.

    Science.gov (United States)

    Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W

    2017-04-01

    Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.

  7. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  8. Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks

    OpenAIRE

    Vondrák J.; Ron C.

    2015-01-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouёl 2008, Malkin 2013). We (Ron et al. 2015) used addition...

  9. A Concept for Differential Absorption Lidar and Radar Remote Sensing of the Earth's Atmosphere and Ocean from NRHO Orbit

    Science.gov (United States)

    Hu, Y.; Marshak, A.; Omar, A.; Lin, B.; Baize, R.

    2018-02-01

    We propose a concept that will put microwave and laser transmitters on the Deep Space Gateway platform for measurements of the Earth's atmosphere and ocean. Receivers will be placed on the ground, buoys, Argo floats, and cube satellites.

  10. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1

    Directory of Open Access Journals (Sweden)

    A. Jahn

    2015-08-01

    Full Text Available Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM, containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  11. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    Science.gov (United States)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  12. A study on variation in position of an Indian station due to solid earth ...

    Indian Academy of Sciences (India)

    position of a station and its subsequent influence on the computation and interpretation of time series of coordinates ... signals (such as ocean tide loading and errors in .... moon or full moon. Neap tide is that when the Sun,. Earth, and Moon are aligned in perpendicular line, due to which they form destructive interface and.

  13. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  14. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    Science.gov (United States)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  15. Immobilization of Radioactive Rare Earth oxide Waste by Solid Phase Sintering

    International Nuclear Information System (INIS)

    Ahn, Byung Gil; Park, Hwan Seo; Kim, Hwan Young; Lee, Han Soo; Kim, In Tae

    2010-01-01

    In the pyroprocessing of spent nuclear fuels, LiCl-KCl waste salt containing radioactive rare earth chlorides are generated. The radioactive rare earth oxides are recovered by co-oxidative precipitation of rare earth elements. The powder phase of rare earth oxide waste must be immobilized to produce a monolithic wasteform suitable for storage and ultimate disposal. The immobilization of these waste developed in this study involves a solid state sintering of the waste with host borosilicate glass and zinc titanate based ceramic matrix (ZIT). And the rare-earth monazite which synthesised by reaction of ammonium di-hydrogen phosphate with the rare earth oxides waste, were immobilized with the borosilicate glass. It is shown that the developed ZIT ceramic wasteform is highly resistant the leaching process, high density and thermal conductivity.

  16. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2015-07-01

    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  17. Ocean angular momentum signals in a climate model and implications for Earth rotation

    Science.gov (United States)

    Ponte, R. M.; Rajamony, J.; Gregory, J. M.

    2002-03-01

    Estimates of ocean angular momentum (OAM) provide an integrated measure of variability in ocean circulation and mass fields and can be directly related to observed changes in Earth rotation. We use output from a climate model to calculate 240 years of 3-monthly OAM values (two equatorial terms L1 and L2, related to polar motion or wobble, and axial term L3, related to length of day variations) representing the period 1860-2100. Control and forced runs permit the study of the effects of natural and anthropogenically forced climate variability on OAM. All OAM components exhibit a clear annual cycle, with large decadal modulations in amplitude, and also longer period fluctuations, all associated with natural climate variability in the model. Anthropogenically induced signals, inferred from the differences between forced and control runs, include an upward trend in L3, related to inhomogeneous ocean warming and increases in the transport of the Antarctic Circumpolar Current, and a significantly weaker seasonal cycle in L2 in the second half of the record, related primarily to changes in seasonal bottom pressure variability in the Southern Ocean and North Pacific. Variability in mass fields is in general more important to OAM signals than changes in circulation at the seasonal and longer periods analyzed. Relation of OAM signals to changes in surface atmospheric forcing are discussed. The important role of the oceans as an excitation source for the annual, Chandler and Markowitz wobbles, is confirmed. Natural climate variability in OAM and related excitation is likely to measurably affect the Earth rotation, but anthropogenically induced effects are comparatively weak.

  18. Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation

    Science.gov (United States)

    Ogunro, O. O.; Elliott, S.; Collier, N.; Wingenter, O. W.; Deal, C.; Fu, W.; Hoffman, F. M.

    2017-12-01

    The mean ocean CO2 sink is a major component of the global carbon budget, with marine reservoirs holding about fifty times more carbon than the atmosphere. Phytoplankton play a significant role in the net carbon sink through photosynthesis and drawdown, such that about a quarter of anthropogenic CO2 emissions end up in the ocean. Biology greatly increases the efficiency of marine environments in CO2 uptake and ultimately reduces the impact of the persistent rise in atmospheric concentrations. However, a number of challenges remain in appropriate representation of marine biogeochemical processes in Earth System Models (ESM). These threaten to undermine the community effort to quantify seasonal to multidecadal variability in ocean uptake of atmospheric CO2. In a bid to improve analyses of marine contributions to climate-carbon cycle feedbacks, we have developed new analysis methods and biogeochemistry metrics as part of the International Ocean Model Benchmarking (IOMB) effort. Our intent is to meet the growing diagnostic and benchmarking needs of ocean biogeochemistry models. The resulting software package has been employed to validate DOE ocean biogeochemistry results by comparison with observational datasets. Several other international ocean models contributing results to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were analyzed simultaneously. Our comparisons suggest that the biogeochemical processes determining CO2 entry into the global ocean are not well represented in most ESMs. Polar regions continue to show notable biases in many critical biogeochemical and physical oceanographic variables. Some of these disparities could have first order impacts on the conversion of atmospheric CO2 to organic carbon. In addition, single forcing simulations show that the current ocean state can be partly explained by the uptake of anthropogenic emissions. Combined effects of two or more of these forcings on ocean biogeochemical cycles and ecosystems

  19. Promoting Lifelong Ocean Education: Shaping Tomorrow's Earth Stewards and the Science and Technology Workforce

    Science.gov (United States)

    Meeson, Blanche

    2006-01-01

    The coming ocean observing systems provide an unprecedented opportunity to change both the public perception of our oceans, and to inspire, captivate and motivate our children, our young adults and even our fellow adults to pursue careers allied with the oceans and to become stewards of our Planet's last unexplored environment. Education plans for the operational component, the Integrated Ocean Observing System (IOOS), and for the research component, Ocean Research Interactive Observatory Networks (ORION), are designed to take advantage of this opportunity. In both cases, community recommendations were developed within the context of the following assumptions: 1. Utilize research on how people learn, especially the four-pronged model of simultaneous learner-centered, knowledge-center, assessment-centered and community-centered learning 2. Strive for maximum impact on national needs in science and technology learning 3. Build on the best of what is already in place 4. Pay special attention to quality, sustainability, and scalability of efforts 5. Use partnerships across federal, state and local government, academia, and industry. Community recommendations for 100s and ORION education have much in common and offer the opportunity to create a coherent education effort allied with ocean observing systems. Both efforts focus on developing the science and technology workforce of the future, and the science and technology literacy of the public within the context of the Earth system and the role of the oceans and Great Lakes in that system. Both also recognize that an organized education infrastructure that supports sustainability and scalability of education efforts is required if ocean observing education efforts are to achieve a small but measurable improvement in either of these areas. Efforts have begun to develop the education infrastructure by beginning to form a community of educators from existing ocean and aquatic education networks and by exploring needs and

  20. The Earth's Mantle Is Solid: Teachers' Misconceptions About the Earth and Plate Tectonics.

    Science.gov (United States)

    King, Chris

    2000-01-01

    Discusses the misconceptions revealed by the teachers' answers and outlines more accurate answers and explanations based on established evidence and uses these to provide a more complete understanding of plate tectonic process and the structure of Earth. (Author/YDS)

  1. Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts

    International Nuclear Information System (INIS)

    Douglass, D.H.; Knox, R.S.

    2012-01-01

    In an earlier study of ocean heat content (OHC) we showed that Earth's empirically implied radiation imbalance has undergone abrupt changes. Other studies have identified additional such climate shifts since 1950. The shifts can be correlated with features in recently updated OHC data. The implied radiation imbalance may possibly alternate in sign at dates close to the climate shifts. The most recent shifts occurred during 2001–2002 and 2008–2009. The implied radiation imbalance between these dates, in the direction of ocean heat loss, was −0.03±0.06 W/m 2 , with a possible systematic error of [−0.00,+0.09] W/m 2 . -- Highlights: ► Ocean heat content (OHC) slope discontinuities match similar Earth climate features. ► OHC slopes between climate shifts give most of the implied radiation balance (IRI). ► IRI often alternates in sign at dates close to the climate shifts. ► IRI between climate shifts of 2001–2002 and 2008–2009 was −0.03±0.06 W/m 2 . ► Geothermal flux is relevant to analyses of radiation imbalance.

  2. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean

    Science.gov (United States)

    Jeandel, C.; Delattre, H.; Grenier, M.; Pradoux, C.; Lacan, F.

    2013-02-01

    vertical profiles of rare earth element concentrations and Nd isotopic compositions have been measured in the remote southeast Pacific Ocean. The three stations represent contrasting environments: the oligotrophic center of the gyre (station GYR), the "transition zone" east of the South Tropical Front (station EGY), and the Peru-Chile upwelling marked by a pronounced oxygen minimum (station UPX). Rare earth concentrations display nutrient like vertical profiles except at UPX where surface waters are enriched. At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes. Unexpected radiogenic values (ɛNd reaching -3.7) are also observed at 2000 m at station GYR in the Upper Circumpolar Deep Water that commonly have ɛNd values around -6. Exchange processes related to hydrothermal activity are suspected to produce this increase in ɛNd in the vicinity of the East Pacific Rise. These results provide some guidance for higher resolution studies planned in this region by the international GEOTRACES program.

  3. Use of satellite gravimetry for estimating recent solid Earth changes

    Science.gov (United States)

    Ramillien, Guillaume

    2014-05-01

    Since its launch in March 2002, the Gravity Recovery & Climate Experiment (GRACE) satellite mission provides a global mapping of the time variations of the Earth's gravity field for the recent period. Official centers such as Center of Space Research (CSR) in Austin, TX, Jet Propulsion Laboratory (JPL) in Pasadena, CA and GeoForschungZentrum (GFZ) in Potsdam, Germany, provide 10-day and monthly solutions of Stokes coefficients (i.e., spherical harmonic coefficients of the geopotential) up to harmonic degree 50-60 (or, equivalently, a spatial resolution of 300-400 km) for the timespan 2002-2012. Tiny variations of the gravity measured by GRACE are mainly due to the total water storage change on continents. Therefore, these solutions of water mass can be used to correct other datasets, and then isolate the gravity signatures of large and sudden earthquakes, as well as of the continuous Post Glacial Rebound (PGR) rate. As these measured seasonal variations of continental hydrology represent the variations of water mass load, it is also possible to derive the deformation of the terrestrial surface associated to this varying load using Love numbers. These latter numbers are obtained by assuming an elastic Earth model. In the center of the Amazon basin, the seasonal displacements of the surface due to hydrology reach amplitudes of a few centimeters typically. Time-series of GRACE-based radial displacement of the surface can be analysed and compared with independent local GPS records for validation.

  4. Young Solid Earth Researchers of the World Unite!

    Science.gov (United States)

    Simons, Frederik J.; Becker, Thorsten W.; Kellogg, James B.; Billen, Magali; Hardebeck, Jeanne; Lee, Cin-Ty A.; Montési, Laurent G. J.; Panero, Wendy; Zhong, Shijie

    2004-04-01

    In early January 2004, one of us attended a workshop on ``science priorities and educational opportunities that can be addressed using ocean observatories.'' The attendees constituted a broad group-men and women, scientists, engineers, educators, representatives from the private and public sector-but lacked diversity in at least one important aspect: age. A well-known marine geophysicist (with a published record stretching over 30 years) came to me at the ice-breaker party and said (and I paraphrase): ``I'm glad you're here: you're young, you might actually see this project flourish before you retire. There're not enough young people here.`` At some point or another, every young scientist may have a similar experience.

  5. Solid state chemistry of rare earth oxides. Final report, September 1, 1950--July 31, 1977

    International Nuclear Information System (INIS)

    Eyring, L.

    1977-07-01

    Work under Contract E(11-1)-1109 and its antecedents has been primarily for the purpose of obtaining detailed thermodynamic, kinetic and structural information on the complex rare earth oxides of praseodymium and terbium. These systems exhibit homologous series of ordered phases, order-disorder transformations, wide-range nonstoichiometric phases, chemical hysteresis in two-phase regions and many other solid state reaction phenomena. Fluorite-related materials of importance to ERDA occur as nuclear fuels, radiation power sources, insulators and solid electrolytes. The rare earth oxides serve directly as model systems for such similar materials and, in a more general sense, they serve as models of solids in general since they exhibit nearly the full range of solid state properties

  6. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Ricke, K L; Caldeira, K; Orr, J C; Schneider, K

    2013-01-01

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  7. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling

    Science.gov (United States)

    Wünnemann, K.; Collins, G. S.; Weiss, R.

    2010-12-01

    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  8. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Science.gov (United States)

    Ödalen, Malin; Nycander, Jonas; Oliver, Kevin I. C.; Brodeau, Laurent; Ridgwell, Andy

    2018-03-01

    During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90-100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air-sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment in which we investigate

  9. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model

    Directory of Open Access Journals (Sweden)

    M. Ödalen

    2018-03-01

    Full Text Available During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. As a consequence, the ensemble members also have different ocean carbon reservoirs, global ocean average temperatures, biological pump efficiencies and conditions for air–sea CO2 disequilibrium. We analyse changes in total ocean carbon storage and separate it into contributions by the solubility pump, the biological pump and the CO2 disequilibrium component. We also relate these contributions to differences in the strength of the ocean overturning circulation. Depending on which ocean forcing parameter is tuned, the origin of the change in carbon storage is different. When wind stress or ocean diapycnal diffusivity is changed, the response of the biological pump gives the most important effect on ocean carbon storage, whereas when atmospheric heat diffusivity or ocean isopycnal diffusivity is changed, the solubility pump and the disequilibrium component are also important and sometimes dominant. Despite this complexity, we obtain a negative linear relationship between total ocean carbon and the combined strength of the northern and southern overturning cells. This relationship is robust to different reservoirs dominating the response to different forcing mechanisms. Finally, we conduct a drawdown experiment

  10. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    Science.gov (United States)

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  11. Archive of Geosample Data and Information from the University of Hawaii at Manoa School of Ocean and Earth Science and Technology (SOEST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The University of Hawaii at Manoa, School of Ocean and Earth Science and Technology (SOEST) is a partner in the Index to Marine and Lacustrine Geological Samples...

  12. Long-Period Tidal Variations of the Earth's Rotation Rate

    Science.gov (United States)

    Desai, S.; Gross, R.; Wahr, J.

    1999-01-01

    Long-period tidal variations of the Earth's rotation rate are caused by the redistribution of mass associated with the respective elastic solid Earth tides, the ocean tide heights, and the anelasticity of the Earth's mantle, and by the relative angular momentum associated with the long-period ocean tide currents.

  13. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  14. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  15. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models

    Science.gov (United States)

    Bopp, L.; Resplandy, L.; Untersee, A.; Le Mezo, P.; Kageyama, M.

    2017-08-01

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O2sat) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  16. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models.

    Science.gov (United States)

    Bopp, L; Resplandy, L; Untersee, A; Le Mezo, P; Kageyama, M

    2017-09-13

    All Earth System models project a consistent decrease in the oxygen content of oceans for the coming decades because of ocean warming, reduced ventilation and increased stratification. But large uncertainties for these future projections of ocean deoxygenation remain for the subsurface tropical oceans where the major oxygen minimum zones are located. Here, we combine global warming projections, model-based estimates of natural short-term variability, as well as data and model estimates of the Last Glacial Maximum (LGM) ocean oxygenation to gain some insights into the major mechanisms of oxygenation changes across these different time scales. We show that the primary uncertainty on future ocean deoxygenation in the subsurface tropical oceans is in fact controlled by a robust compensation between decreasing oxygen saturation (O 2sat ) due to warming and decreasing apparent oxygen utilization (AOU) due to increased ventilation of the corresponding water masses. Modelled short-term natural variability in subsurface oxygen levels also reveals a compensation between O 2sat and AOU, controlled by the latter. Finally, using a model simulation of the LGM, reproducing data-based reconstructions of past ocean (de)oxygenation, we show that the deoxygenation trend of the subsurface ocean during deglaciation was controlled by a combination of warming-induced decreasing O 2sat and increasing AOU driven by a reduced ventilation of tropical subsurface waters.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  17. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Tyler D. [NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035 (United States); Ennico, Kimberly [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W. [NASA Astrobiology Institute' s Virtual Planetary Laboratory, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Bussey, D. Ben J. [NASA Ames Research Center, MS 17-1, Moffett Field, CA 94089, USA Now the NASA Solar System Exploration Research Virtual Institute. (United States); Breiner, Jonathan, E-mail: tyler.d.robinson@nasa.gov [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  18. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W.; Bussey, D. Ben J.; Breiner, Jonathan

    2014-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  19. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination

    International Nuclear Information System (INIS)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin; Golon, Katja

    2015-01-01

    Solid state chlorination with NH 4 Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH 4 Cl and heating up to NH 4 Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH 4 Cl to fluorescent lamp scraps, which were varied systematically.

  20. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models

    Science.gov (United States)

    Steiner, N. S.; Christian, J. R.; Six, K. D.; Yamamoto, A.; Yamamoto-Kawai, M.

    2014-01-01

    Six Earth system models that include an interactive carbon cycle and have contributed results to the 5th Coupled Model Intercomparison Project (CMIP5) are evaluated with respect to Arctic Ocean acidification. Projections under Representative Concentration Pathways (RCPs) 8.5 and 4.5 consistently show reductions in the bidecadal mean surface pH from about 8.1 in 1986-2005 to 7.7/7.9 by 2066-2085 in the Canada Basin, closely linked to reductions in the calcium carbonate saturation state ΩA,C from about 1.4 (2.0) to 0.7 (1.0) for aragonite (calcite) for RCP8.5. The large but opposite effects of dilution and biological drawdown of DIC and dilution of alkalinity lead to a small seasonal amplitude change in Ω, as well as intermodel differences in the timing and sign of the summer minimum. The Canada Basin shows a characteristic layering in Ω: affected by ice melt and inflowing Pacific water, shallow undersaturated layers form at the surface and subsurface, creating a shallow saturation horizon which expands from the surface downward. This is in addition to the globally observed deep saturation horizon which is continuously expanding upward with increasing CO2 uptake. The Eurasian Basin becomes undersaturated much later than the rest of the Arctic. These CMIP5 model results strengthen earlier findings, although large intermodel differences remain: Below 200 m ΩA varies by up to 1.0 in the Canada Basin and the deep saturation horizon varies from 2000 to 4000 m among the models. Differences of projected acidification changes are primarily related to sea ice retreat and responses of wind mixing and stratification.

  1. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    Science.gov (United States)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  2. Fluorescence line-narrowing studies of rare earths in disordered solids

    International Nuclear Information System (INIS)

    Hall, D.W.

    1982-01-01

    This dissertation is made up of two experimental studies dealing with apparently diverse topics within the subject of rare earths (RE) in solids. The first study, described in Part II, concerns the vibrations of a disordered host material about an optically active rare-earth ion as manifested by vibrationally-assisted-electronic, or vibronic transitions. Part III of the dissertation describes an investigation of the influence of site anisotropy on the purely electronic, laser transition of Nd 3+ in glass. These two studies are bound together by the common experimental technique of laser-induced fluorescence line narrowing (FLN). By exciting fluorescence with monochromatic light of well-characterized polarization, one may select and observe the response of a single subset of the optically active ions and obtain information that is usually masked by the inhomogeneous nature of disordered solids

  3. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  4. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  5. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  6. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth.

    Science.gov (United States)

    Nunoura, Takuro; Takaki, Yoshihiro; Hirai, Miho; Shimamura, Shigeru; Makabe, Akiko; Koide, Osamu; Kikuchi, Tohru; Miyazaki, Junichi; Koba, Keisuke; Yoshida, Naohiro; Sunamura, Michinari; Takai, Ken

    2015-03-17

    Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.

  7. The oxygen isotope composition of earth's oldest rocks and evidence of a terrestrial magma ocean

    DEFF Research Database (Denmark)

    Rumble, D.; Bowring, S.; Iizuka, T.

    2013-01-01

    Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce....... But other sources of heat for global melting cannot be excluded such as bolide impacts during early accretion of proto-Earth, the decay of short-lived radioactive isotopes, or the energy released during segregation of core from mantle.......Analysis of Hadean and Archean rocks for O-16-O-17-O-18 isotopes demonstrates that the Terrestrial Mass Fractionation Line of oxygen isotopes has had the same slope and intercept for at least the past 4.0 and probably for as long as 4.2Ga. The homogenization of oxygen isotopes required to produce...... such long-lived consistency was most easily established by mixing in a terrestrial magma ocean. The measured identical oxygen isotope mass fractionation lines for Earth and Moon suggest that oxygen isotope reservoirs of both bodies were homogenized at the same time during a giant moon-forming impact...

  8. On Deep-Ocean $^{60}Fe$ as a Fossil of a Near-Earth Supernova

    CERN Document Server

    Fields, B D; Fields, Brian D.; Ellis, John

    1999-01-01

    Live $^{60}$Fe has recently been reported in a deep-ocean ferromanganese crust. Analysis of the isotopic ratios in the sample suggests that the measured $^{60}$Fe abundance exceeds the levels generated by terrestrial and cosmogenic sources, and it has been proposed that the excess of $^{60}$Fe is a signature of a supernova that exploded near the earth several Myr ago. In this paper, we consider the possible background sources, and confirm that the measured $^{60}$Fe is significantly higher than all known backgrounds, in contrast with the reported abundance of live $^{53}$Mn. We discuss scenarios in which the data are consistent with a supernova event at a distance $D \\sim 30$ pc and an epoch $t_{\\rm SN} \\sim 5$ Myr ago. We propose tests that could confirm or refute the interpretation of the $^{60}$Fe discovery, including searches for $^{10}$Be, $^{129}$I and $^{146}$Sm. Such a nearby supernova event might have had some impact on the earth's biosphere, principally by enhancing the cosmic-ray flux. This might h...

  9. The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation

    NARCIS (Netherlands)

    Duarte, J.C.; Schellart, W.P.; Rosas, F.M.

    2016-01-01

    Subduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the

  10. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  11. The European Plate Observing System (EPOS) Services for Solid Earth Science

    Science.gov (United States)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations

  12. Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake

    Science.gov (United States)

    Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.

    2017-12-01

    Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.

  13. Search for an evaporating ocean on the super-Earth HIP 116454b

    Science.gov (United States)

    Bourrier, Vincent

    2017-08-01

    The super-Earth HIP116454b was the first exoplanet detected by the K2 mission, in transit across a bright and nearby K1 dwarf (V=10.2, d=55 pc). The low density of the planet suggests it must have at least 30% water or a 0.5% H-He envelope. Given the strong XUV irradiation from the young (2 Gyr) host star, this H-He envelope should have been lost through evaporation in a few hundred millions year, suggesting that HIP 116454b likely contains a large mass fraction of water. The shallow transit depth makes difficult the search for water vapor in the lower atmosphere with HST/WFC3. The moderate orbital distance of this warm ( 700 K) planet favors the formation of a super-critical steam envelope, which should be promptly dissociated at high altitude by the XUV irradiation and become observable as hydrogen flowing within and beyond the Roche lobe. The host star is similar to HD 189733, host to an evaporating hot Jupiter, and numerical simulations of HIP116454b show that the hydrogen exosphere resulting from the dissociation of water is observable with HST/STIS at Ly-alpha. The detection of this exosphere would be the first signature of an evolved evaporating ocean on an extrasolar planet, as well as the first validation of internal structure models of exoplanets in this mass regime. It would also determine how to best search for water in the lower atmosphere of HIP116454b with the JWST. A non-detection of escaping hydrogen, as with 55 Cnc e and HD 97658b, would bring useful constraints on the nature of the planetary atmosphere, the evolutionary path of close-in super-Earths, and the progenitors of the rocky evaporation remnants detected by Kepler.

