WorldWideScience

Sample records for solid dispersions sds

  1. Surface Solid Dispersion and Solid Dispersion of Meloxicam: Comparison and Product Development.

    Science.gov (United States)

    Chaturvedi, Mayank; Kumar, Manish; Pathak, Kamla; Bhatt, Shailendra; Saini, Vipin

    2017-12-01

    Purpose: A comparative study was carried out between surface solid dispersion (SSD) and solid dispersion (SD) of meloxicam (MLX) to assess the solubility and dissolution enhancement approach and thereafter develop as patient friendly orodispersible tablet. Methods: Crospovidone (CPV), a hydrophilic carrier was selected for SSD preparation on the basis of 89% in- vitro MLX adsorption, 19% hydration capacity and high swelling index. SD on the other hand was made with PEG4000. Both were prepared by co-grinding and solvent evaporation method using drug: carrier ratios of 1:1, 1:4, and 1:8. Formulation SSDS3 (MLX: CPV in 1:8 ratio) made by solvent evaporation method showed t 50% of 28 min and 80.9% DE 50min which was higher in comparison to the corresponding solid dispersion, SDS3 (t 50% of 35min and 76.4% DE 50min ). Both SSDS3 and SDS3 were developed as orodispersible tablets and evaluated. Results: Tablet formulation F3 made with SSD3 with a disintegration time of 11 secs, by wetting time= 6 sec, high water absorption of 78%by wt and cumulative drug release of 97% proved to be superior than the tablet made with SD3. Conclusion: Conclusively, the SSD of meloxicam has the potential to be developed as fast acing formulation that can ensure almost complete release of drug.

  2. Surface Solid Dispersion and Solid Dispersion of Meloxicam: Comparison and Product Development

    Directory of Open Access Journals (Sweden)

    Mayank Chaturvedi

    2017-12-01

    Full Text Available Purpose: A comparative study was carried out between surface solid dispersion (SSD and solid dispersion (SD of meloxicam (MLX to assess the solubility and dissolution enhancement approach and thereafter develop as patient friendly orodispersible tablet. Methods: Crospovidone (CPV, a hydrophilic carrier was selected for SSD preparation on the basis of 89% in- vitro MLX adsorption, 19% hydration capacity and high swelling index. SD on the other hand was made with PEG4000. Both were prepared by co-grinding and solvent evaporation method using drug: carrier ratios of 1:1, 1:4, and 1:8. Formulation SSDS3 (MLX: CPV in 1:8 ratio made by solvent evaporation method showed t50% of 28 min and 80.9% DE50min which was higher in comparison to the corresponding solid dispersion, SDS3 (t50% of 35min and 76.4% DE50min. Both SSDS3 and SDS3 were developed as orodispersible tablets and evaluated. Results: Tablet formulation F3 made with SSD3 with a disintegration time of 11 secs, by wetting time= 6 sec, high water absorption of 78%by wt and cumulative drug release of 97% proved to be superior than the tablet made with SD3. Conclusion: Conclusively, the SSD of meloxicam has the potential to be developed as fast acing formulation that can ensure almost complete release of drug.

  3. Characterisation of Gliclazide-PEG 8000 Solid Dispersions

    African Journals Online (AJOL)

    Erah

    Purpose: The aim of the present study was to characterise gliclazide solid dispersions (SDs) ... Results: The solubility of gliclazide increased with increasing amount of PEG 8000 in aqueous medium. ... FTIR analysis demonstrated the absence of well-defined gliclazide - PEG 8000 .... voltage of 35 kV and 20 mA current. The.

  4. In-Vitro Characterization and Oral Bioavailability of Organic Solvent-free Solid Dispersions Containing Telmisartan

    DEFF Research Database (Denmark)

    Cao, Yue; Shi, Li-Li; Cao, Qing-Ri

    2016-01-01

    Poorly water-soluble drugs often suffer from limited or irreproducible clinical response due to their low solubility and dissolution rate. In this study, organic solvent-free solid dispersions (OSF-SDs) containing telmisartan (TEL) were prepared using polyvinylpyrrolidone K30 (PVP K30....... The results from DSC, XRD showed that TEL was molecularly dispersed in the OSF-SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between TEL and its carriers. The OSF-SDs exhibited significantly higher AUC0-24 h and Cmax, but similar Tmax as compared...

  5. Formulation of Fast-Release Gastroretentive Solid Dispersion of ...

    African Journals Online (AJOL)

    Methods: Hot melt granulation technique was adopted to prepare solid dispersions (SDs) of glibenclamide in .... ml of 0.1M HCl (pH 1.2), stirred at 20 rpm in a water bath (25 ± 0.3 .... cm-1; and SO2 stretching vibration at 1340.43 and 1159.14 ...

  6. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique

    International Nuclear Information System (INIS)

    Bandari, Suresh; Jadav, Subash; Eedara, Basanth Babu; Jukanti, Raju; Veerareddy, Prabhakar Reddy

    2013-01-01

    The purpose of this investigation was to enhance the dissolution rate of loratadine using polyethylene glycol 6000 (PEG) solid dispersions (SDs). The solubility behavior of loratadine in the presence of polyethylene glycol 4000 and polyethylene glycol 6000 in water showed linear increase with increasing concentrations of PEG, indicating A L type solubility diagrams. SDs of loratadine with PEG 6000 were prepared at 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 9 ratios by the solvent evaporation method. Solid dispersions were characterized for drug content, dissolution behavior and for physicochemical characteristics. The dissolution rate of loratadine was enhanced rapidly with increasing concentrations of PEG 6000 in SDs. Fourier transform infrared (FTIR) studies showed the stability of loratadine and the absence of a well-defined loratadine - PEG 6000 interaction. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD) studies revealed the amorphous state of loratadine in SDs of loratadine with PEG 6000 which was further confirmed from scanning electron microscopy (SEM) studies. The flow properties of the blend, physical characteristics and disintegration time of the tablets formulated indicated that PEG 6000 SD can be used to formulate fast release loratadine tablets

  7. Physicochemical characterization and dissolution enhancement of loratadine by solid dispersion technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandari, Suresh; Jadav, Subash; Eedara, Basanth Babu; Jukanti, Raju; Veerareddy, Prabhakar Reddy [St. Peter’s Institute of Pharmaceutical Sciences, Warangal (India)

    2013-01-15

    The purpose of this investigation was to enhance the dissolution rate of loratadine using polyethylene glycol 6000 (PEG) solid dispersions (SDs). The solubility behavior of loratadine in the presence of polyethylene glycol 4000 and polyethylene glycol 6000 in water showed linear increase with increasing concentrations of PEG, indicating A{sub L} type solubility diagrams. SDs of loratadine with PEG 6000 were prepared at 1 : 1, 1 : 3, 1 : 5, 1 : 7 and 1 : 9 ratios by the solvent evaporation method. Solid dispersions were characterized for drug content, dissolution behavior and for physicochemical characteristics. The dissolution rate of loratadine was enhanced rapidly with increasing concentrations of PEG 6000 in SDs. Fourier transform infrared (FTIR) studies showed the stability of loratadine and the absence of a well-defined loratadine - PEG 6000 interaction. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD) studies revealed the amorphous state of loratadine in SDs of loratadine with PEG 6000 which was further confirmed from scanning electron microscopy (SEM) studies. The flow properties of the blend, physical characteristics and disintegration time of the tablets formulated indicated that PEG 6000 SD can be used to formulate fast release loratadine tablets.

  8. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide.

    Science.gov (United States)

    Barea, Silvana A; Mattos, Cristiane B; Cruz, Ariadne C C; Chaves, Vitor C; Pereira, Rafael N; Simões, Claudia M O; Kratz, Jadel M; Koester, Letícia S

    2017-03-01

    Thalidomide (THD) is a BCS class II drug with renewed and growing therapeutic applicability. Along with the low aqueous solubility, additional poor biopharmaceutical properties of the drug, i.e. chemical instability, high crystallinity, and polymorphism, lead to a slow and variable oral absorption. In this view, we developed solid dispersions (SDs) containing THD dispersed in different self-emulsifying carriers aiming at an enhanced absorption profile for the drug. THD was dispersed in lauroyl macrogol-32 glycerides (Gelucire ® 44/14) and α-tocopherol polyethylene glycol succinate (Kolliphor ® TPGS), in the presence or absence of the precipitation inhibitor polyvinylpyrrolidone K30 (PVP K30), by means of the solvent method. Physicochemical analysis revealed the formation of semicrystalline SDs. X-ray diffraction and infrared spectroscopy analyses suggest that the remaining crystalline fraction of the drug in the SDs did not undergo polymorphic transition. The impact of the solubility-enhancing formulations on the THD biopharmaceutical properties was evaluated by several in vitro techniques. The developed SDs were able to increase the apparent solubility of the drug (up to 2-3x the equilibrium solubility) for a least 4 h. Dissolution experiments (paddle method, 75 rpm) in different pHs showed that around 80% of drug dissolved after 120 min (versus 40% of pure crystalline drug). Additionally, we demonstrated the enhanced solubility obtained via SDs could be translated into increased flux in a parallel artificial membrane permeability assay (PAMPA). In summary, the results demonstrate that SDs could be considered an interesting and unexplored strategy to improve the biopharmaceutical properties of THD, since SDs of this important drug have yet to be reported.

  9. Solubility Enhancement and Formulation of Mouth Dissolving Tablet of Clonazepam with Solid Dispersion Technology

    Directory of Open Access Journals (Sweden)

    Swati C. Jagdale

    2012-01-01

    Full Text Available Clonazepam (CLZ is an anticonvulsant benzodiazepine widely used in the treatment of epilepsy. CLZ is a BCS Class II drug and its bioavailability is thus dissolution limited. The objective of the present study was to prepare solid dispersions (SDs of CLZ by various techniques, using the amphiphilic carrier Gelucire 50/13 in various proportions, to increase its water solubility. Drug-polymer interactions were investigated by Fourier-transform infrared (FTIR and UltraViolet (UV spectroscopy. The SDs were characterized physically by differential scanning calorimetry (DSC and X-ray diffraction (XRD. A phase solubility study was performed and the stability constant (Ks was found to be 275.27, while the negative Gibbs free energy (ΔGo tr indicated spontaneous solubilization of the drug. The dissolution study showed that the SDs considerably enhanced the dissolution rate of the drug. The FTIR and UV spectra revealed no chemical incompatibility between the drug and Gelucire 50/13. XRD patterns and the DSC profiles indicated the CLZ was in the amorphous form, which explains the improved dissolution rate of the drug from its SDs. Finally, mouth dissolving tablets (MDTs were prepared from the optimized batches (kneading method of solid dispersion, using crospovidone and Doshion P544 resin as superdisintegrants. The tablets were characterized by in-vitro disintegration and dissolution tests. The study of the MDTs showed disintegration times in the range 32.0±0.85 to 20.0±1.30 sec and dissolution was faster than for the commercial preparation. In conclusion, this investigation demonstrated the potential of solid dispersions of a drug with Gelucire 50/13 for promoting the dissolution of the drug and contributed to the understanding of the effect of a superdisintegrant on mouth dissolving tablets containing a solid dispersion of a hydrophobic drug.

  10. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-01-01

    Dissolution of taurine zinc complex can be increased by solid dispersions (SDs). • Taurine zinc SDs blocked doxorubicin-induced hepatotoxicity and cardiotoxicity. • Taurine zinc SDs can alleviate oxidative stress and dampen JNK phosphorylation. • Taurine zinc SDs increased the expression of UGT, HO-1 at mRNA and protein level. • Taurine zinc SDs revealed greater hepatoprotective effects than silymarin.

  11. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui, E-mail: Donghuixu007@163.com

    2015-11-15

    Dissolution of taurine zinc complex can be increased by solid dispersions (SDs). • Taurine zinc SDs blocked doxorubicin-induced hepatotoxicity and cardiotoxicity. • Taurine zinc SDs can alleviate oxidative stress and dampen JNK phosphorylation. • Taurine zinc SDs increased the expression of UGT, HO-1 at mRNA and protein level. • Taurine zinc SDs revealed greater hepatoprotective effects than silymarin.

  12. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates.

    Science.gov (United States)

    Alam, Mohd Aftab; Ali, Raisuddin; Al-Jenoobi, Fahad Ibrahim; Al-Mohizea, Abdullah M

    2012-11-01

    Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs. The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize(™), closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug-carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, Solumer(TM) used to prepare stable amorphous SD. Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.

  13. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions.

    Science.gov (United States)

    Liu, Yanyan; Wang, Tianzi; Ding, Wenya; Dong, Chunliu; Wang, Xiaoting; Chen, Jianqing; Li, Yanhua

    2018-06-01

    The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher C max values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.

  14. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30

    DEFF Research Database (Denmark)

    Thybo, Pia; Pedersen, Betty L; Hovgaard, Lars

    2008-01-01

    The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measuremen...

  15. Preparation, characterization, and dissolution studies of naproxen solid dispersions using polyethylene glycol 6000 and labrafil M2130

    Directory of Open Access Journals (Sweden)

    Jafar Akbari

    2015-06-01

    Full Text Available Naproxen is a poor water soluble, non-steroidal analgesic and anti-inflammatory drug. The enhancement of oral bioavailability of poor water soluble drugs remains one of the most challenging aspects of drug development. Although salt formation, solubilization and particle size reduction have commonly been used to increase dissolution rate and thereby oral absorption and bioavailability of low water soluble drugs, there are practical limitation of these techniques. However, the most attractive option for increasing the release rate is improvement of solubility through formulation approaches. In this study, solid dispersions (SD of naproxen were prepared by hot melt method using various ratios of drug to polymers (PEG6000 separately and characterized for physical appearance, FTIR, DSC, X-Ray crystallography, and in-vitro dissolution studies. The influence of several amounts of Labrafil M2130 was also studied. FTIR study revealed that drug was stable in SDs, and great state of amorphous formed particles was proofed by DSC analysis. The in vitro dissolution studies were carried using USP type II (paddle dissolution apparatus at medium (pH 1.5. Solubility of naproxen from SDs was increased in dissolution media. The prepared dispersion showed increase in the dissolution rate of naproxen comparing to that of physical mixtures of drug and polymers and pure drug. Percent of drug released in 60 minutes was 23.92% for pure naproxen witch is increased in SDs and reached to100% for best formulations of PEG6000 and labrafil based SDs respectively, considering ratio of drug to polymers.It is concluded that dissolution of the naproxen could be improved by the solid dispersion. Although physical mixtures have increased the rate of dissolution, dissolution shows faster release from SDs which would therefore be due to formation of amorphous particles through the hot melt process which was also revealed by DSC analysis and XRD.

  16. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    Science.gov (United States)

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  17. Enhanced dissolution and bioavailability of biochanin A via the preparation of solid dispersion: in vitro and in vivo evaluation.

    Science.gov (United States)

    Han, Hyo-Kyung; Lee, Beom-Jin; Lee, Hyoung-Kyu

    2011-08-30

    The present study aimed to improve the bioavailability of biochanin A, a poorly soluble bioflavonoid, via the preparation of solid dispersion (SD) using Solutol HS15 and HPMC 2910. Solubility of biochanin A was enhanced by 8-60 folds as the drug-carrier ratio was increased in SDs. Furthermore, compared to pure biochanin A or physical mixture (PM), SDs significantly improved the dissolution rate and the extent of drug release. Particularly, SDs (Drug:Solutol HS15:HPMC 2910=1:5:5 or 1:10:10) achieved the rapid and complete drug release (approximately 100% within 1h) at pH 6.8. The XRD patterns indicated that SDs might enhance the solubility of biochanin A by changing the drug crystallinity to amorphous state in addition to the solubilizing effect of hydrophilic carriers. The improved dissolution of biochanin A via SD formulation appeared to be well correlated with the enhanced oral exposure of biochanin A in rats. After an oral administration of SD (Drug:Solutol HS15:HPMC 2910=1:10:10), C(max) and AUC of biochanin A were increased by approximately 13 and 5 folds, respectively, implying that SDs could be effective to improve the bioavailability of biochanin A. In conclusion, solid dispersion with Solutol HS15 and HPMC 2910 appeared to be promising to improve the dissolution and oral exposure of biochanin A. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Norfloxacin mixed solvency based solid dispersions: An in-vitro and in-vivo investigation

    Directory of Open Access Journals (Sweden)

    Ravindra Kamble

    2017-05-01

    Full Text Available Norfloxacin (NF is a synthetic fluoro-quinolone molecule that is used for the treatment of urinary tract infections. However, due to its poor aqueous solubility, it has low oral bioavailability. The aim of the present study was to improve the aqueous solubility and dissolution profile of NF by formulating its mixed-solvency based solid dispersions (SDs. The NF-loaded SDs were prepared by a solvent evaporation technique using urea, sodium benzoate and a niacinamide hydrotropic mixture. The prepared SDs were evaluated regarding their solubility, mean particle size, in-vitro drug release and oral bioavailability. The optimized batch showed a high percentage yield of 99.04% , with a mean particle size of 132.91 μm. Optimized SDs Exhibit 96.48% drug release. The oral bioavailabilities of NF from the optimized SDs, drug alone and marketed formulation were evaluated in Wistar rats at a dose of 20.0 mg/kg. In comparison to the drug alone, approximately 6.90- and 5.0-fold increases in AUC and Cmax, respectively, were observed for NF from mixed-solvency based SDs. The superior dissolution rate due to its reduced particle size may have contributed to the increased oral bioavailability. This study demonstrated that mixed-solvency may be an alternative approach for poorly soluble drugs to improve their solubility and oral bioavailability.