  14. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  15. Studying the impact of different climate engineering techniques on ocean acidification with the Max Planck Institute Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.; Sonntag, S.

    2016-02-01

    In order to counterbalance the consequences of climate change, different climate engineering (CE) technologies have been suggested. Nonetheless, knowledge about their mitigation potential and side-effects remains sparse. Ocean alkalinization (OA) is an ocean-based carbon dioxide removal method, that aims at enhancing the natural process of weathering by which atmospheric CO2 is absorbed and stored in the ocean via chemical sequestration. Large-scale afforestation can also boost the uptake of CO2 by terrestrial biological systems and it is commonly considered as CE method. Stratospheric sulfur injection is a solar radiation management technique that has been proposed in order to enhance the Earth's albedo, mimicking the release of sulfur particles into the atmosphere during volcanic eruptions and the subsequent decrease in surface atmospheric temperatures. We explore the mitigation potential and side-effects of these CE technologies using the Max Planck Institute Earth System Model. Our scenarios are designed in order to test under what conditions it is possible to achieve a climate state that resembles the one of the representative concentration pathway (RCP) 4.5 under RCP8.5 greenhouse gas emissions. Direct and indirect effects of the OA method on the oceanic carbon cycle, differ strongly from those associated with afforestation and stratospheric sulfur injection. This is because they depend upon joint responses and synergies between different elements of the Earth system; thus, effects on the oceanic carbon cycle are not intuitively understood. Changes in the strength of the marine carbon sink, seawater pH and saturation state of carbonate minerals will be discussed. Additionally, collateral changes in marine biota and ocean biogeochemistry will be presented.

  16. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Cloetingh, Sierd

    2013-04-01

    The fascination of learning more about the way system Earth operates has driven generations of Earth scientists. This has been the case for early pioneers such as Arthur Holmes, focusing on the geological record in continental settings, as well as for the founding fathers of plate tectonics, who built upon the results of exploring the ocean floor. Two years ago we celebrated the centenary of the discovery by Mohorovicic of the seismic discontinuity that separates the crust from the mantle, which now carries his name. Reading the rocks and mapping the (sub)surface of the Earth has provided the foundation for a great deal of what we conceptually pursue today in developing and validating coupled deep Earth and surface processes. The unexpected is probably characterizing most of my scientific career. It started in 1968 when, as a student, entering the geology program of Groningen University headed by Professor Philip Kuenen, a pioneer in marine geology and sedimentology, the textbook of Arthur Holmes just happened to be my first purchase. It was during those years that plate tectonics drastically changed everything we were learning. I was also privileged to enter a few years later as an MSc student the Utrecht geophysics school at a time where Nico Vlaar as a young professor was developing a vigorous research program with a focus on seismology, attracting and stimulating many talented students. When he and Rinus Wortel started research on Tectonophysics in Utrecht, I decided to go for a PhD research project tackling the problem of the initiation of subduction, a first order problem in geodynamics, with still many aspects to be resolved. This research and the joint work with Rinus Wortel on modeling intraplate stresses in the Faralon, Nazca and Indo-Australian plates led quite unexpectedly to exploring, together with Kurt Lambeck, intraplate stress fluctuations in the lithosphere as possible tectonic causes for the origin of third-order cycles in relative sea

  17. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    Science.gov (United States)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  18. Making interdisciplinary solid Earth modeling and analysis tools accessible in a diverse undergraduate and graduate classroom

    Science.gov (United States)

    Becker, T. W.

    2011-12-01

    I present results from ongoing, NSF-CAREER funded educational and research efforts that center around making numerical tools in seismology and geodynamics more accessible to a broader audience. The goal is not only to train students in quantitative, interdisciplinary research, but also to make methods more easily accessible to practitioners across disciplines. I describe the two main efforts that were funded, the Solid Earth Research and Teaching Environment (SEATREE, geosys.usc.edu/projects/seatree/), and a new Numerical Methods class. SEATREE is a modular and user-friendly software framework to facilitate using solid Earth research tools in the undergraduate and graduate classroom and for interdisciplinary, scientific collaboration. We use only open-source software, and most programming is done in the Python computer language. We strive to make use of modern software design and development concepts while remaining compatible with traditional scientific coding and existing, legacy software. Our goals are to provide a fully contained, yet transparent package that lets users operate in an easy, graphically supported "black box" mode, while also allowing to look under the hood, for example to conduct numerous forward models to explore parameter space. SEATREE currently has several implemented modules, including on global mantle flow, 2D phase velocity tomography, and 2D mantle convection and was used at the University of Southern California, Los Angeles, and at a 2010 CIDER summer school tutorial. SEATREE was developed in collaboration with engineering and computer science undergraduate students, some of which have gone on to work in Earth Science projects. In the long run, we envision SEATREE to contribute to new ways of sharing scientific research, and making (numerical) experiments truly reproducible again. The other project is a set of lecture notes and Matlab exercises on Numerical Methods in solid Earth, focusing on finite difference and element methods. The

  19. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education

    Science.gov (United States)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.

    2017-12-01

    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  20. An integrated approach for estimating global glacio isostatic adjustment, land ice, hydrology and ocean mass trends within a complete coupled Earth system framework

    Science.gov (United States)

    Schumacher, M.; Bamber, J. L.; Martin, A.

    2016-12-01

    Future sea level rise (SLR) is one of the most serious consequences of climate change. Therefore, understanding the drivers of past sea level change is crucial for improving predictions. SLR integrates many Earth system components including oceans, land ice, terrestrial water storage, as well as solid Earth effects. Traditionally, each component have been tackled separately, which has often lead to inconsistencies between discipline-specific estimates of each part of the sea level budget. To address these issues, the European Research Council has funded a five year project aimed at producing a physically-based, data-driven solution for the complete coupled land-ocean-solid Earth system that is consistent with the full suite of observations, prior knowledge and fundamental geophysical constraints. The project is called "GlobalMass" and based at University of Bristol. Observed mass movement from the GRACE mission plus vertical land motion from a global network of permanent GPS stations will be utilized in a data-driven approach to estimate glacial isostatic adjustment (GIA) without introducing any assumptions about the Earth structure or ice loading history. A Bayesian Hierarchical Model (BHM) will be used as the framework to combine the satellite and in-situ observations alongside prior information that incorporates the physics of the coupled system such as conservation of mass and characteristic length scales of different processes in both space and time. The BHM is used to implement a simultaneous solution at a global scale. It will produce a consistent partitioning of the integrated SLR signal into its steric (thermal) and barystatic (mass) component for the satellite era. The latter component is induced by hydrological mass trends and melting of land ice. The BHM was developed and tested on Antarctica, where it has been used to separate surface, ice dynamic and GIA signals simultaneously. We illustrate the approach and concepts with examples from this test case

  1. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments

    Science.gov (United States)

    Elderfield, H.; Hawkesworth, C. J.; Greaves, M. J.; Calvert, S. E.

    1981-04-01

    Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd /144Nd ratios in the nodules (˜0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.

  2. Solar Irradiance Changes and Phytoplankton Productivity in Earth's Ocean Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Neale, Patrick J.; Thomas, Brian C.

    2016-04-01

    Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.

  3. A fluid Foucault pendulum: the impossibility of achieving solid-body rotation on Earth

    Science.gov (United States)

    Blum, Robert; Zimmerman, Daniel; Triana, Santiago; Lathrop, Daniel

    2012-11-01

    Rotating fluid dynamics is key to our understanding of the Earth's atmosphere, oceans, and core, along with a plethora of astrophysical objects. Laboratory study of these natural systems often involves spinning experimental devices, which are assumed to tend to rigid rotation when unstirred. We present results showing that even at the tabletop scale, there is a measurable oscillatory flow driven by the precession of the experiment's axis as the earth rotates. We measure this flow in a rotating cylinder with an adjustable aspect ratio. The horizontal flow in the rotating frame is measured using particle tracking. The steady state is well-described by an inertial mode whose amplitude is maximum when the height to diameter ratio is 0.995, which matches theoretical predictions. We also quantify the resonant amplitude of the inertial mode in the cylinder and estimate the amplitude in other devices. We compare our results to similar studies done in spherical devices. [Triana et al., JGR, 117 (2012), B04103][Boisson et al., EPL, 98 (2012), 59002].

  4. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2011-03-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (~635 million years before present with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.

  5. SESAR: Addressing the need for unique sample identification in the Solid Earth Sciences

    Science.gov (United States)

    Lehnert, K. A.; Goldstein, S. L.; Lenhardt, C.; Vinayagamoorthy, S.

    2004-12-01

    The study of solid earth samples is key to our knowledge of Earth's dynamical systems and evolution. The data generated provide the basis for models and hypotheses in all disciplines of the Geosciences from tectonics to magmatic processes to mantle dynamics to paleoclimate research. Sample-based data are diverse ranging from major and trace element abundances, radiogenic and stable isotope ratios of rocks, minerals, fluid or melt inclusions, to age determinations and descriptions of lithology, texture, mineral or fossil content, stratigraphic context, physical properties. The usefulness of these data is critically dependent on their integration as a coherent data set for each sample. If different data sets for the same sample cannot be combined because the sample cannot be unambiguously recognized, valuable information is lost. The ambiguous naming of samples has been a major problem in the geosciences. Different samples are often given identical names, and there is a tendency for different people analyzing the same sample to rename it in their publications according to local conventions. This situation has generated significant confusion, with samples often losing their "history", making it difficult or impossible to link available data. This has become most evident through the compilation of geochemical data in relational databases such as PetDB, NAVDAT, and GEOROC. While the relational data structure allows linking of disparate data for samples published in different references, linkages cannot be established due to ambiguous sample names. SESAR is a response to this problem of ambiguous naming of samples. SESAR will create a common clearinghouse that provides a centralized registry of sample identifiers, to avoid ambiguity, to systematize sample designation, and ensure that all information associated with a sample would in fact be unique. The project will build a web-based digital registry for solid earth samples that will provide for the first time a way to

  6. Were Ocean Impacts an Important Mechanism to Deliver Meteoritic Organic Matter to the Early Earth? Some Inferences from Eltanin

    Science.gov (United States)

    Kyte, Frank T.; Gersonde, Rainer; Kuhn. Gerhard

    2002-01-01

    Several workers have addressed the potential for extraterrestrial delivery of volatles, including water and complex organic compounds, to the early Earth. For example, Chyba and Sagan (1992) argued that since impacts would destroy organic matter, most extraterrestrial organics must be delivered in the fine-fractions of interplanetary dust. More recent computer simulations (Pierazzo and Chyba, 1999), however, have shown that substantial amounts of amino acids may survive the impacts of large (km-sized) comets and that this may exceed the amounts derived from IDPs or Miller-Urey synthesis in the atmosphere. Once an ocean developed on the early Earth, impacts of small ,asteroids and comets into deep-ocean basins were potentially common and may have been the most likely events to deliver large amounts of organics. The deposits of the late Pliocene impact of the Eltanin asteroid into the Bellingshausen Sea provide the only record of a deep-ocean (approx. 5 km) impact that can be used to constrain models of these events. This impact was first discovered in 1981 as an Ir anomaly in sediment cores collected by the USNS Eltanin in 1965 (Kyte et al., 1981). In 1995, Polarstem expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5S, 91 W) contained well-preserved impact deposits that include disturbed ocean sediments and meteoritic impact ejecta (Gersonde et al., 1997). The latter is composed of shock- melted asteroidal materials and unmelted meteorites. In 2001, the FS Polarstem returned to the impact area during expedition ANT XVIII/5a. At least 16 cores were recovered that contain ejecta deposits. These cores and geophysical data from the expedition can be used to map the effects of the impact over a large region of the ocean floor.

  7. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  8. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    Science.gov (United States)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  9. Caribbean Oceans: Utilizing NASA Earth Observations to Detect, Monitor, and Respond to Unprecedented Levels of Sargassum in the Caribbean Sea

    Science.gov (United States)

    Ped, Jordan; Scaduto, Erica; Accorsi, Emma; Torres-Perez, Juan (Editor)

    2016-01-01

    In 2011 and 2015, the nations of the Caribbean Sea were overwhelmed by the unprecedented quantity of Sargassum that washed ashore. This issue prompted international discussion to better understand the origins, distribution, and movement of Sargassum, a free-floating brown macro alga with ecological, environmental, and commercial importance. In the open ocean, Sargassum mats serve a vital ecological function. However, when large quantities appear onshore without warning, Sargassum threatens local tourist industries and nearshore ecosystems within the Caribbean. As part of the international response, this project investigated the proliferation of this macro alga within the Caribbean Sea from 2003-2015, and used NASA Earth observations to detect and model Sargassum growth across the region. The Caribbean Oceans team calculated the Floating Algal Index (FAI) using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data, and compared the FAI to various oceanic variables to determine the ideal pelagic environment for Sargassum growth. The project also examined the annual spread of Sargassum throughout the region by using Earth Trends Modeler (ETM) in Clark Labs' TerrSet software. As part of the international effort to better understand the life cycle of Sargassum in the Caribbean, the results of this project will help local economies promote sustainable management practices in the region.

  10. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  11. Elaboration of building materials from industrial waste from solid granular diatomaceous earth

    International Nuclear Information System (INIS)

    Del Angel S, A.

    2015-01-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  12. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  13. Stable "Waterbelt" climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to Snowball Earth

    Science.gov (United States)

    Rose, Brian E. J.

    2015-02-01

    Ongoing controversy about Neoproterozoic Snowball Earth events motivates a theoretical study of stability and hysteresis properties of very cold climates. A coupled atmosphere-ocean-sea ice general circulation model (GCM) has four stable equilibria ranging from 0% to 100% ice cover, including a "Waterbelt" state with tropical sea ice. All four states are found at present-day insolation and greenhouse gas levels and with two idealized ocean basin configurations. The Waterbelt is stabilized against albedo feedback by intense but narrow wind-driven ocean overturning cells that deliver roughly 100 W m-2 heating to the ice edges. This requires three-way feedback between winds, ocean circulation, and ice extent in which circulation is shifted equatorward, following the baroclinicity at the ice margins. The thermocline is much shallower and outcrops in the tropics. Sea ice is snow-covered everywhere and has a minuscule seasonal cycle. The Waterbelt state spans a 46 W m-2 range in solar constant, has a significant hysteresis, and permits near-freezing equatorial surface temperatures. Additional context is provided by a slab ocean GCM and a diffusive energy balance model, both with prescribed ocean heat transport (OHT). Unlike the fully coupled model, these support no more than one stable ice margin, the position of which is slaved to regions of rapid poleward decrease in OHT convergence. Wide ranges of different climates (including the stable Waterbelt) are found by varying the magnitude and spatial structure of OHT in both models. Some thermodynamic arguments for the sensitivity of climate, and ice extent to OHT are presented.

  14. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  15. Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Jing; CAO Long; LI Na

    2014-01-01

    Based on simulations using the University of Victoria’s Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic’s ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean’s ability to absorb CO2 from the atmosphere.

  16. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  17. K-U-Th systematics of terrestrial igneous rocks for planetological comparisons: volcanic rocks of the Earth oceanic island arc and Venus surface material

    International Nuclear Information System (INIS)

    Nikolaeva, O.V.

    1997-01-01

    Principles of the formation o data base for 339 samples of oceanic island arc (OIA) igneous rocks of the Earth available in literature are described as well as of the formation of fresh rock sample, characteristics of this sample, and K-U-Th-systematics of the fresh igneous rocks of Earth OIA. Results of comparison of the Venus measured rocks and Earth OIA rocks by K, U, Th

  18. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  19. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  20. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    Science.gov (United States)

    Abdullah, Warith; Reddy, Remata

    From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat

  1. 231Pa and 230Th in the ocean model of the Community Earth System Model (CESM1.3)

    Science.gov (United States)

    Gu, Sifan; Liu, Zhengyu

    2017-12-01

    The sediment 231Pa / 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of the sediment 231Pa / 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa / 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa / 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa / 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.

  2. The Pilgram's Progress: Reflections on the journey building Australia's solid earth information infrastructure (Invited)

    Science.gov (United States)

    Woodcock, R.

    2013-12-01

    Australia's AuScope provides world class research infrastructure as a framework for understanding the structure and evolution of the Australian continent. Since it conception in 2005, Data Scientists have led the Grid and Interoperability component of AuScope. The AuScope Grid is responsible for the effective management, curation, preservation and analysis of earth science data across the many organisations collaborating in AuScope. During this journey much was learned about technology and architectures but even more about organisations and people, and the role of Data Scientists in the science ecosystem. With the AuScope Grid now in operation and resulting techniques and technologies now underpinning Australian Government initiatives in solid earth and environmental information, it is beneficial to reflect upon the journey and observe what has been learned in order to make data science routine. The role of the Data Scientist is a hybrid one, of not quite belonging and yet highly valued. With the skills to support domain scientists with data and computational needs and communicate across domains, yet not quite able to do the domain science itself. A bridge between two worlds, there is tremendous satisfaction from a job well done, but paradoxically it is also best when it is unnoticeable. In the years since AuScope started much has changed for the Data Scientist. Initially misunderstood, Data Scientists are now a recognisable part of the science landscape in Australia. Whilst the rewards and incentives are still catching up, there is wealth of knowledge on the technical and soft skills required and recognition of the need for Data Scientists. These will be shared from the AuScope journey so other pilgrims may progress well.

  3. Satellite Tidal Magnetic Signals Constrain Oceanic Lithosphere-Asthenosphere Boundary Earth Tomography with Tidal Magnetic Signals

    Science.gov (United States)

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Chandrasekharan, Manoj; Olsen, Niles

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. Here we use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals an Approximately 72 km thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  4. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model

    Science.gov (United States)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2015-07-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However

  5. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Wenzhoefer, Frank; Middelboe, Mathias

    2013-01-01

    Microbes control the decomposition of organic matter in marine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon(1). Generally, rates of benthic decomposition decline with increasing water depth, although given the vast...... extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle(2,3). However, the deepest regions of the ocean have remained virtually unexplored(4). Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central...

  6. Partnering and teamwork to create content for spherical display systems to enhance public literacy in earth system and ocean sciences

    Science.gov (United States)

    Beaulieu, S. E.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.; Spargo, A.; Brickley, A.; Emery, M.

    2013-12-01

    Spherical display systems, also known as digital globes, are technologies that, in person or online, can be used to help visualize global datasets and earth system processes. Using the InterRidge Global Database of Active Submarine Hydrothermal Vent Fields and imagery from deep-sea vehicles, we are creating content for spherical display systems to educate and excite the public about dynamic geophysical and biological processes and exploration in the deep ocean. The 'Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents' is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, hosting a Magic Planet and Science On a Sphere (SOS), respectively. The main activities in the first year of our project were geared towards team building and content development. Here we will highlight the partnering and teamwork involved in creating and testing the effectiveness of our new content. Our core team is composed of a lead scientist, educators at both institutions, graphic artists, and a professional evaluator. The new content addresses key principles of Earth Science Literacy and Ocean Literacy. We will share the collaborative, iterative process by which we developed two educational pieces, 'Life without sunlight' and 'Smoke and fire underwater' - each focusing on a different set of 3 literacy principles. We will share how we conducted our front-end and formative evaluations and how we focused on 2 NSF Informal Education Impact Categories for our evaluation questionnaire for the public. Each educational piece is being produced as a stand-alone movie and as an interactive, docent-led presentation integrating a number of other datasets available from NOAA's SOS Users Network. The proximity of our two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS.

  7. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  8. Earth orientation and its excitation by atmosphere, oceans, and geomagnetic jerks

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril

    -, č. 191 (2015), s. 59-66 ISSN 1450-698X R&D Projects: GA ČR GA13-15943S Institutional research plan: CEZ:AV0Z1003909 Institutional support: RVO:67985815 Keywords : Earth * reference systems * time Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.429, year: 2015

  9. GEOPHYSICAL INVESTIGATIONS OF THE STRUCTURE OF THE EARTH’S CRUST IN THE ATLANTIC OCEAN REGION,

    Science.gov (United States)

    50--100 mgal and then increase to +50--70mgal. The Bouguer isoanomaly lines are denser in the transition zone and a considerable gravity gradient...data has also become more abundent. Investigations to determine relation between Bouguer gravity anomalies and the thickness of the earth’s crust

  10. Impact into the earth's ocean floor - Preliminary experiments, a planetary model, and possibilities for detection

    Science.gov (United States)

    Mckinnon, W. B.

    1982-01-01

    Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.

  11. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  12. From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification

    Directory of Open Access Journals (Sweden)

    J. R. Young

    2009-11-01

    Full Text Available The observed variation in the calcification responses of coccolithophores to changes in carbonate chemistry paints a highly incoherent picture, particularly for the most commonly cultured "species", Emiliania huxleyi. The disparity between magnitude and potentially even sign of the calcification change under simulated end-of-century ocean surface chemical changes (higher pCO2, lower pH and carbonate saturation, raises challenges to quantifying future carbon cycle impacts and feedbacks because it introduces significant uncertainty in parameterizations used for global models. Here we compile the results of coccolithophore carbonate chemistry manipulation experiments and review how ocean carbon cycle models have attempted to bridge the gap from experiments to global impacts. Although we can rule out methodological differences in how carbonate chemistry is altered as introducing an experimental bias, the absence of a consistent calcification response implies that model parameterizations based on small and differing subsets of experimental observations will lead to varying estimates for the global carbon cycle impacts of ocean acidification. We highlight two pertinent observations that might help: (1 the degree of coccolith calcification varies substantially, both between species and within species across different genotypes, and (2 the calcification response across mesocosm and shipboard incubations has so-far been found to be relatively consistent. By analogy to descriptions of plankton growth rate vs. temperature, such as the "Eppley curve", which seek to encapsulate the net community response via progressive assemblage change rather than the response of any single species, we posit that progressive future ocean acidification may drive a transition in dominance from more to less heavily calcified coccolithophores. Assemblage shift may be more important to integrated community calcification response than species

  13. Multidisciplinary projects and investigations on the solid earth geophysics; Metodi e prospettive per una maggiore conoscenza della crosta terrestre

    Energy Technology Data Exchange (ETDEWEB)

    Slejko, D. [Consiglio Nazionale delle Ricerche, Gruppo Nazionale di Geofisica della Terra Solida, Trieste (Italy)

    2001-07-01

    Physical phenomena that occur in the solid part of the Earth are investigated by Solid Earth Geophysics together with problems related to the shape, location, and characteristics of the different parts that constitute the Earth. Repeated measurements lead the scientists to model the past evolution of the various processes as well as to forecast the future ones. Various disciplines refer to Solid Earth Geophysics, they are: Seismology, Gravimetry, Magnetometry, Geothermics, Geodesy, Geo electromagnetism, and Seismic Exploration. A special citation is due to Applied Geophysics, which are devoted to the identification of minerals, energetic and natural resources. The National Group of Solid Earth Geophysics was constituted in 1978 by CNR for promoting, developing, and coordinating researches related to Solid Earth Geophysics. The limited annual financial budget has conditioned the realisation of relevant multi-disciplinary projects. Nevertheless, important results were obtained in all different fields of Geophysics and were disseminated during the annual conference of the Group. A summary review of the main topics treated during the last conference is given here and some ideas for future research projects are presented. [Italian] La Geofisica della Terra Solida e' quella branca delle scienze e delle tecnologie che prende in considerazione dei fenomeni connessi con le caratteristiche fisiche della parte solida della Terra. La complessita' della costituzione della Terra e della sua evoluzione nel tempo implica che vengano prese in considerazione tutte le fenomenologie che si riescono a misurare e che costituiscono branche diverse della Geofisica: la Sismologia, la Gravimetria, la Magnetometria, la Geotermia, la Geodesia, il Geoelettromagnetismo, la Geofisica applicata. Ognuna di queste branche della Geofisica ha avuto in passato uno sviluppo quasi del tutto indipendente con collaborazioni o integrazioni dirtte ad obiettivi specifici, limitati anche nel tempo

  14. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  15. Study of atmospheric and oceanic excitations in the motion of Earth's spin axis in space

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Ron, Cyril

    2010-01-01

    Roč. 7, č. 1 (2010), s. 19-28 ISSN 1214-9705 R&D Projects: GA MŠk(CZ) LC506; GA ČR GA205/08/0908 Institutional research plan: CEZ:AV0Z10030501 Keywords : Earth orientation * nutation * geophysical excitation * VLBI Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.452, year: 2010 http://www.irsm.cas.c

  16. On the division of contribution of the atmosphere and ocean in the radiation of the earth for the tasks of remote sensing and climate

    Science.gov (United States)

    Sushkevich, T. A.; Strelkov, S. A.; Maksakova, S. V.

    2017-11-01

    We are talking about the national achievements of the world level in theory of radiation transfer in the system atmosphere-oceans and about the modern scientific potential developing in Russia, which adequately provides a methodological basis for theoretical and computational studies of radiation processes and radiation fields in the natural environments with the use of supercomputers and massively parallel processing for problems of remote sensing and the climate of Earth. A model of the radiation field in system "clouds cover the atmosphere-ocean" to the separation of the contributions of clouds, atmosphere and ocean.

  17. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  18. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, Maria; Stocchi, Paolo; von der Heydt, Anna; Dijkstra, Hendrik; Brinkhuis, Henk

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~34 Myr) by combining solid Earth and ocean dynamic

  19. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H.

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean

  20. Thermal structure of the accreting earth

    International Nuclear Information System (INIS)

    Turcotte, D.L.; Pflugrath, J.C.

    1985-01-01

    The energy associated with the accretion of the earth and the segregation of the core is more than sufficient to melt the entire earth. In order to understand the thermal evolution of the early earth it is necessary to study the relevant heat transfer mechanisms. In this paper we postulate the existence of a global magma ocean and carry out calculations of the heat flux through it in order to determine its depth. In the solid mantle heat is transferred by the upward migration of magma. This magma supplies the magma ocean. The increase in the mantle liquidus with depth (pressure) is the dominant effect influencing heat transfer through the magma ocean. We find that a magma ocean with a depth of the order of 20 km would have existed as the earth accreted. We conclude that the core segregated and an atmosphere was formed during accretion

  1. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea (Northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; You, C.-F.; Nath, B.N.; SijinKumar, A.V.

    Downcore variation of rare earth elements (REEs) in the authigenic Fe-Mn oxides of a sediment core (covering a record of last approx. 40 kyr) from the Andaman Sea, a part of the Indian Ocean shows distinctive positive Ce and Eu anomalies...

  2. Tropical Pacific Climate, Carbon, and Ocean Biogeochemical Response to the Central American Seaway in a GFDL Earth System Model

    Science.gov (United States)

    Sentman, L. T.; Dunne, J. P.; Stouffer, R. J.; Krasting, J. P.; Wittenberg, A. T.; Toggweiler, J. R.; Broccoli, A. J.

    2017-12-01

    To explore the tropical Pacific climate, carbon, and ocean biogeochemical response to the shoaling and closure of the Central American Seaway during the Pliocene (5.3-2.6 Ma), we performed a suite of sensitivity experiments using the Geophysical Fluid Dynamics Laboratory Earth System Model, GFDL-ESM2G, varying only the seaway widths and sill depths. These novel ESM simulations include near-final closure of the seaway with a very narrow, 1º grid cell wide opening. Net mass transport through the seaway into the Caribbean is 20.5-23.1 Sv with a deep seaway, but only 14.1 Sv for the wide/shallow seaway because of the inter-basin bi-directional horizontal mass transport. Seaway transport originates from the Antarctic Circumpolar Current in the Pacific and rejoins it in the South Atlantic, reducing the Indonesian Throughflow and transporting heat and salt southward into the South Atlantic, in contrast to present-day and previous seaway simulations. Tropical Pacific mean climate and interannual variability is sensitive to the seaway shoaling, with the largest response to the wider/deeper seaway. In the tropical Pacific, the top 300-m warms 0.4-0.8°C, the equatorial east-west sea surface temperature gradient increases, the north-south sea surface temperature asymmetry at 110°W decreases, thermocline deepens 5-11 m, and the east-west thermocline gradient increases. In the Niño-3 region, ENSO amplitude increases, skewed toward more cold (La Niña) events, El Niño and La Niña develops earlier ( 3 months), the annual cycle weakens and the semi-annual and interannual cycles strengthen from increased symmetry of the north-south sea surface temperature gradient, and atmospheric global teleconnections strengthen with the seaway. The increase in global ocean overturning with the seaway results in a younger average ocean ideal age, reduced dissolved inorganic carbon inventory and marine net primary productivity, and altered inter-basin patterns of surface sediment carbonate

  3. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  4. EarthServer2 : The Marine Data Service - Web based and Programmatic Access to Ocean Colour Open Data

    Science.gov (United States)

    Clements, Oliver; Walker, Peter

    2017-04-01

    The ESA Ocean Colour - Climate Change Initiative (ESA OC-CCI) has produced a long-term high quality global dataset with associated per-pixel uncertainty data. This dataset has now grown to several hundred terabytes (uncompressed) and is freely available to download. However, the sheer size of the dataset can act as a barrier to many users; large network bandwidth, local storage and processing requirements can prevent researchers without the backing of a large organisation from taking advantage of this raw data. The EC H2020 project, EarthServer2, aims to create a federated data service providing access to more than 1 petabyte of earth science data. Within this federation the Marine Data Service already provides an innovative on-line tool-kit for filtering, analysing and visualising OC-CCI data. Data are made available, filtered and processed at source through a standards-based interface, the Open Geospatial Consortium Web Coverage Service and Web Coverage Processing Service. This work was initiated in the EC FP7 EarthServer project where it was found that the unfamiliarity and complexity of these interfaces itself created a barrier to wider uptake. The continuation project, EarthServer2, addresses these issues by providing higher level tools for working with these data. We will present some examples of these tools. Many researchers wish to extract time series data from discrete points of interest. We will present a web based interface, based on NASA/ESA WebWorldWind, for selecting points of interest and plotting time series from a chosen dataset. In addition, a CSV file of locations and times, such as a ship's track, can be uploaded and these points extracted and returned in a CSV file allowing researchers to work with the extract locally, such as a spreadsheet. We will also present a set of Python and JavaScript APIs that have been created to complement and extend the web based GUI. These APIs allow the selection of single points and areas for extraction. The

  5. A non-fickian approach to the consequences of dumping solid radioactive wastes in a finite ocean

    International Nuclear Information System (INIS)

    Sarma, T.P.; D'Souza, R.S.; Sastry, V.N.; Soman, S.D.

    1981-01-01

    A mathematical model is developed to describe the spatial and temporal distributions of radionuclides released from solid wastes dumped on a sea bed. It takes into account the field tested dependence of horizontal eddy diffusion coefficients by the '4/3 power law' and the geochemical mean residence times of these elements in oceans. Since ocean dimensions cannot be considered infinite except for very short lived nuclides (a few months), the reflections of nuclides at the boundaries and the consequent effects on the overall concentrations have been assessed. The computations indicate that the entire activity is confined to the ocean dimensions, and the integral mean concentration value over the entire depth approaches the well-mixed value at large times. The effect of using the geochemical residence time concept leads to much lower concentration levels in waters for transuranic nuclides such as 239 Pu because of the much shorter geochemical residence times compared to the physical half-lives; in contrast for the majority of the other nuclides, the governing factor is essentially the radioactive decay only. (author)

  6. Microbial Life in the Subseafloor at Mid-Ocean Ridges: A Key to Understanding Ancient Ecosystems on Earth and Elsewhere?

    Science.gov (United States)

    Baross, J. A.; Delaney, J. R.

    2001-12-01

    Some planets and moons in our solar system were similar to Earth in their geological properties during the first few hundred million years after accretion. This is the period when life arose and became established on Earth. It follows that understanding the geophysical and geochemical characteristics of early Earth could provide insight into life-supporting environments on other solar bodies that have not evolved "Garden of Eden" conditions. Hydrothermal systems are primordial and their emergence coincided with the accumulation of liquid water on Earth. The interactions of water and rock associated with hydrothermal systems result in predictable suites of dissolved elements and volatiles. While the concentrations of these chemicals vary at different vent locations and were certainly different during the early Archaean, the overall chemical composition of aqueous hydrothermal fluid is likely to be the same because of the basaltic nature of oceanic crust. In present-day hydrothermal systems, those environments not contaminated by electron acceptors produced from pelagic photosynthesis would most closely mimic the earliest conditions on Earth. These conditions include the subseafloor and high temperature, anaerobic environments associated with hydrothermal systems. The microorganisms associated with these environments derive energy from sulfur, iron, hydrogen and organic compounds. New seafloor eruptions and diffuse flow vents provide unprecedented access to deep subseafloor microbial communities. For example, 12 new eruptions have occurred in the past 15 years including five in the Northeast Pacific. Hyperthermophiles were isolated from 5-30oC diffuse vent fluids from new eruption sites at CoAxial within months of the June, 1993 eruption and from the 1998 eruption at Axial Volcano, and from plume fluids within days of the February, 1996 eruption at the N. Gorda Ridge. The presence of such organisms in fluids that are 20 to 50°C below their minimum growth temperature

  7. FIN-EPOS - Finnish national initiative of the European Plate Observing System: Bringing Finnish solid Earth infrastructures into EPOS

    Science.gov (United States)

    Vuorinen, Tommi; Korja, Annakaisa

    2017-04-01

    FIN-EPOS consortium is a joint community of Finnish national research institutes tasked with operating and maintaining solid-earth geophysical and geological observatories and laboratories in Finland. These national research infrastructures (NRIs) seek to join EPOS research infrastructure (EPOS RI) and further pursue Finland's participation as a founding member in EPOS ERIC (European Research Infrastructure Consortium). Current partners of FIN-EPOS are the University of Helsinki (UH), the University of and Oulu (UO), Finnish Geospatial Research Institute (FGI) of the National Land Survey (NLS), Finnish Meteorological Institute (FMI), Geological Survey of Finland (GTK), CSC - IT Center for Science and MIKES Metrology at VTT Technical Research Centre of Finland Ltd. The consortium is hosted by the Institute of Seismology, UH (ISUH). The primary purpose of the consortium is to act as a coordinating body between various NRIs and the EPOS RI. FIN-EPOS engages in planning and development of the national EPOS RI and will provide support in EPOS implementation phase (IP) for the partner NRIs. FIN-EPOS also promotes the awareness of EPOS in Finland and is open to new partner NRIs that would benefit from participating in EPOS. The consortium additionally seeks to advance solid Earth science education, technologies and innovations in Finland and is actively engaging in Nordic co-operation and collaboration of solid Earth RIs. The main short term objective of FIN-EPOS is to make Finnish geoscientific data provided by NRIs interoperable with the Thematic Core Services (TCS) in the EPOS IP. Consortium partners commit into applying and following metadata and data format standards provided by EPOS. FIN-EPOS will also provide a national Finnish language web portal where users are identified and their user rights for EPOS resources are defined.

  8. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  9. Geodesy by radio interferometry - Determinations of baseline vector, earth rotation, and solid earth tide parameters with the Mark I very long baseline radio interferometery system

    Science.gov (United States)

    Ryan, J. W.; Clark, T. A.; Coates, R. J.; Ma, C.; Wildes, W. T.

    1986-01-01

    Thirty-seven very long baseline radio interferometry experiments performed between 1972 and 1978 are analyzed and estimates of baseline vectors between six sites, five in the continental United States and one in Europe are derived. No evidence of significant changes in baseline length is found. For example, with a statistical level of confidence of approximately 85 percent, upper bounds on such changes within the United States ranged from a low of 10 mm/yr for the 850 km baseline between Westford, Massachusetts, and Green Bank, West Virginia, to a high of 90 mm/yr for the nearly 4000 km baseline between Westford and Goldstone, California. Estimates for universal time and for the x component of the position of the earth's pole are obtained. For the last 15 experiments, the only ones employing wideband receivers, the root-mean-square differences between the derived values and the corresponding ones published by the Bureau International de l'Heure are 0.0012 s and 0.018 arc sec respectively. The average value obtained for the radial Love number for the solid earth is 0.62 + or - 0.02 (estimated standard error).

  10. Using GPS and GRACE data to assess Solid Earth elastic parameters at regional scale

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Borghi, A.; Aoudia, A.

    2012-01-01

    We propose a way to combine GPS and GRACE data for regional scale cross check and validation especially of the most commonly used PREM (Preliminary Earth Reference Model). In form of h and k Love numbers, global PREM is very often used to simulate elastic rebound due to present-day ice mass loss......, to derive the mass distribution produced by the observed GRACE time series, and it is also used for atmospheric loading correction both in GPS and in GRACE dealiasing products. GRACE data provide load estimates, usually given as water equivalent mass distribution, from which one derives the Earth elastic...... response, by convolution with suitable elastic green functions, relying on selected Earth model and related layering and elastic parameters. We calculate at regional scale the time series of monthly uplift associated with the mass redistribution observed by GRACE implementing the high resolution technique...

  11. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2012-01-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  12. Decadal predictions of Southern Ocean sea ice : testing different initialization methods with an Earth-system Model of Intermediate Complexity

    Science.gov (United States)

    Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana

    2013-04-01

    The sea ice extent in the Southern Ocean has increased since 1979 but the causes of this expansion have not been firmly identified. In particular, the contribution of internal variability and external forcing to this positive trend has not been fully established. In this region, the lack of observations and the overestimation of internal variability of the sea ice by contemporary General Circulation Models (GCMs) make it difficult to understand the behaviour of the sea ice. Nevertheless, if its evolution is governed by the internal variability of the system and if this internal variability is in some way predictable, a suitable initialization method should lead to simulations results that better fit the reality. Current GCMs decadal predictions are generally initialized through a nudging towards some observed fields. This relatively simple method does not seem to be appropriated to the initialization of sea ice in the Southern Ocean. The present study aims at identifying an initialization method that could improve the quality of the predictions of Southern Ocean sea ice at decadal timescales. We use LOVECLIM, an Earth-system Model of Intermediate Complexity that allows us to perform, within a reasonable computational time, the large amount of simulations required to test systematically different initialization procedures. These involve three data assimilation methods: a nudging, a particle filter and an efficient particle filter. In a first step, simulations are performed in an idealized framework, i.e. data from a reference simulation of LOVECLIM are used instead of observations, herein after called pseudo-observations. In this configuration, the internal variability of the model obviously agrees with the one of the pseudo-observations. This allows us to get rid of the issues related to the overestimation of the internal variability by models compared to the observed one. This way, we can work out a suitable methodology to assess the efficiency of the

  13. Solid Waste Transportation through Ocean Currents: Marine Debris Sightings and their Waste Quantification at Port Dickson Beaches, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Chong Jing Yi

    2016-07-01

    Full Text Available Four beaches at Port Dickson, Peninsular Malaysia, namely Saujana Beach, Nelayan Beach, Bagan Pinang Beach and Cermin beach have been sampled for marine debris from 7th June 2014 until 26th July 2014, on every Saturday. These beaches face the Strait of Malacca with a coastline stretching 18 km each. Our observations revealed a total debris items of 13193 in those beaches. The top three items of highest frequency were cigarette butts, foamed fragments and food wrappers. Plastic debris scaled high upto 41% of the total debris. Compared to the ocean conservancy�s 2013 report of marine debris in Malaysian beaches, which was 27,005 items with in 6.44 km, the current count is slightly low. However, Malaysia was ranked 14th place among the top 20 countries in International Marine Debris Watch program. Nelayan Beach is the dirtiest beach in Port Dickson. Around 50% of the total plastic items collected are found on those beaches. The marine debris items indicated that they arrived there by land-based and ocean-based activities. High energy conditions such as wind and waves in the beaches correlated well with less debris deposition on the beaches. With debris equivalent of 4193 items/km, Malaysia harvests less solid wastes compared to Croatia, USA, Singapore and Turkey. However, a nation wide survey is needed to assess the seriousness of marine debris problem in Malaysia.

  14. Uranium, yttrium, and rare earth elements accumulation during the Cretaceous anoxic events in carbonaceous rocks in the Pacific Ocean

    Science.gov (United States)

    Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana

    2017-04-01

    We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU

  15. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    OpenAIRE

    G. E. Kim; M.-A. Pradal; A. Gnanadesikan

    2015-01-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attribut...

  16. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  17. Professional Development for Researchers in Solid Earth Science Evolved to Include Scientific and Educational Content

    Science.gov (United States)

    Eriksson, S. C.; Arrowsmith, R.; Olds, S. E.

    2011-12-01

    Integrated measures of crustal deformation provide valuable insight about tectonic and human-induced processes for scientists and educators alike. UNAVCO in conjunction with EarthScope initiated a series of short courses for researchers to learn the processing and interpretation of data from new technologies such as high precision GPS, Strainmeter, InSar and LiDAR that provide deformation information relevant to many geoscience sub-disciplines. Intensive short courses of a few days and the widespread availability of processed data through large projects such as EarthScope and GEON enable more geoscientists to incorporate these data into diverse projects. Characteristics of the UNAVCO Short Course Series, reaching over 400 participants since 2005, include having short course faculty who have pioneered development of each technology; open web-access to course materials; processing software installed on class-ready computers; no course fees; scholarships for students, post-doctoral fellows, and emerging faculty when needed; formative evaluation of the courses; community-based decisions on topics; and recruitment of participants across relevant geoscience disciplines. In 2009, when EarthScope airborne LiDAR data became available to the public through OpenTopographhy, teaching materials were provided to these researchers to incorporate the latest technologies into teaching. Multiple data sets across technologies have been developed with instructions on how to access the various data sets and incorporate them into geological problem sets. Courses in GPS, airborne LiDAR, strainmeter, and InSAR concentrate on data processing with examples of various geoscience applications. Ground-based LiDAR courses also include data acquisition. Google Earth is used to integrate various forms of data in educational applications. Various types of EarthScope data can now be used by a variety of geoscientists, and the number of scientists who have the skills and tools to use these various

  18. Solid and hazardous waste management practices onboard ocean going vessels: a review.

    Science.gov (United States)

    Swamy, Yeddanapudi V R P P

    2012-01-01

    Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.

  19. Solid earth as a recycling systems and the lateral growth of Precambrian North America

    International Nuclear Information System (INIS)

    Veizer, J.

    1988-01-01

    If plotted on mass vs time diagrams, geologic entities (for example, continental and oceanic crust, sediments, and mineral resources) display an exponential (power law) relationship, with entity per unit time increasing toward the present. This relationship is consistent with the concept of recycling and can be simulated mathematically. The approach is based on the plate tectonic theory and considers area-age or mass-age distributions of crystalline basement and sediments for major global tectonic realms. Each tectonic realm is characterized by a specific lifespan, which is an inverse function of its recycling rate. The estimated average half-area of half-mass ages are given. The corresponding parameters for continental crust are 690 Ma for K/Ar, and approximately 1200 Ma for Rb/Sr and U-Th/Pb dating pairs. Tectonic diversity preserved in the geologic record is therefore a function of time, with oceanic tectonic realms, because of their rapid recycling, underrepresented in the rocks older than approximately 300 Ma. The Sm/Nd isotopic systematic of sediments suggest that, for a near steady-state post-Archean sedimentary mass, recycling is approximately 90 + or - 5 percent cannibalistic. This yields an estimated upper limit on crust-mantle exchange via sediment subduction of approximately 1.1 + or - 0.5 x 10 g a(sup -1) considerably less than demanded by isotopic constraints. The discrepancy may indicate the existence of additional loci, such as orogenic belts, for significant crust-mantle interaction

  20. Rare earth elements in the Pacific and Atlantic Oceans. [Pr, Tb, Ho, Tm, Lu, La, Nd, Sm, Eu, Gd, Yb, Ce

    Energy Technology Data Exchange (ETDEWEB)

    Baar, H J.W. de; Bacon, M P; Brewer, P G; Bruland, K W

    1985-09-01

    The first profiles of Pr, Tb, Ho, Tm and Lu in the Pacific Ocean, as well as profiles of La, Ce, Nd, Sm, Eu, Gd and Yb are reported. Concentrations of REE (except Ce) in the deep water are two to three times higher than those observed in the deep Atlantic Ocean. Surface water concentrations are typically lower than in the Atlantic Ocean, especially for the heavier elements Ho,Tm,Yb and Lu. Cerium is strongly depleted in the Pacific water column, but less so in the oxygen minimum zone. The distribution of the REE group is consistent with two simultaneous processes: (1) cycling similar to that of opal and calcium carbonate, and (2) adsorptive scavenging by settling particles and possibly by uptake at ocean boundaries. However, the first process can probably not be sustained by the low REE contents of shells, unless additional adsorption on surfaces is invoked. The second process, adsorptive scavenging, largely controls the oceanic distribution and typical seawater pattern of the rare earths. (author).

  1. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  2. iSERVO: Implementing the International Solid Earth Research Virtual Observatory by Integrating Computational Grid and Geographical Information Web Services

    Science.gov (United States)

    Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry

    2006-12-01

    We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.

  3. Leachability of rare earth elements (REEs) from solid wastes generated during chemical processing of monazite

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Pillai, P.M.B.

    2001-01-01

    Studies have been carried out to assess the leachability of REEs from solid wastes generated in monazite processing. Leachability of REEs (La, Ce, Nd, Pr, Sm, Gd) and Y from PbS-Ba(Ra)SO 4 (Mixed cake) and Effluent Treatment Plant cake (calcium hydroxy apatite) has been studied using rain water as the leachant. Studies indicate that 23 -60 % of the REEs gets leached out from the mixed cake in the first 24 hours. From the ETP cake, the percentage of REEs leached out were negligible. The results provide inputs for hazards evaluation in accidental situations resulting in breach of integrity of the waste storages. (author)

  4. EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    Science.gov (United States)

    Calignano, Elisa; Rosenau, Matthias; Lange, Otto; Spiers, Chris; Willingshofer, Ernst; Drury, Martyn; van Kan-Parker, Mirjam; Elger, Kirsten; Ulbricht, Damian; Funiciello, Francesca; Trippanera, Daniele; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Winkler, Aldo

    2017-04-01

    Laboratory facilities are an integral part of Earth Science research. The diversity of methods employed in such infrastructures reflects the multi-scale nature of the Earth system and is essential for the understanding of its evolution, for the assessment of geo-hazards and for the sustainable exploitation of geo-resources. In the frame of EPOS (European Plate Observing System), the Working Package 16 represents a developing community of European Geoscience Multi-scale laboratories. The participant and collaborating institutions (Utrecht University, GFZ, RomaTre University, INGV, NERC, CSIC-ICTJA, CNRS, LMU, C4G-UBI, ETH, CNR*) embody several types of laboratory infrastructures, engaged in different fields of interest of Earth Science: from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue tectonic and geodynamic modelling and paleomagnetic laboratories. The length scales encompassed by these infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited "final form" in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting

  5. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    Science.gov (United States)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  6. Thermodynamics analysis of the rare earth metals and their alloys with indium in solid state

    International Nuclear Information System (INIS)

    Vassiliev, V.P.; Benaissa, Ablazeze; Taldrik, A.F.