  19. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    Science.gov (United States)

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  1. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    Science.gov (United States)

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2017-09-01

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  2. Use of the co-grinding method to enhance the dissolution behavior of a poorly water-soluble drug: generation of solvent-free drug-polymer solid dispersions.

    Science.gov (United States)

    Yang, Caiqin; Xu, Xiujuan; Wang, Jing; An, Zhiqian

    2012-01-01

    The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10 min of the SD with a 1 : 3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.

  3. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid.

    Directory of Open Access Journals (Sweden)

    Sultan Alshehri

    Full Text Available The present studies were undertaken to develop solvent-free solid dispersions (SDs for poorly soluble anti-inflammatory drugs mefenamic acid (MA and flufenamic acid (FFA in order to enhance their in vitro dissolution rate and in vivo anti-inflammatory effects. The SDs of MA and FFA were prepared using microwaves irradiation (MW technique. Different carriers such as Pluronic F127® (PL, Eudragit EPO® (EPO, polyethylene glycol 4000 (PEG 4000 and Gelucire 50/13 (GLU were used for the preparation of SDs. Prepared MW irradiated SDs were characterized physicochemically using differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier transform infra-red (FT-IR spectroscopy, powder X-ray diffraction (PXRD and scanning electron microscopy (SEM. The physicochemical characteristics and drug release profile of SDs were compared with pure drugs. The results of DSC, TGA, FT-IR, PXRD and SEM showed that SDs were successfully prepared. In vitro dissolution rate of MA and FFA was remarkably enhanced by SDs in comparison with pure MA and FFA. The SDs of MA and FFA prepared using PEG 400 showed higher drug release profile in comparison with those prepared using PL, EPO or GLU. The dissolution efficiency for MA-PEG SD and FFA-PEG SD was obtained as 61.40 and 59.18%, respectively. Optimized SDs were also evaluated for in vivo anti-inflammatory effects in male Wistar rats. The results showed significant % inhibition by MA-PEG (87.74% after 4 h and FFA-PEG SDs (81.76% after 4 h in comparison with pure MA (68.09% after 4 h and pure FFA (55.27% after 4 h (P<0.05. These results suggested that MW irradiated SDs of MA and FFA could be successfully used for the enhancement of in vitro dissolution rate and in vivo therapeutic efficacy of both drugs.

  4. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate.

    Science.gov (United States)

    Jung, Hyuck Jun; Ahn, Hye In; Park, Ji Yeon; Ho, Myoung Jin; Lee, Dae Ro; Cho, Ha Ra; Park, Jun Seo; Choi, Yong Seok; Kang, Myung Joo

    2016-02-01

    A novel surfactant-incorporated hydroxypropyl methylcellulose (HPMC) solid dispersion (SD) system was constructed in order to facilitate the release rate and oral absorption of tacrolimus (FK506), a poorly water-soluble immunosuppressant. Several emulsifiers including sodium lauryl sulfate (SLS), as drug release promotors, were employed with HPMC to fabricate SD using the solvent wetting method. The solid state characteristics using differential scanning calorimetry and X-ray powder diffraction, revealed that FK506 was molecularly distributed within all dispersions in amorphous form. The dissolution rates of FK506 in SLS-incorporated SDs were much higher than those in SDs prepared with HPMC alone, and even with stearoyl polyoxyl-32 glycerides or tocopheryl polyethylene glycol 1000 succinate. In particular, the greatest dissolution enhancement was obtained from the SD consisting of the drug, HPMC, and SLS in a weight ratio of 1:1:3, providing a 50-fold higher drug concentration within 15 min, compared with HPMC SD. In vivo absorption study in rats demonstrates that the optimized formula remarkably increased the oral absorption of FK506, providing about 4.0-fold greater bioavailability (p<0.05) compared with the marketed product (Prograf®, Astellas Pharma). These data suggest that a novel SLS/HPMC SD may be an advantageous dosage form of FK506, boosting the dissolution and absorption in gastrointestinal tract. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-11-01

    In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.

  6. Cefuroxime axetil solid dispersions prepared using solution enhanced dispersion by supercritical fluids.

    Science.gov (United States)

    Jun, Seoung Wook; Kim, Min-Soo; Jo, Guk Hyun; Lee, Sibeum; Woo, Jong Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-12-01

    Cefuroxime axetil (CA) solid dispersions with HPMC 2910/PVP K-30 were prepared using solution enhanced dispersion by supercritical fluids (SEDS) in an effort to increase the dissolution rate of poorly water-soluble drugs. Their physicochemical properties in solid state were characterized by differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectrometry (FT-IR) and scanning electron microscopy. No endothermic and characteristic diffraction peaks corresponding to CA were observed for the solid dispersions in DSC and PXRD. FTIR analysis demonstrated the presence of intermolecular hydrogen bonds between CA and HPMC 2910/PVP K-30 in solid dispersions, resulting in the formation of amorphous or non-crystalline CA. Dissolution studies indicated that the dissolution rates were remarkably increased in solid dispersions compared with those in the physical mixture and drug alone. In conclusion, an amorphous or non-crystalline CA solid dispersion prepared using SEDS could be very useful for the formulation of solid dosage forms.

  7. Combinational approach using solid dispersion and semi-solid matrix technology to enhance in vitro dissolution of telmisartan

    Directory of Open Access Journals (Sweden)

    Syed Faisal Ali

    2016-02-01

    Full Text Available The present investigation was focused to formulate semi-solid capsules (SSCs of hydrophobic drug telmisartan (TLMS by encapsulating semi-solid matrix of its solid dispersion (SD in HPMC capsules. The combinational approach was used to reduce the lag time in drug release and improvise its dissolution. SDs of TLMS was prepared using hot fusion method by varying the combinations of Pluronic-F68, Gelucire 50/13 and Plasdone S630. A total of nine batches (SD1-SD9 were characterized for micromeritic properties, in vitro dissolution behavior and surface characterization. SD4 with 52.43% cumulative drug release (CDR in phosphate buffer, pH 7.4, in 120 min, t50% 44.2 min and DE30min 96.76% was selected for the development of semi-solid capsules. Differential scanning calorimetry of SD4 revealed molecular dispersion of TLMS in Pluronic-F68. SD4 was formulated into SSCs using Gelucire 44/14 and PEG 400 as semi-solid components and PEG 6000 as a suspending agent to achieve reduction in lag time for effective drug dissolution. SSC6 showed maximum in vitro drug dissolution 97.49 % in phosphate buffer, pH 7.4 with in 20 min that was almost a three folds reduction in the time required to achieve similar dissolution by SD. Thus, SSCs present an excellent approach to enhance in vitro dissolution as well as to reduce the lag time of dissolution for poorly water soluble drugs especially to those therapeutic classes that are intended for faster onset of action. Developed approach based on HPMC capsules provided a better alternative to target delivery of telmisartan to the vegetarian population.

  8. Halloysite Nanotubes Noncovalently Functionalised with SDS Anionic Surfactant and PS-b-P4VP Block Copolymer for Their Effective Dispersion in Polystyrene as UV-Blocking Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Lazaros Tzounis

    2017-01-01

    Full Text Available A simple and versatile method is reported for the noncovalent functionalisation of natural and “green” halloysite nanotubes (HNTs allowing their effective dispersion in a polystyrene (PS thermoplastic matrix via solvent mixing. Initially, HNTs (pristine HNTs were modified with physically adsorbed surfactant molecules of sodium dodecyl sulphate (SDS and PS-b-P4VP [P4VP: poly(4-vinylpyridine] block copolymer (BCP. Hereafter, SDS and BCP modified HNTs will be indicated as SDS-m-HNT and BCP-m-HNT. Nanocomposite films with 1, 2, and 5 wt.% HNT loadings were prepared, abbreviated as PS-SDS-m-HNT1, PS-SDS-m-HNT2, and PS-SDS-m-HNT5 and PS-BCP-m-HNT1, PS-BCP-m-HNT2, and PS-BCP-m-HNT5 (where 1, 2, and 5 correspond to the wt.% of HNTs. All nanocomposites depicted improved thermal degradation compared to the neat PS as revealed by thermogravimetric analysis (TGA. Transmission electron microscopy (TEM confirmed the good dispersion state of HNTs and the importance of modification by SDS and BCP. X-ray diffraction (XRD studies showed the characteristic interlayer spacing between the two silicate layers of pristine and modified HNTs. The PS/HNT nanocomposite films exhibited excellent ultraviolent-visible (UV-vis absorbance properties and their potential application as UV-filters could be envisaged.

  9. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique.

    Science.gov (United States)

    Marasini, Nirmal; Tran, Tuan Hiep; Poudel, Bijay Kumar; Cho, Hyuk Jun; Choi, Young Keun; Chi, Sang-Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-01-30

    The present study was undertaken to overcome the problems associated with solubility, dissolution and oral bioavailability of a poorly water-soluble ionizable drug, telmisartan (TMS). For these purposes, a solubility test was carried to select the appropriate formulation composition from various carriers and alkalizers. Solid dispersions (SDs) of TMS were prepared at different drug-to-carrier ratios by the spray-drying technique, and were characterized by dissolution and aqueous solubility studies. The optimum formulation was investigated by dissolution studies at different pH and water media and its solid state characterisations were performed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. In solubility and dissolution tests, all TMS-loaded pH-modulated SDs (pH(M)-SDs) exhibited marked improvement in the dissolution behavior when compared with crystalline TMS powder. The optimum formulation of pH(M)-SD consisted of TMS/PVP (polyvinylpyrrolidone) K30/Na(2)CO(3) at a weight ratio of 2/0.5/3 and showed significant improvement in the aqueous solubility and dissolution rate by approximately 40,000- and 3-fold, respectively, compared to TMS powder. Solid-state characterization revealed the changed in crystallinity of TMS into amorphous state. Furthermore, area under the drug concentration time-curve (AUC) of TMS from the pH(M)-SD increased by 13.4- and 2.1-fold, compared with TMS powder and commercial product, respectively. According to these observations, taken together with dissolution and pharmacokinetic behaviors, pH-modulated SD in the presence of an alkalizer for a poorly water-soluble ionizable drug, TMS, appeared to be efficacious for enhancing its bioavailability. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Enhanced dissolution rate of dronedarone hydrochloride via preparation of solid dispersion using vinylpyrrolidone-vinyl acetate copolymer (Kollidone® VA 64)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyuck Jun; Kang, Myung Joo [College of Pharmacy, Dankook University, Cheonan (Korea, Republic of); Han, Sang Duk [Dong-A ST Rese arch Institute, Pharmaceutical Product Research Laboratories, Yongin (Korea, Republic of)

    2015-09-15

    Solid dispersion (SD) systems have been widely used to increase the dissolution rate and oral absorption of poorly water-soluble compounds. In order to enhance the dissolution rate of dronedarone hydrochloride (DRN), a recent antiarrhythmic agent, SDs of DRN were formulated using conventional solvent evaporation method with amorphous polymers including hydroxypropyl methyl cellulose (HPMC), poly(vinyl pyrrolidone) (PVP), and vinylpyrrolidone-vinyl acetate copolymer (VA64). The prepared SDs were characterized in terms of drug crystallinity, morphology, and in vitro dissolution profile in aqueous medium. The physical characterization using differential scanning calorimetry and X-ray powder diffraction revealed that the active compound was molecularly dispersed in all polymeric carriers tested, in a stable amorphous form in drug to polymer ratios ranging from 1:0.5 to 1:2. The dissolution rates of DRN in all SDs were much higher than those from the corresponding physical mixture and drug powder alone. In particular, the greatest dissolution enhancement was obtained from the VA64-based SD in a drug to polymer weight ratio of 1:1, achieving almost complete drug release after 120 min at pH 1.2. Thus, VA64-based SD with higher drug dissolution rate along with a simple preparation process is suggested as an alternative for the oral formulation of the benzofuran derivative.

  11. Association between the physical stability of flurbiprofen suspension and the interaction of HPMC/SDS

    Directory of Open Access Journals (Sweden)

    Hongyu Wang

    2018-01-01

    Full Text Available The anionic surfactant sodium dodecylsulfate (SDS has improved the physical stability of flurbiprofen (FBP suspension, which was suspended by 0.2% (w/v hydroxypropylmethyl cellulose (HPMC, K4M. Therefore, the physical stability of FBP suspensions and the interaction of HPMC/SDS were studied, and a certain association between them was revealed. The anti-solvent precipitation method was used to prepare suspensions. The apparent drug concentration from different sites was evaluated to get the dispersion of drug actually. The process of flocculation and deflocculation with the addition of SDS was caught by analyzing the morphology of the suspended particles. The physical stability of the FBP suspensions was characterized mainly by measuring the re-dispersion time, the zeta potential and particle size. Meanwhile, conductivity measurements were carried out to obtain the characteristic concentrations of SDS in HPMC/SDS system. The viscosities, the abilities for improving the solubility and wettability of FBP in the separate and mixed HPMC/SDS solutions were also contrasted respectively. The suspensions prepared with HPMC/SDS possessed better physical stability. The suspensions were uniform when the concentration of SDS was between the critical adsorption concentration (CAC and the polymer saturation point (PSP. After PSP, the uniformity became worse and worse until the SDS was enough to form a deflocculation state. Besides, the re-dispersion time of FBP suspensions was longest when the concentration of SDS around CAC and shorter by shorter after the critical micelle concentration (CMC. The article provided a new sight on the relation between the interaction of excipient matrix and pharmaceutical preparations.

  12. The structure and amphipathy characteristics of modified γ-zeins by SDS or alkali in conjunction with heating treatment.

    Science.gov (United States)

    Dong, Shi-Rong; Xu, Hong-Hua; Tan, Jun-Yan; Xie, Ming-Ming; Yu, Guo-Ping

    2017-10-15

    γ-Zein was modified by SDS or alkali combined with heating treatments in water and in 70% ethanol to change its amphipathic properties and explore the relationship between amphipathic characteristic and structure. γ-Zein water-dispersibility was dramatically increased via alkali or SDS combined with heating treatments, but their ethanol-dispersibilities were significantly different during ethanol evaporation. High both water-dispersibility and ethanol-dispersibility were found from alkali modified γ-zein while high water-dispersibility but low ethanol-dispersibility were obtained from SDS modified γ-zein, indicating that alkali modified γ-zein had better amphipathic characteristic compared with SDS modified γ-zein. Alkali modified γ-zein with higher amphipathic characteristic possessed higher structural inversion ability since it was easy to recover its native state as solvent changing from water to ethanol, contrary to SDS modified γ-zeins whose amphipathic characteristic was not improved. Moreover, the higher structural inversion ability of alkali modified γ-zein depended on the recovery capability of α-helix structure as solvent altering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of amorphous solid dispersions.

    Science.gov (United States)

    Sun, Weiwei; Pan, Baoliang

    2017-06-15

    This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pH M -SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pH M -SDs were prepared using Ca(OH) 2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH) 2 :TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO 2 ). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pH M -SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pH M -SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pH M -SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pH M -SD composed of Ca(OH) 2 , TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.

  14. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-12-01

    The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.

  15. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  16. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2013-12-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  17. Influence of waste solid on nuclide dispersal

    International Nuclear Information System (INIS)

    Seitz, M.G.; Steindler, M.J.

    1981-01-01

    The method most often considered for permanent disposal of radioactive waste is to incorporate the waste into a solid, which is then placed in a geologic formation. The solid is made of waste and nonradioactive additives, with the formulation selected to produce a durable solid that will minimize the potential for dispersal of the radionuclides. Leach rates of radionuclides incorporated in the solid waste indicate the quantity of radioactivity available for dispersal at any time; but leach rates of stable constituents can be just as important to radionuclide dispersal by groundwater. The constituents of the solid will perturb the chemical character of the groundwater and, thereby, profoundly affect the interaction of radionuclides with the geologic medium. An explicit example of how the solid waste can affect radionuclide dispersal is illustrated by the results of experiments that measure cesium adsorption in the presence of rubidium. The experiments were performed with granulated oolitic limestone that absorbed cesium from groundwater solutions to which various concentrations of stable rubidium chloride had been added. The results are expressed as partition coefficients. Large coefficients indicate strong adsorption by the rock and, hence, slow migration. The partition coefficient for cesium decreases as the rubidium concentration in solution is increased. Because the coeficient for cesium depends on the amount of rubidium in solution, it will depend on the leach rate of rubidium from the solid. Rubidium has no radionuclides of concern for long-term isolation of nuclear waste, so its leach rate from a waste solid is rarely ever reported

  18. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR.

    Science.gov (United States)

    Policianova, Olivia; Brus, Jiri; Hruby, Martin; Urbanova, Martina; Zhigunov, Alexander; Kredatusova, Jana; Kobera, Libor

    2014-02-03

    Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.

  19. Investigation of Solid Dispersion of Atorvastatin Calcium in ...

    African Journals Online (AJOL)

    ATC), a poorly watersoluble 3-hydroxy 3-methyl glutaryl CoA (HMG-CoA) reductase inhibitor, by a solid dispersion technique using polyethylene glycol 6000 (PEG 6000) or polyvinylpyrrolidone k30 (PVP K30). Methods: The solid dispersions were ...

  20. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  1. Fundamental aspects of solid dispersion technology for poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Yanbin Huang

    2014-02-01

    Full Text Available The solid dispersion has become an established solubilization technology for poorly water soluble drugs. Since a solid dispersion is basically a drug–polymer two-component system, the drug–polymer interaction is the determining factor in its design and performance. In this review, we summarize our current understanding of solid dispersions both in the solid state and in dissolution, emphasizing the fundamental aspects of this important technology.

  2. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    Science.gov (United States)

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  3. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    Science.gov (United States)

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    Science.gov (United States)

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.

  5. Electrosprayed core–shell solid dispersions of acyclovir fabricated using an epoxy-coated concentric spray head

    Science.gov (United States)

    Liu, Zhe-Peng; Cui, Lei; Yu, Deng-Guang; Zhao, Zhuan-Xia; Chen, Lan

    2014-01-01

    A novel structural solid dispersion (SD) taking the form of core–shell microparticles for poorly water-soluble drugs is reported for the first time. Using polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix, the SDs were fabricated using coaxial electrospraying (characterized by an epoxy-coated concentric spray head), although the core fluids were unprocessable using one-fluid electrospraying. Through manipulating the flow rates of the core drug-loaded solutions, two types of core–shell microparticles with tunable drug contents were prepared. They had average diameters of 1.36±0.67 and 1.74±0.58 μm, and were essentially a combination of nanocomposites with the active ingredient acyclovir (ACY) distributed in the inner core, and the sweeter sucralose and transmembrane enhancer sodium dodecyl sulfate localized in the outer shell. Differential scanning calorimetry and X-ray diffraction results demonstrated that ACY, sodium dodecyl sulfate, and sucralose were well distributed in the PVP matrix in an amorphous state because of favorable second-order interactions. In vitro dissolution and permeation studies showed that the core–shell microparticle SDs rapidly freed ACY within 1 minute and promoted nearly eightfold increases in permeation rate across the sublingual mucosa compared with raw ACY powders. PMID:24790437

  6. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    Science.gov (United States)

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  7. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan.

    Science.gov (United States)

    Lee, Jae-Young; Kang, Wie-Soo; Piao, Jingpei; Yoon, In-Soo; Kim, Dae-Duk; Cho, Hyun-Jong

    2015-01-01

    Soluplus(®) (SP) and D-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS)-based solid dispersion (SD) formulations were developed by hot-melt extrusion (HME) to improve oral bioavailability of valsartan (VST). HME process with twin-screw configuration for generating a high shear stress was used to prepare VST SD formulations. The thermodynamic state of the drug and its dispersion in the polymers were evaluated by solid-state studies, including Fourier-transform infrared, X-ray diffraction, and differential scanning calorimetry. Drug release from the SD formulations was assessed at pH values of 1.2, 4.0, and 6.8. Pharmacokinetic study was performed in rats to estimate the oral absorption of VST. HME with a high shear rate produced by the twin-screw system was successfully applied to prepare VST-loaded SD formulations. Drug amorphization and its molecular dispersion in the polymer matrix were verified by several solid-state studies. Drug release from SD formulations was improved, compared to the pure drug, particularly at pH 6.8. Oral absorption of drug in rats was also enhanced in SP and TPGS-based SD groups compared to that in the pure drug group. SP and TPGS-based SDs, prepared by the HME process, could be used to improve aqueous solubility, dissolution, and oral absorption of poorly water-soluble drugs.

  8. Development and Physicochemical Characterization of Sirolimus Solid Dispersions Prepared by Solvent Evaporation Method

    Directory of Open Access Journals (Sweden)

    Shahram Emami

    2014-12-01

    Full Text Available Purpose: The aim of the present investigation was preparation and characterization of sirolimus solid dispersions by solvent evaporation technique to improve its dissolution properties. Methods: Polyvinylpyrrolidone (PVP, Poloxamer 188 and Cremophore RH40 were used to prepare the solid dispersions of sirolimus. In vitro dissolution study using USP type I apparatus, were performed in distilled water (containing SLS 0.4% for pure sirolimus, physical mixtures, Rapamune and prepared solid dispersions. The characterization of solid dispersions was performed using Fourier Transform Infrared (FTIR Spectroscopy and Differential Scanning Calorimetry (DSC. Results: More than 75% of sirolimus was released within 30 minutes from all prepared solid dispersions. The dissolution rate of all prepared solid dispersion powders were more than physical mixtures. The absence of sirolimus peak in the DSC spectrum of solid dispersions indicated the conversion of crystalline form of sirolimus into amorphous form. The results from FT-IR spectroscopy showed that there was no significant change in the FT-IR spectrum of solid dispersions indicating absence of well-defined interaction between drug and carriers. Conclusion: It was concluded that solid dispersion method, using PVP, Poloxamer 188 and Cremophore RH40 can improve dissolution rate of sirolimus.

  9. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-01-01

    Highlights: • Taurine zinc SDs could prevent the bile-induced reduction in L02 cell viability. • Taurine zinc SDs can prevent cholestatic liver injury. • Taurine zinc SDs can inhibit BDL-induced hepatocyte apoptosis. • Taurine zinc SDs shows the cholesterol-lowering effects on cholestasis. • Taurine zinc SDs may suppress inflammation via dampening JNK phosphorylation. - Abstract: Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160 mg/kg) for 17 days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce

  10. Development of solid dispersion systems of dapivirine to enhance its solubility.

    Science.gov (United States)

    Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay

    2013-06-01

    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.

  11. Solid dispersion application in pharmaceutical technology: Methods of preparation and characterization

    OpenAIRE

    Medarević, Đorđe; Ibrić, Svetlana; Đuriš, Jelena; Đurić, Zorica

    2013-01-01

    A growing number of newly synthesized drugs exhibit low aqueous solubility, leading to poor bioavailability. Therefore, improving drug solubility and dissolution rate became one of the greatest challenges during formulation development. Solid dispersions formulation is one of the commonly investigated techniques for improving solubility of poorly soluble drugs. Solid dispersions are dispersions of one or more drugs in an inert carrier (matrix) in the solid state prepared by melting, solvent, ...

  12. FORMULATION AND EVALUATION OF MEFENAMIC ACID SOLID DISPERSIONS USING PEG-4000

    OpenAIRE

    Shaik Jamal Shariff; Shaik Saleem; Alaparthi Naga Pavan Kumar; Bachupally Ajay Kumar; Punuru Madhusudhan

    2013-01-01

    Mefenamic acid (MA) solid Dispersions were prepared employing methanol as a common solvent using PEG-4000 as a drug carrier with two different techniques namely, melting method and solvent evaporation in varied ratios. The prepared solid dispersions were evaluated and compared with that of pure drug (mefenamic acid) in respect to the dissolution rate and dissolution efficiency. It is noted that solid dispersions of mefenamic acid showed a remarkable increase in dissolution rate and dissolutio...

  13. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  14. Dissolution and precipitation behavior of ternary solid dispersions of ezetimibe in biorelevant media.

    Science.gov (United States)

    Alhayali, Amani; Tavellin, Staffan; Velaga, Sitaram

    2017-01-01

    The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25 °C and 37 °C) were investigated in this work. Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions. All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25 °C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37 °C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures. Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25 °C may not predict the supersaturation behavior at physiologically relevant temperatures.

  15. Solid Dispersion of Curcumin as Polymeric Films for Bioenhancement and Improved Therapy of Rheumatoid Arthritis.

    Science.gov (United States)

    Mande, Prashant P; Bachhav, Sagar S; Devarajan, Padma V

    2016-08-01

    The aim of our study was development of advanced third generation Curcumin self microemulsifying composition solid dispersion (Cur SMEC-SD) with high drug loading, improved stability, rapid in-vitro dissolution and enhanced bioavailability for improved therapy of rheumatoid arthritis. The Cur SMEC-SD comprising polymers (KollidonVA64[KVA], Eudragits, HPMC and Soluplus) and self microemulsifying composition of surfactant:co-surfactant:oil were coated onto rapidly disintegrating inert tablet core. SDs evaluated for stability, in-vitro release and bioenhancement. Cur SMEC-SDs exhibited high Cur loading of 45% w/w and microemulsion formation with globule size (~100 nm) irrespective of polymers. Among the polymers, SD with KVA revealed exceptionally low contact angle (7°C) and rapid in-vitro release (t50%-6.45 min). No crystallization was evident as confirmed by SEM, DSC and XRD and is attributed to SMEC aided solubilization/amorphisation, and interaction of KVA with Cur seen in the FTIR spectra. Stability was confirmed as per ICH guidelines. Remarkable bioenhancement with Cur SMEC-SD was confirmed by the > four fold and a two fold compared to Cur and Cur-SD without SMEC respectively. High efficacy ~ 80% compared to Indomethacin, seen with rheumatoid arthritis (RA) induced rats coupled with no adverse toxicity. The advanced third generation Cur SMEC-SD presents a practical technological advancement and suggests Cur SMEC-SD as promising alternative for RA therapy.

  16. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    Science.gov (United States)

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  17. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique.

    Science.gov (United States)

    Patel, S M; Patel, R P; Prajapati, B G

    2012-03-01

    The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4). Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  19. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique

    Directory of Open Access Journals (Sweden)

    S M Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4. Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  20. A basic insight into the stability and manufacturing aspects of solid dispersions

    Directory of Open Access Journals (Sweden)

    Jishnu Vijay

    2012-01-01

    Full Text Available The development of a bioavailable dosage form is the most challenging task for the researchers. In the arena of advanced drug delivery systems, the solid dispersion techniques seem to be a promising system for the development of an optimized, bioavailable formulation of Class 2 drugs. The methods of formulation of solid dispersion have been summarized. This article is an effort to define a solid dispersion and its classification. The prospective of the stability of solid dispersion has also been discussed. Moreover, the major techniques that have been used so far such as the fusion/melting method, solvent evaporation method, hot melt extrusion method, supercritical fluid methods, have also been detailed.

  1. Thermodynamic phase behavior of API/polymer solid dispersions.

    Science.gov (United States)

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  2. Modeling solid-fuel dispersal during slow loss-of-flow-type transients

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Fenske, G.R.

    1981-01-01

    The dispersal, under certain accident conditions, of solid particles of fast-reactor fuel is examined in this paper. In particular, we explore the possibility that solid-fuel fragmentation and dispersal can be driven by expanding fission gas, during a slow LOF-type accident. The consequences of fragmentation are studied in terms of the size and speed of dispersed particles, and the overall quantity of fuel moved. (orig.)

  3. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    Science.gov (United States)

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  4. A REVIEW ON SOLID DISPERSION: A DISSOLUTION ENHANCEMENT TECHNIQUE

    OpenAIRE

    Ingle U.S.; Gaikwad P.D.; Bankar V.H.; Pawar S.P.

    2011-01-01

    The enhancement of the oral bioavailability is currently one of the greatest challenges in the development of poorly water soluble drugs. To increase the dissolution and hence the bioavaibility it is important to increase the solubility of the poorly water soluble drugs. One of the possible ways to overcome this limitation is the use of solid dispersion technology. This article contains the different methods and mechanism used in the solid dispersion technology also overlooks the various carr...

  5. Enhancing the bioavailability of magnolol in rabbits using melting solid dispersion with polyvinylpyrrolidone.

    Science.gov (United States)

    Lin, Shiuan-Pey; Hou, Yu-Chi; Liao, Tzu-Yun; Tsai, Shang-Yuan

    2014-03-01

    Preparation of magnolol-loaded amorphous solid dispersion was investigated for improving the bioavailability. A solid dispersion of magnolol was prepared with polyvinylpyrrolidone K-30 (PVP) by melting method, and the physical properties were characterized by using differential scanning calorimetry, powder X-ray diffractometry, Fourier transformation-infrared spectroscopy and scanning electron microscope. In addition, dissolution test was also performed. Subsequently, the bioavailability of magnolol pure compound, its physical mixture and solid dispersion were compared in rabbits. The blood samples withdrawn via marginal ear vein at specific time points were assayed by HPLC method. Oral administration of the solid dispersion of magnolol with PVP significantly increased the systemic exposures of magnolol and magnolol sulfates/glucuronides by 80.1% and 142.8%, respectively, compared to those given with magnolol pure compound. Magnolol-loaded amorphous solid dispersion with PVP has demonstrated enhanced bioavailability of magnolol in rabbits.

  6. Electrospun 4th-Generation Solid Dispersions of Poorly Water-Soluble Drug Utilizing Two Different Processes

    Directory of Open Access Journals (Sweden)

    Zhu Zhang

    2018-01-01

    Full Text Available Different from traditional solid dispersion (SD for improving the dissolution rates of poorly water-soluble drugs, the upgraded 4th SD was developed to furnish a drug sustained-release profile. In this work, two different kinds of 4th SDs were fabricated using two electrospinning processes. One is a ternary SD (nanofibers F2 that consisted of ethyl cellulose (EC, polyethylene glycol 1000 (PEG, and tamoxifen citrate (TAM from a modified coaxial process, and the other is a binary SD (nanofibers F1 which is comprised of EC and TAM from a single-fluid blending process. Scanning electronic microscopic observations demonstrated that F2 (330±50 nm showed a better quality than F1 (870±230 nm in terms of size and size distribution although both of them had a smooth surface morphology and a cross section. X-ray diffraction patterns verified that both SDs were amorphous nanocomposites owing to the favorable secondary interactions among these components, as suggested from the results of FTIR. In vitro dissolution experiments indicated that F2 could furnish an improved drug sustained-release characteristics compared to F1, exhausting all the contained TAM and having weaker leveling-off late release. The molecular behaviors of drug sustained-release from the binary 4th SD were suggested. The protocols reported here paved an alternative way for developing novel functional nanomaterials for effective delivery of poorly water-soluble drugs.

  7. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  8. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  9. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  10. Enhancement of dissolution of Telmisartan through use of solid dispersion technique surface solid dispersion

    Directory of Open Access Journals (Sweden)

    Bhumika Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug Telmisartan by using Surface solid dispersion (SSD made of polymers like Poloxamer 407, PEG 6000 by Solvent evaporation method. The drug was solubilized by surfactants and/or polymers then adsorbed onto the surface of extremely fine carriers to increase its surface area and to form the SSD which give the more Surface area for absorption of the drug. A 2 2 full factorial design was used to investigate for each carrier the joint influence of formulation variables: Amount of carrier and adsorbent. Saturation solubility studies shows the improvement in solubility of drug batch SSD 8 give more solubility improvement than the other batch, in-vitro dissolution of pure drug, physical mixtures and SSDs were carried out in that SSDs were found to be effective in increasing the dissolution rate of Telmisartan in form of SSD when compared to pure drug. Also FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and Surface solid dispersion. Furthermore, both DSC and X-ray diffraction showed a decrease in the melting enthalpy and reduced drug crystallinity consequently in SSDs. However, infrared spectroscopy revealed no drug interactions with the carriers.

  11. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-12-01

    Full Text Available The solid dispersion method was originally used to improve the dissolution properties and the bioavailability of poorly water soluble drugs by dispersing them into water soluble carriers. In addition to the above, dissolution retardation through solid dispersion technique using water insoluble and water swellable polymer for the development of controlled release dosage forms has become a field of interest in recent years. Development of controlled release solid dispersion has a great advantage for bypassing the risk of a burst release of drug; since the structure of the solid dispersion is monolithic where drug molecules homogeneously disperse. Despite the remarkable potential and extensive research being conducted on controlled release solid dispersion system, commercialization and large scale production are limited. The author expects that recent technological advances may overcome the existing limitations and facilitate the commercial utilization of the techniques for manufacture of controlled release solid dispersions. This article begins with an overview of the different carriers being used for the preparation of controlled release solid dispersion and also different techniques being used for the purpose. Kinetics of drug release from these controlled release solid dispersions and the relevant mathematical modeling have also been reviewed in this manuscript.

  12. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    Science.gov (United States)

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium.

    Science.gov (United States)

    Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2010-01-01

    To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.

  14. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  15. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  16. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  17. On the Morphology of the SDS Film on the Surface of Borosilicate Glass

    Directory of Open Access Journals (Sweden)

    Zih-Yao Shen

    2017-05-01

    Full Text Available Surfactant films on solid surfaces have attracted much attention because of their scientific interest and applications, such as surface treatment agent, or for micro- or nano-scale templates for microfluidic devices. In this study, anionic surfactant sodium dodecyl sulfate (SDS solutions with various charged inorganic salts was spread on a glass substrate and dried to form an SDS thin film. Atomic force microscopy (AFM was employed to observe the micro-structure of the SDS thin film. The effects of inorganic salts on the morphology of the SDS film were observed and discussed. The results of experiments demonstrated that pure SDS film formed patterns of long, parallel, highly-ordered stripes. The existence of the inorganic salt disturbed the structure of the SDS film due to the interaction between the cationic ion and the anionic head groups of SDS. The divalent ion has greater electrostatic interaction with anionic head groups than that of the monovalent ion, and causes a gross change in the morphology of the SDS film. The height of the SDS bilayer measured was consistent with the theoretical value, and the addition of the large-sized monovalent ion would lead to lowering the height of the adsorbed structures.

  18. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray drying technique

    OpenAIRE

    Chauhan, Bhaskar; Shimpi, Shyam; Paradkar, Anant

    2005-01-01

    The basic objectives of this study were to prepare and characterize solid dispersions of poorly water-soluble drug etoricoxib using lipid carriers by spray drying technique. The properties of solid dispersions were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), differential scanning calorimetry (DSC), hotstage microscopy (HSM), radiograph powder diffraction (XRPD), and dissolution studies. The absence of etoricoxib peaks in XRPD profiles of solid dispersions ...

  19. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  20. Characterization during storage and dissolution of Solid dispersions containing furosemide and hydroxypropyl methylcellulose

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, T.; Müllertz, A.