    2013-01-01

    Graphical abstract: Gibbs energies of formation vs. RE atomic numbers in REIn 3 . Highlights: •Set of experimental values was collected for REIn 3 phases. •Thermodynamic functions of formation were calculated at 298 K and 775 K. •Experimental and calculated values were compared. -- Abstract: Nonlinear correlative analyses between thermodynamic and some physico-chemical properties of rare-earth metals (RE) and their alloys with indium are performed for the isostructural phases RE and REIn 3 . The thermodynamics values (Gibbs energies of formation, enthalpies of formation, and entropies of formation at 298 K and 775 K and standard entropies) of LnIn 3 phases are calculated on the basis of calorimetry and potentiometry results. The proposed correlation between physico-chemical and thermodynamic properties agrees for all the isostructural phases REX (X are others elements of the periodic table). The resulting thermodynamic data are recommended for metallurgical handbook

  7. Ternary and quaternary solid solutions in rare earth alloy phases with the CaCu5-type structure

    International Nuclear Information System (INIS)

    Malani, G.K.; Raman, A.; Mohanty, R.C.

    1992-01-01

    Crystal structural data were analyzed in seleced CaCu 5 -type ternary and quaternary solid solutions to assess the crystal chemical characteristics and stability features of the CaCu 5 -type structure in rare earth containing alloy phases. LaNi 5 was found to dissolve 100 mol% LaCu 5 , 100 mol% ErNi 5 , about 50 mol% LaIr 5 , 40 mol% 'LaMn 5 ', 20 mol% 'LaFe 5 ', and 25 mol% ErRh 5 . In contrast, LaCo 5 did not dissolve any Mn or any of the other elements other than Al - it dissolved about 20 mol% 'LaAl 5 '. LaCu 5 behaves similar to LaNi 5 in solid solutions. From the lack of solubility of any other element in LaFe 5 , LaCo 5 , LaRh 5 , and LaIr 5 and their great instability, these are inferred to be borderline cases in the realm of the CaCu 5 -type structure. In the CaCu 5 and related crystal structures, Ir is compatible with Ni, but not with Co or Rh, and Rh is not compatible with either Ni or Ir. (orig.) [de

  8. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  9. Improved estimation of geocenter motion and changes in the Earth's dynamic oblateness from GRACE data and an ocean bottom pressure model

    Science.gov (United States)

    Sun, Y.; Ditmar, P.; Riva, R.

    2015-12-01

    The Gravity Recovery and Climate Experiment (GRACE) satellite mission, since the launch in 2002, has enabled the monitoring of mass transport in the Earth's system on a monthly basis. In spite of continuous improvements in data processing techniques, an estimation of very low-degree spherical harmonic coefficients remains problematic. GRACE is insensitive to variations in the degree-1 coefficients (ΔC11, ΔS11 and ΔC10), which reflect the motion of the geocenter. The variations of C20 coefficients, which characterize changes in the Earth's dynamic oblateness (Δ J2) are corrupted by ocean tide aliases and usually replaced with estimates from other techniques.In this study, the methodology proposed by Swenson et al. (2008) to estimate geocenter motion is updated and extended to co-estimate changes in the Earth's dynamic oblateness. The algorithm uses monthly GRACE gravity solutions (in the form of spherical harmonic coefficients), an ocean bottom pressure model (over the oceans), and a glacial isostatic adjustment (GIA) model (globally). GRACE solutions over coastal areas may suffer from signal leakage due to their limited spectral content and to filtering. We effectively avoid the influence of this effect by introducing a carefully chosen buffer zone. We also take into account self-attraction and loading effects when dealing with water redistribution in the oceans. The estimated annual amplitude of ΔC10 , i.e. the Z component of the geocenter motion, is significantly amplified compared to the original estimations of Swenson et al. (2008) and it is in line with estimates from other techniques, such as the global GPS inversion. The resulting ΔC20 time-series agree remarkably well with a solution based on satellite laser ranging data, which is currently believed to be one of the most accurate sources of information on changes in the Earth's dynamic oblateness. Trends in both geocenter position and the Earth's oblateness are estimated as well. The results show a

  10. Variable valence of praseodymium in rare-earth oxide solid solutions

    International Nuclear Information System (INIS)

    Kravchinskaya, M.V.; Merezhinskii, K.Y.; Tikhonov, P.A.

    1986-01-01

    Solid solutions of elevated praseodymium oxide content have interesting electrical properties, making them the basis for the manufacture of high-temperature electrically conducting materials. Establishment of the composition-structure-valence state relationships enables control of the material properties. The authors performed investigations using a thermogravimetric apparatus with an electronic microbalance of type EM-5-3M, and using x-ray phase analysis of powders (DRON-1 diffractometer, CuK /SUB alpha/ -radiation). The authors also studied the kinetics of praseodymium oxidation with a thermogravimetric apparatus under isothermal conditions. Evaluation of the results with the equation of Kolmogorov, Erofeev, and Avraam indicates that the process is limited by the chemical oxidation of praseodymium and not by diffusion

  11. Women in EPOS: the role of women in a large pan-European Research Infrastructure for Solid Earth sciences

    Science.gov (United States)

    Calignano, Elisa; Freda, Carmela; Baracchi, Laura

    2017-04-01

    Women are outnumbered by men in geosciences senior research positions, but what is the situation if we consider large pan-European Research Infrastructures? With this contribution we want to show an analysis of the role of women in the implementation of the European Plate Observing System (EPOS): a planned research infrastructure for European Solid Earth sciences, integrating national and transnational research infrastructures to enable innovative multidisciplinary research. EPOS involves 256 national research infrastructures, 47 partners (universities and research institutes) from 25 European countries and 4 international organizations. The EPOS integrated platform demands significant coordination between diverse solid Earth disciplinary communities, national research infrastructures and the policies and initiatives they drive, geoscientists and information technologists. The EPOS architecture takes into account governance, legal, financial and technical issues and is designed so that the enterprise works as a single, but distributed, sustainable research infrastructure. A solid management structure is vital for the successful implementation and sustainability of EPOS. The internal organization relies on community-specific Working Packages (WPs), Transversal WPs in charge of the overall EPOS integration and implementation, several governing, executive and advisory bodies, a Project Management Office (PMO) and the Project Coordinator. Driven by the timely debate on gender balance and commitment of the European Commission to promote gender equality in research and innovation, we decided to conduct a mapping exercise on a project that crosses European national borders and that brings together diverse geoscience disciplines under one management structure. We present an analysis of women representation in decision-making positions in each EPOS Working Package (WP Leader, proxy, legal, financial and IT contact persons), in the Boards and Councils and in the PMO

  12. Seismic imaging at the cross-roads: Active, passive, exploration and solid Earth

    Science.gov (United States)

    Rawlinson, N.; Stephenson, R.; Carbonell, R.

    2017-10-01

    Science has grown from our need to understand the world around us. Seismology is no different, with earthquakes and their destructive effect on society providing the motivation to understand the Earth's seismic wavefield. The question of when seismology as a science really began is an interesting one, but it is unlikely that there will ever be a universally agreed-upon date, partly because of the incompleteness of the historical record, and partly because the definition of what constitutes science varies from person to person. For instance, one could regard 1889 as the true birth of seismology, because that is when the first distant earthquake was detected by an instrument; in this case Ernst von Rebeur-Paschwitz detected an earthquake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem, 1995). However, even the birth of instrumental seismology could be contested; the so-called Zhang Heng directional ;seismoscope; (detects ground motion but not as a function of time) was invented in 132 CE (Rui and Yan-xiang, 2006), and is said to have detected a four-hundred mile distant earthquake which was not felt at the location of the instrument (Needham, 1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observations of earthquakes were not uncommon; for instance, Aristotle provided a classification of earthquakes based on the nature of observed ground motion (Ben-Menahem, 1995).

  13. The Regional Earth System Model (RegESM) using RegCM4 coupled with the MITgcm ocean model: First assessments over the MED-CORDEX domain

    Science.gov (United States)

    Mariotti, Laura; Utku Turunçoǧlu, Ufuk; Farneti, Riccardo; Sannino, Gianmaria; Vittoria Struglia, Maria; Carillo, Adriana; Giorgi, Filippo

    2016-04-01

    In the framework of global climate studies, there is an increasingly growing concern about the vulnerability of the Mediterranean region, where high population density and intense exploitation activities pose severe questions on the sustainability of terrestrial water management, both for the present and the future. Ocean modeling studies suggest that the Mediterranean thermohaline circulation could be weakened in conditions of global greenhouse warming, an event which would undoubtedly affect regional climate, possibly triggering global feedback processes. Experiments with the atmosphere-ocean coupled system confirmed that a good comprehension of Mediterranean processes requires the explicit inclusion of the feedbacks between the atmospheric and the oceanic components, thus achieving a complete, fully coupled description of the Mediterranean hydrological cycle, at the same time gaining new insights in our current ability to reproduce the atmospheric hydrological processes and to close the hydrological balance. These issues are addressed by the upgraded PROTHEUS system which was jointly developed by ENEA and ICTP. Here we present a first evaluation of the performances of the new PROTHEUS system (called PROTHEUS 2.0) composed by the regional climate model RegCM4 (Giorgi et al. 2012) coupled with both the ocean model MITgcm (Marshall J. et al. 1997a,b) and the HD river model (Max-Planck's HD model; Hagemann and Dümenil, 1998) using RegESM (Regional Earth System Model) as a driver. The three-component (atmosphere, ocean and river routing) fully coupled model exchanges sea surface temperature (SST) from the ocean to the atmospheric model, surface wind stress, energy and freshwater fluxes from the atmosphere to the ocean model, surface and sub-surface runoff from the atmospheric component to the river routing model (Max-Planck's HD model; Hagemann and Dümenil, 1998). In order to have water conservation within the system, the river routing component sends the

  14. Parent-daughter equilibria in ocean arising out of disposal of solid radioactive wastes on the sea bed

    International Nuclear Information System (INIS)

    Sarma, T.P.; Krishnamoorthy, T.M.

    1986-01-01

    One dimension diffusion model, incorporating geochemical elimination and reflection at ocean boundaries, is employed to show the differences in spatial and temporal distribution of parent and daughter radionuclides, produced in situ, due to the discharge of solid radioactive wastes on to the sea bed. Concentration of daughter is generally lower than that of parent in deep waters. Short-lived daughters (relative to parent) reach spatial equilibrium with parent for finite periods whereas long-lived daughters attain only a fraction of the parent activity. However, when the dumping operation is assumed to be for infinite period, the relative ratio of concentration of daughter to parent would reach value > 1 in surface waters irrespective of the half-lives of the daughter and the magnitude of this ratio increases with increase in half-life of the daughter relative to the parent. This is the result of steep vertical gradient for the parent due to the small physical half-life and more or less uniform concentration of long-lived daughter. Geochemical elimination rate, when becomes significant in the overall removal processes, controls this differential spatial gradient of daughter and parent. However, the integrated activity of daughter over the entire depth is equal to or less than the parent activity. (author)

  15. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  16. Aerobic biodegradation kinetics of solid organic wastes on earth and for applications in space

    Science.gov (United States)

    Ramirez Perez, Javier Christian

    Aerobic biodegradation plays an important role in recycling organic matter and nutrients on earth. It is also a candidate technology for waste processing and resource recovery in Advanced Life Support (ALS) systems, such as a proposed planetary base on Mars. Important questions are how long should wastes be treated, and what is the quality (stability/maturity) of the product. To address these questions two aerobic composting systems were evaluated. One treated (252 days) horse manure and cranberry fruit in duplicate open windrows (HCC) as a reference earth application. The other was a pilot-scale (330 L) enclosed, in-vessel system treating (162 days) inedible biomass collected from plant growth systems at NASA, amended with food and human wastes simulant for potential space application (ALSC). Samples were taken from both systems over time and product quality assessed with a range of physical, chemical, biological, toxicological, respirometry and plant growth analyses that were developed and standardized. Because plant growth analyses take so long, a hypothesis was that some parameters could be used to predict compost quality and suitability for growing plants. Maximum temperatures in the thermophilic range were maintained for both systems (HCC > 60°C for >129 days, ALSC > 55°C for >40 days. Fecal streptococci were reduced by 4.8 log-units for HCC and 7.8 for ALSC. Volume/mass reductions achieved were 63%/62% for HCC and 79%/67% for ALSC. Phytotoxicity tests performed on aqueous extracts to recover plant nutrients found decreasing sensitivity: arabidopsis > lettuce > tomato > wheat > cucumber, corresponding with seed size and food reserve capacity. The germination index (GI) of HCC increased over composting time indicating decreasing phytotoxicity. However, GIs for ALSC leachate decreased or fluctuated over composting time. Selected samples of HCC at 31, 157 and 252 days alone and combined with promix (1:1), and of ALSC at 7, 14, 21, 28, 40 and 84 days, or fresh

  17. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    Science.gov (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  18. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  19. Monthly and Fortnightly Tidal Variations of the Earth's Rotation Rate Predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model

    Science.gov (United States)

    Desai, S.; Wahr, J.

    1998-01-01

    Empirical models of the two largest constituents of the long-period ocean tides, the monthly and the fortnightly constituents, are estimated from repeat cycles 10 to 210 of the TOPEX/POSEIDON (T/P) mission.

  20. Piloting a Geoscience Literacy Exam for Assessing Students' Understanding of Earth, Climate, Atmospheric and Ocean Science Concepts

    Science.gov (United States)

    Steer, D. N.; Iverson, E. A.; Manduca, C. A.

    2013-12-01

    This research seeks to develop valid and reliable questions that faculty can use to assess geoscience literacy across the curriculum. We are particularly interested on effects of curricula developed to teach Earth, Climate, Atmospheric, and Ocean Science concepts in the context of societal issues across the disciplines. This effort is part of the InTeGrate project designed to create a population of college graduates who are poised to use geoscience knowledge in developing solutions to current and future environmental and resource challenges. Details concerning the project are found at http://serc.carleton.edu/integrate/index.html. The Geoscience Literacy Exam (GLE) under development presently includes 90 questions. Each big idea from each literacy document can be probed using one or more of three independent questions: 1) a single answer, multiple choice question aimed at basic understanding or application of key concepts, 2) a multiple correct answer, multiple choice question targeting the analyzing to analysis levels and 3) a short essay question that tests analysis or evaluation cognitive levels. We anticipate multiple-choice scores and the detail and sophistication of essay responses will increase as students engage with the curriculum. As part of the field testing of InTeGrate curricula, faculty collected student responses from classes that involved over 700 students. These responses included eight pre- and post-test multiple-choice questions that covered various concepts across the four literacies. Discrimination indices calculated from the data suggest that the eight tested questions provide a valid measure of literacy within the scope of the concepts covered. Student normalized gains across an academic term with limited InTeGrate exposure (typically two or fewer weeks of InTeGrate curriculum out of 14 weeks) were found to average 16% gain. A small set of control data (250 students in classes from one institution where no InTeGrate curricula were used) was

  1. Employment of the generalized adsorption model for the prediction of the solid-water distribution of radiocesium in the river-estuary-ocean system

    International Nuclear Information System (INIS)

    Fan, Qiaohui; Takahashi, Yoshio

    2017-01-01

    Since last century, a large amount of radiocesium (RCs) released from atomic weapon tests and nuclear accidents, such as in Chernobyl and Fukushima, was directly introduced into the environment through atmospheric transportation and deposition on land surface soil, discharged into river systems by erosion effects during rainfall, and finally released into the ocean. In this study, a generalized adsorption model (GAM) for Cs + was employed to estimate the solid-water distribution of Cs + in the river-estuary-ocean system. The results confirmed that the capacity of each adsorption site of river sediments, i.e., interlayer site, type II site, and planar site, can be precisely optimized through the adsorption isotherm of Cs + on the river sediments combined with the radiocesium interception potential (RIP) and cation exchange capacity (CEC). According to the GAM, the main contributor for Cs + adsorption is the frayed edge site rather than others due to the very low concentration of Cs + in the river-estuary-ocean system. The different solid-water distribution of Cs + in the river-estuary-ocean system was dominantly controlled by the salinity in the aqueous phase. Therefore, Cs + should be highly reactive with strong adsorptive character to particulate matter in the river system, whereas a conservative distribution must be dominant in ocean with much weaker affinity to particulate matter because of the high salinity. - Highlights: • A new method to extend the utility range of GAM from illite to natural samples. • GAM was adapted to quantitatively explore the transportation of radiocesium in river in rive-estuary-ocean system. • High reactivity in river water and conservative behavior in seawater were clarified.

  2. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO2 degassing

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2014-01-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO 2 degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO 2 degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO 2 degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  3. Application of k0-based INAA method in the studies of rare earth and other elements in manganese nodules from Indian Ocean

    International Nuclear Information System (INIS)

    Dutta, R.K.; Chakravortty, V.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.; Chintalapudi, S.N.

    2005-01-01

    Five manganese nodules obtained from different locations with varying water depths of the Indian Ocean were analysed by k 0 -based instrumental neutron activation analysis (k 0 -INAA) method. A total of 22 elements were estimated including nine rare earth elements (REE). The accuracy of the method has been evaluated by analysing USGS manganese nodule reference material NOD P1. The nodules have been classified into hydrogenous and diagenetic on the basis of their Mn/Fe ratios. Data on elemental concentrations were used to explain the possible differences in the trace element distribution. The minor elements were found to be enriched in the hydrogenous nodules compared to the diagenetic one. An attempt was made to characterise the distribution of these minor elements in the light of known geochemical evidences of Pacific Ocean nodules. The dissimilarity of the geochemistry of Ce and Mn in the Indian Ocean nodules has been discussed. The manganese nodules under investigation exhibit a positive cerium anomaly, indicating an oxidising environment. The possible mechanism of incorporation of elements like REE into the iron oxyhydroxide phase has been discussed. (author)

  4. Recycling of rare earths from Hg-containing fluorescent lamp scraps by solid state chlorination; Rueckgewinnung Seltener Erden aus quecksilberbelasteten Leuchtstoffen mittels Feststoffchlorierung

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Tom; Froehlich, Peter; Bertau, Martin [TU Bergakademie Freiberg (Germany); Golon, Katja [FNE Entsorgungsdienste GmbH, Freiberg (Germany)

    2015-10-15

    Solid state chlorination with NH{sub 4}Cl comprises a method for rare earth recycling apart from pyro- or hydrometallurgical strategies. The examined partially Hg-containing fluorescent lamp scraps are rich in rare earths like La, Ce, Tb and Gd, but especially in Y and Eu. By mixing with NH{sub 4}Cl and heating up to NH{sub 4}Cl decomposition temperature in a sublimation reactor, Y and Eu could be transferred selectively into their respective metal chlorides with high yields. The yield and selectivity depend on temperature and the ratio of NH{sub 4}Cl to fluorescent lamp scraps, which were varied systematically.

  5. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  6. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  7. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  8. Predicted radionuclide release from reactor-related unenclosed solid objects dumped in the Sea of Japan and the Pacific Ocean, east coast of Kamchatka

    International Nuclear Information System (INIS)

    Mount, M.E.; Lynn, N.M.; Warden, J.M.

    1996-06-01

    Between 1978 and 1991 reactor-related solid radioactive waste was dumped by the former Soviet Union as unenclosed objects in the Pacific Ocean, east coast of Kamchatka, and the Sea of Japan. This paper presented estimates for the current (1994) inventory of activation and corrosion products contained in the reactor-related unenclosed solid objects. In addition, simple models derived for prediction of radionuclide release from marine reactors dumped in the Kara Sea are applied to certain of the dumped objects to provide estimates of radionuclide release to the Pacific Ocean, east coast of Kamchatka, and Sea of Japan environments. For the Pacific Ocean, east coast of Kamchatka, total release rates start below 0.01 GBq yr -1 and over 1,000 years, fall to 100 Bq yr -1 . In the Sea of Japan, the total release rate starts just above 1 GBq yr - 1 , dropping off to a level less than 0.1 GBq yr -1 , extending past the year 4,000

  9. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  10. On the Tidal Motion Around the Earth Complicated by the Circular Geometry of the Ocean's Shape Without Coriolis Forces

    International Nuclear Information System (INIS)

    Ibragimov, Ranis N.

    2001-01-01

    The Cauchy-Poisson free boundary problem on the stationary motion of a perfect incompressible fluid circulating around the Earth is considered in this paper. Rotation plays a significant role in the early stages of the formation of solitary waves. However, these effects are less important on the solitary waves once they are formed. Therefore, for simplicity, rotation is not included for these simulations. The main concern is to find the inverse conformal mapping of the unknown free boundary in the hodograph plane onto some fixed mapping in the physical domain. The approximate solution to the problem is derived as the application of such a method. The behaviour of tidal waves around the Earth is discussed. It is shown that one of the features of the positively curved bottom is that the problem admits two different higher-order systems of shallow water equations, while the classical problem for the flat bottom admits only one system

  11. Correcting GRACE gravity fields for ocean tide effects

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2002-01-01

    [1] The GRACE mission will be launch in early 2002 and will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more...... tide model if altimetry corrected for inverted barometer effects was used in its derivation. To study the temporal characteristics of the ocean tidal constituents when sampled by GRACE, approximate alias frequencies were derived assuming a sampling of half a sidereal day. Those results show...

  12. Rare earth element and neodymium isotope tracing of element input and past ocean circulation. Study from north and south pacific seawater and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Froellje, Henning

    2016-08-09

    Ocean circulation and cycling of trace elements within the oceanic water column is of great significance for modern and past climates. The global overturning circulation is responsible for the distribution of water masses, heat and particulate and dissolved compounds, while biological and chemical processes, such as primary productivity or particle scavenging, control the cycling of nutrients and trace elements in the ocean, and ultimately influence the ocean-atmosphere exchange of carbon. Rare earth elements (REE) and neodymium (Nd) isotopes are widely used as tracers for lithogenic element fluxes and modern and past ocean circulation and water mass mixing. The use of Nd isotopes in paleoceanographic investigations is based on the precise knowledge of processes involved in REE cycling and of the modern oceanic Nd isotope distribution. The Pacific is the largest of the world oceans, but it is highly underrepresented in present-day and past seawater Nd isotope and REE investigations compared to the Atlantic Ocean. In this study, Nd isotopes and REEs are analysed in North Pacific seawater (chapter 2) and sediment samples from the South Pacific (chapters 3-5) to contribute to a better understanding of sources and cycling of REEs and Nd isotopes in present-day seawater and to investigate past water mass mixing and circulation changes during the last glacial termination and throughout the last glacial-interglacial cycle. Neodymium isotopes in seawater and sedimentary archives (fossil fish teeth and debris, foraminifera, ferromanganese oxides, lithogenic particles) were analysed using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and REE concentrations were analysed using isotope dilution ICP-MS. Results from combined analysis of REEs, and Nd and radium isotopes from North Pacific seawater (coastal seawaters of the Hawaiian Island of Oahu and seawater from the offshore Hawaii Ocean Time-series Station ALOHA) show a clear influence of the

  13. Rare earth element and neodymium isotope tracing of element input and past ocean circulation. Study from north and south pacific seawater and sediments

    International Nuclear Information System (INIS)

    Froellje, Henning

    2016-01-01

    Ocean circulation and cycling of trace elements within the oceanic water column is of great significance for modern and past climates. The global overturning circulation is responsible for the distribution of water masses, heat and particulate and dissolved compounds, while biological and chemical processes, such as primary productivity or particle scavenging, control the cycling of nutrients and trace elements in the ocean, and ultimately influence the ocean-atmosphere exchange of carbon. Rare earth elements (REE) and neodymium (Nd) isotopes are widely used as tracers for lithogenic element fluxes and modern and past ocean circulation and water mass mixing. The use of Nd isotopes in paleoceanographic investigations is based on the precise knowledge of processes involved in REE cycling and of the modern oceanic Nd isotope distribution. The Pacific is the largest of the world oceans, but it is highly underrepresented in present-day and past seawater Nd isotope and REE investigations compared to the Atlantic Ocean. In this study, Nd isotopes and REEs are analysed in North Pacific seawater (chapter 2) and sediment samples from the South Pacific (chapters 3-5) to contribute to a better understanding of sources and cycling of REEs and Nd isotopes in present-day seawater and to investigate past water mass mixing and circulation changes during the last glacial termination and throughout the last glacial-interglacial cycle. Neodymium isotopes in seawater and sedimentary archives (fossil fish teeth and debris, foraminifera, ferromanganese oxides, lithogenic particles) were analysed using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and REE concentrations were analysed using isotope dilution ICP-MS. Results from combined analysis of REEs, and Nd and radium isotopes from North Pacific seawater (coastal seawaters of the Hawaiian Island of Oahu and seawater from the offshore Hawaii Ocean Time-series Station ALOHA) show a clear influence of the

  14. Investigation and analysis to the content of natural radionuclides at rate-earth ore and solid waste in China through the first nationwide pollution source survey

    International Nuclear Information System (INIS)

    Lou Jianjun; Liu Guifang; Sun Qinghong

    2011-01-01

    China has launched the First Nationwide Pollution Source Survey (FNPSS) during 2006-2009. Ministry Environmental Protection (MEP) sponsored the campaign of measuring the natural radionuclide contents. And the Ministry Environmental Protection (MEP) organized the measurements of natural radionuclide contents of in the factories and mines associated with rare-earth, niobium/tantalum, zircon, tin, lead/zinc, copper, iron, phosphate, coal, aluminum and vanadium. This paper analyzes mainly the data on the contents of U, 232 Th and 226 Ra in the rare-earth ore and solid waste produced by the rare-earth industry in China, as one of a series of papers on naturally occurring radioactive materials (NORM) s investigation. It is concluded that the average of the U, 232 Th and 226 Ra for the monazite sand of rare-earth ore is 16911, 49683, and 20072 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in bastnaesite is 42, 701 and 91 Bq/kg, respectively. The average of U, 232 Th and 226 Ra in the ionic type rare-earth ore is 3918.6, 2315 and 1221 Bq/kg, respectively. (authors)

  15. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    Science.gov (United States)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-03-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  16. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  17. The Southern Ocean Observing System

    OpenAIRE

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  18. Tsunami Speed Variations in Density-stratified Compressible Global Oceans

    Science.gov (United States)

    Watada, S.

    2013-12-01

    Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.

  19. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  20. Equilibrium Temperatures and Albedos of Habitable Earth-Like Planets in a Coupled Atmosphere-Ocean GCM

    Science.gov (United States)

    Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell

    2017-01-01

    The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?

  1. The application of micro-column solid phase extraction techniques for the determination of rare earth elements in actinide containing matrices

    International Nuclear Information System (INIS)

    Carney, K.P.; Cummings, D.G.

    1995-01-01

    The design and characterization of an argon segmented-solid phase extraction system is described. A 200 ul volume micro-column has been constructed for the preconcentration of rare earth elements (REEs) from salt matrices containing uranium. An inductively coupled plasma atomic emission spectrometer has been utilized for simultaneous detection of Sr, Y and the REEs (namely Ce, Eu, La, Nd, Pr, Sm) at levels ranging from 5- to 2000 ppm in LiCl/KCl samples containing U. Preconcentration factors of 100 fold have been demonstrated. The precision, linear dynamic range and column performance of the system will be presented. (author). 5 refs., 5 figs., 3 tabs

  2. The cosmic ray actinide charge spectrum derived from a 10 m2 array of solid state nuclear track detectors in Earth orbit

    International Nuclear Information System (INIS)

    Donnelly, J.; Thompson, A.; O'Sullivan, D.; Drury, L.O'C.; Wenzel, K.-P.

    2001-01-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon -1 during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of ∼150 m 2 sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74≤Z≤87), is reported

  3. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  4. Oceanic Loading and Local Distortions at the Baksan, Russia, and Gran Sasso, Italy, Strain Stations

    Science.gov (United States)

    Milyukov, V. K.; Amoruso, A.; Crescentini, L.; Mironov, A. P.; Myasnikov, A. V.; Lagutkina, A. V.

    2018-03-01

    Reliable use of strain data in geophysical studies requires their preliminary correction for ocean loading and various local distortions. These effects, in turn, can be estimated from the tidal records which are contributed by solid and oceanic loading. In this work, we estimate the oceanic tidal loading at two European strain stations (Baksan, Russia, and Gran Sasso, Italy) by analyzing the results obtained with the different Earth and ocean models. The influence of local distortions on the strain measurements at the two stations is estimated.

  5. E-Collaboration for Earth Observation (E-CEO) with the example of Contest #3 that focuses on the Atmospheric Correction of Ocean Colour data

    Science.gov (United States)

    Lavender, Samantha; Brito, Fabrice; Aas, Christina; Casu, Francesco; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    Data challenges are becoming the new method to promote innovation within data-intensive applications; building or evolving user communities and potentially developing sustainable commercial services. These can utilise the vast amount of information (both in scope and volume) that's available online, and profits from reduced processing costs. Data Challenges are also closely related to the recent paradigm shift towards e-Science, also referred to as "data-intensive science'. The E-CEO project aims to deliver a collaborative platform that, through Data Challenge Contests, will improve the adoption and outreach of new applications and methods to processes Earth Observation (EO) data. Underneath, the backbone must be a common environment where the applications can be developed, deployed and executed. Then, the results need to be easily published in a common visualization platform for their effective validation, evaluation and transparent peer comparisons. Contest #3 is based around the atmospheric correction (AC) of ocean colour data with a particular focus on the use of auxiliary data files for processing Level 1 (Top of Atmosphere, TOA, calibrated radiances/reflectances) to Level 2 products (Bottom of Atmosphere, BOA, calibrated radiances/reflectance and derived products). Scientific researchers commonly accept the auxiliary inputs that they've been provided with and/or use the climatological data that accompanies the processing software; often because it can be difficult to obtain multiple data sources and convert them into a format the software accepts. Therefore, it's proposed to compare various ocean colour AC approaches and in the process study the uncertainties associated with using different meteorological auxiliary products for the processing of Medium Resolution Imaging Spectrometer (MERIS) i.e. the sensitivity of different atmospheric correction input assumptions.

  6. Skills of General Circulation and Earth System Models in reproducing streamflow to the ocean: the case of Congo river

    Science.gov (United States)

    Santini, M.; Caporaso, L.

    2017-12-01

    Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.

  7. Investigation of PCB Release Rates from Selected Shipboard Solid Materials Under Laboratory-Simulated Shallow Ocean (Artificial Reef) Environments

    Science.gov (United States)

    2006-04-01

    11August 2000, Honolulu, HI. http://www.mindfully.org/Plastic/Ocean/Plastics-Impacts-Marine-Andrady6aug00.htm Atlas , R. M. and R. Bartha . 1998. Microbial ...1981; Andrady, 2000; Atlas and Bartha , 1998; Colton, Knapp, and Burns, 1974; Cundell, 1974; Gregory and Andrady, 2003; Heap and Morrell, 1968...represent environmentally significant (toxicologically persistent) PCBs to assess ecological and human health risks. Total PCBs (tPCBs) were empirically

  8. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    Science.gov (United States)

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time

  9. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit

    International Nuclear Information System (INIS)

    Underwood, C.I.

    1999-01-01

    This paper presents the results of Surrey Space Centre's experience in using different coding schemes and hardware configurations to protect data and protect data and software stored in COTS-device (Commercial-Off-The-Shelf) based memories on-board operational spacecraft in low Earth orbit. (author)

  10. Recovery of Rare Earth Elements from Solid Residue of El-Sela Ore, South Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    Salman, A.A.; Sharaby, C.M.; Elnagar, W.A.; Khawassek, Y.M.; Abdo, Sh.M.

    2015-01-01

    The study area of Gabal El Sela at Halaib environ is located at about 20 km west of Abu Ramad City, Egypt. An uraniferous ore material associated with REE was subjected to sulphuric acid leaching for extraction of uranium mainly followed by solid liquid separation through filtration then washing. Physical upgrading was performed upon the dry residue. Chemical treatment by 50% NaOH was carried out where about 250 g residue ground at - 200 mesh were agitated at solid / liquid ratio of 1/2 for one hour. The cake was filtered then dri ed at 100 º C . T he dried cake was subject ed to dissolution by conc. HCl at 80 º C at a solid / liquid ratio 1:1 for one hour . More than 98% of REE was leached out , and then the leach liquor was subjected to selective precipitation by HF and oxalic acid then calcination of REE oxalate

  11. Analysis of molybdenum, tungsten, and vanadium in surface water of the Atlantic Ocean using solid phase extraction with 8-hydroxyquinoline and ICP MS determination

    Science.gov (United States)

    Rimskaya-Korsakova, M. N.; Berezhnaya, E. D.; Dubinin, A. V.

    2017-07-01

    An analytical technique is proposed to determine ultratrace concentrations of Mo, V, and W found in seawater using mass spectrometry with inductively coupled plasma (ICP MS) after preliminary concentration by solid-phase extraction of metal complexes with 8-hydroxyquinoline (8-HQ) on C18 octadecyl silica. The technique utilizes 150 mL of a water sample. A preconcentration factor 50 is obtained. The detection limits are 0.25 nmol/kg, 0.041 nmol/kg, and 5 pmol/kg for Mo, V, and W, respectively. Dissolved Mo, V, and Wconcentrations in surface seawater from Atlantic Ocean transect were determined. The concentrations ranges along the transect were: 91-108 nmol/kg for Mo, 28-35 nmol/kg for V, and 55-75 pmol/kg for W. The Mo/W ratio varied from 1300 to 1800.

  12. Rebuttal of the existence of solid rare earth bicarbonates and the crystal structure of holmium nitrate pentahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Rincke, Christine; Schmidt, Horst; Voigt, Wolfgang [Institute for Inorganic Chemistry, TU Bergakademie Freiberg (Germany)

    2017-03-16

    The synthesis routes of Gd(HCO{sub 3}){sub 3}.5H{sub 2}O and Ho(HCO{sub 3}){sub 3}.6H{sub 2}O, which are the only known bicarbonates of rare earth metals, were refuted and the published crystal structures were discussed. Because of the structural relationship of Ho(HCO{sub 3}){sub 3}.6H{sub 2}O to rare earth nitrate hexahydrates,[] the synthesis of holmium nitrate hydrate was considered and the crystal structure of Ho(NO{sub 3}){sub 3}.5H{sub 2}O was solved by single crystal X-ray diffraction measurements. Ho(NO{sub 3}){sub 3}.5H{sub 2}O was determined to crystallize in the triclinic space group P1 (no. 2) with a = 6.5680(14) Aa, b = 9.503(2) Aa, c = 10.462(2) Aa, α = 63.739(14) , β = 94.042(2) and γ = 76.000(16) . The crystal structure consists of isolated [Ho(H{sub 2}O){sub 4}(NO{sub 3}){sub 3}] polyhedra and non-coordinating water molecules. It is isotypic to other rare earth nitrate pentahydrates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Graduate training in Earth science across borders and disciplines: ArcTrain -"Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic"

    Science.gov (United States)

    Stein, Rüdiger; Kucera, Michal; Walter, Maren; de Vernal, Anne

    2015-04-01

    Due to a complex set of feedback processes collectively known as "polar amplification", the Arctic realm is expected to experience a greater-than-average response to global climate forcing. The cascades of feedback processes that connect the Arctic cryosphere, ocean and atmosphere remain incompletely constrained by observations and theory and are difficult to simulate in climate models. Our capacity to predict the future of the region and assess the impacts of Arctic change processes on global and regional environments hinges on the availability of interdisciplinary experts with strong international experience and understanding of the science/society interface. This is the basis of the International Research Training Group "Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic - ArcTrain", which was initiated in 2013. ArcTrain aims to educate PhD students in an interdisciplinary environment that combines paleoclimatology, physical oceanography, remote sensing and glaciology with comprehensive Earth system modelling, including sea-ice and ice-sheet components. The qualification program for the PhD students includes joint supervision, mandatory research residences at partner institutions, field courses on land and on sea (Floating University), annual meetings and training workshops and a challenging structured training in expert skills and transferrable skills. Its aim is to enhance the career prospects and employability of the graduates in a challenging international job market across academic and applied sectors. ArcTrain is a collaborative project at the University of Bremen and the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven. The German part of the project is designed to continue for nine years and educate three cohorts of twelve PhD students each. The Canadian partners comprise a consortium of eight universities led by the GEOTOP cluster at the Université du Québec à Montréal and including

  14. Bouncing continents: insights into the physics of the polar regions of the Earth from the POLENET project in the International Polar Year

    International Nuclear Information System (INIS)

    Reading, Anya M

    2008-01-01

    When ice sheets melt, and reduce the load on the surface of the Earth, the land areas beneath them bounce back up. New, accurate observations are needed to investigate this uplift and its implications effectively. This article provides a topical starting point for investigating some applications of physics applied to the polar regions of the Earth, and interaction between the solid Earth, ice and oceans

  15. Impression creep properties of a semi-solid processed magnesium-aluminum alloy containing calcium and rare earth elements

    International Nuclear Information System (INIS)

    Nami, B.; Razavi, H.; Miresmaeili, S.M.; Mirdamadi, Sh.; Shabestari, S.G.

    2011-01-01

    The creep properties of a thixoformed magnesium-aluminum alloy containing calcium and rare earth elements were studied under shear modulus-normalized stresses ranging from 0.0225 to 0.035 at temperatures of 150-212 o C using the impression creep technique. Analysis of the creep mechanism based on a power-law equation indicated that pipe diffusion-controlled dislocation climb is the dominant mechanism during creep. The alloy has a better creep resistance than high-pressure die-cast magnesium-aluminum alloy.

  16. Ocean circulation and shelf processes in the Arctic, Mediterranean traced by radiogenic neodymium isotopes, rare earth elements and stable oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Laukert, Georgi

    2017-02-20

    Disentangling the sources, distribution and mixing of water masses involved in the transport and transfer of heat and freshwater in the Arctic Mediterranean (i.e. the Arctic Ocean and the Nordic Seas, AM) is critical for the understanding of present and future hydrological changes in the high-latitude regions. This study refines the knowledge of water mass circulation in the AM and provides new insights into the processes occurring on the Arctic shelves and in high-latitude estuaries. A multi-proxy approach is used combining dissolved radiogenic Nd isotopes (ε{sub Nd}), rare earth elements (REEs) and stable oxygen isotopes (δ{sup 18}O) together with standard hydrographic tracers. The sources, distribution and mixing of water masses that circulate in the AM and pass the Fram Strait are assessed through evaluation of dissolved ε{sub Nd} and REE, and δ{sup 18}O data obtained from samples recovered in 2012, 2014 and 2015, and through a compilation and reassessment of literature Nd isotope and concentration data previously reported for other sites within the AM. The Nd isotope and REE distribution in the central Fram Strait and the open AM is shown to primarily reflect the lateral advection of water masses and their mixing, whereas seawater-particle interactions exert important control only above the shelf regions. New insights into the processes occurring in high latitude estuaries are provided by dissolved Nd isotope and REE compositions together with δ{sup 18}O data for the Laptev Sea based on filtered samples recovered in 2012, 2013 and 2014. A combination of REE removal through coagulation of nanoparticles and colloids and REE redistribution within the water column through formation and melting of sea ice and river ice is suggested to account for the distribution of all REEs, while no REE release from particles is observed. The ice-related processes contribute to the redistribution of other elements and ultimately may also affect primary productivity in high

  17. Dissolved rare earth elements in the central-western sector of the Ross Sea, Southern Ocean: Geochemical tracing of seawater masses.

    Science.gov (United States)

    Turetta, Clara; Barbaro, Elena; Capodaglio, Gabriele; Barbante, Carlo

    2017-09-01

    The present essay contributes to the existing literature on rare earth elements (REEs) in the southern hemisphere by presenting the first data, to our knowledge, on the vertical profiles of dissolved REEs in 71 samples collected in the central-western sector of the Ross Sea (Southern Ocean-SO). The REEs were measured in the water samples collected during the 2002-2003 and 2005-2006 austral summers. 4 samples were collected and analysed in the framework of a test experiment, as part of the WISSARD Project (Whillans Ice Stream Subglacial Access Research Drilling). Our results show significant differences between the REE patterns of the main water masses present in the SO: we could observe specific signature in the High Salinity Shelf Water (HSSW), Ice Shelf Water (ISW) and Low Salinity Shelf Water (LSSW). A significant increase in Terbium (Tb) concentration was observed in the HSSW and ISW, the two principal water masses contributing to the formation of Antarctic Bottom Water (AABW) in the Ross Sea area, and in LSSW. Some of the HSSW samples show enrichment in Neodymium (Nd). Dissolved REE could therefore be used as tracers to understand the deep circulation of the SO (Pacific sector). We hypothesize that: (I) the characteristic dissolved REE pattern may derive from the composition of source area and from the hydrothermal activity of the central-western area of the Ross Sea; (II) the Tb anomaly observed in the AABW on the South Australian platform could be partially explained by the contribution of AABW generated in the Ross Sea region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ocean tides in GRACE monthly averaged gravity fields

    DEFF Research Database (Denmark)

    Knudsen, Per

    2003-01-01

    The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...

  19. The cosmic ray actinide charge spectrum derived from a 10 m{sup 2} array of solid state nuclear track detectors in Earth orbit

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. E-mail: jd@cp.dias.ie; Thompson, A.; O' Sullivan, D.; Drury, L.O' C.; Wenzel, K.-P

    2001-06-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon{sup -1} during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of {approx}150 m{sup 2} sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74{<=}Z{<=}87), is reported.

  20. MAKE SUPER-EARTHS, NOT JUPITERS: ACCRETING NEBULAR GAS ONTO SOLID CORES AT 0.1 AU AND BEYOND

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene; Ormel, Chris W., E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu, E-mail: ormel@berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2014-12-20

    Close-in super-Earths having radii 1-4 R {sub ⊕} may possess hydrogen atmospheres comprising a few percent by mass of their rocky cores. We determine the conditions under which such atmospheres can be accreted by cores from their parent circumstellar disks. Accretion from the nebula is problematic because it is too efficient: we find that 10 M {sub ⊕} cores embedded in solar metallicity disks tend to undergo runaway gas accretion and explode into Jupiters, irrespective of orbital location. The threat of runaway is especially dire at ∼0.1 AU, where solids may coagulate on timescales orders of magnitude shorter than gas clearing times; thus nascent atmospheres on close-in orbits are unlikely to be supported against collapse by planetesimal accretion. The time to runaway accretion is well approximated by the cooling time of the atmosphere's innermost convective zone, whose extent is controlled by where H{sub 2} dissociates. Insofar as the temperatures characterizing H{sub 2} dissociation are universal, timescales for core instability tend not to vary with orbital distance—and to be alarmingly short for 10 M {sub ⊕} cores. Nevertheless, in the thicket of parameter space, we identify two scenarios, not mutually exclusive, that can reproduce the preponderance of percent-by-mass atmospheres for super-Earths at ∼0.1 AU, while still ensuring the formation of Jupiters at ≳ 1 AU. Scenario (a): planets form in disks with dust-to-gas ratios that range from ∼20× solar at 0.1 AU to ∼2× solar at 5 AU. Scenario (b): the final assembly of super-Earth cores from mergers of proto-cores—a process that completes quickly at ∼0.1 AU once begun—is delayed by gas dynamical friction until just before disk gas dissipates completely. Both scenarios predict that the occurrence rate for super-Earths versus orbital distance, and the corresponding rate for Jupiters, should trend in opposite directions, as the former population is transformed into the latter: as

  1. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  2. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  3. Increasing ocean sciences in K and 1st grade classrooms through ocean sciences curriculum aligned to A Framework for K-12 Science Education, and implementation support.

    Science.gov (United States)

    Pedemonte, S.; Weiss, E. L.

    2016-02-01

    Ocean and climate sciences are rarely introduced at the early elementary levels. Reasons for this vary, but include little direct attention at the national and state levels; lack of quality instructional materials; and, lack of teacher content knowledge. Recent recommendations by the National Research Council, "revise the Earth and Space sciences core ideas and grade band endpoints to include more attention to the ocean whenever possible" (NRC, 2012, p. 336) adopted in the Next Generation Science Standards (NGSS), may increase the call for ocean and climate sciences to be addressed. In response to these recommendations' and the recognition that an understanding of some of the Disciplinary Core Ideas (DCIs) would be incomplete without an understanding of processes or phenomena unique to the ocean and ocean organisms; the ocean Literacy community have created documents that show the alignment of NGSS with the Ocean Literacy Principles and Fundamental Concepts (Ocean Literacy, 2013) as well as the Ocean Literacy Scope and Sequence for Grades K-12 (Ocean Literacy, 2010), providing a solid argument for how and to what degree ocean sciences should be part of the curriculum. However, the percentage of science education curricula focused on the ocean remains very low. This session will describe a new project, that draws on the expertise of curriculum developers, ocean literacy advocates, and researchers to meet the challenges of aligning ocean sciences curriculum to NGSS, and supporting its implementation. The desired outcomes of the proposed project are to provide a rigorous standards aligned curricula that addresses all of the Life Sciences, and some Earth and Space Sciences and Engineering Design Core Ideas for Grades K and 1; and provides teachers with the support they need to understand the content and begin implementation. The process and lessons learned will be shared.

  4. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  5. Ethane ocean on Titan

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  6. Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions

    Science.gov (United States)

    Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.

    2016-05-01

    Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.

  7. O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1

    Science.gov (United States)

    Parke, M. E.

    1982-01-01

    The models of M2, S2, and K1 presented in Parke and Hendershott (1980) are supplemented with models of O1, P1, and N2. The models satisfy specified elevation boundary conditions and are generated by fighting a small number of test functions to island data. Maps are presented of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each new component. Maps of the tidal potential seen by an observer fixed to the surface of the solid earth are also presented for all six constituents. Spherical harmonic coefficients up to order four and the rms magnitude of the coefficients to order fifteen are presented for each constituent. The rms magnitudes of the P1 and K1 coefficients normalized by their respective equilibrium amplitudes are compared to determine the effect of the diurnal core resonance.

  8. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  9. The sea-level budget along the Northwest Atlantic coast : GIA, mass changes, and large-scale ocean dynamics

    NARCIS (Netherlands)

    Frederikse, T.; Simon, K.M.; Katsman, C.A.; Riva, R.E.M.

    2017-01-01

    Sea-level rise and decadal variability along the northwestern coast of the North Atlantic Ocean are studied in a self-consistent framework that takes into account the effects of solid-earth deformation and geoid changes due to large-scale mass redistribution processes. Observations of sea and

  10. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  11. Disseminated Museum Displays and Participation of Students from Underrepresented Populations in Polar Research: Education and Outreach for Joint Projects in GPS and Seismology Solid Earth Science Community

    Science.gov (United States)

    Eriksson, S. C.; Wilson, T. J.; Anandakrishnan, S.; Aster, R. C.; Johns, B.; Anderson, K.; Taber, J.

    2006-12-01

    Two Antarctic projects developed by solid earth scientists in the GPS and seismology communities have rich education and outreach activities focused on disseminating information gleaned from this research and on including students from underrepresented groups. Members of the UNAVCO and IRIS research consortia along with international partners from Australia, Canada, Chile, Germany, Italy, New Zealand and the U.K. aim to deploy an ambitious GPS/seismic network to observe the Antarctic glaciological and geologic system using a multidisciplinary and internationally coordinated approach. The second project supports this network. UNAVCO and IRIS are designing and building a reliable power and communication system for autonomous polar station operation which use the latest power and communication technologies for ease of deployment and reliable multi-year operation in severe polar environments. This project will disseminate research results through an IPY/POLENET web-based museum style display based on the next-generation "Museum Lite" capability primarily supported by IRIS. "Museum Lite" uses a standard PC, touch-screen monitor, and standard Internet browsers to exploit the scalability and access of the Internet and to provide customizable content in an interactive setting. The unit is suitable for research departments, public schools, and an assortment of public venues, and can provide wide access to real-time geophysical data, ongoing research, and general information. The POLENET group will work with members of the two consortia to provide content about the project and polar science in general. One unit is to be installed at Barrow's Ilisagvit College through the Barrow Arctic Science Consortium, one at McMurdo Station in Antarctica, and two at other sites to be determined (likely in New Zealand/Australia and in the U.S.). In January, 2006, Museum Lite exhibit was installed at the Amundsen-Scott South Pole Station. Evaluation of this prototype is underway. These

  12. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  13. Archive of Geosample Data and Information from the Oregon State University (OSU) College of Earth, Ocean and Atmospheric Sciences (CEOAS) Marine Geology Repository (MGR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon State University Marine Geology Repository (OSU-MGR) is a partner in the Index to Marine and Lacustrine Geological Samples (IMLGS) database, contributing...