    2013-01-01

    Solid dispersions containing furosemide and various amounts of hydroxypropyl methylcellulose (HPMC) were prepared by spray drying to investigate if the physical stability of amorphous furosemide during storage and dissolution could be improved by formulating the drug as a solid dispersion. All...

  1. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats.

    Science.gov (United States)

    Mustapha, Omer; Kim, Kyung Soo; Shafique, Shumaila; Kim, Dong Shik; Jin, Sung Giu; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2017-06-01

    The aim of this research was to compare three different types of cilostazol-loaded solid dispersion system including solvent-evaporated, solvent-wetted and surface-attached solid dispersion. The effect of polymers and surfactants on the aqueous solubility of cilostazol was investigated, leading to the selection of polyvinylpyrrolidone (PVP) and sodium lauryl sulphate (SLS). Employing a spray-drying technique, numerous surface-attached, solvent-evaporated and solvent-wetted solid dispersions were prepared with various amounts PVP and SLS using water, 90% ethanol and acetone, respectively. Their physicochemical properties, solubility, dissolution and oral bioavailability in rats were assessed compared to the drug powder. Among each solid dispersion system tested, the surface-attached, solvent-evaporated and solvent-wetted solid dispersions composed of cilostazol, PVP and SLS at weight ratios of 3.0 : 0.75 : 1.5, 3.0 : 3.0 : 1.5 and 3.0 : 3.0 : 1.5, respectively, provided the highest drug solubility and dissolution. The solvent-evaporated solid dispersion gave homogeneous and very small spherical particles, in which the drug was changed to an amorphous state. In the solvent-wetted solid dispersion, the amorphous drug was attached to the polymer surface. Conversely, in the surface-attached solid dispersion, the carriers were adhered onto the surface of the unchanged crystalline drug. The solubility, dissolution and oral bioavailability were significantly increased in the order of solvent-evaporated>solvent-wetted>surface-attached>drug powder. Thus, the type of solid dispersion considerably affected the physicochemical properties, aqueous solubility and oral bioavailability. Furthermore, the cilostazol-loaded solvent-evaporated solid dispersion with the highest oral bioavailability would be actively recommended as a practical oral pharmaceutical product. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    Science.gov (United States)

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  3. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    Science.gov (United States)

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  4. Dissolution rate enhancement of repaglinide by solid dispersion

    African Journals Online (AJOL)

    Keywords: Diabetes, Solid dispersion, Repaglinide, Solubility, Dissolution, Burst release. Tropical Journal of ... high lipophilicity (logP = 3.97) and relatively low oral bioavailability (56 .... II drug, i.e., low soluble and high permeable in nature. As.

  5. Bioenhanced advanced third generation solid dispersion of tadalafil: Repurposing with improved therapy in pyelonephritis

    Directory of Open Access Journals (Sweden)

    Prashant P. Mande

    2017-11-01

    Full Text Available Tadalafil (TDL a BCS-II drug is recently reported for repurposing nephroprotective effect in Pyelonephritis (PN. However, poor water solubility and dissolution rate limited oral bioavailability pose serious challenges in its therapeutic applications. We present an advanced third generation Solid Dispersion (SD of TDL comprising a polymer in combination with a Self Micro-emulsifying Composition (SMEC to achieve high drug loading, improved stability and rapid dissolution of TDL for enhancing bioavailability and efficacy in PN. TDL-SMEC-SD was coated onto rapidly disintegrating inert tablet cores which disintegrated rapidly in water to release SD as a film. TDL-SMEC-SD was evaluated for in-vivo oral bioavailability and in-vivo efficacy in lipopolysaccharide-induced PN in rats. TDL exhibited high solubility (45.6 mg/ml in the SMEC. TDL-SMEC-SD exhibited remarkably high TDL loading (45%w/w, exceptionally low contact angle (9°, rapid in-vitro release (t50 7.3 min, microemulsion formation (globule size ~100 nm in aqueous dispersion, and stability as per ICH guidelines. SEM, DSC, and XRD confirmed high physical stability. A relative bioavailability of 350% and 150% compared to TDL and TDL-SD without SMEC respectively, established the superiority of TDL-SMEC-SD. A significant reduction in serum creatinine, blood urea nitrogen and nitric oxide levels in the lipopolysaccharide-induced PN confirmed the benefit of the TDL-SMEC-SD. The advanced third generation SMEC SDs presents the possibility of platform technology for bioenhancement of poorly water soluble drugs.

  6. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.

    Science.gov (United States)

    Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo

    2015-01-01

    In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol acetate solid dispersion nanoparticles using the supercritical antisolvent process is a promising approach to improve the dissolution and absorption properties of megestrol acetate.

  7. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    International Nuclear Information System (INIS)

    Odell, D.M.C.

    1992-01-01

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37

  8. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole.

    Science.gov (United States)

    Dave, Rutesh H; Patel, Hardikkumar H; Donahue, Edward; Patel, Ashwinkumar D

    2013-10-01

    The solubility of drugs remains one of the most challenging aspects of formulation development. There are numerous ways to improve the solubility of drugs amongst which the most promising strategy is solid dispersion. Different ratios of sulfathiazole: PVP-K29/32: sodium lauryl sulfate (SLS) were prepared (1:1:0.1, 1:1:0.5, 1:1:1) and various methods were employed to characterize the prepared solid dispersions, namely modulated differential scanning calorimeter, X-ray powder diffraction, Fourier Transformed Infrared Spectroscopy and dissolution studies. Lack of crystallinity was observed in internal and external systems suggesting a loss of crystallinity, whereas the physical mixtures showed a characteristic peak of sulfathiazole. In vitro dissolution results clearly showed that the incorporation of a relatively small amount of surfactants (5, 20 or 33% w/w) into a solid dispersion can improve its dissolution rates compared to binary solid dispersion (SD) alone and pure sulfathiazole. In all ratios solid dispersion internal shows a higher dissolution rate compared to a physical mixture and solid dispersion external which suggests that the way that the surfactant is incorporated into the solid dispersion plays an important role in changing the solubility of a drug. The solubilization mechanism is mainly responsible for this higher dissolution rate when we incorporate the SLS in SD.

  9. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    Science.gov (United States)

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.

  10. Development and evaluation of alginate-chitosan gastric floating beads loading with oxymatrine solid dispersion.

    Science.gov (United States)

    Liu, Yanhua; Chen, Lihong; Zhou, Chengming; Yang, Jianhong; Hou, Yanhui; Wang, Wenping

    2016-01-01

    Oxymatrine (OM) can be metabolized to matrine in gastrointestinal ileocecal valve after oral administration, which affects pharmacological activity and reduce bioavailability of OM. A type of multiple-unit alginate-chitosan (Alg-Cs) floating beads was prepared by the ionotropic gelation method for gastroretention delivery of OM. A solid dispersion technique was applied and incorporated into beads to enhance the OM encapsulation efficiency (EE) and sustain the drug release. The surface morphology and internal hollow structure of beads were evaluated using optical microscopy and scanning electron microscopy (SEM). The developed Alg-Cs beads were spherical in shape with hollow internal structure and had particle size of 3.49 ± 0.09 mm and 1.33 ± 0.09 mm for wet and dried beads. Over 84% of the optimized OM solid dispersion-loaded Alg-Cs beads were able to continuously float over the simulated gastric fluid for 12 h in vitro. The OM solid dispersion-loaded Alg-Cs beads showed drug EE of 67.07%, which was much higher than that of beads loading with pure OM. Compared with the immediate release of OM capsules and pure OM-loaded beads, the release of OM from solid dispersion-loaded Alg-Cs beads was in a sustained-release manner for 12 h. Prolonged gastric retention time of over 8.5 h was achieved for OM solid dispersion-loaded Alg-Cs floating beads in healthy rabbit in in vivo floating ability evaluated by X-ray imaging. The developed Alg-Cs beads loading with OM solid dispersion displayed excellent performance features characterized by excellent gastric floating ability, high drug EE and sustained-release pattern. The study illustrated the potential use of Alg-Cs floating beads combined with the solid dispersion technique for prolonging gastric retention and sustaining release of OM, which could provide a promising drug delivery system for gastric-specific delivery of OM for bioavailability enhancement.

  11. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Ha ES

    2015-08-01

    Full Text Available Eun-Sol Ha,1 Jeong-Soo Kim,2 In-hwan Baek,3 Jin-Wook Yoo,1 Yunjin Jung,1 Hyung Ryong Moon,1 Min-Soo Kim1 1College of Pharmacy, Pusan National University, 2Dong-A ST Co Ltd, Yongin, 3College of Pharmacy, Kyungsung University, Busan, South Korea Abstract: In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was <500 nm. Powder X-ray diffraction and differential scanning calorimetry measurements showed that megestrol acetate was present in an amorphous or molecular dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by d-a-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0–24 hours and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol

  12. REVIEW ON SPRAY DRIED SOLID DISPERSION

    OpenAIRE

    Zambre Radhika Ashok, Dr. Shendge R.S, Narode Pravin Ravindra, Sonawane Swapnil Prakash

    2018-01-01

    The drug solubility is the most challenging aspect for the formulation development. The poorly soluble drug has poor dissolution and absorption of drug. The low aqueous solubility of drug is required to formulate the drug into more soluble and hence bioavailable drug product. The different technique is being used to enhance the solubility of poorly water soluble drugs. Spray dried solid dispersion of drug is one of the most widely used technology to enhance the solubility of the poorly water ...

  13. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs.

    Science.gov (United States)

    Lim, Hyun-Tae; Balakrishnan, Prabagar; Oh, Dong Hoon; Joe, Kwan Hyung; Kim, Young Ran; Hwang, Doo Hyung; Lee, Yong-Bok; Yong, Chul Soon; Choi, Han-Gon

    2010-09-15

    To develop a novel sibutramine base-loaded solid dispersion with enhanced solubility and bioavailability, various solid dispersions were prepared using a spray drying technique with hydrophilic polymers such as gelatin, HPMC and citric acid. Their solubility, thermal characteristics and crystallinity were investigated. The dissolution and pharmacokinetics of the sibutramine base-loaded solid dispersion were then compared with a sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The solid dispersions prepared with gelatin gave higher drug solubility than those prepared without gelatin, irrespective of the amount of polymer. The sibutramine base-loaded solid dispersions containing hydrophilic polymer and citric acid showed higher drug solubility compared to sibutramine base and sibutramine hydrochloride monohydrate. Among the formulations tested, the solid dispersion composed of sibutramine base/gelatin/HPMC/citric acid at the weight ratio of 1/0.8/0.2/0.5 gave the highest solubility of 5.03+/-0.24 mg/ml. Our DSC and powder X-ray diffraction results showed that the drug was present in an altered amorphous form in this solid dispersion. The difference factor (f(1)) values between solid dispersion and commercial product were 2.82, 6.65 and 6.31 at pH 1.2, 4.0 and 6.8, respectively. Furthermore, they had the similarity factor (f(2)) value of 65.68, 53.43 and 58.97 at pH 1.2, 4.0 and 6.8, respectively. Our results suggested that the solid dispersion and commercial product produced a similar correlation of dissolution profiles at all pH ranges. The AUC, C(max) and T(max) of the parent drug and metabolite I and II from the solid dispersion were not significantly different from those of the commercial product, suggesting that the solid dispersion might be bioequivalent to the commercial product in beagle dogs. Thus, the sibutramine base-loaded solid dispersion prepared with gelatin, HPMC and citric acid is a promising candidate for improving the

  14. Preparation and characterization of celecoxib solid dispersions; comparison of poloxamer-188 and PVP-K30 as carriers

    Directory of Open Access Journals (Sweden)

    Alireza Homayouni

    2014-05-01

    Full Text Available Objective(s:Solid dispersion formulation is the most promising strategy to improve oral bioavailability of poorly water soluble drugs. The aim of this study was to compare the effect of polyvinylpyrrolidone K30 (PVP and poloxamer-188 (PLX as carrier in solid dispersion formulations of celecoxib (CLX. Materials and Methods: Solid dispersions of CLX:PVP or CLX:PLX were prepared at different ratios (2:1, 1:1, 1:2, 1:4, 1:6 by solvent evaporation and melting methods, respectively. The characterization of samples was performed using differential scanning calorimetery (DSC, X-Ray powder diffraction (XRPD and Fourier transform infrared spectroscopy (FT-IR. The Gordon-Taylor equation was used to estimate the Tg of solid dispersion systems and the possibility of the interaction between CLX and PVP. Also, the dissolution rate of all samples was determined. Results: DSC and XRPD analyses confirmed the presence of amorphous state of drug in solid dispersion systems. FT-IR studies showed CLX could participate in hydrogen bonding with PVP whilst no specific interaction between CLX and PLX was observed. Both PVP and PLX enhanced the dissolution rate of drug in solid dispersion samples. The dissolution rate was dependent on the ratio of drug: carrier. Interestingly, the solid dispersion samples of PLX at 2:1 and 1:1 drug: carrier showed slower dissolution rate than pure CLX, whilst these results were not observed for PVP. Conclusion: The effect of PVP on dissolution rate enhancement was more pronounced compared to the other carrier. Having a higher Tg and more effect on dissolution rate, PVP could be considered as a more suitable carrier compared to PLX in solid dispersion formulation of CLX.

  15. Formulation, Characterization, and in Vivo Evaluation of Celecoxib-PVP Solid Dispersion Nanoparticles Using Supercritical Antisolvent Process

    Directory of Open Access Journals (Sweden)

    Eun-Sol Ha

    2014-12-01

    Full Text Available The aim of this study was to develop celecoxib-polyvinylpyrrolidone (PVP solid dispersion nanoparticles with and without surfactant using the supercritical antisolvent (SAS process. The effect of different surfactants such as gelucire 44/14, poloxamer 188, poloxamer 407, Ryoto sugar ester L1695, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS on nanoparticle formation and dissolution as well as oral absorption of celecoxib-PVP K30 solid dispersion nanoparticles was investigated. Spherical celecoxib solid dispersion nanoparticles less than 300 nm in size were successfully developed using the SAS process. Analysis by differential scanning calorimetry and powder X-ray diffraction showed that celecoxib existed in the amorphous form within the solid dispersion nanoparticles fabricated using the SAS process. The celecoxib-PVP-TPGS solid dispersion nanoparticles significantly enhanced in vitro dissolution and oral absorption of celecoxib relative to that of the unprocessed form. The area under the concentration-time curve (AUC0→24 h and peak plasma concentration (Cmax increased 4.6 and 5.7 times, respectively, with the celecoxib-PVP-TPGS formulation. In addition, in vitro dissolution efficiency was well correlated with in vivo pharmacokinetic parameters. The present study demonstrated that formulation of celecoxib-PVP-TPGS solid dispersion nanoparticles using the SAS process is a highly effective strategy for enhancing the bioavailability of poorly water-soluble celecoxib.

  16. Enhanced Supersaturation and Oral Absorption of Sirolimus Using an Amorphous Solid Dispersion Based on Eudragit® E

    Directory of Open Access Journals (Sweden)

    Youngseok Cho

    2015-05-01

    Full Text Available The present study aimed to investigate the effect of Eudragit® E/HCl (E-SD on the degradation of sirolimus in simulated gastric fluid (pH 1.2 and to develop a new oral formulation of sirolimus using E-SD solid dispersions to enhance oral bioavailability. Sirolimus-loaded solid dispersions were fabricated by a spray drying process. A kinetic solubility test demonstrated that the sirolimus/E-SD/TPGS (1/8/1 solid dispersion had a maximum solubility of 196.7 μg/mL within 0.5 h that gradually decreased to 173.4 μg/mL after 12 h. According to the dissolution study, the most suitable formulation was the sirolimus/E-SD/TPGS (1/8/1 solid dispersion in simulated gastric fluid (pH 1.2, owing to enhanced stability and degree of supersaturation of E-SD and TPGS. Furthermore, pharmacokinetic studies in rats indicated that compared to the physical mixture and sirolimus/HPMC/TPGS (1/8/1 solid dispersion, the sirolimus/E-SD/TPGS (1/8/1 solid dispersion significantly improved oral absorption of sirolimus. E-SD significantly inhibited the degradation of sirolimus in a dose-dependent manner. E-SD also significantly inhibited the precipitation of sirolimus compared to hydroxypropylmethyl cellulose (HPMC. Therefore, the results from the present study suggest that the sirolimus-loaded E-SD/TPGS solid dispersion has great potential in clinical applications.

  17. Water-dispersible nanoparticles via interdigitation of sodium ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This paper describes the formation of water-dispersible gold nano- particles capped with a bilayer of sodium dodecylsulphate (SDS) and octadecylamine. (ODA) molecules. Vigorous shaking of a biphasic mixture consisting of ODA-capped gold nanoparticles in chloroform and SDS in water results in the rapid ...