  14. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  15. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  16. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks. Part I: Development of glass-ceramic microstructure and thermomechanical properties

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, Tonci

    2018-01-01

    Sealing performance in solid oxide cell (SOC) stacks and the devitrification process of commercially available alkaline earth boroaluminosilicate glasses containing 48‐61 mol% SiO2, 18‐28 mol% CaO, 1‐7 mol% MgO, 7‐10 mol% Al2O3, 1‐11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO, and TiO2 were...... investigated and quantified through analysis of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X‐ray diffraction. For two of these glasses devitrification behavior was compared to the devitrification behavior of similar glasses...... produced in the laboratory. Glasses were characterized after annealing in air at 800°C and 850°C for up to 6 weeks. Even though the glasses lie within a relatively narrow compositional range, sealing performance and the resulting microstructures differed significantly. Best thermomechanical properties...

  17. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    Science.gov (United States)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  18. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  19. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S. [Department of Earth and Planetary Science, The University of Tokyo, Kiban Bldg. 408, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kiban Bldg. 409, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  20. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  1. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-11-01

    Full Text Available In the Community Earth System Model (CESM, the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.

  2. Studies on the rare earth complexes with pyridine derivatives and their N-oxide(II) - Synthesis and properties of fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with 2,2'-bipyridine-N,N'-dioxide

    International Nuclear Information System (INIS)

    Minyu, T.; Ning, T.; Yingli, Z.; Jiyuan, B.

    1985-01-01

    The solid complexes of rare earth nitrates perchlorates and thiocyanates with 2,2'-bipyridine-N,N'-dioxide (bipyO/sub 2/) have been reported. However, the corresponding complexes of other rear earth chlorides have not been investigated except lanthanum, cerium and yttrium. As an extension of our previous work on the synthesis of complexes of praseodymium and neodymium chlorides wiht bipoyO/sub 2/, the authors have now prepared fluorescent solid complexes of samarium, europium, gadolium and terbium chlorides with biphyO/sub 2/, using methanol as a reaction medium. The new synthesized compounds have been identified by means of elemental analysis, infrared spectrometry, conductometry, differential thermal analysis (DTA), thermogravimetry (TG) and X-ray powder diffraction

  3. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3 ... support the well-known fact that oceanic eddies are distributed worldwide in the ocean. ... The classification of typical vortical features in the ocean detected in remote ...

  5. On the role of atmosphere-ocean interactions in the expected long-term changes of the Earth's ozone layer caused by greenhouse gases

    Science.gov (United States)

    Zadorozhny, Alexander; Dyominov, Igor

    It is well known that anthropogenic emissions of greenhouse gases into the atmosphere produce a global warming of the troposphere and a global cooling of the stratosphere. The expected stratospheric cooling essentially influences the ozone layer via increased polar stratospheric cloud formation and via temperature dependences of the gas phase reaction rates. One more mechanism of how greenhouse gases influences the ozone layer is enhanced water evaporation from the oceans into the atmosphere because of increasing temperatures of the ocean surface due to greenhouse effect. The subject of this paper is a study of the influence of anthropogenic pollution of the atmosphere by the greenhouse gases CO2, CH4, N2O and ozone-depleting chlorine and bromine compounds on the expected long-term changes of the ozone layer with taking into account an increase of water vapour content in the atmosphere due to greenhouse effect. The study based on 2-D zonally averaged interactive dynamical radiative-photochemical model of the troposphere and stratosphere. The model allows to self-consistently calculating diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of two types. It was supposed in the model that an increase of the ocean surface temperature caused by greenhouse effect is similar to calculated increase of atmospheric surface temperature. Evaporation rate from the ocean surface was computed in dependence of latitude. The model time-dependent runs were made for the period from 1975 to 2100 using two IPCC scenarios depicting maximum and average expected increases of greenhouse gases in the atmosphere. The model calculations show that anthropogenic increasing of water vapour abundance in the atmosphere due to heating of the ocean surface caused by greenhouse effect gives a sensible contribution to the expected ozone

  6. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  7. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  8. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  9. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  10. Evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, D. J.; Tackley, P.

    2016-12-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007; Labrosse et al., The Early Earth 2015). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the

  11. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Directory of Open Access Journals (Sweden)

    V. Masson

    2013-07-01

    Full Text Available SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs or in coupled mode (from mesoscale models to numerical weather prediction and climate models. An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy. Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  12. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

    Science.gov (United States)

    Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; Brousseau, P.; Brun, E.; Calvet, J.-C.; Carrer, D.; Decharme, B.; Delire, C.; Donier, S.; Essaouini, K.; Gibelin, A.-L.; Giordani, H.; Habets, F.; Jidane, M.; Kerdraon, G.; Kourzeneva, E.; Lafaysse, M.; Lafont, S.; Lebeaupin Brossier, C.; Lemonsu, A.; Mahfouf, J.-F.; Marguinaud, P.; Mokhtari, M.; Morin, S.; Pigeon, G.; Salgado, R.; Seity, Y.; Taillefer, F.; Tanguy, G.; Tulet, P.; Vincendon, B.; Vionnet, V.; Voldoire, A.

    2013-07-01

    SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

  13. Paleomagnetism continents and oceans

    CERN Document Server

    McElhinny, Michael W; Dmowska, Renata; Holton, James R; Rossby, H Thomas

    1999-01-01

    Paleomagnetism is the study of the fossil magnetism in rocks. It has been paramount in determining that the continents have drifted over the surface of the Earth throughout geological time. The fossil magnetism preserved in the ocean floor has demonstrated how continental drift takes place through the process of sea-floor spreading. The methods and techniques used in paleomagnetic studies of continental rocks and of the ocean floor are described and then applied to determining horizontal movements of the Earth''s crust over geological time. An up-to-date review of global paleomagnetic data enables 1000 millionyears of Earth history to be summarized in terms of the drift of the major crustal blocks over the surface of the Earth. The first edition of McElhinny''s book was heralded as a "classic and definitive text." It thoroughly discussed the theory of geomagnetism, the geologicreversals of the Earth''s magnetic field, and the shifting of magnetic poles. In the 25 years since the highly successful first editio...

  14. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  15. M2, S2, K1 models of the global ocean tide

    Science.gov (United States)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  16. Possible Habitability of Ocean Worlds

    Science.gov (United States)

    Noack, Lena; Höning, Dennis; Bredehöft, Jan H.; Lammer, Helmut

    2014-05-01

    In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy

  17. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  18. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  19. Remote Sensing of Ocean Color

    Science.gov (United States)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  20. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  1. Earth's Most Important Producers: Meet the Phytoplankton!

    Science.gov (United States)

    Marrero, Meghan E.; Stevens, Nicole

    2011-01-01

    The ocean is home to some of Earth's most important producers. Single-celled organisms in the ocean are responsible for more than half of Earth's productivity, as well as most of its oxygen. Phytoplankton are single-celled, plantlike organisms. That is, they have chloroplasts and perform photosynthesis, but are not true plants, which are typically…

  2. Models for ecological models: Ocean primary productivity

    Science.gov (United States)

    Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.

    2016-01-01

    The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life.  Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(.  As an example, consider the Coastal Gulf of Alaska (CGOA) region.

  3. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  4. Low helium flux from the mantle inferred from simulations of oceanic helium isotope data

    Science.gov (United States)

    Bianchi, Daniele; Sarmiento, Jorge L.; Gnanadesikan, Anand; Key, Robert M.; Schlosser, Peter; Newton, Robert

    2010-09-01

    The high 3He/ 4He isotopic ratio of oceanic helium relative to the atmosphere has long been recognized as the signature of mantle 3He outgassing from the Earth's interior. The outgassing flux of helium is frequently used to normalize estimates of chemical fluxes of elements from the solid Earth, and provides a strong constraint to models of mantle degassing. Here we use a suite of ocean general circulation models and helium isotope data obtained by the World Ocean Circulation Experiment to constrain the flux of helium from the mantle to the oceans. Our results suggest that the currently accepted flux is overestimated by a factor of 2. We show that a flux of 527 ± 102 mol year - 1 is required for ocean general circulation models that produce distributions of ocean ventilation tracers such as radiocarbon and chlorofluorocarbons that match observations. This new estimate calls for a reevaluation of the degassing fluxes of elements that are currently tied to the helium fluxes, including noble gases and carbon dioxide.

  5. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  6. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3

    Science.gov (United States)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.

    2000-01-01

    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  7. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  8. The ocean planet.

    Science.gov (United States)

    Hinrichsen, D

    1998-01-01

    The Blue Planet is 70% water, and all but 3% of it is salt water. Life on earth first evolved in the primordial soup of ancient seas, and though today's seas provide 99% of all living space on the planet, little is known about the world's oceans. However, the fact that the greatest threats to the integrity of our oceans come from land-based activities is becoming clear. Humankind is in the process of annihilating the coastal and ocean ecosystems and the wealth of biodiversity they harbor. Mounting population and development pressures have taken a grim toll on coastal and ocean resources. The trend arising from such growth is the chronic overexploitation of marine resources, whereby rapidly expanding coastal populations and the growth of cities have contributed to a rising tide of pollution in nearly all of the world's seas. This crisis is made worse by government inaction and a frustrating inability to enforce existing coastal and ocean management regulations. Such inability is mainly because concerned areas contain so many different types of regulations and involve so many levels of government, that rational planning and coordination of efforts are rendered impossible. Concerted efforts are needed by national governments and the international community to start preserving the ultimate source of all life on earth.

  9. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    Science.gov (United States)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  10. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    Science.gov (United States)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive

  11. How Inge Lehmann Discovered the Inner Core of the Earth

    Science.gov (United States)

    Rousseau, Christiane

    2013-01-01

    The mathematics behind Inge Lehmann's discovery that the inner core of the Earth is solid is explained using data collected around the Earth on seismic waves and their travel time through the Earth.

  12. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  13. Earth System Dynamics: The Determination and Interpretation of the Global Angular Momentum Budget using the Earth Observing System. Revised

    Science.gov (United States)

    2003-01-01

    The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and

  14. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  15. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  16. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    those observed on the Earth's surface and are mimicked by lows under the oceans and highs under the altiplanos. Careful and area selective S wave core mantle ellipsometry might be able to discern these core-mantle topographic variations. As such this process demonstrates the validity of the Gaia hypothesis enunciated by Baas Becking(1931) that no ecological niche on our planet is closed off from other niches "nothing in the world is single".

  17. The atmosphere and ocean: A physical introduction

    International Nuclear Information System (INIS)

    Wells, N.

    1986-01-01

    The book's contents are: The Earth within the solar system. Composition and physical properties of the ocean and atmosphere. Radiation, temperature and stability. Water in the atmosphere. Global budgets of heat, water and salt. Observations of winds and currents. The influence of the Earth's rotation on fluid motion. Waves and tides. Energy transfer in the ocean-atmosphere system. Climate variability and predictability. The atmosphere and ocean are two different environmental systems, yet both are interdependent, interacting and exchanging energy, heat and matter. This book attempts to bring the study of the atmosphere and ocean together. It is a descriptive account of physical properties, exploring their common bases, similarities, interactions and fundamental differences

  18. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  19. Fabrication and sealing performance of rare-earth containing glass–ceramic seals for intermediate temperature solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Abdoli, H.; Alizadeh, P.; Agersted, Karsten

    2014-01-01

    The opportunity of using two rare-earth metal oxides in an aluminosilicate glass for seal applications was investigated in this work. Substitution of La2O3 with Y2O3 in the system changed thermal and physical properties such as transition temperature, flowing behavior, and thermal expansion....... The strongly bound structural unit in the network affected glass healing capability with a slower healing response. Higher activation energy (≥20%) was required for Y2O3 containing glass, consistent with in-situ XRD results which revealed its amorphous nature is maintained ~75°C above the other glass. Despite...... containing strontium in the composition, well bonded interface was obtained in contact with 8YSZ and SS430 ferritic stainless steel. The hermeticity of the glass seals was maintained after 100h isothermal aging at 800°C. Also the OCV showed insignificant fluctuations with stable average values after 24...

  20. Effect of alkali-earth ions on local structure of the LaAlO3-La0.67A0.33MnO3 (A = Ca, Sr, Ba) diluted solid solutions: 27Al NMR studies

    International Nuclear Information System (INIS)

    Charnaya, E.V.; Cheng Tien; Lee, M.K.; Sun, S.Y.; Chejina, N.V.

    2007-01-01

    27 Al Magic Angle Spinning (MAS) NMR studies are carried out for diluted alkali-earth metal doped lanthanum manganite solid solutions in the lanthanum aluminate (1-y)LaAlO 3 -yLa 0.67 A 0.33 MnO 3 (A = Ca, Sr, Ba) with y = 0, 2, 3, and 5 mol %. The spectra depend on the dopant species and show higher substitutional ordering for the Ba containing mixed crystals. Magnetically shifted lines are observed in all solid solutions and attributed to Al in the octahedral oxygen environment near manganese trivalent ions. Nonlinear dependences of their intensity are referred to the manganese-rich cluster formation. An additional MAS NMR line corresponding to aluminium at sites different from the octahedral site in pure LaAlO 3 is observed only in solutions doped with Ba. 3Q MAS NMR revealed that the broadening of this line is governed mainly by quadrupole coupling and allowed calculating the isotropic chemical shift [ru

  1. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  2. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  3. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  4. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  5. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Francis, T.J.G.; Searle, R.C.; Wilson, T.R.S.

    1986-01-01

    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  6. Commercial alkaline earth boroaluminosilicate glasses for sealing solid oxide cell stacks Part II: Characterization of devitrification and glass-ceramic phase assemblages

    DEFF Research Database (Denmark)

    Agersted, Karsten; Balic-Zunic, T.

    2018-01-01

    The devitrification process and formation of crystalline phases from commercial alkaline earth boroaluminosilicate glasses containing 48-61 mol% SiO2, 18-28 mol% CaO, 1-7 mol% MgO, 7-10 mol% Al2O3, 1-11 mol% B2O3 plus minor amounts of Na2O, K2O, FeO and TiO2 were quantified through analysis...... of phase assemblages as function of heat treatments above the glass transition temperatures using the electron microprobe and powder X-ray diffraction. Treatments at 800 °C and 850 °C lasted up to 6 weeks. Results indicate that devitrification was strongly activated through presence of heterogeneous...... nucleation, and that the growth mechanism gradually changed from three-dimensional growth at the onset of devitrification towards one-dimensional growth in later stages, when heterogeneous nucleation was absent or less dominating. Most glasses developed entangled and fibrous microstructures with little...

  7. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  8. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  9. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  10. Ocean FEST: Families Exploring Science Together

    Science.gov (United States)

    Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene

    2011-01-01

    This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…

  11. High-Precision In Situ 87Sr/86Sr Analyses through Microsampling on Solid Samples: Applications to Earth and Life Sciences

    Directory of Open Access Journals (Sweden)

    Sara Di Salvo

    2018-01-01

    Full Text Available An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece, (ii the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano’s (Iceland 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences.

  12. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    often not well known or are completely unknown, a strategic workshop was organised by the ESF Standing Committee for Life, Earth and Environmental Sciences (LESC) in cooperation with the ESF EUROCORES Programme EuroCLIMATE. The aim was to address the issue of the impacts of ocean acidification on both the natural and socioeconomic systems, and to identify the gaps of knowledge in this field. The present Science Policy Briefing resulting from this strategic workshop has undergone external international peer review and has been approved by both the Marine Board-ESF and LESC. The ESF considers this Science Policy Briefing on the Impacts of Ocean Acidification an important step towards raising awareness amongst a wide range of research actors, policy makers and funding agencies. Taking into account the range of priorities and key areas of research requiring action at the pan-European level, a series of recommendations for European actions have been drawn up under the following five headings: (i) increase understanding and improve quantification of the organismal and ecosystem responses to ocean acidification; (ii) include the human dimension by increasing collaboration and integration efforts between natural and social sciences; (iii) rationalise, improve and focus monitoring and data gathering, management, processing and accessibility efforts; (iv) increase dissemination, outreach and capacity-building efforts, in particular related to communicating ocean acidification to stakeholders (policy makers, research founders, public, media, etc.); and (v) improve coordination of ocean acidification research and collaboration both at the national and international levels

  13. Ocean Ridges and Oxygen

    Science.gov (United States)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  14. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    Science.gov (United States)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG

  15. Ocean acoustic tomography

    International Nuclear Information System (INIS)

    Cornuelle, Bruce D; Worcester, Peter F; Dzieciuch, Matthew A

    2008-01-01

    Ocean acoustic tomography (OAT) was proposed in 1979 by Walter Munk and Carl Wunsch as an analogue to x-ray computed axial tomography for the oceans. The oceans are opaque to most electromagnetic radiation, but there is a strong acoustic waveguide, and sound can propagate for 10 Mm and more with distinct multiply-refracted ray paths. Transmitting broadband pulses in the ocean leads to a set of impulsive arrivals at the receiver which characterize the impulse response of the sound channel. The peaks observed at the receiver are assumed to represent the arrival of energy traveling along geometric ray paths. These paths can be distinguished by arrival time, and by arrival angle when a vertical array of receivers is available. Changes in ray arrival time can be used to infer changes in ocean structure. Ray travel time measurements have been a mainstay of long-range acoustic measurements, but the strong sensitivity of ray paths to range-dependent sound speed perturbations makes the ray sampling functions uncertain in real cases. In the ray approximation travel times are sensitive to medium changes only along the corresponding eigenrays. Ray theory is an infinite-frequency approximation, and its eikonal equation has nonlinearities not found in the acoustic wave equation. We build on recent seismology results (kernels for body wave arrivals in the earth) to characterize the kernel for converting sound speed change in the ocean to travel time changes using more complete propagation physics. Wave-theoretic finite frequency kernels may show less sensitivity to small-scale sound speed structure.

  16. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    International Nuclear Information System (INIS)

    Arslan, Zikri; Paulson, Anthony J.

    2003-01-01

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO 3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences

  17. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  18. PLANETarium - Visualizing Earth Sciences in the Planetarium

    Science.gov (United States)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more

  19. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    Science.gov (United States)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  20. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  1. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  2. The Phenomenom of Ocean Acidification

    Science.gov (United States)

    Weiss, S.

    2017-12-01

    The earth is 70% and is protected by its atmosphere. The atmosphere is made up of several layers. The sunlight penetrates through the atmosphere and warms the earth surface. The earth's surface then in turn emits invisible infrared radiation back. As this radiation moves back up each layer absorbs some of it. Each layer then sends some of this energy back to earth again. When the layer becomes so thin the energy then escapes back into space. When we are adding more carbon dioxide to these layers we are causing the layers to absorb more of the energy and the radiation. This in turn causes the layers to become warmer since fewer radiation moves up through the layers and this energy bounces back to earth increasing the temperatures. The entire planet is taking on more of this energy and hence the temperatures are rising. The ocean plays a big rule in this change. It has prevented some of the CO2 from entering the earth's atmosphere. Oceans absorb about one third of the anthropogenic CO2 causing the phenomenon of ocean acidification and this comes at a huge cost to our marine environments. The CO2 is absorbed on the surface and then transferred into the deeper waters. Which causes it to be stuck for centuries before making its way back into the atmosphere. As the CO2 dissolves in seawater it causes the PH to lower. With a lowered PH water becomes more acidic. The Hydrogen ions decrease and become less active. With this process carbonic acid is formed. The ocean now is more acidic then it has ever been in the past 650,000 years. The increase in acidic levels has caused our marine life to adjust. Acidosis caused by the increase of carbonic acid in the body fluids means a lower pH in the blood. This changes is just the start to many health issues for these organism's.

  3. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  4. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  5. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  6. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  7. Ocean Quality

    OpenAIRE

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  8. Ocean Drilling: Forty Years of International Collaboration

    Science.gov (United States)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  9. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  10. Global and regional axial ocean angular momentum signals and length-of-day variations (1985-1996)

    Science.gov (United States)

    Ponte, Rui M.; Stammer, Detlef

    2000-07-01

    Changes in ocean angular momentum M about the polar axis are related to fluctuations in zonal currents (relative component Mr) and latitudinal shifts in mass (planetary component MΩ). Output from a 1° ocean model is used to calculate global Mr, MΩ, and M time series at 5 day intervals for the period January 1985 to April 1996. The annual cycle in Mr, MΩ, and M is larger than the semiannual cycle, and MΩ amplitudes are nearly twice those of Mr. Year-to-year modulation of the seasonal cycle is present, but interannual variability is weak. The spectrum of M is red (background slope between ω-1 and ω-2) at subseasonal periods, implying a white or blue spectrum for the external torque on the ocean. Comparisons with previous studies indicate the importance of direct atmospheric forcing in inducing subseasonal M signals, relative to instabilities and other internal sources of rapid oceanic signals. Regional angular momentum estimates show that seasonal variability tends to be larger at low latitudes, but many local maxima exist because of the spatial structure of zonal current and mass variability. At seasonal timescales, latitudes ~20°S-10°N contribute substantial variability to MΩ, while signals in Mr can be traced to Antarctic Circumpolar Current transports and associated circulation. Variability in M is found to be small when compared with similar time series for the atmosphere and the solid Earth, but ocean signals are significantly coherent with atmosphere-solid Earth residuals, implying a measurable oceanic impact on length-of-day variations.

  11. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) on the NASA Aqua satellite for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Microwave Scanning Radiometer (AMSR-E) was launched on 4 May 2002, aboard NASA's Aqua spacecraft. The National Space Development Agency of Japan (NASDA)...

  12. An improved model for the Earth's gravity field

    Science.gov (United States)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  13. Early evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  14. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  15. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  16. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  17. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events......., or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth System models should include a comprehensive treatment of methane cycling but such a treatment...

  18. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  19. Ocean Acidification

    Science.gov (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  20. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  1. Immersive Visualization of the Solid Earth

    Science.gov (United States)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.

  2. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  3. The study of the ocean from space

    Energy Technology Data Exchange (ETDEWEB)

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S

    1978-01-01

    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  4. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  5. Efficient computation of past global ocean circulation patterns using continuation in paleobathymetry

    NARCIS (Netherlands)

    Mulder, T. E.; Baatsen, M. L.J.; Wubs, F.W.; Dijkstra, H. A.

    2017-01-01

    In the field of paleoceanographic modeling, the different positioning of Earth's continental configurations is often a major challenge for obtaining equilibrium ocean flow solutions. In this paper, we introduce numerical parameter continuation techniques to compute equilibrium solutions of ocean

  6. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  7. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  8. Accurately Measuring the Color of the Ocean on Earth and from Space: Uncertainties Revisited and A Report from the Community-Led Spectral Absorption Workshop to Update and Revise the NASA Inherent Optical Properties Protocol

    Science.gov (United States)

    Neeley, Aimee Renee

    2014-01-01

    The color of the ocean (apparent optical properties or AOPs) is determined by the spectral scattering and absorption of light by its dissolved and particulate constituents.The absorption and scattering properties of the water column are the so-called inherent optical properties.

  9. The Southern Ocean's role in ocean circulation and climate transients

    Science.gov (United States)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  10. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  11. Earth sciences

    International Nuclear Information System (INIS)

    Tamura, T.