  18. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR

    Czech Academy of Sciences Publication Activity Database

    Policianová, Olivia; Brus, Jiří; Hrubý, Martin; Urbanová, Martina; Zhigunov, Alexander; Kredatusová, Jana; Kobera, Libor

    2014-01-01

    Roč. 11, č. 2 (2014), s. 516-530 ISSN 1543-8384 R&D Projects: GA ČR GPP106/11/P426 Institutional support: RVO:61389013 Keywords : solid dispersions * acetylsalicylic acid * polymers Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.384, year: 2014

  19. SDS: A Framework for Scientific Data Services

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin; Byna, Surendra; Wu, Kesheng

    2013-10-31

    Large-scale scientific applications typically write their data to parallel file systems with organizations designed to achieve fast write speeds. Analysis tasks frequently read the data in a pattern that is different from the write pattern, and therefore experience poor I/O performance. In this paper, we introduce a prototype framework for bridging the performance gap between write and read stages of data access from parallel file systems. We call this framework Scientific Data Services, or SDS for short. This initial implementation of SDS focuses on reorganizing previously written files into data layouts that benefit read patterns, and transparently directs read calls to the reorganized data. SDS follows a client-server architecture. The SDS Server manages partial or full replicas of reorganized datasets and serves SDS Clients' requests for data. The current version of the SDS client library supports HDF5 programming interface for reading data. The client library intercepts HDF5 calls and transparently redirects them to the reorganized data. The SDS client library also provides a querying interface for reading part of the data based on user-specified selective criteria. We describe the design and implementation of the SDS client-server architecture, and evaluate the response time of the SDS Server and the performance benefits of SDS.

  20. Investigation into mixing capability and solid dispersion preparation using the DSM Xplore Pharma Micro Extruder.

    Science.gov (United States)

    Sakai, Toshiro; Thommes, Markus

    2014-02-01

    The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion. Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature. The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared. These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale. © 2013 Royal Pharmaceutical Society.

  1. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution

    Directory of Open Access Journals (Sweden)

    Moreshwar Pandharinath Patil

    2011-03-01

    Full Text Available The present study was initiated with the objective of studying the in vitro dissolution behavior of gliclazide from its solid dispersion with polyethylene glycol 6000. In this work, a solid dispersion of gliclazide with polyethylene glycol was prepared by the fusion method. In vitro dissolution study of gliclazide, its physical mixture and solid dispersion were carried out to demonstrate the effect of PEG 6000. Analytical techniques of FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry were used to characterize the drug in the physical mixtures and solid dispersions. The dissolution studies of solid dispersion and physical mixture showed greater improvement compared to that of the pure drug. The mechanisms for increased dissolution rate may include reduction of crystallite size, a solubilization effect of the carrier, absence of aggregation of drug crystallites, improved wettability and dispersbility of the drug from the dispersion, dissolution of the drug in the hydrophilic carrier or conversion of drug to an amorphous state. The FT-IR spectra suggested that there was no interaction between gliclazide and PEG 6000 when prepared as a solid dispersion. DSC and XRD study indicated that the drug was converted in the amorphous form.O presente trabalho foi realizado com o objetivo de estudar o comportamento in vitro da dissolução da gliclazida a partir da sua dispersão sólida com polietileno glicol 6000. Neste trabalho, as dispersões sólidas de gliclazida com polietileno glicol foram preparadas pelo método de fusão. Os estudo de dissolução in vitro da gliclazida, na mistura física e nas dispersões sólidas foram realizados para demonstrar o efeito de PEG 6000. Técnicas analíticas como espectroscopia FT-IR, calorimetria diferencial de varredura e difração de raios-X foram empregadas para caracterizar o fármaco nas misturas físicas e nas dispersoes sólidas. Os estudos de dissolução demonstraram maior

  2. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    Science.gov (United States)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  3. Solid lipid dispersions: potential delivery system for functional ingredients in foods.

    Science.gov (United States)

    Asumadu-Mensah, Aboagyewa; Smith, Kevin W; Ribeiro, Henelyta S

    2013-07-01

    Structured solid lipid (SL) systems have the advantages of long-term physical stability, low surfactant concentrations, and may exhibit controlled release of active ingredients. In this research work, the potential use of high-melting SLs for the production of the above structured SL carrier systems was investigated. Dispersions containing either SL or blend of solid lipid and oil (SL+O) were produced by a hot melt high-pressure homogenization method. Experiments involved the use of 3 different SLs for the disperse phase: stearic acid, candelilla wax and carnauba wax. Sunflower oil was incorporated in the disperse phase for the production of the dispersions containing lipid and oil. In order to evaluate the practical aspects of structured particles, analytical techniques were used including: static light scattering to measure particle sizes, transmission electron microscopy (TEM) for investigating particle morphology and differential scanning calorimetry (DSC) to investigate the crystallization behavior of lipids in bulk and in dispersions. Results showed different mean particle sizes depending on the type of lipid used in the disperse phase. Particle sizes for the 3 lipids were: stearic acid (SL: 195 ± 2.5 nm; SL+O: 138 ± 6.0 nm); candelilla wax (SL: 178 ± 1.7 nm; SL+O: 144 ± 0.6 nm); carnauba wax (SL: 303 ± 1.5 nm; SL+O: 295 ± 5.0 nm). TEM results gave an insight into the practical morphology, showing plate-like and needle-like structures. DSC investigations also revealed that SL dispersions melted and crystallized at lower temperatures than the bulk. This decrease can be explained by the small particle sizes of the dispersion, the high-specific surface area, and the presence of a surfactant. © 2013 Institute of Food Technologists®

  4. Preparation and Characterization of Solid Dispersions of Artemether by Freeze-Dried Method

    Directory of Open Access Journals (Sweden)

    Muhammad Tayyab Ansari

    2015-01-01

    Full Text Available Solid dispersions of artemether and polyethylene glycol 6000 (PEG6000 were prepared in ratio 12 : 88 (group-1. Self-emulsified solid dispersions of artemether were prepared by using polyethylene glycol 6000, Cremophor-A25, olive oil, Transcutol, and hydroxypropyl methylcellulose (HPMC in ratio 12 : 75 : 5 : 4 : 2 : 2, respectively (group-2. In third group, only Cremophor-A25 was replaced with Poloxamer 188 compared to group-2. The solid dispersions and self-emulsified solid dispersions were prepared by physical and freeze dried methods, respectively. All samples were characterized by X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimeter, scanning electron microscopy, and solubility, dissolution, and stability studies. X-ray diffraction pattern revealed artemether complete crystalline, whereas physical mixture and freeze-dried mixture of all three groups showed reduced peak intensities. In attenuated total reflectance Fourier transform infrared spectroscopy spectra, C–H stretching vibrations of artemether were masked in all prepared samples, while C–H stretching vibrations were representative of polyethylene glycol 6000, Cremophor-A25, and Poloxamer 188. Differential scanning calorimetry showed decreased melting endotherm and increased enthalpy change (ΔH in both physical mixture and freeze-dried mixtures of all groups. Scanning electron microscopy of freeze-dried mixtures of all samples showed glassy appearance, size reduction, and embedment, while their physical mixture showed size reduction and embedment of artemether by excipients. In group-1, solubility was improved up to 15 times, whereas group-2 showed up to 121 times increase but, in group-3, when Poloxamer 188 was used instead of Cremophor-A25, solubility of freeze-dried mixtures was increased up to 135 times. In fasted state simulated gastric fluid at pH 1.6, the dissolution of physical

  5. The dissolution enhancement of piroxicam in its physical mixtures and solid dispersion formulations using gluconolactone and glucosamine hydrochloride as potential carriers.

    Science.gov (United States)

    Al-Hamidi, Hiba; Obeidat, Wasfy M; Nokhodchi, Ali

    2015-01-01

    The solid dispersion technique is one of the most effective methods for improving the dissolution rate of poorly water-soluble drugs; however this is reliant on a suitable carrier and solvent being selected. The work presented explores amino sugars (d-glucosamine HCl and d-gluconolactone) as potential hydrophilic carriers to improve dissolution rate of a poorly water-soluble drug, piroxicam, from physical mixtures and solid dispersion formulations. Solid dispersions of the drug and carrier were prepared using different ratios by the conventional solvent evaporation method. Acetone was used as solvent in the preparation of solid dispersions. Physical mixtures of piroxicam and carrier were also prepared for comparison. The properties of all solid dispersions and physical mixtures were studied using a dissolution tester, Fourier transform infrared, XRD, SEM and differential scanning calorimetry. These results showed that the presence of glucosamine or gluconolactone can increase dissolution rate of piroxicam compared to pure piroxicam. Glucosamine or Gluconolactone could be used as carrier in solid dispersion formulations and physical mixtures to enhance the dissolution rate. Solid state studies showed that no significant changes occurred for piroxicam in physical mixtures and solid dispersion.

  6. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    Science.gov (United States)

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Mohammad Barzegar-jalali

    2014-09-01

    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  8. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  9. Polyurethane foam loaded with SDS for the adsorption of cationic dyes from aqueous medium: Multivariate optimization of the loading process.

    Science.gov (United States)

    Robaina, Nicolle F; Soriano, Silvio; Cassella, Ricardo J

    2009-08-15

    This paper reports the development of a new procedure for the adsorption of four cationic dyes (Rhodamine B, Methylene Blue, Crystal Violet and Malachite Green) from aqueous medium employing polyurethane foam (PUF) loaded with sodium dodecylsulfate (SDS) as solid phase. PUF loading process was based on the stirring of 200mg PUF cylinders with acidic solutions containing SDS. The conditions for loading were optimized by response surface methodology (RSM) using a Doehlert design with three variables that were SDS and HCl concentrations and stirring time. Results obtained in the optimization process showed that the stirring time is not a relevant parameter in the PUF loading, evidencing that the transport of SDS from solution to PUF surface is fast. On the other hand, both SDS and HCl concentrations were important parameters causing significant variation in the efficiency of the resulting solid phase for the removal of dyes from solution. At optimized conditions, SDS and HCl concentrations were 4.0 x 10(-4) and 0.90 mol L(-1), respectively. The influence of stirring time was evaluated by univariate methodology. A 20 min stirring time was established in order to make the PUF loading process fast and robust without losing efficiency. The procedure was tested for the removal of the four cationic dyes from aqueous solutions and removal efficiencies always better than 90% were achieved for the two concentrations tested (2.0 x 10(-5) and 1.0 x 10(-4)mol L(-1)).

  10. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  11. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.

    Science.gov (United States)

    Tran, Khanh Thi My; Vo, Toi Van; Tran, Phuong Ha-Lien; Lee, Beom-Jin; Duan, Wei; Tran, Thao Truong-Dinh

    2017-06-05

    The aim of this research was to engineer solid dispersion lipid particles (SD-SLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-to-polymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  13. Mechanism for enhanced absorption of a solid dispersion formulation of LY2300559 using the artificial stomach duodenum model.

    Science.gov (United States)

    Polster, Christopher S; Wu, Sy-Juen; Gueorguieva, Ivelina; Sperry, David C

    2015-04-06

    An artificial stomach duodenum (ASD) model has been used to demonstrate the performance difference between two formulations of LY2300559, a low-solubility acidic developmental drug. The two formulations investigated were a conventional high-shear wet granulation (HSWG) formulation and a solid dispersion formulation. A pharmacokinetic study in humans demonstrated the enhanced performance of the solid dispersion formulation relative to the HSWG formulation. The Cmax and AUC of the solid dispersion was 2.6 and 1.9 times greater, respectively, compared to the HSWG formulation. In the ASD, the solid dispersion formulation performance was characterized by three main phases: (1) rapid release in the stomach, creating a supersaturated concentration of drug, (2) precipitation in the stomach, and (3) rapid redissolution of the precipitate in the duodenum to concentration levels that are supersaturated relative to crystalline drug. A series of complementary experiments were employed to describe this performance behavior mechanistically. Imaging experiments with a pH indicating dye showed that local pH gradients from meglumine in the solid dispersion formulation were responsible for creating a high initial supersaturation concentration in the stomach. Upon dissipation of meglumine, the drug precipitated in the stomach as an amorphous solid. Because the precipitated drug is in an amorphous form, it can then rapidly redissolve as it transits to the more neutral environment of the duodenum. This unexpected sequence of physical state changes gives a mechanistic explanation for the enhanced in vivo performance of the solid dispersion formulation relative to the HSWG formulation.

  14. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy.

    Science.gov (United States)

    Kanaujia, Parijat; Lau, Grace; Ng, Wai Kiong; Widjaja, Effendi; Schreyer, Martin; Hanefeld, Andrea; Fischbach, Matthias; Saal, Christoph; Maio, Mario; Tan, Reginald B H

    2011-09-01

    Enhanced dissolution of poorly soluble active pharmaceutical ingredients (APIs) in amorphous solid dispersions often diminishes during storage due to moisture-induced re-crystallization. This study aims to investigate the influence of moisture protection on solid-state stability and dissolution profiles of melt-extruded fenofibrate (FF) and ketoconazole (KC) solid dispersions. Samples were kept in open, closed and Activ-vials(®) to control the moisture uptake under accelerated conditions. During 13-week storage, changes in API crystallinity were quantified using powder X-ray diffraction (PXRD) (Rietveld analysis) and high sensitivity differential scanning calorimetry (HSDSC) and compared with any change in dissolution profiles. Trace crystallinity was observed by Raman microscopy, which otherwise was undetected by PXRD and HSDSC. Results showed that while moisture protection was ineffective in preventing the re-crystallization of amorphous FF, KC remained X-ray amorphous despite 5% moisture uptake. Regardless of the degree of crystallinity increase in FF, the enhanced dissolution properties were similarly diminished. Moisture uptake above 10% in KC samples also led to re-crystallization and significant decrease in dissolution rates. In conclusion, eliminating moisture sorption may not be sufficient in ensuring the stability of solid dispersions. Analytical quantification of API crystallinity is crucial in detecting subtle increase in crystallinity that can diminish the enhanced dissolution properties of solid dispersions.

  15. A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

    Science.gov (United States)

    Yuan, Xiaoda

    Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.

  16. Molecular dynamics simulations of helical antimicrobial peptides in SDS micelles: what do point mutations achieve?

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2005-01-01

    We report long time scale simulations of the 18-residue helical antimicrobial peptide ovispirin-1 and its analogs novispirin-G10 and novispirin-T7 in SDS micelles. The SDS micelle serves as an economical and effective model for a cellular membrane. Ovispirin, which is initially placed along...... a micelle diameter, diffuses out to the water-SDS interface and stabilizes to an interface-bound steady state in 16.35 ns of simulation. The final conformation, orientation, and the structure of ovispirin are in good agreement with the experimentally observed properties of the peptide in presence of lipid...... bilayers. The simulation succeeds in capturing subtle differences of the membrane-bound peptide structure as predicted by solid state NMR. The novispirins also undergo identical diffusion patterns and similar final conformations. Although the final interface-bound states are similar, the simulations...

  17. Preparation and evaluation of carvacrol pellets based on PVP solid-dispersion by extrusion-spheronization technique

    Directory of Open Access Journals (Sweden)

    Z. Taghizadeh*

    2017-11-01

    Full Text Available Background and objectives: Carvacrol is one of the main pharmacologically active components of Thymus vulgaris essential oil which has shown several therapeutic effects. There are few works regarding the formulation of essential oils as oral solid dosage forms due to their liquid nature, stability and technical problems. The aim of this study was to combine the solid-dispersion approach and extrusion-spheronization technique to produce pellets with desirable physico-mechanical and release properties. Methods: Solid dispersion matrix (30% of carvacrol in polyvinylpyrrolidone K30 was prepared by solvent evaporation. The matrix was mixed with Avicel and lactose and granulated by water. The wet mass was transformed into pellets by extrusion-spheronization. In order to compare the solid dispersion method with the classic approaches, another pellet formulation was prepared by absorption of carvacrol on Aerosil. The pellets were characterized for size (sieve analysis, shape factors (image analysis, mechanical strength, carvacrol content, and release rate (dissolution test. Accelerated stability test of formulations was also carried out. Results: Using suitable composition of solid dispersion matrix and granulation fluid, the pellets with desirable size and shape and mechanical properties could be produced. PVP-based pellets had higher mechanical strength, slower release rate and improved content and stability. The PVP ratio showed considerable effect on release properties of the pellets. Conclusion: Overall, the results revealed the feasibility of preparing desirable pellets containing carvacrol with acceptable content, stability and release properties which can be administered as hard gelatin capsules.

  18. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying.

    Science.gov (United States)

    Paudel, Amrit; Van den Mooter, Guy

    2012-01-01

    To investigate the influence of solvent properties on the phase behavior and physical stability of spray-dried solid dispersions containing naproxen and PVP K 25 prepared from binary cosolvent systems containing methanol, acetone and dichloromethane. The viscosity, polymer globular size and evaporation rate of the spray-drying feed solutions were characterized. The solid dispersions were prepared by spray-drying drug-polymer solutions in binary solvent blends containing different proportions of each solvent. The phase behavior was investigated with mDSC, pXRD, FT-IR and TGA. Further, physical stability of solid dispersions was assessed by analyzing after storage at 75% RH. The solid dispersions prepared from solvent/anti-solvent mixture showed better miscibility and physical stability over those prepared from the mixtures of good solvents. Thus, solid dispersions prepared from dichloromethane-acetone exhibited the best physicochemical attributes followed by those prepared from methanol-acetone. FT-IR analysis revealed differential drug-polymer interaction in solid dispersions prepared from various solvent blends, upon the exposure to elevated humidity. Spray-drying from a cocktail of good solvent and anti-solvent with narrower volatility difference produces solid dispersions with better miscibility and physical stability resulting from the simultaneous effect on the polymer conformation and better dispersivity of drug.

  19. All-PM monolithic fs Yb-fiber laser, dispersion-managed with all-solid photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration.......All-in-fiber SESAM-modelocked self-starting fiber laser is demonstrated. Cavity dispersion is managed by a spliced-in PM all-solid photonic bandgap fiber. The laser directly delivers 1.25 nJ pulses of 280 fs duration....