    1978-01-01

    The following waste management studies were conducted: assessment of ORNL radioactive solid waste disposal practices and facilities; assessment of stream monitoring network in White Oak Creek watershed; discharge of 90 Sr from burial ground 4; evaluation of burial ground corrective measures; halocarbons as ground water tracers; 60 Co transport mechanisms; 60 Co adsorption kinetics; and soil chromatograph K/sub d/ values. Other studies were conducted on cycling and transport of fusion-activation products in the terrestrial environment; Clinch River inventory; biological denitrification; leachates from stored fossil-fuel solids; coal storage piles; and disposal of solid wastes

  12. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  13. Physics of the Earth

    Science.gov (United States)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  14. Advancing dynamic and thermodynamic modelling of magma oceans

    Science.gov (United States)

    Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul

    2017-04-01

    The techniques for modelling low melt-fraction dynamics in planetary interiors are well-established by supplementing the Stokes equations with Darcy's Law. But modelling high-melt fraction phenomena, relevant to the earliest phase of magma ocean cooling, necessitates parameterisations to capture the dynamics of turbulent flow that are otherwise unresolvable in numerical models. Furthermore, it requires knowledge about the material properties of both solid and melt mantle phases, the latter of which are poorly described by typical equations of state. To address these challenges, we present (1) a new interior evolution model that, in a single formulation, captures both solid and melt dynamics and hence charts the complete cooling trajectory of a planetary mantle, and (2) a physical and intuitive extension of a "Hard Sphere" liquid equation of state (EOS) to describe silicate melt properties for the pressure-temperature (P-T) range of Earth's mantle. Together, these two advancements provide a comprehensive and versatile modelling framework for probing the far-reaching consequences of magma ocean cooling and crystallisation for Earth and other rocky planets. The interior evolution model accounts for heat transfer by conduction, convection, latent heat, and gravitational separation. It uses the finite volume method to ensure energy conservation at each time-step and accesses advanced time integration algorithms by interfacing with PETSc. This ensures it accurately and efficiently computes the dynamics throughout the magma ocean, including within the ultra-thin thermal boundary layers (modelling capabilities. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). Our new high P-T liquid EOS accurately captures the energetics and physical properties of the partially molten

  15. Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)

    Science.gov (United States)

    Shum, C. K.

    2012-04-01

    Geodesy during the onset of the 21st Century is evolving into a transformative cross-disciplinary Earth science field. The pioneers before or after the discipline Geodesy was defined include Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Kant, Laplace, Airy, Kelvin, Jeffreys, Chandler, Meinesz, Kaula, and others. The complicated dynamic processes of the Earth system manifested by interactions between the solid Earth and its fluid layers, including ocean, atmosphere, cryosphere and hydrosphere, and their feedbacks are linked with scientific problems such as global sea-level rise resulting from natural and anthropogenic climate change. Advances in the precision and stability of geodetic and fundamental instrumentations, including clocks, satellite or quasar tracking sensors, altimetry and lidars, synthetic aperture radar interferometry (InSAR), InSAR altimetry, gravimetry and gradiometry, have enabled accentuate and transformative progress in cross-disciplinary Earth sciences. In particular, advances in the measurement of the gravity with modern free-fall methods have reached accuracies of 10-9 g (~1 μGal or 10 nm/s2) or better, allowing accurate measurements of height changes at ~3 mm relative to the Earth's center of mass, and mass transports within the Earth interior or its geophysical fluids, enabling global quantifications of climate-change signals. These contemporary space geodetic and in situ sensors include, but not limited to, satellite radar and laser altimetry/lidars, GNSS/SLR/VLBI/DORIS, InSAR, spaceborne gravimetry from GRACE (Gravity Recovery And Climate Experiment twin-satellite mission) and gradiometry from GOCE (Global Ocean Circulation Experiment), tide gauges, and hydrographic data (XBT/MBT/Argo). The 2007 Intergovernmental Panel for Climate Change (IPCC) study, the Fourth Assessment Report (AR4), substantially narrowed the discrepancy between observation and the known geophysical causes of sea-level rise, but significant uncertainties

  16. The impact on ocean ecosystems

    International Nuclear Information System (INIS)

    Seymour, A.H.

    1982-01-01

    A nuclear war would have less impact on ocean ecosystems than on terrestrial systems. But damage to coastal regions and estuaries might be substantial. This chapter discusses the distribution, effects, and hazards of fallout radionuclides in the ocean, and attempts to assess the impact on ocean ecosystems of dust particles in the atmosphere, ozone depletion, and temperature change following a nuclear war. The information offers some insight into the impact of such a war, but does not provide definitive predictions. Two other consequences, however, do have the potential for devastating effects upon marine ecosystems. It has been predicted that a 100-fold reduction in solar light intensity at the earth's surface due to particles in the atmosphere is possible; this would result in death to most of the phytoplankton and herbivorous zooplankton in more than half of the oceans of the Northern Hemisphere, and under some circumstances, depletion of ozone in the stratosphere by NOsub(X) could increase UV radiation at the earth's surface, the magnitude of the change being sufficient to seriously reduce the populations of organisms at the base of the food web. Temperature changes would be of little consequence. (U.K.)

  17. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  18. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    performance of integrated system solutions. The U.S. Group on Earth Observations has identified six near-term opportunities (NTO) for integrated system solutions that contribute to the U.S. IEOS. The six NTOs include the use of space-based measurements of land use/land cover, biogeochemistry parameters, solid Earth perturbations, and ocean parameters important to dealing with decisions associated with such important areas as future sea level change. This paper describes the architectures of the 6 NTOs within a common framework and discusses challenges for systematically evaluating the capacity of discrete research components of NASA space-based observation systems, with models and computing systems and decision support systems.

  19. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  20. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  1. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  2. Uranium abundance of the oceanic crust

    International Nuclear Information System (INIS)

    Fisher, D.E.

    1979-01-01

    Uranium contents of 67 oceanic basalts have been measured by fission track analysis. Average value for ridge and intraplate basalts is approximately 78 ppb, for the Easter Hot Line it is approximately 1600 ppb. Estimates of mantle concentrations derived from the ridge and intraplate samples are insufficient to account for the observed surface heat flow. The whole-Earth concentration of U is > 8 ppb, and < 33 ppb if all heat generated within the Earth reaches the surface. (author)

  3. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of

  4. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  5. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    Science.gov (United States)

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  6. Electromagnetic exploration of the oceanic mantle.

    Science.gov (United States)

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  7. Locating center of mass of earth and geostationary satellites

    International Nuclear Information System (INIS)

    Qureshi, A.; Marvi, M.

    2014-01-01

    CoM (Center of Mass) of earth is a very important factor which can play a major role in satellite communication and related earth sciences. The CoM of earth is assumed to be around equator due to geometrical shape of earth. However, no technical method is available in the literature which can justify the presence of CoM of earth around equator. Therefore, in this research work the CoM of earth has been located theoretically with the help of mathematical relations. It also presents the mathematical justification against the assumption that equator is the CoM of earth. The effect of calculated CoM of earth on geostationary satellites has also been discussed. The CoM of earth has been found mathematically by using land to ocean ratios and the data is collected from the Google earth software. The final results are accurate with an approximate error of 1%. (author)

  8. Geodynamic Effects of Ocean Tides: Progress and Problems

    Science.gov (United States)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  9. ESONET , a milestone towards sustained multidisciplinary ocean observation.

    Science.gov (United States)

    Rolin, J.-F.

    2012-04-01

    At the end of a 4 year project dedicated to the constitution of a Network of Excellence (NoE) on subsea observatories in Europe, large expectations are still in the agenda. The economical crisis changes the infrastructure construction planning in many ways but the objectives are quite clear and may be reached at European scale. The overall objective of the ESONET NoE was to create an organisation able to implement, operate and maintain a sustainable underwater observation network, extending into deep water, capable of monitoring biological, geo-chemical, geological, geophysical and physical processes occurring throughout the water column, sea floor interface and solid earth below. This main objective of ESONET has been met by creating the network of 11 permanent underwater observation sites together with the "ESONET Vi" Virtual Institute organising the exchange of staff and joint experiments on EMSO large research infrastructure observatories. The development of recommendations on best practices, standardization and interoperability concepts concerning underwater observatory equipment, as synthetized by the so called ESONET Label document has been created. The ESONET Label is a set of criteria to be met by the deep-sea observatory equipment as well as recommended solutions and options to guarantee their optimal operation in the ocean over long time periods. ESONET contributes to the fixed point sustained observatory community which extends worldwide, is fully multidisciplinary and in its way may open a new page in ocean sciences history.

  10. Corrigendum to "Depth-varying seismogenesis on an oceanic detachment fault at 13°20‧N on the Mid-Atlantic Ridge" [Earth Planet. Sci. Lett. 479 (2017) 60-70

    Science.gov (United States)

    Craig, Timothy J.; Parnell-Turner, Ross

    2018-06-01

    The microseismic hypocenters plotted in our study, derived in Parnell-Turner et al. (2017), used data collected by instrumentation from the NERC Ocean-Bottom Instrumentation Facility (Minshull et al., 2005) under the auspices of NERC projects NE/J022551/1, NE/J02029X/1 and NE/J021741/1 led by Tim Reston, Christine Peirce and Christopher MacLeod, during cruises JC102 and JC109 led by Christine Peirce. The raw seismic data from the OBS deployment are available from the NERC's British Oceanographic Data Centre (https://www.bodc.ac.uk), or by contacting the NERC grant-holders directly.

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sediment dynamics like deposition, erosion and dispersion are explained with the simulated tidal currents and OCM derived sediment concentrations. ... Geosciences Division, Marine, Geo and Planetary Sciences Group, Earth, Ocean, Atmosphere, Planetary Sciences and Applications Area, Space Applications Centre ...

  12. 2006 URS Corporation Bare Earth Topographic Lidar: Shawsheen River, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — URS Corporation contracted EarthData International to aquire topographic elevation data for 82 square miles in Essex and Middlesex Counties, Massachusetts during...

  13. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  14. Collaborative Project. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Dufour, Carolina [Princeton Univ., NJ (United States); Rodgers, Keith B. [Princeton Univ., NJ (United States)

    2015-12-16

    The focus of this grant was on diagnosing the physical mechanisms controlling upper ocean water mass formation and carbon distribution in Earth System Models (ESMs), with the goal of improving the physics that controls their formation.

  15. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  16. A survey of the theory of the Earth's rotation

    Science.gov (United States)

    Cannon, W. H.

    1981-01-01

    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  17. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  18. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  19. The climate: Earth and men

    International Nuclear Information System (INIS)

    Poitou, Jean; Braconnot, Pascale; Masson-Delmotte, Valerie

    2015-01-01

    In this book, the authors first present the climate system as it operates under the influence of the atmosphere and oceans: Earth heated by the Sun, temperatures and movements within the atmosphere, surface and deep circulation in the oceans, exchanges between the atmosphere and the oceans. They present the various actors of climate and their interactions: water cycle, carbon cycle, greenhouse effect, clouds, aerosols, ocean, cryosphere-climate interaction, interaction between continental biosphere and climate, interactions between climate, continents and lithosphere, feedbacks and climate sensitivity. They comment the variety of climates and their variability when considered on a large scale (role of the Sun, ocean-atmosphere oscillations in El Nino and La Nina, North Atlantic oscillation, other examples of oscillations). The next part addresses climate modelling: model fundamentals (parameters and other components, coupling between components), model adjustment (simulation types, multi-model sets, and model assessment), models of intermediate complexity, regional models. The authors discuss the warming phenomenon: history of temperature measurements, clues of global warming, how to make climate change. They propose a presentation and discussion of anthropogenic and natural factors which disturb the climate: CO 2 and other greenhouse gases, changes in soil uses, other possible causes of climate disturbance (aerosol, aircraft wakes, volcanoes, and sun), combination of these disturbances, and identification of anthropogenic disturbances. They discuss past climate evolutions, and finally discuss how the climate could evolve in the future

  20. Biogeochemical response to widespread anoxia in the past ocean

    NARCIS (Netherlands)

    Ruvalcaba Baroni, I.

    2015-01-01

    Oxygen is a key element for life on earth. Oxygen concentrations in the ocean vary greatly in space and time. These changes are regulated by various physical and biogeochemical processes, such as primary productivity, sea surface temperatures and ocean circulation. In the geological past, several

  1. Solving large linear systems in an implicit thermohaline ocean model

    NARCIS (Netherlands)

    de Niet, Arie Christiaan

    2007-01-01

    The climate on earth is largely determined by the global ocean circulation. Hence it is important to predict how the flow will react to perturbation by for example melting icecaps. To answer questions about the stability of the global ocean flow, a computer model has been developed that is able to

  2. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    The proto-ocean owes its origin to condensation of water vapour from the ...... ter SO /- is -20 0/00)' This change is considered to be a conse- quence of either ... Earth's climate and the origin of the oceans, Palaeogeography, 146,33-. 51.

  3. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  4. About the article by M.A. Goncharov, Yu.N. Raznitsin, Yu.V. Barkin «SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT»

    Directory of Open Access Journals (Sweden)

    Yuri G. Leonov

    2012-01-01

    Full Text Available The review summary states that studies of the hierarchical subordination of geodynamic systems is top in the scientific agenda, and researches of orientation of the Earth’s surface deformation structures in relation to the elements of the stress field are important. It is noted that the proposed classification of geological objects by ranks is ambiguous, and there is a need for a geodynamic model to provide a basis for studying relationships between the fields of forces, stresses and strains on the surface and processes which take place deep in the core and mantle of the Earth.

  5. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  6. Carbon dioxide from surface underway survey in global oceans from 1968 to 2006 (Version 1.0) (NODC Accession 0040205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — More than 3 million measurements of surface water partial pressure of CO2 obtained over the global oceans during 1968 to 2006 are listed in the Lamont-Doherty Earth...

  7. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  8. Fluorine-ion conductivity of different technological forms of solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (LaF{sub 3} Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-05-15

    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

  9. Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry

    Science.gov (United States)

    Henkes, Gregory A.; Passey, Benjamin H.; Grossman, Ethan L.; Shenton, Brock J.; Yancey, Thomas E.; Pérez-Huerta, Alberto

    2018-05-01

    Surface temperature is among the most important parameters describing planetary climate and habitability, and yet there remains considerable debate about the temperature evolution of the Earth's oceans during the Phanerozoic Eon (541 million years ago to present), the time during which complex metazoan life radiated on Earth. Here we critically assess the emerging record of Phanerozoic ocean temperatures based on carbonate clumped isotope thermometry of fossil brachiopod and mollusk shells, and we present new data that fill important gaps in the Late Paleozoic record. We evaluate and reject the hypothesis that solid-state reordering of 13C-18O bonds has destroyed the primary clumped isotope temperature signal of most fossils during sedimentary burial at elevated temperatures. The resulting Phanerozoic record, which shows a general coupling between tropical seawater temperatures and atmospheric carbon dioxide (CO2) levels since the Paleozoic, indicates that tropical temperatures during the icehouse climate of the Carboniferous period were broadly similar to present (∼25-30 °C), and suggests that benthic metazoans were able to thrive at temperatures of 35-40 °C during intervals of the early and possibly the latest Paleozoic when CO2 levels were likely 5-10× higher than present-day values. Equally important, there is no resolvable trend in seawater oxygen isotope ratios (δ18 O) over the past ∼500 million years, indicating that the average temperature of oxygen exchange between seawater and the oceanic crust has been high (∼270 °C) since at least the early Paleozoic, which points to mid-ocean ridges as the dominant locus of water-rock interaction over the past half-billion years.

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 5 .... Current products based on Ocean General Circulation Models like ECCO2 ... An assessment of wind forcing impact on a spectral wave model for the Indian Ocean .... variability over India and its subregions using a regional climate model (RegCM3).

  11. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  12. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  13. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  14. Observing the Ocean from Space: Emerging Capabilities in Europe

    OpenAIRE

    Johannessen, Johnny A.; Le Provost, Christian; Drange, Helge; Srokosz, Meric; Woodworth, Philip; Sclüssel, Peter; Le Grand, Pascal; Kerr, Yann; Wingham, Duncan; Rebhan, Helge

    2001-01-01

    Chap. 2.7 of "Observing the Oceans in the 21st Century, Chester J. Koblinsky and Neville R. Smith (Eds.)" http://www.bom.gov.au/GODAE/ocean_book.html During the first decade of the 21st century Earth observation from satellites will be faced with two major demands: provision of continuity missions and launch of new exploratory missions. This paper addresses European plans for new Earth observations in the context of Ocean Observing System for Climate at the onset of this new millennium. It...

  15. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    Science.gov (United States)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release

  16. Super computer displays future of the earth

    International Nuclear Information System (INIS)

    Yokokawa, Mitsuo; Tani, Keiji

    2000-01-01

    Science and Technology Agency has promoted a project of estimation of the earth environment fluctuation since Fiscal 1997. As one of series, it is developing a very high speed parallel computer 'the earth 'simulator' with 5TFLOPS of effective performance (40TFLOPS of peak performance). Abstract of the hardware, basic software and application software is explained. Hardware is constructed by a distributed memory type parallel computer and single-stage crossbars network. Main storage capacity is 10 TB. The basic software consisted of hierarchical structure with operating system, compiler, operation and management software. In the earth simulator, 640 nodes are connected by magnetic disk units, so that input/output of calculation is parallel processor, the most important development item. The earth simulator project is developing a software, NJR (NASDA-JAMSTEC-RIST) program, which is atmosphere and ocean large circulation joint model library system. An example of analysis showed a global distribution of rain a day in the earth. (S.Y.)

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Shalini. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Sarkar. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 157-169. Palaeomonsoon and palaeoproductivity records of O, C and CaCO3 variations in the northern Indian Ocean sediments · A Sarkar R Ramesh S K Bhattacharya ...

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Barnes. Articles written in Journal of Earth System Science. Volume 115 Issue 4 August 2006 pp 451-460 Special Section on: Material exchanges at marine boundaries and surface ocean processes: Forcings and feedbacks. Spatial and temporal distribution of methane in ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K Krishnamoorthy. Articles written in Journal of Earth System Science. Volume 111 Issue 4 December 2002 pp 425-435. Detection of marine aerosols with IRS P4-Ocean Colour Monitor · Indrani Das M Mohan K Krishnamoorthy · More Details Abstract Fulltext PDF.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R A Scrutton. Articles written in Journal of Earth System Science. Volume 123 Issue 1 February 2014 pp 33-47. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean · K S Krishna J M Bull O Ishizuka R A Scrutton S ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. K S Krishna. Articles written in Journal of Earth System Science. Volume 111 Issue 1 March 2002 pp 17-28. Formation of diapiric structure in the deformation zone, central Indian Ocean: A model from gravity and seismic reflection data · K S Krishna D Gopala Rao Yu P ...

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Radhakrishna. Articles written in Journal of Earth System Science. Volume 120 Issue 4 August 2011 pp 605-615. Development of the negative gravity anomaly of the 85°E Ridge, northeastern Indian Ocean – A process oriented modelling approach · K M Sreejith M ...

  4. Radar Images of the Earth and the World Wide Web

    Science.gov (United States)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P Seetaramayya. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 283-293. Ocean-atmosphere interaction and synoptic weather conditions in association with the two contrasting phases of monsoon during BOBMEX-1999.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Shyam Prasad. Articles written in Journal of Earth System Science. Volume 119 Issue 4 August 2010 pp 531-539. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin · J N Pattan M Shyam Prasad E V S S K Babu · More Details Abstract ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Charuta V Prabhu. Articles written in Journal of Earth System Science. Volume 109 Issue 2 June 2000 pp 267-277. Diurnal variability of upper ocean temperature and heat budget in the southern Bay of Bengal during October — November, 1998 (BOBMEX-Pilot).

  8. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  9. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  10. Ferruginous conditions: A dominant feature of the ocean through Earth’s history

    DEFF Research Database (Denmark)

    Poulton, Simon W.; Canfield, Donald Eugene

    2011-01-01

    , iron-rich (ferruginous) oceanic conditions often goes unrecognized, but refined techniques are currently providing evidence to suggest that ferruginous deep-ocean conditions were likely dominant throughout much of Earth's history. The prevalence of this redox state suggests that a detailed appraisal......The reconstruction of oceanic paleoredox conditions on Earth is essential for investigating links between biospheric oxygenation and major periods of biological innovation and extinction, and for unravelling feedback mechanisms associated with paleoenvironmental change. The occurrence of anoxic...

  11. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements

    Science.gov (United States)

    Hu,Yongxiang

    2009-01-01

    CALIPSO's main mission objective is studying the climate impact of clouds and aerosols in the atmosphere. CALIPSO also collects information about other components of the Earth's ecosystem, such as oceans and land. This paper introduces the physics concepts and presents preliminary results for the valueadded CALIPSO Earth system science products. These include ocean surface wind speeds, column atmospheric optical depths, ocean subsurface backscatter, land surface elevations, atmospheric temperature profiles, and A-train data fusion products.

  12. Slush Fund: The Multiphase Nature of Oceanic Ices and Its Role in Shaping Europa's Icy Shell

    Science.gov (United States)

    Buffo, J.; Schmidt, B. E.; Huber, C.

    2017-12-01

    The role of Europa's ice shell in mediating ocean-surface interaction, constraining potential habitability of the underlying hydrosphere, and dictating the surface morphology of the moon is discussed extensively in the literature, yet the dynamics and characteristics of the shell itself remain largely unconstrained. Some of the largest unknowns arise from underrepresented physics and varying a priori assumptions built into the current ice shell models. Here we modify and apply a validated one-dimensional reactive transport model designed to simulate the formation and evolution of terrestrial sea ice to the Europa environment. The top-down freezing of sea ice due to conductive heat loss to the atmosphere is akin to the formation of the Jovian moon's outer ice shell, albeit on a different temporal and spatial scale. Nevertheless, the microscale physics that govern the formation of sea ice on Earth (heterogenous solidification leading to brine pockets and channels, multiphase reactive transport phenomena, gravity drainage) likely operate in a similar manner at the ice-ocean interface of Europa, dictating the thermal, chemical, and mechanical properties of the ice shell. Simulations of the European ice-ocean interface at different stages during the ice shell's evolution are interpolated to produce vertical profiles of temperature, salinity, solid fraction, and eutectic points throughout the entire shell. Additionally, the model is coupled to the equilibrium chemistry package FREZCHEM to investigate the impact a diverse range of putative European ocean chemistries has on ice shell properties. This method removes the need for a priori assumptions of impurity entrainment rates and ice shell properties, thus providing a first principles constraint on the stratigraphic characteristics of a simulated European ice shell. These insights have the potential to improve existing estimates for the onset of solid state convection, melt lens formation due to eutectic melting, ice

  13. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  14. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  15. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  16. The Earth’s mantle before convection: Effects of magma oceans and the Moon (Invited)

    Science.gov (United States)

    Elkins-Tanton, L. T.; Smrekar, S. E.; Tobie, G.

    2009-12-01

    Studies of magma oceans indicate that planets obtain a gravitationally stable, compositionally differentiated mantle following solidification. This stable mantle results primarily from iron-magnesium partitioning during solidification, producing progressively iron-enriched mantle phases as solidification proceeds. Near the end of solidification, the dense solids will overturn to a stable configuration. The resulting differentiated mantle is stable from compositional density gradients that are significant enough to suppress thermal convection for up to hundreds of millions of years or longer, a scenario that proceeds self-consistently from physical and chemical principals, but is in contradiction with a previous image of a hot, turbulently convecting earliest terrestrial mantle. The isotopic range found in Martian meteorites indicates that its mantle differentiated in the first tens of millions of years of the solar system and has not been thoroughly remixed since. The specific isotopic range found on Mars is consistent with formation in a magma ocean. Based on the isotopic compositions of magmas, the Earth’s mantle is well mixed in comparison with the mantle of Mars. If the terrestrial planets experienced partial or whole magma oceans and thus began with stable mantles, resisting the onset of thermal convection and subsequent remixing, then why is Earth’s mantle well mixed? Two processes predicted to occur on the Earth, but not on the smaller Mars, may explain the divergent evolutions of these bodies. Here we will present model calculations for these two processes. First, we hypothesize that in the brief period that the Moon was very close to the Earth, it may have tidally heated Earth’s interior sufficiently to overcome its initial compositionally stable mantle, initiate active convection, and set the stage for the well-mixed mantle sampled today. Mars, conversely, may have cooled significantly before thermal convection began, allowing the formation of a

  17. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  18. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  19. Importance of ocean salinity for climate and habitability.