  20. Unipolar time-differential charge sensing in non-dispersive amorphous solids

    International Nuclear Information System (INIS)

    Goldan, A. H.; Rowlands, J. A.; Tousignant, O.; Karim, K. S.

    2013-01-01

    The use of high resistivity amorphous solids as photodetectors, especially amorphous selenium, is currently of great interest because they are readily produced over large area at substantially lower cost compared to grown crystalline solids. However, amorphous solids have been ruled out as viable radiation detection media for high frame-rate applications, such as single-photon-counting imaging, because of low carrier mobilities, transit-time-limited photoresponse, and consequently, poor time resolution. To circumvent the problem of poor charge transport in amorphous solids, we propose unipolar time-differential charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. For the first time, we have fabricated a true Frisch grid inside a solid-state detector by evaporating amorphous selenium over photolithographically prepared multi-well substrates. The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Results prove the proposed unipolar time-differential property and show that time resolution in non-dispersive amorphous solids can be improved substantially to reach the theoretical limit set by spatial spreading of the collected Gaussian carrier cloud.

  1. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  2. Use of the SDS-sedimentation test and SDS-polyacrylamidegel electrophoresis for screening breeder's samples of wheat for bread-making quality

    NARCIS (Netherlands)

    Moonen, J.H.E.; Scheepstra, A.; Graveland, A.

    1982-01-01

    Gelprotein or SDS-insoluble gel-forming glutenin was isolated from wheat flour by extraction with an aqueous 1.5% SDS solution. Remarkable intervarietal differences were observed both in amount and subunit composition of these proteins. The amount of gelprotein and the SDS-sedimentation volume both

  3. INVESTIGATION OF THE PHARMACO-TECHNOLOGICAL PROPERTIES OF SOLID DISPERSIONS OF THIOCTIC ACID, OBTAINED BY MICRONIZATION

    Directory of Open Access Journals (Sweden)

    Kovalevska, I. V.

    2018-04-01

    Full Text Available Introduction. Thioctic acid is used in the treatment of diseases that are characterized by lack of mitochondrial activity, which is responsible for the formation of free radicals. Widespread use of thioctic acid is due to the chemical structure. The thioctic acid exhibits biological activity in both hydrophilic and hydrophobic environments. Thioctic acid is an enzyme cofactor and a powerful antioxidant, it regulates the transcription of numerous genes, participates in regulation of glucose and lipid metabolism, increases insulin sensitivity, and forms complexes with heavy metals. Thioctic acid has a high pharmacological potential, which is confirmed by the evidence base of clinical trials. An analysis of the literature on the oral use of thioctic acid indicates that solid dosage forms can be used for long-term therapy. This route of administration is limited by factors such as reduced solubility in acidic environments and enzymatic degradation. For this reason, the search for various compositions of auxiliary substances and methods of obtaining drugs is an urgent task of pharmaceutical technology. Material & methods. Objects of study were solid dispersions of thioctic acid (SDTA on the basis of cellulose derivatives: microcrystalline (MCC, HPMC (hydroxypropyl methylcellulose and polyvinylpyrrolidone (PVP as compared to thioctic acid (TA. The samples were made by solid phase method using micronization in a laboratory shredder at a ratio of 1: 1. Pharmacological and technological parameters were determined according to generally accepted methods. Results & discussion. In appearance the resulting mixtures had lemon color, without inclusions and the formation of conglomerates, with homogeneous sized particles According to the pharmaco-technological studies, the samples do not have a satisfactory flowability. The values of the Carr index and the ratio of Hausner make it possible to conclude that there is a large force of cohesion between the

  4. Evaluation and enhancement of physical stability of semi-solid dispersions containing piroxicam into hard gelatin capsules.

    Science.gov (United States)

    Karataş, Ayşegül; Bekmezci, Serife

    2013-01-01

    The aim of the study was to investigate the physical stability of the semi-solid dispersions into the hard gelatine capsules prepared with Gelucire 44/14, Labrasol and different additives such as microcrystalline cellulose (MCC), mannitol and lactose (alpha-monohydrate) used for enhancing the stability of the formulations. The master dispersion prepared with only Gelucire 44/14 (20% w/w) and Labrasol (80% w/w) was stored in a refrigerator (5 +/- 3 degrees C), while the modified dispersions with the additives (2% w/w) were kept in a climatic chamber (25 +/- 2 degrees C / 60 +/- 5% RH) for 12 months. Dissolution tests of the semi-solid dispersions were performed in media with different pH's immediatly after preparation and after 3, 6 and 12 months of storage. FTIR and DSC studies were also carried out at the same time points. The ideal storage condition for the master dispersion was found to be at 5 degrees C. The addition of MCC, mannitol and lactose (alpha-monohydrate) to the original dispersion afforded a solidification effect on the formulation at room temperature and showed the same dissolution behavior (not less than 85% of piroxicam within 30 min in pH 1.2, 4.5 and 6.8; and water) with the master. The dispersion including lactose was stable at 25 degrees C for 12 months. However, the ideal period of storage for the modified dispersions including MCC and mannitol was 6 months at 25 degrees C. FTIR and DSC results both confirmed the amorphous state of piroxicam in all semi-solid dispersions under storage conditions for 12 months.

  5. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    Science.gov (United States)

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  6. Comparison of ethylcellulose matrix characteristics prepared by solid dispersion technique or physical mixing

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadeghi

    2003-07-01

    Full Text Available The characteristics of ethylcellulose matrices prepared from solid dispersion systems were compared with those prepared from physical mixture of drug and polymer. Sodium diclofenac was used as a model drug and the effect of the drug:polymer ratio and the method of matrix production on tablet crushing strength, friability, drug release profile and drug release mechanism were evaluated. The results showed that increasing the polymer content in matrices increased the crushing strengths of tablets. However the friability of tablets was independent of polymer content. Drug release rate was greatly affected by the amount of polymer in the matrices and considerable decrease in release rate was observed by increasing the polymer content. It was also found that the type of mixture used for matrix production had great influence on the tablet crushing strength and drug release rate. Matrices prepared from physical mixtures of drug and polymer was harder than those prepared from solid dispersion systems, but their release rates were considerably faster. This phenomenon was attributed to the encapsulation of drug particles by polymer in matrices prepared from solid dispersion system which caused a great delay in diffusion of the drug through polymer and made diffusion as a rate retarding process in drug release mechanism.

  7. Controlled release systems containing solid dispersions: strategies and mechanisms.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Park, Jun Bom; Lee, Beom-Jin

    2011-10-01

    In addition to a number of highly soluble drugs, most new chemical entities under development are poorly water-soluble drugs generally characterized by an insufficient dissolution rate and a small absorption window, leading to the low bioavailability. Controlled-release (CR) formulations have several potential advantages over conventional dosage forms, such as providing a uniform and prolonged therapeutic effect to improve patient compliance, reducing the frequency of dosing, minimizing the number of side effects, and reducing the strength of the required dose while increasing the effectiveness of the drug. Solid dispersions (SD) can be used to enhance the dissolution rate of poorly water-soluble drugs and to sustain the drug release by choosing an appropriate carrier. Thus, a CR-SD comprises both functions of SD and CR for poorly water-soluble drugs. Such CR dosage forms containing SD provide an immediately available dose for an immediate action followed by a gradual and continuous release of subsequent doses to maintain the plasma concentration of poorly water-soluble drugs over an extended period of time. This review aims to summarize all currently known aspects of controlled release systems containing solid dispersions, focusing on the preparation methods, mechanisms of action and characterization of physicochemical properties of the system.

  8. Combination of (M)DSC and surface analysis to study the phase behaviour and drug distribution of ternary solid dispersions.

    Science.gov (United States)

    Meeus, Joke; Scurr, David J; Chen, Xinyong; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van den Mooter, Guy

    2015-04-01

    Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix. MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed. MDSC, TOF-SIMS and AFM provided insights into differences in drug distribution via the observed surface coverage for 3 differently composed ternary solid dispersions. Combining MDSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions.

  9. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals

    Science.gov (United States)

    Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.

    2017-08-01

    Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.

  10. [Pharmacokinetics and relative bioavailability of THC and THC-solid dispersion orally to mice at single dose].

    Science.gov (United States)

    Liao, Li; Hua, Hua; Zhao, Jun-Ning; Luo, Heng; Yang, An-Dong

    2014-03-01

    To establish a fast sensitive, reproducible LC-MS/MS method to study pharmacokinetic properties of THC, and compare relative bioavailability of THC and its solid dispersion in mice. 200 mice were divided randomly into two groups, and administered orally with THC and THC-solid dispersion after fasting (calculate on THC:400 mg x kg(-1)), used HPLC-MS/MS method to determine the THC concentration of each period at the following times: baseline ( predose ), 15, 30, 45 min, 1, 1.5, 2, 3, 4, 6, 24 h after dosing. Calculating the pharmacokinetic parameters according to the C-t curv, and then use the Phoenix WinNonlin software for data analysis. The calibration curves were linear over the range 9.06-972 microg x L(-1) for THC (R2 = 0.999). The limit of detection (LOD) was 0.7 microg x L(-1), respectively. The average extraction recoveries for THC was above 75%, The methodology recoveries were between 79% and 108%. The intra-day and inter-day RSD were less than 13%, the stability test showed that the plasma samples was stable under different conditions (RSD THC and THC-solid dispersion orally to mice shows as fllows: T(max), were 60 and 15 min, AUC(0-t) were 44 500.43 and 57 497.81 mg x L(-1) x min, AUC(0-infinity) were 51 226.00 and 68 031.48 mg x L(-1) x min, MRT(0-infinity) were 596.915 6, 661.747 7 min, CL(z)/F were 0.007 809 and 0.005 88 L x min(-1) x kg(-1). Compared with THC, the MRT and t1/2 of the THC-solid dispersion were all slightly extended, the t(max) was significantly reduced, AUC(0-24 h), AUC(0-infinity) and C(max) were all significantly higher, the relative bioavailability of THC-solid dispersion is 1.34 times of THC. The results of the experiment shows that the precision, accuracy, recovery and applicability were found to be adequate for the pharmacokinetic studies. After oral administration to mice, the relative bioavailability of THC-solid dispersion show significant improvement compared to THC.

  11. Removal of detergents from SDS-inactivated dextransucrase

    International Nuclear Information System (INIS)

    Husman, D.W.; Mayer, R.M.

    1986-01-01

    Dextransucrase, which is rapidly inactivated by SDS, can be reactivated upon the addition of Triton X-100. Purification of the enzyme, in good yield and homogeneity, has been achieved by chromatography in the presence of SDS. The purified enzyme can be reactivated with Triton, but has large amounts of detergents. It was important to develop procedures for their removal. Density gradient centrifugation of SDS-inactivated or Triton-reactivated enzyme, treatment with Extracti-Gel D (Pierce) or chromatography on hydroxyl apatite (HA), have been examined for their effectiveness in providing detergent-free enzyme in good yield. Ultracentrifugation of SDS-inactivated protein provided limited recovery of active enzyme, but suggested that reactivation could be achieved by the simple removal of the detergent. While similar behavior was observed when the enzyme was eluted from Extracti-Gel, it was also shown that the limited recovery was a result of irreversible inactivation of the enzyme. Recovery could be improved if the enzyme was collected in solutions containing Triton, which has been reported to be a stabilizer. Chromatography of SDS-inactivated enzyme on HA also yielded active enzyme. Good recovery was obtained when Triton-reactivated enzyme was employed in these studies. The degree of detergent removal was determined by utilizing radiolabelled SDS and Triton X-100

  12. Influence of Carrier (Polymer Type and Drug-Carrier Ratio in the Development of Amorphous Dispersions for Solubility and Permeability Enhancement of Ritonavir

    Directory of Open Access Journals (Sweden)

    Vivek S. Dave

    2017-09-01

    Full Text Available The influence of the ratio of Eudragit® L100-55 or Kolliphor® P188 on the solubility, dissolution, and permeability of ritonavir was studied with a goal of preparing solid dispersions (SDs of ritonavir. SDs were formulated using solvent evaporation or lyophilization techniques, and evaluated for their physical-chemical properties. The dissolution and permeability assessments of the functionality of the SDs were carried out. The preliminary functional stability of these formulations was assessed at accelerated storage conditions for a period of six months. Ritonavir: Eudragit® L100-55 (RE, 1:3 SD showed a 36-fold higher ritonavir solubility compared to pure ritonavir. Similarly, ritonavir: Kolliphor® P188 (RP, 1:2 SD exhibited a 49-fold higher ritonavir solubility compared to pure ritonavir. Ritonavir dissolution from RE formulations increased with increasing ratios of Eudragit® L100-55, up to a ritonavir: carrier ratio of 1:3. The ritonavir dissolution from RP formulations was highest at ritonavir: Kolliphor® P188 ratio of 1:2. Dissolution efficiencies of these formulations were found to be in line with, and supported the dissolution results. The permeability of ritonavir across the biological membrane from the optimized formulations RE (1:3 and RP (1:2 were ~76 % and ~97 %, respectively; and were significantly higher compared to that of pure ritonavir (~20 %. A preliminary (six-month stability study demonstrated the functional stability of prepared solid dispersions. The present study demonstrates that ritonavir solubility, dissolution, and permeability improvement can be achieved with a careful choice of the carrier polymer, and optimizing the amount of polymer in a SD formulation.

  13. Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats.

    Science.gov (United States)

    Kim, Su-A; Kim, Sung-Whan; Choi, Hoo-Kyun; Han, Hyo-Kyung

    2013-08-16

    The present study aimed to evaluate the effect of curcumin-loaded solid dispersion on the pharmacokinetics of saquinavir in rats. Solid dispersion (SD) formulation was prepared with Solutol® HS15 to improve the solubility and bioavailability of curcumin. Subsequently, its inhibition effect on P-gp mediated cellular efflux was examined by using NCI/ADR-RES cells overexpressing P-gp. Compared to the untreated curcumin, SD formulation enhanced the cellular uptake of rhodamine-123, a P-gp substrate by approximately 3 folds in NCI/ADR-RES cells. The oral and intravenous pharmacokinetics of saquinavir were also determined in rats with/without curcumin in the different formulations. Compared to the control given saquinavir alone, curcumin-loaded solid dispersion significantly (p<0.05) increased the oral exposure of saquinavir in rats, while it did not affect the intravenous pharmacokinetics of saquinavir. The AUC and Cmax of oral saquinavir increased by 3.8- and 2.7-folds, respectively in the presence of curcumin-loaded solid dispersion. In contrast, the untreated curcumin did not affect the oral pharmacokinetics of saquinavir. These results suggest that SD formulation of curcumin should be effective to improve the in vivo effectiveness of curcumin as an absorption enhancer, leading to the improved oral exposure of saquinavir. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Structures of the particles of the condensed dispersed phase in solid fuel combustion products plasma

    International Nuclear Information System (INIS)

    Samaryan, A.A.; Chernyshev, A.V.; Nefedov, A.P.; Petrov, O.F.; Fortov, V.E.; Mikhailov, Yu.M.; Mintsev, V.B.

    2000-01-01

    The results of experimental investigations of a type of dusty plasma which has been least studied--the plasma of solid fuel combustion products--were presented. Experiments to determine the parameters of the plasma of the combustion products of synthetic solid fuels with various compositions together with simultaneous diagnostics of the degree of ordering of the structures of the particles of the dispersed condensed phase were performed. The measurements showed that the charge composition of the plasma of the solid fuels combustion products depends strongly on the easily ionized alkali-metal impurities which are always present in synthetic fuel in one or another amount. An ordered arrangement of the particles of a condensed dispersed phase in structures that form in a boundary region between the high-temperature and condensation zones was observed for samples of aluminum-coated solid fuels with a low content of alkali-metal impurities

  15. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods

    Science.gov (United States)

    Mitsionis, Anastasios I.; Vaimakis, Tiverios C.

    2012-09-01

    Critical micelle concentration (CMC) of two anionic surfactants in methanol was estimated using conductometry, viscometry and pyrene fluorescence spectroscopy methods. The surfactants used, were sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol-OT, AOT) and sodium dodecyl sulfate (SDS) dispersed in pure methanol. The CMC determination was evaluated in room temperature. The results have shown nearly similar concentrations.

  16. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    Science.gov (United States)

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sexual dimorphism in stature (SDS), jealousy and mate retention.

    Science.gov (United States)

    Brewer, Gayle; Riley, Charlene

    2010-10-02

    Previous research has investigated the manner in which absolute height impacts on jealousy and mate retention. Although relative height is also important, little information exists about the potential influence of sexual dimorphism in stature (SDS) within established relationships. The current study investigated the relationship between SDS and the satisfaction, jealousy and mate retention behaviors reported by men and women. Heterosexual men (n = 98) and women (n = 102) completed a questionnaire. Men in high SDS relationships reported the lowest levels of cognitive and behavioral jealousy, although the impact of SDS on relationship satisfaction was less clear. SDS was not associated with the overall use of mate retention strategies; SDS did however affect the use of three specific strategies (vigilance, monopolization of time, love and care). SDS did not affect women's relationship satisfaction, jealousy (cognitive, behavioral, or emotional) or the use of mate retention strategies (with the exception of resource display).

  18. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    Science.gov (United States)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  19. Dispersive solid-phase imprinting of proteins for the production of plastic antibodies

    DEFF Research Database (Denmark)

    Ashley, Jon; Feng, Xiaotong; Halder, Arnab

    2018-01-01

    We describe a novel dispersive solid-phase imprinting technique for the production of nano-sized molecularly imprinted polymers (nanoMIPs) as plastic antibodies. The template was immobilized on in-house synthesized magnetic microspheres instead of conventional glass beads. As a result, high...