    Science.gov (United States)

    Cullum, Jodie; Stevens, David P; Joshi, Manoj M

    2016-04-19

    Modeling studies of terrestrial extrasolar planetary climates are now including the effects of ocean circulation due to a recognition of the importance of oceans for climate; indeed, the peak equator-pole ocean heat transport on Earth peaks at almost half that of the atmosphere. However, such studies have made the assumption that fundamental oceanic properties, such as salinity, temperature, and depth, are similar to Earth. This assumption results in Earth-like circulations: a meridional overturning with warm water moving poleward at the surface, being cooled, sinking at high latitudes, and traveling equatorward at depth. Here it is shown that an exoplanetary ocean with a different salinity can circulate in the opposite direction: an equatorward flow of polar water at the surface, sinking in the tropics, and filling the deep ocean with warm water. This alternative flow regime results in a dramatic warming in the polar regions, demonstrated here using both a conceptual model and an ocean general circulation model. These results highlight the importance of ocean salinity for exoplanetary climate and consequent habitability and the need for its consideration in future studies.

  20. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    Science.gov (United States)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we

  1. Nanocrystalline solids

    International Nuclear Information System (INIS)

    Gleiter, H.

    1991-01-01

    Nanocrystalline solids are polycrystals, the crystal size of which is a few (typically 1 to 10) nanometres so that 50% or more of the solid consists of incoherent interfaces between crystals of different orientations. Solids consisting primarily of internal interfaces represent a separate class of atomic structures because the atomic arrangement formed in the core of an interface is known to be an arrangement of minimum energy in the potential field of the two adjacent crystal lattices with different crystallographic orientations on either side of the boundary core. These boundary conditions result in atomic structures in the interfacial cores which cannot be formed elsewhere (e.g. in glasses or perfect crystals). Nanocrystalline solids are of interest for the following four reasons: (1) Nanocrystalline solids exhibit an atomic structure which differs from that of the two known solid states: the crystalline (with long-range order) and the glassy (with short-range order). (2) The properties of nanocrystalline solids differ (in some cases by several orders of magnitude) from those of glasses and/or crystals with the same chemical composition, which suggests that they may be utilized technologically in the future. (3) Nanocrystalline solids seem to permit the alloying of conventionally immiscible components. (4) If small (1 to 10 nm diameter) solid droplets with a glassy structure are consolidated (instead of small crystals), a new type of glass, called nanoglass, is obtained. Such glasses seem to differ structurally from conventional glasses. (orig.)

  2. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  3. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  4. Vocabulary related to earth sciences through etymology

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    to all aspects of earth sci- ences education for the benefit of students and educators. The author of the article is Nittala S. Sarma, Andhra University, Visak- hapatnam. In the article, Sarma has col- lected Greek, Latin, German and Celtic affixes... terms can be built solidly. My realization of the importance of etymology and the impressive effort put up by Sarma has prompted me to bring his recent publication to the attention of earth sciences students and teachers in the country...

  5. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  6. Magnetically-driven oceans on Jovian satellites

    Science.gov (United States)

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  7. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  8. The morphostructure of the atlantic ocean floor its development in the meso-cenozoic

    CERN Document Server

    Litvin, V M

    1984-01-01

    The study of the topography and structure of the ocean floor is one of the most important stages in ascertaining the geological structure and history of development of the Earth's oceanic crust. This, in its turn, provides a means for purposeful, scientifically-substantiated prospecting, exploration and development of the mineral resources of the ocean. The Atlantic Ocean has been geologically and geophysically studied to a great extent and many years of investigating its floor have revealed the laws governing the structure of the major forms of its submarine relief (e. g. , the continental shelf, the continental slope, the transition zones, the ocean bed, and the Mid-Oceanic Ridge). The basic features of the Earth's oceanic crust structure, anomalous geophysical fields, and the thickness and structure of its sedimentary cover have also been studied. Based on the investigations of the Atlantic Ocean floor and its surrounding continents, the presently prevalent concept of new global tectonics has appeared. A g...

  9. Ocean World Exploration and SLS: Enabling the Search for Life

    Science.gov (United States)

    Creech, Stephen D.; Vane, Greg

    2016-01-01

    Whether life exists on worlds other than Earth is one of the most compelling questions facing space science today. Given that, on Earth, life exists wherever water is found, worlds harboring large amounts of water are prime targets in the search for an answer to this question. Jovian moons Europa, Callisto, and Ganymede; Saturnian moons Enceladus and Titan; and possibly Neptune's Triton are all worlds in the outer solar system on which large quantities of water can be found in solid and liquid form. So compelling are these worlds as targets for scientific study that the United States Congress recently initiated a directive to NASA to create an "Ocean Worlds Exploration Program, comprised of frequent small, medium and large missions that poses the potential to revolutionize our understanding of the solar system and life within it, perhaps more profoundly event than the modern-day search for past or extant life on Mars. Any life detected at the remote "ocean worlds" in the outer solar system would likely have formed and evolved along an independent path from life on Earth itself, giving us a deeper understanding of the potential for broad variety amongst life in the universe. In NASA's robotic study of Mars, a key to the success of the "search for water" was the ability to conduct iterative exploration via a series of missions launched on a regular cadence based on 26-month cycles of prime planetary-alignment windows of reduced transit time. Through this cadence, NASA was able to send to Mars a series of orbiters and landers, using the knowledge gained from each mission to inform and refine the goals of the next. The ability to conduct iterative exploration in this manner could have a substantial impact on exploration of the "ocean worlds," allowing scientists to narrow their targets of interest in the search for life based on data sent back by successive missions. This ability is currently limited by the transit periods available from contemporary evolved expendable

  10. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  11. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  12. Solid waste

    International Nuclear Information System (INIS)

    1995-01-01

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  13. Solid state mechanics

    International Nuclear Information System (INIS)

    Habib, P.

    1988-01-01

    The 1988 progress report of the Solid State Mechanics laboratory (Polytechnic School, France) is presented. The research program domains are the following: investigations concerning the stability and bifurcation of the reversible or irreversible mechanical systems, the problems related to the theoretical and experimental determination of the materials rheological properties, the fatigue crack formation and propagation in multiple-axial stress conditions, the expert systems, and the software applied in the reinforced earth structures dimensioning. Moreover, the published papers, the books, the congress communications, the thesis, and the patents are listed [fr

  14. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    Science.gov (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  15. Influence of mantle anelasticity on the phase and amplitude of earth tides

    Science.gov (United States)

    Bodri, B.; Pedersen, G. P. H.

    1980-05-01

    The effect of the anelasticity of the mantle on the phase and amplitude of earth tides is calculated for recent models of the internal structure of the earth and its rheological characteristics. The anelastic properties of the mantle are modeled by the Maxwell and Knopoff-Lomnitz rheological bodies. For numerical calculations two different methods of solution are used. Results indicate that the effect of mantle anelasticity on tidal amplitudes is practically zero. For both types of rheological models the phase shifts of the functions characterizing solid tides are small, none of them exceeding values of some minutes of arc. These phase shifts have a very weak dependence on the variation of attenuation and viscosity within the mantle. The present study is closely related to an important problem: what proportion of the observed tidal friction arises not in the ocean but is due to the anelasticity of the mantle. The results suggest that dissipation by solid friction at present is an insignificant, almost negligible component of tidal energy sink.

  16. Viruses in the Oceanic Basement.

    Science.gov (United States)

    Nigro, Olivia D; Jungbluth, Sean P; Lin, Huei-Ting; Hsieh, Chih-Chiang; Miranda, Jaclyn A; Schvarcz, Christopher R; Rappé, Michael S; Steward, Grieg F

    2017-03-07

    well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses. Copyright © 2017 Nigro et al.

  17. Grain-Size Dynamics Beneath Mid-Ocean Ridges: Implications for Permeability and Melt Extraction

    Science.gov (United States)

    Turner, A. J.; Katz, R. F.; Behn, M. D.

    2014-12-01

    The permeability structure of the sub-ridge mantle plays an important role in how melt is focused and extracted at mid-ocean ridges. Permeability is controlled by porosity and the grain size of the solid mantle matrix, which is in turn controlled by the deformation conditions. To date, models of grain size evolution and mantle deformation have not been coupled to determine the influence of spatial variations in grain-size on the permeability structure at mid-ocean ridges. Rather, current models typically assume a constant grain size for the whole domain [1]. Here, we use 2-D numerical models to evaluate the influence of grain-size variability on the permeability structure beneath a mid-ocean ridge and use these results to speculate on the consequences for melt focusing and extraction. We construct a two-dimensional, single phase model for the steady-state grain size beneath a mid-ocean ridge. The model employs a composite rheology of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a brittle stress limiter. Grain size is calculated using the "wattmeter" model of Austin and Evans [2]. We investigate the sensitivity of the model to global variations in grain growth exponent, potential temperature, spreading-rate, and grain boundary sliding parameters [3,4]. Our model predicts that permeability varies by two orders of magnitude due to the spatial variability of grain size within the expected melt region of a mid-ocean ridge. The predicted permeability structure suggests grain size may promote focusing of melt towards the ridge axis. Furthermore, the calculated grain size structure should focus melt from a greater depth than models that exclude grain-size variability. Future work will involve evaluating this hypothesis by implementing grain-size dynamics within a two-phase mid-ocean ridge model. The developments of such a model will be discussed. References: [1] R. F. Katz, Journal of Petrology, volume 49, issue 12, page 2099

  18. Polar oceans in a changing climate.

    Science.gov (United States)

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods. Water has been vital for life on Earth and has driven and been influenced by transitions between greenhouse and icehouse. However, neither the possession of water nor having liquid and frozen seas are unique to Earth (Figure 1). Frozen water oceans on the moons Enceladus and Europa (and possibly others) and the liquid and frozen hydrocarbon oceans on Titan probably represent the most likely areas to find extraterrestrial life. We know very little about life in Earth's polar oceans, yet they are the engine of the thermohaline 'conveyor-belt', driving global circulation of heat, oxygen, carbon and nutrients as well as setting sea level through change in ice-mass balance. In regions of polar seas, where surface water is particularly cold and dense, it sinks to generate a tropic-ward flow on the ocean floor of the Pacific, Atlantic and Indian Oceans. Cold water holds more gas, so this sinking water exports O 2 and nutrients, thereby supporting life in the deep sea, as well as soaking up CO 2 from the atmosphere. Water from mid-depths at lower latitudes flows in to replace the sinking polar surface water. This brings heat. The poles are cold because they receive the least energy from the sun, and this extreme light climate varies on many different time scales. To us, the current warm, interglacial conditions seem normal, yet such phases have represented only ∼10% of Homo sapiens' existence. Variations in Earth's orbit (so called 'Milankovitch cycles') have driven cyclical alternation of glaciations (ice ages) and warmer interglacials. Despite this, Earth's polar regions have been our planet's most

  19. Cryosphere campaigns in support of ESA's Earth Explorers Missions

    Science.gov (United States)

    Casal, Tânia; Davidson, Malcolm; Plank, Gernot; Floberghagen, Rune; Parrinello, Tommaso; Mecklenburg, Susanne; Drusch, Matthias; Fernandez, Diego

    2014-05-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne Earth observation missions, and applications development related to land, oceans, atmosphere and solid Earth. ESA has conducted over 110 airborne and ground measurements campaigns since 1981 and this presentation will describe three campaigns in Antarctica and the Arctic. They were undertaken during the calibration/validation phase of Earth Explorer (EE) missions, such as SMOS (Soil Moisture and Ocean Salinity), GOCE (Gravity field and steady-state Ocean Circulation Explorer) and CryoSat-2. In support of SMOS and GOCE, the DOMECair airborne campaign took place in Antarctica, in the Dome C region in the middle of January 2013. The two main objectives were a) to quantify and document the spatial variability in the DOME C area (SMOS) and b) to fill a gap in the high-quality gravity anomaly maps in Antarctica where airborne gravity measurements are sparse (GOCE). Results from the campaign for the SMOS component, showed that the DOME C area is not as spatially homogenous as previously assumed, therefore comparisons of different missions (e.g. SMOS and NASA's Aquarius) with different footprints must be done with care, highlighting once again the importance of field work to test given assumptions. One extremely surprising outcome of this campaign was the pattern similarity between the gravity measurements and brightness temperature fields. To date, there has never been an indication that L-Band brightness temperatures could be correlated to gravity, but preliminary analysis showed coincident high brightness temperature with high gravity values, suggesting that topography may influence microwave emissions. Also in support of SMOS, the SMOSice airborne campaign has been planned in the Arctic. It was motived by a previous ESA SMOSice study that

  20. The Ocean Literacy Campaign

    Science.gov (United States)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  1. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    Science.gov (United States)

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  2. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  3. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.

    2005-01-01

    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  4. 75 FR 18778 - Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD

    Science.gov (United States)

    2010-04-13

    ...-AA00 Safety Zone; Ocean City Air Show 2010, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... zone on the Atlantic Ocean in the vicinity of Ocean City, Maryland to support the Ocean City Air Show. This action is intended to restrict vessel traffic movement on the Atlantic Ocean to protect mariners...

  5. Ozone control of biological activity during Earth's history, including the KT catastrophe

    Science.gov (United States)

    Sheldon, W. R.

    1994-01-01

    There have been brief periods since the beginning of the Cambrian some 600 m.y. ago when mass extinctions destroyed a significant fraction of living species. The most widely studied of these events is the catastrophe at the KT boundary that ended the long dominance of the dinosaurs. In addition to mass extinctions, there is another profound discontinuity in the history of Earth's biota, the explosion of life at the end of the Precambrian era which is an episode that is not explained well at all. For some 3 b.y. before the Cambrian, life had been present on Earth, but maintained a low level of activity which is an aspect of the biota that is puzzling, especially during the last two-thirds of that period. During the last 2 b.y. before the Cambrian, conditions at the Earth's surface were suitable for a burgeoning of the biota, according to most criteria: the oceans neither boiled nor were fozen solid during this time, and the atmosphere contained sufficient O for the development of animals. The purpose of this paper is to suggest that mass extinctions and the lackluster behavior of the Precambrian biota share a common cause: an inadequate amount of ozone in the atmosphere.

  6. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  7. People and Oceans.

    Science.gov (United States)

    NatureScope, 1988

    1988-01-01

    Discusses people's relationship with oceans, focusing on ocean pollution, use, and protective measures of the sea and its wildlife. Activities included are "Mythical Monsters"; "Globetrotters"; "Plastic in the Sea"; and "Sea of Many Uses." (RT)

  8. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  9. Ocean Robotic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Oscar [Rutgers University

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  10. Ocean Uses: California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  11. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal

  12. Ocean Disposal Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1972, Congress enacted the Marine Protection, Research, and Sanctuaries Act (MPRSA, also known as the Ocean Dumping Act) to prohibit the dumping of material into...

  13. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  14. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  15. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  16. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  17. Our sustainable Earth

    International Nuclear Information System (INIS)

    Orbach, Raymond L

    2011-01-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as oceans are slow to respond to atmospheric temperature changes. Atmospheric CO 2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880, and can be associated with the industrial revolution. The climactic consequences of this human dominated increase in atmospheric CO 2 define a geologic epoch that has been termed the 'Anthropocene.' The issue is whether this is a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. Eight 'myths' that posit the former are examined in light of known data. The analysis strongly suggests the latter. In order to stabilize global temperatures, sharp reductions in CO 2 emissions are required: an 80% reduction beginning in 2050. Two examples of economically sustainable CO 2 emission reduction demonstrate that technological innovation has the potential to maintain our standard of living while stabilizing global temperatures.

  18. Isotopes in the earth sciences

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, Robert

    1988-01-01

    This book examines significant aspects of isotope applications in geology and geochemistry commencing with basic matters, such as atomic structure, stable nuclides and their fractionation, as well as the various decay modes of unstable nuclides. Modern mass spectrometry techniques including electrostatic tandem accelerators are followed by a review of radioisotope dating technology. The relatively new method using the rare earth elements samarium and neodymium are covered. Other geochronometers, applicable to both rocks and minerals not dateable otherwise, are included. A review is given of isotopes in the atmosphere, hydrosphere and lithosphere of the Earth. Those of oxygen and hydrogen together with the cosmogenic radionuclides tritium and radiocarbon are discussed in relation to the biosphere. The role of isotopes of carbon, nitrogen and sulphur is described and extended to fossil fuels and rocks as well as meteorites. Related themes such as Phanerozoic oceans, oceanic palaeothermometry, snow and ice stratigraphy and geothermal waters are covered. The field of isotopic palaeoecology is discussed. Radioactive wastes, their accumulation, dangers and disposal are investigated with especial reference to their environmental impacts.

  19. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  20. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  1. Towards Direct Manipulation and Remixing of Massive Data: The EarthServer Approach

    Science.gov (United States)

    Baumann, P.

    2012-04-01

    Complex analytics on "big data" is one of the core challenges of current Earth science, generating strong requirements for on-demand processing and fil tering of massive data sets. Issues under discussion include flexibility, performance, scalability, and the heterogeneity of the information types invo lved. In other domains, high-level query languages (such as those offered by database systems) have proven successful in the quest for flexible, scalable data access interfaces to massive amounts of data. However, due to the lack of support for many of the Earth science data structures, database systems are only used for registries and catalogs, but not for the bulk of spatio-temporal data. One core information category in this field is given by coverage data. ISO 19123 defines coverages, simplifying, as a representation of a "space-time varying phenomenon". This model can express a large class of Earth science data structures, including rectified and non-rectified rasters, curvilinear grids, point clouds, TINs, general meshes, trajectories, surfaces, and solids. This abstract definition, which is too high-level to establish interoperability, is concretized by the OGC GML 3.2.1 Application Schema for Coverages Standard into an interoperable representation. The OGC Web Coverage Processing Service (WCPS) Standard defines a declarative query language on multi-dimensional raster-type coverages, such as 1D in-situ sensor timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. Hence, important ingredients for versatile coverage retrieval are given - however, this potential has not been fully unleashed by service architectures up to now. The EU FP7-INFRA project EarthServer, launched in September 2011, aims at enabling standards-based on-demand analytics over the Web for Earth science data based on an integration of W3C XQuery for alphanumeric data and OGC-WCPS for raster data. Ultimately, EarthServer will support

  2. Origin of the Earth and planets

    International Nuclear Information System (INIS)

    Safronov, V.S.; Ruskol, E.L.

    1982-01-01

    The present state of the Schmidt hypothesis on planets formation by combining cold solid particles and bodies in the protoplanet dust cloud is briefly outlined in a popular form. The most debatable problems of the planet cosmogony: formation of and processes in a protoplanet cloud, results of analytical evaluations and numerical simulation of origin of the Earth and planets-giants are discussed [ru

  3. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available , Mudau AE, Monteiro PMS. South African carbon observations: CO2 measurements for land, atmosphere and ocean. S Afr J Sci. 2017;113(11/12), Art. #a0237, 4 pages. http://dx.doi. org/10.17159/sajs.2017/a0237 Carbon dioxide plays a central role in earth... References 1. Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci. 2007;35:313–347. https://doi.org/10.1146/annurev. earth.35.031306.140057 2. Denman KL. Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser...

  4. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  5. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-08-01

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  6. Renewable energy and characteristics of the Earth

    Science.gov (United States)

    Léger, Valérie

    2016-04-01

    During studying sustainable development, my sixth-form pupils have to devise and carry out experiments to show connection between some characteristics of the Earth and renewable energy. Thus, helping by a list of equipment, they can show, using simples' experiments, causal link. For example, they show that the layout in latitude of solar energy received on the ground, creates ocean and atmospheric currents. These currents are useful to product renewable energy. These researches allow me to show them new jobs link with renewable energy and sustainable development on the Earth. They can have more information thanks to other teachers working on the professional training centre including my secondary school.

  7. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  8. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    Science.gov (United States)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope

  9. The pole tide in deep oceans

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  10. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  11. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  12. The Impact of Ocean Observations in Seasonal Climate Prediction

    Science.gov (United States)

    Rienecker, Michele; Keppenne, Christian; Kovach, Robin; Marshak, Jelena

    2010-01-01

    The ocean provides the most significant memory for the climate system. Hence, a critical element in climate forecasting with coupled models is the initialization of the ocean with states from an ocean data assimilation system. Remotely-sensed ocean surface fields (e.g., sea surface topography, SST, winds) are now available for extensive periods and have been used to constrain ocean models to provide a record of climate variations. Since the ocean is virtually opaque to electromagnetic radiation, the assimilation of these satellite data is essential to extracting the maximum information content. More recently, the Argo drifters have provided unprecedented sampling of the subsurface temperature and salinity. Although the duration of this observation set has been too short to provide solid statistical evidence of its impact, there are indications that Argo improves the forecast skill of coupled systems. This presentation will address the impact these different observations have had on seasonal climate predictions with the GMAO's coupled model.

  13. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  14. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  15. Impact of an asteroid or comet in the ocean and extinction of terrestrial life

    International Nuclear Information System (INIS)

    Ahrens, T.J.; O'Keefe, J.D.

    1983-01-01

    Finite difference calculations describing the impact mechanics associated with a 10 to 30 km diameter silicate or water object impacting a 5 km deep ocean overlying a silicate solid planet at 30 km/sec demonstrate that from 12 to 15% of the bolide energy resides in the water. In the gravity field of the earth some 10 to 30 times the impactor mass of water is launched on trajectories which would take it to altitudes of 10 km or higher. This ejecta launched on trajectories which can achieve stratospheric heights is 10 1 to 10 2 projectile masses, similar to that resulting from impact of objects on an ocean-free silicate half-space (continent). Ejecta composed of impactor material, launched on trajectories which would carry it to stratospheric heights, matches the fraction (10 -2 to 10 -1 ) of bolide (extraterrestrial) material found in the platinum-metal-rich Cretaceous-Tertiary and Eocene-Oligocene boundary layers. Oceanic impact results in giant tsunamis initially having amplitudes of approx. 4 km, representing the solitary waterwave stability limit in the deep ocean, and containing 10 -2 to 10 -1 of the energy of the impact. Using the constraint of no observed turbidities in marine sediments in the Cretaceous-Tertiary and Eocene-Oligocene boundary materials (calculated maximum water-sediment interface particle velocity approx. 10 0 m/sec) implies a maximum impactor energy of approx. 10 28 to approx. 10 29 erg corresponding to a maximum diameter for a silicate impactor of approx. 2 km (at 11 km/sec). Minimal global tsunami run-up heights on the continents corresponding to impacts of this energy are 300-400 m. We speculate that such waves would inundate all low altitude continental areas. As a result, the terrestrial animal food chain would be seriously perturbed, which could have caused extinction of large terrestrial animals

  16. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  17. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  18. Decrease in oceanic crustal thickness since the breakup of Pangaea

    Science.gov (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  19. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  20. Critical Thresholds in Earth-System Dynamics

    Science.gov (United States)

    Rothman, D.

    2017-12-01

    The history of the Earth system is a story of change. Some changesare gradual and benign, but others, especially those associated withcatastrophic mass extinction, are relatively abrupt and destructive.What sets one group apart from the other? Here I hypothesize thatperturbations of Earth's carbon cycle lead to mass extinction if theyexceed either a critical rate at long time scales or a critical sizeat short time scales. By analyzing 31 ca