  20. Solid dispersions in oncology: a solution to solubility-limited oral drug absorption

    NARCIS (Netherlands)

    Sawicki, Emilia

    2017-01-01

    This thesis discusses the formulation method solid dispersion and how it works to resolve solubility-limited absorption of orally dosed anticancer drugs. Dissolution in water is essential for drug absorption because only dissolved drug molecules are absorbed. The problem is that half of the arsenal

  1. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol

    OpenAIRE

    Im-Sook Song; Jin-Sun Cha; Min-Koo Choi

    2016-01-01

    The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w). The solubility and dissolution rate of the curcumin solid dispersion markedly improv...

  2. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability.

    Science.gov (United States)

    Wu, Jian X; Yang, Mingshi; Berg, Frans van den; Pajander, Jari; Rades, Thomas; Rantanen, Jukka

    2011-12-18

    New chemical entities (NCEs) often show poor water solubility necessitating solid dispersion formulation. The aim of the current study is to employ design of experiments in investigating the influence of one critical process factor (solvent evaporation rate) and two formulation factors (PVP:piroxicam ratio (PVP:PRX) and PVP molecular weight (P(MW))) on the physical stability of PRX solid dispersion prepared by the solvent evaporation method. The results showed the rank order of an increase in factors contributing to a decrease in the extent of PRX nucleation being evaporation rate>PVP:PRX>P(MW). The same rank order was found for the decrease in the extent of PRX crystal growth in PVP matrices from day 0 up to day 12. However, after 12days the rank became PVP:PRX>evaporation rate>P(MW). The effects of an increase in evaporation rate and PVP:PRX ratio in stabilizing PRX were of the same order of magnitude, while the effect from P(MW) was much smaller. The findings were confirmed by XRPD. FT-IR showed that PRX recrystallization in the PVP matrix followed Ostwald's step rule, and an increase in the three factors all led to increased hydrogen bonding interaction between PRX and PVP. The present study showed the applicability of the Quality by Design approach in solid dispersion research, and highlights the need for multifactorial analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol

    Directory of Open Access Journals (Sweden)

    Im-Sook Song

    2016-10-01

    Full Text Available The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w. The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (Cmax and area under the plasma concentration-time curve (AUC of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.

  4. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol.

    Science.gov (United States)

    Song, Im-Sook; Cha, Jin-Sun; Choi, Min-Koo

    2016-10-17

    The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 ( w / w / w ). The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC) of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.

  5. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  6. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design.

    Science.gov (United States)

    Djuris, Jelena; Ioannis, Nikolakakis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2014-02-01

    This study investigates the application of hot-melt extrusion for the formulation of carbamazepine (CBZ) solid dispersions, using polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus, BASF, Germany) and polyoxyethylene-polyoxypropylene block copolymer (Poloxamer 407). In agreement with the current Quality by Design principle, formulations of solid dispersions were prepared according to a D-optimal mixture experimental design, and the influence of formulation composition on the properties of the dispersions (CBZ heat of fusion and release rate) was estimated. Prepared solid dispersions were characterized using differential scanning calorimetry, attenuated total reflectance infrared spectroscopy and hot stage microscopy, as well as by determination of the dissolution rate of CBZ from the hot-melt extrudates. Solid dispersions of CBZ can be successfully prepared using the novel copolymer Soluplus. Inclusion of Poloxamer 407 as a plasticizer facilitated the processing and decreased the hardness of hot-melt extrudates. Regardless of their composition, all hot-melt extrudates displayed an improvement in the release rate compared to the pure CBZ, with formulations having the ratio of CBZ : Poloxamer 407 = 1 : 1 showing the highest increase in CBZ release rate. Interactions between the mixture components (CBZ and polymers), or quadratic effects of the components, play a significant role in overall influence on the CBZ release rate. © 2013 Royal Pharmaceutical Society.

  7. Rheology Guided Rational Selection of Processing Temperature To Prepare Copovidone-Nifedipine Amorphous Solid Dispersions via Hot Melt Extrusion (HME).

    Science.gov (United States)

    Yang, Fengyuan; Su, Yongchao; Zhang, Jingtao; DiNunzio, James; Leone, Anthony; Huang, Chengbin; Brown, Chad D

    2016-10-03

    The production of amorphous solid dispersions via hot melt extrusion (HME) relies on elevated temperature and prolonged residence time, which can result in potential degradation and decomposition of thermally sensitive components. Herein, the rheological properties of a physical mixture of polymer and an active pharmaceutical ingredient (API) were utilized to guide the selection of appropriate HME processing temperature. In the currently studied copovidone-nifedipine system, a critical temperature, which is substantially lower (∼13 °C) than the melting point of crystalline API, was captured during a temperature ramp examination and regarded as the critical point at which the API could molecularly dissolve into the polymer. Based on the identification of this critical point, various solid dispersions were prepared by HME processing below, at, and above the critical temperature (both below and above the melting temperature (T m ) of crystalline API). In addition, the resultant extrudates along with two control solid dispersions prepared by physical mixing and cryogenic milling were assessed by X-ray diffraction, differential scanning calorimetry, hot stage microscopy, rheology, and solid-state NMR. Physicochemical properties of resultant solid dispersions indicated that the identified critical temperature is sufficient for the polymer-API system to reach a molecular-level mixing, manifested by the transparent and smooth appearance of extrudates, the absence of API crystalline diffraction and melting peaks, dramatically decreased rheological properties, and significantly improved polymer-API miscibility. Once the critical temperature has been achieved, further raising the processing temperature only results in limited improvement of API dispersion, reflected by slightly reduced storage modulus and complex viscosity and limited improvement in miscibility.

  8. Stabilizing ability of surfactant on physicochemical properties of drug nanoparticles generated from solid dispersions.

    Science.gov (United States)

    Thongnopkoon, Thanu; Puttipipatkhachorn, Satit

    2017-07-01

    This study was aimed to examine the nanoparticle formation from redispersion of binary and ternary solid dispersions. Binary systems are composed of various ratios of glibenclamide (GBM) and polyvinylpyrrolidone K30 (PVP-K30), whereas a constant amount at 2.5%w/w of a surfactant, sodium lauryl sulfate (SLS) or Gelucire44/14 (GLC), was added to create ternary systems. GBM nanoparticles were collected after the systems were dispersed in water for 15 min. The obtained nanoparticles were characterized for size distribution, crystallinity, thermal behavior, molecular structure, and dissolution properties. The results indicated that GBM nanoparticles could be formed when the drug content of the systems was lower than 30%w/w in binary systems and ternary systems containing SLS. The particle size ranged from 200 to 500 nm in diameter with narrow size distribution. The particle size was increased with increasing drug content in the systems. The obtained nanoparticles were spherical and showed the amorphous state. Furthermore, because of being amorphous form and reduced particle size, the dissolution of the generated nanoparticles was markedly improved compared with the GBM powder. In contrast, all the ternary solid dispersions prepared with GLC anomalously provided the crystalline particles with the size ranging over 5 µm and irregular shape. Interestingly, this was irrelevant to the drug content in the systems. These results indicated the ability of GLC to destabilize the polymer network surrounding the particles during particle precipitation. Therefore, this study suggested that drug content, quantity, and type of surfactant incorporated in solid dispersions drastically affected the physicochemical properties of the precipitated particles.

  9. Impact of in situ polymer coating on particle dispersion into solid laser-generated nanocomposites.

    Science.gov (United States)

    Wagener, Philipp; Brandes, Gudrun; Schwenke, Andreas; Barcikowski, Stephan

    2011-03-21

    The crucial step in the production of solid nanocomposites is the uniform embedding of nanoparticles into the polymer matrix, since the colloidal properties or specific physical properties are very sensitive to particle dispersion within the nanocomposite. Therefore, we studied a laser-based generation method of a nanocomposite which enables us to control the agglomeration of nanoparticles and to increase the single particle dispersion within polyurethane. For this purpose, we ablated targets of silver and copper inside a polymer-doped solution of tetrahydrofuran by a picosecond laser (using a pulse energy of 125 μJ at 33.3 kHz repetition rate) and hardened the resulting colloids into solid polymers. Electron microscopy of these nanocomposites revealed that primary particle size, agglomerate size and particle dispersion strongly depend on concentration of the polyurethane added before laser ablation. 0.3 wt% polyurethane is the optimal polymer concentration to produce nanocomposites with improved particle dispersion and adequate productivity. Lower polyurethane concentration results in agglomeration whereas higher concentration reduces the production rate significantly. The following evaporation step did not change the distribution of the nanocomposite inside the polyurethane matrix. Hence, the in situ coating of nanoparticles with polyurethane during laser ablation enables simple integration into the structural analogue polymer matrix without additives. Furthermore, it was possible to injection mold these in situ-stabilized nanocomposites without affecting particle dispersion. This clarifies that sufficient in situ stabilization during laser ablation in polymer solution is able to prevent agglomeration even in a hot polymer melt.

  10. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Bhaskar Daravath

    2018-05-01

    Full Text Available ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05 in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%. The mean dissolution time (MDT was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min. indicating faster drug release. The DE (% dissolution efficiency was increased by 2.5 folds (61.63% compared to conventional tablets (23.71%. From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.

  11. Investigating the Dissolution Performance of Amorphous Solid Dispersions Using Magnetic Resonance Imaging and Proton NMR

    Directory of Open Access Journals (Sweden)

    Francesco Tres

    2015-09-01

    Full Text Available We have investigated the dissolution performance of amorphous solid dispersions of poorly water-soluble bicalutamide in a Kollidon VA64 polymeric matrix as a function of the drug loading (5% vs. 30% bicalutamide. A combined suite of state-of-the-art analytical techniques were employed to obtain a clear picture of the drug release, including an integrated magnetic resonance imaging UV-Vis flow cell system and 1H-NMR. Off-line 1H-NMR was used for the first time to simultaneously measure the dissolution profiles and rates of both the drug and the polymer from a solid dispersion. MRI and 1H-NMR data showed that the 5% drug loading compact erodes linearly, and that bicalutamide and Kollidon VA64 are released at approximately the same rate from the molecular dispersion. For the 30% extrudate, data indicated a slower water ingress into the compact which corresponds to a slower dissolution rate of both bicalutamide and Kollidon VA64.

  12. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions.

    Science.gov (United States)

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J; Harris, Michael T

    2015-12-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API.

  13. Crosslinked hydrogels?a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    OpenAIRE

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a ...

  14. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability

    Directory of Open Access Journals (Sweden)

    Ankush Choudhary

    2012-08-01

    Full Text Available Atorvastatin has low aqueous solubility resulting in low oral bioavailability (12% and thus presents a challenge in formulating a suitable dosage form. To improve the aqueous solubility, a solid dispersion formulation of atorvastatin was prepared by lyophilization utilising skimmed milk as a carrier. Six different formulations were prepared with varying ratios of drug and carrier and the corresponding physical mixtures were also prepared. The formation of a solid dispersion formulation was confirmed by differential scanning calorimetry and X-ray diffraction studies. The optimum drug-to-carrier ratio of 1:9 enhanced solubility nearly 33-fold as compared to pure drug. In vitro drug release studies exhibited a cumulative release of 83.69% as compared to 22.7% for the pure drug. Additionally, scanning electron microscopy studies suggested the conversion of crystalline atorvastatin to an amorphous form. In a Triton-induced hyperlipidemia model, a 3-fold increase in the lipid lowering potential was obtained with the reformulated drug as compared to pure drug. These results suggest that solid dispersion of atorvastatin using skimmed milk as carrier is a promising approach for oral delivery of atorvastatin.

  15. BMI and BMI SDS in childhood: annual increments and conditional change.

    Science.gov (United States)

    Brannsether, Bente; Eide, Geir Egil; Roelants, Mathieu; Bjerknes, Robert; Júlíusson, Pétur Benedikt

    2017-02-01

    Background Early detection of abnormal weight gain in childhood may be important for preventive purposes. It is still debated which annual changes in BMI should warrant attention. Aim To analyse 1-year increments of Body Mass Index (BMI) and standardised BMI (BMI SDS) in childhood and explore conditional change in BMI SDS as an alternative method to evaluate 1-year changes in BMI. Subjects and methods The distributions of 1-year increments of BMI (kg/m 2 ) and BMI SDS are summarised by percentiles. Differences according to sex, age, height, weight, initial BMI and weight status on the BMI and BMI SDS increments were assessed with multiple linear regression. Conditional change in BMI SDS was based on the correlation between annual BMI measurements converted to SDS. Results BMI increments depended significantly on sex, height, weight and initial BMI. Changes in BMI SDS depended significantly only on the initial BMI SDS. The distribution of conditional change in BMI SDS using a two-correlation model was close to normal (mean = 0.11, SD = 1.02, n = 1167), with 3.2% (2.3-4.4%) of the observations below -2 SD and 2.8% (2.0-4.0%) above +2 SD. Conclusion Conditional change in BMI SDS can be used to detect unexpected large changes in BMI SDS. Although this method requires the use of a computer, it may be clinically useful to detect aberrant weight development.

  16. Humid storage conditions increase the dissolution rate of diazepam from solid dispersions prepared by melt agglomeration

    DEFF Research Database (Denmark)

    Jørgensen, Anna Cecilia; Torstenson, Anette Seo

    2008-01-01

    The purpose of this study is to investigate the effect of cooling mode and storage conditions on the dissolution rate of a solid dispersion prepared by melt agglomeration. The aim has been to relate this effect to the solid state properties of the agglomerates. The cooling mode had an effect on t...

  17. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  18. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    Science.gov (United States)

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of drug-carrier interaction on the dissolution behavior of solid dispersion tablets

    NARCIS (Netherlands)

    Srinarong, Parinda; Kouwen, Sander; Visser, Marinella R; Hinrichs, Wouter L J; Frijlink, Henderik W

    2010-01-01

    The objective of this study was to compare the dissolution behavior of tablets prepared from solid dispersions with and without drug-carrier interactions. Diazepam and nifedipine were used as model drugs. Two types of carriers were used; polyvinylpyrrolidone (PVP K12, K30 and K60) and saccharides

  20. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2014-04-01

    In this paper, the adsorptive properties of graphene nanosheets were used for simultaneous preconcentration of cobalt, nickel, copper and lead ions from water samples. The developed methodology is based on dispersive micro-solid phase extraction (DMSPE) which is miniaturized and a simplified version of classical solid phase extraction technique. In proposed procedure only 200 μL of suspension containing graphene (0.2 mg), ammonium pyrrolidine dithiocarbamate (APDC) (0.8 mg) and Triton-X-100 (0.1 mg) is rapidly injected to 50 mL of water sample. Then, graphene nanosheets with adsorbed metal-APDC chelates are collected on membrane filter and measured using energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The various parameters including pH, amount of APDC, sample volume, amount of Triton-X-100 and sorption time were optimized in order to obtain the best recoveries. The experiment shows that Co, Ni, Cu and Pb can be simultaneously preconcentrated at pH of 5 with high recoveries (97%, 96%, 99% and 96% for Co, Ni, Cu and Pb, respectively) and very good precision (RSDs within 2.6–3.4%). Due to the excellent enrichment factors ranging from 400 to 2500 the proposed DMSPE–EDXRF procedure offers low detection limits. For optimized measurement conditions (voltage and current of X-ray tube, primary beam filter) the detection limits are even 0.08, 0.07, 0.08 and 0.20 ng mL{sup −1} for Co, Ni, Cu and Pb, respectively. - Highlights: • Excellent detection limits using EDXRF • A new preconcentration procedure combining DMSPE and EDXRF measurement • Graphene as a promising and efficient solid sorbent in DMSPE • Simple, fast, inexpensive and environmental friendly method.

  2. Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles

    International Nuclear Information System (INIS)

    Kravitz, Keren; Kamyshny, Alexander; Gedanken, Aharon; Magdassi, Shlomo

    2010-01-01

    A solid state synthesis for obtaining nanocrystalline silicon was performed by high temperature reduction of commercial amorphous nanosilica with magnesium powder. The obtained silicon powder contains crystalline silicon phase with lattice spacings characteristic of diamond cubic structure (according to high resolution TEM), and an amorphous phase. In 29 Si CP MAS NMR a broad multicomponent peak corresponding to silicon is located at -61.28 to -69.45 ppm, i.e. between the peaks characteristic of amorphous and crystalline Si. The powder has displayed red luminescence while excited under UV illumination, due to quantum confinement within the nanocrystals. The silicon nanopowder was successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence with a band maximum at 710 nm, thus enabling future functional coating applications. - Graphical abstract: High temperature reduction of amorphous nanosilica with magnesium powder results in the formation of powder containing crystalline silicon phase The powder displays red luminescence while excited under UV illumination, due to quantum confinement within the Si nanocrystals, and can be successfully dispersed in water containing poly(vinyl alcohol) as a stabilizing agent. The obtained dispersion was also characterized by red photoluminescence, thus enabling future functional coating applications.

  3. Physisorption of SDS in a Hydrocarbon Nanoporous Polymer

    DEFF Research Database (Denmark)

    Li, Li; Wang, Yanwei; Vigild, Martin Etchells

    2010-01-01

    Surface modification of nanoporous 1,2-polybutadiene of pore diameter similar to 15 nm was accomplished by physisorption of sodium dodecyl sulfate (SDS) in water. Loading of the aqueous solution and the accompanying physisorption of SDS into the hydrophobic nanoporous films were investigated in a...

  4. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine.

    Science.gov (United States)

    Mahmah, Osama; Tabbakh, Rami; Kelly, Adrian; Paradkar, Anant

    2014-02-01

    To compare the properties of solid dispersions of felodipine for oral bioavailability enhancement using two different polymers, polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), by hot-melt extrusion (HME) and spray drying. Felodipine solid dispersions were prepared by HME and spray drying techniques. PVP and HPMCAS were used as polymer matrices at different drug : polymer ratios (1 : 1, 1 : 2 and 1 : 3). Detailed characterization was performed using differential scanning calorimetry, powder X-ray diffractometry, scanning electron microscopy and in-vitro dissolution testing. Dissolution profiles were evaluated in the presence of sodium dodecyl sulphate. Stability of different solid dispersions was studied under accelerated conditions (40°C/75% RH) over 8 weeks. Spray-dried formulations were found to release felodipine faster than melt extruded formulations for both polymer matrices. Solid dispersions containing HMPCAS exhibited higher drug release rates and better wettability than those produced with a PVP matrix. No significant differences in stability were observed except with HPMCAS at a 1 : 1 ratio, where crystallization was detected in spray-dried formulations. Solid dispersions of felodipine produced by spray drying exhibited more rapid drug release than corresponding melt extruded formulations, although in some cases improved stability was observed for melt extruded formulations. © 2013 Royal Pharmaceutical Society.

  5. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  7. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  8. Estudo das dispersões aquosas de nanotubos de carbono utilizando diferentes surfactantes Study of aqueous dispersions of carbon nanotubes using different surfactants

    Directory of Open Access Journals (Sweden)

    Isabella R. da Silva

    2013-01-01

    Full Text Available The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80 are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.

  9. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  11. Fast dissolving cyclodextrin complex of piroxicam in solid dispersion part I: influence of β-CD and HPβ-CD on the dissolution rate of piroxicam.

    Science.gov (United States)

    Bouchal, F; Skiba, M; Chaffai, N; Hallouard, F; Fatmi, S; Lahiani-Skiba, M

    2015-01-30

    Sublingual drug delivery is an interesting route for drug having significant hepatic first-pass metabolism or requiring rapid pharmacological effect as for patients suffering from swallowing difficulties, nausea or vomiting. Sublingual absorption could however be limited by the kinetic of drug dissolution. This study evaluated influences of cyclodextrins (β-CD or HP-β-CD) and their different inclusion process (spray-drying or freeze-drying) on the drug dissolution kinetic of solid dispersions in poly(ethylene glycol) (PEG, Mw 6000Da) of piroxicam, used as poor hydrosoluble drug model. A secondary objective was to determine influences of drug dispersion process in PEG (evaporation or melting methods) on the drug dissolution kinetic of piroxicam. Piroxicam solid dispersions containing or not cyclodextrins were characterized by different scanning calorimetry (DSC), Thermogravometry analyser (TGA) and Fourier transform-infrared spectroscopy (FT-IR) spectroscopy. In vitro drug dissolution study of these solid dispersions was then performed. The results demonstrated the high potential and interest of solid dispersions of drug previously included in cyclodextrins for sublingual delivery of hydrophobic drugs. This study also showed the advantages of evaporation method on the melting ones during drug dispersion in PEG. Indeed, drug complexation with cyclodextrins as dispersion by melting prevented the presence in solid dispersions of drug in crystalline form which can represent up to 63%. Moreover, dispersion in PEG by evaporation method gave more porous drug delivery system than with melting methods. This allowed complete (limited at most at 80-90% with melting methods) and quick drug dissolution without rebound effect like with melting ones. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    Science.gov (United States)

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  13. SDS-Induced Fibrillation of α-Synuclein

    DEFF Research Database (Denmark)

    Giehm, L.; Oliveira, Cristiano Luis Pinto De; Pedersen, J.S.

    2010-01-01

    . In this fibrillogenic complex, 4 αSN molecules initially associate with 40-50 SDS molecules to form a shared micelle that gradually grows in size. The complex initially exhibits a mixture of random coil and α-helix, but incubation results in a structural conversion into β-sheet structure and concomitant formation......-stabilized micelles. Thus, fibrillation in this case occurs by a process of continuous accretion rather than by the rate-limiting accumulation of a distinct nucleus. The morphology of the SDS-induced fibrils does not exhibit the classical rod-like structures formed by αSN when aggregated by agitation in the absence...

  14. Amorphous Solid Dispersion of Epigallocatechin Gallate for Enhanced Physical Stability and Controlled Release

    Directory of Open Access Journals (Sweden)

    Yizheng Cao

    2017-11-01

    Full Text Available Epigallocatechin gallate (EGCG has been recognized as the most prominent green tea extract due to its healthy influences. The high instability and low bioavailability, however, strongly limit its utilization in food and drug industries. This work, for the first time, develops amorphous solid dispersion of EGCG to enhance its bioavailability and physical stability. Four commonly used polymeric excipients are found to be compatible with EGCG in water-dioxane mixtures via a stepwise mixing method aided by vigorous mechanical interference. The dispersions are successfully generated by lyophilization. The physical stability of the dispersions is significantly improved compared to pure amorphous EGCG in stress condition (elevated temperature and relative humidity and simulated gastrointestinal tract environment. From the drug release tests, one of the dispersions, EGCG-Soluplus® 50:50 (w/w shows a dissolution profile that only 50% EGCG is released in the first 20 min, and the remains are slowly released in 24 h. This sustained release profile may open up new possibilities to increase EGCG bioavailability via extending its elimination time in plasma.

  15. Amorphous Solid Dispersion of Epigallocatechin Gallate for Enhanced Physical Stability and Controlled Release.

    Science.gov (United States)

    Cao, Yizheng; Teng, Jing; Selbo, Jon

    2017-11-09

    Epigallocatechin gallate (EGCG) has been recognized as the most prominent green tea extract due to its healthy influences. The high instability and low bioavailability, however, strongly limit its utilization in food and drug industries. This work, for the first time, develops amorphous solid dispersion of EGCG to enhance its bioavailability and physical stability. Four commonly used polymeric excipients are found to be compatible with EGCG in water-dioxane mixtures via a stepwise mixing method aided by vigorous mechanical interference. The dispersions are successfully generated by lyophilization. The physical stability of the dispersions is significantly improved compared to pure amorphous EGCG in stress condition (elevated temperature and relative humidity) and simulated gastrointestinal tract environment. From the drug release tests, one of the dispersions, EGCG-Soluplus ® 50:50 ( w / w ) shows a dissolution profile that only 50% EGCG is released in the first 20 min, and the remains are slowly released in 24 h. This sustained release profile may open up new possibilities to increase EGCG bioavailability via extending its elimination time in plasma.

  16. Comparative study of sustained-release lipid microparticles and solid dispersions containing ibuprofen

    Directory of Open Access Journals (Sweden)

    Hugo Almeida

    2012-09-01

    Full Text Available Ibuprofen is one of the most important non-steroidal anti-inflammatory drugs used in the treatment of inflammatory diseases. In its pure state, ibuprofen presents poor physical and mechanical characteristics and its use in solid dosage forms needs the addition of excipients that improve these properties. The selection of the best excipients and the most suitable pharmaceutical dosage form to carry ibuprofen is very important for the industrial success of this drug. Given these factors, lipid microparticles and solid dispersions of ibuprofen with cetyl alcohol, stearic acid, and hydrogenated castor oil were prepared. These formulations were intended to improve the physical and mechanical characteristics and to sustain the release of this drug. Physical mixtures were also prepared with the same ingredients in similar proportions. The solid dispersions of ibuprofen/stearic acid and ibuprofen/hydrogenated castor oil showed the best flow characteristics compared with pure ibuprofen. Further, gelatin capsules filled with lipid microparticles and solid dispersions were submitted to dissolution tests in order to study the influence of the prepared systems in the release profiles of ibuprofen. Prolonged release of ibuprofen was achieved with the lipid microparticles and solid dispersions prepared with the different types of excipients.O ibuprofeno é um dos antiinflamatórios não esteróides mais utilizados no tratamento de patologias associadas a processos inflamatórios. Este fármaco, quando no seu estado puro, apresenta características físicas e mecânicas pouco satisfatórias e a sua utilização em formas sólidas só é possível se forem adicionados excipientes que permitam melhorar estas propriedades. A seleção dos excipientes ideais e da forma farmacêutica mais adequada para veicular o ibuprofeno é fundamental para o sucesso industrial deste fármaco. Tendo em conta estes fatores, prepararam-se micropartículas lipídicas e dispersões s

  17. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    Science.gov (United States)

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed

  18. Physiochemical Characterization and Release Rate Studies of SolidDispersions of Ketoconazole with Pluronic F127 and PVP K-30

    Science.gov (United States)

    Kumar, Pankaj; Mohan, Chander; KanamSrinivasan Uma Shankar, Mara; Gulati, Monica

    2011-01-01

    In the present study solid dispersions of the antifungal drug Ketoconazole were prepared with Pluronic F-127 and PVP K-30 with an intention to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, Differential scanning calorimetery (DSC), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Ketoconazole was considerably improved when formulated in solid dispersions with PVP K-30 and Pluronic F-127 as compared with pure drug and physical mixtures. The results from DSC and XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction. PMID:24250403

  19. Development and Optimization of Osmotically Controlled Asymmetric Membrane Capsules for Delivery of Solid Dispersion of Lycopene

    Directory of Open Access Journals (Sweden)

    Nitin Jain

    2014-01-01

    Full Text Available The aim of the present investigation is to develop and statistically optimize the osmotically controlled asymmetric membrane capsules of solid dispersion of lycopene. Solid dispersions of lycopene with β-cyclodextrin in different ratios were prepared using solvent evaporation method. Solubility studies showed that the solid dispersion with 1 : 5 (lycopene : β-cyclodextrin exhibited optimum solubility (56.25 mg/mL for osmotic controlled delivery. Asymmetric membrane capsules (AMCs were prepared on glass mold pins via dip coating method. Membrane characterization by scanning electron microscopy showed inner porous region and outer dense region. Central composite design response surface methodology was applied for the optimization of AMCs. The independent variables were ethyl cellulose (X1, glycerol (X2, and NaCl (X3 which were varied at different levels to analyze the effect on dependent variables (percentage of cumulative drug release (Y1 and correlation coefficient of drug release (Y2. The effect of independent variables on the response was significantly influential. The F18 was selected as optimized formulation based on percentage of CDR (cumulative drug release of 85.63% and correlation coefficient of 0.9994. The optimized formulation was subjected to analyze the effect of osmotic pressure and agitational intensity on percentage of CDR. The drug release was independent of agitational intensity but was dependent on osmotic pressure of dissolution medium.

  20. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  1. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    Science.gov (United States)

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535

  2. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates

    International Nuclear Information System (INIS)

    Ghaedi, M.; Tavallali, H.; Shokrollahi, A.; Zahedi, M.; Montazerozohori, M.; Soylak, M.

    2009-01-01

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L -1 HNO 3 . The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran.

  3. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  4. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating.

    Science.gov (United States)

    Unterlander, Nicole; Doucette, Alan Austin

    2018-02-08

    SDS plays a key role in proteomics workflows, including protein extraction, solubilization and mass-based separations (e.g. SDS-PAGE, GELFrEE). However, SDS interferes with mass spectrometry and so it must be removed prior to analysis. We recently introduced an electrophoretic platform, termed transmembrane electrophoresis (TME), enabling extensive depletion of SDS from proteins in solution with exceptional protein yields. However, our prior TME runs required 1 h to complete, being limited by Joule heating which causes protein aggregation at higher operating currents. Here, we demonstrate effective strategies to maintain lower TME sample temperatures, permitting accelerated SDS depletion. Among these strategies, the use of a magnetic stir bar to continuously agitate a model protein system (BSA) allows SDS to be depleted below 100 ppm (>98% removal) within 10 min of TME operations, while maintaining exceptional protein recovery (>95%). Moreover, these modifications allow TME to operate without any user intervention, improving throughput and robustness of the approach. Through fits of our time-course SDS depletion curves to an exponential model, we calculate SDS depletion half-lives as low as 1.2 min. This promising electrophoretic platform should provide proteomics researchers with an effective purification strategy to enable MS characterization of SDS-containing proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  6. CLSM as quantitative method to determine the size of drug crystals in a solid dispersion

    NARCIS (Netherlands)

    de Waard, Hans; Hessels, Martin J T; Boon, Maarten; Sjollema, Klaas A; Hinrichs, Wouter L J; Eissens, Anko C; Frijlink, Henderik W

    2011-01-01

    PURPOSE: To test whether confocal laser scanning microscopy (CLSM) can be used as an analytical tool to determine the drug crystal size in a powder mixture or a crystalline solid dispersion. METHODS: Crystals of the autofluorescent drug dipyridamole were incorporated in a matrix of crystalline

  7. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment.

    Science.gov (United States)

    Kerdsakundee, Nattha; Mahattanadul, Sirima; Wiwattanapatapee, Ruedeekorn

    2015-08-01

    Novel raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions were developed to prolong the gastric residence time and provide for a controlled release therapy of curcumin to treat gastric ulcers. The solid dispersions of curcumin with Eudragit® EPO were prepared by the solvent evaporation method at various ratios to improve the solubility and the dissolution of curcumin. The optimum weight ratio of 1:5 for curcumin to Eudragit® EPO was used to incorporate into the raft forming systems. The raft forming formulations were composed of curcumin-Eudragit® EPO solid dispersions, sodium alginate as a gelling polymer and calcium carbonate for generating divalent Ca(2+) ions and carbon dioxide to form a floating raft. All formulations formed a gelled raft in 1min and sustained buoyancy on the 0.1N hydrochloric acid (pH 1.2) surface with a 60-85% release of curcumin within 8h. The curative effect on the acetic acid-induced chronic gastric ulcer in rats was determined. The curcumin raft forming formulations at 40mg/kg once daily showed a superior curative effect on the gastric ulcer in terms of the ulcer index and healing index than the standard antisecretory agent: lansoprazole (1mg/kg, twice daily) and a curcumin suspension (40mg/kg, twice daily). These studies demonstrated that the new raft forming systems containing curcumin solid dispersions are promising carriers for a stomach-specific delivery of poorly soluble lipophilic compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry

    NARCIS (Netherlands)

    Crescenzi, C; Bayoudh, S; Cormack, P.A G; Klein, T; Ensing, K

    2001-01-01

    Matrix solid-phase dispersion(MSPD) is a new sample pretreatment for solid samples. This technique greatly simplifies sample pretreatment but, nonetheless, the extracts often still require an extra cleanup step that is both laborious and time-consuming. The potential;of combining MSPD with

  9. Best kept secrets ... Source Data Systems, Inc. (SDS).

    Science.gov (United States)

    Andrew, W F

    1991-03-01

    The SDS/MEDNET system is a cost-effective option for small- to medium-size hospitals (up to 400 beds). The parameter-driven system lets users control operations with only occasional SDS assistance. A full application set, available for modular selection to reduce upfront costs while facilitating steady growth and protecting client investment, is adaptable to multi-facility environments. The industry-standard, Intel-based multi-user processors, network communications and protocols assure high efficiency, low-cost solutions independent of any one hardware vendor. Sustained growth in both client base and product offerings point to a high level of responsiveness and healthcare industry commitment. Corporate emphasis on user involvement and open systems integration assures clients of leading-edge capabilities. SDS/MEDNET will be a strong contender in selected marketing environments.

  10. Enhancement of in-vitro drug dissolution of ketoconazole for its optimal in-vivo absorption using Nanoparticles and Solid Dispersion forms of the drug

    Science.gov (United States)

    Syed, Mohammed Irfan

    Ketoconazole is one of the most widely prescribed oral antifungal drugs for the systemic treatment of various fungal infections. However, due its hydrophobic nature and poor solubility profiles in the gastro-intestinal fluids, variations in its bioavailability have been documented. Therefore, to enhance its dissolution in the biological fluids, this study was initiated to develop and evaluate Nanoparticles and Solid Dispersion forms of the drug. Nanoparticles of ketoconazole were developed by Wet Bead Milling technique using PVP-10k as the stabilizing material at a weight ratio of (2:1). Solid dispersion powder was prepared by Hot Melt method using PEG-8000 at a weight ratio of (1:2). A commercial product containing 200mg of ketoconazole tablet and pure drug powder were used as the control for comparison purposes. The dissolution studies were carried out in SGF, SIF, USP; and SIF with 0.2% sodium lauryl sulfate using the USP-II method for a 2 hours period. Physical characterizations were carried out using SEM, DSC, XRD and FTIR studies. Wet Bead Milling method yielded nanoparticles in the particles size range of (100-300nm.). First all samples were evaluated for their in-vitro dissolution in SGF at pH=1.2. After 15 minutes, the amounts of drug dissolved were observed to be 27% from both the pure powder and commercial tablet (control), 29% from solid dispersion and 100% from the Nanoparticles dosage form. This supports the fact that Nanoparticles had a strong influence on the dissolution rate of the drug and exhibited much faster dissolution of ketoconazole. When the same formulations were studied in the SIF, USP medium, the control formulation gave 3%, solid dispersion 8% and Nanoparticles 8% drug dissolution after 2 hours period. This could be because the weakly basic ketoconazole drug remained un-dissociated in the alkaline medium. Since this medium was unable to clearly distinguish the dissolution profiles from different formulation of the drug, the SIF solution

  11. Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost.

    Science.gov (United States)

    Devi, T Poornima; Ebenezer, A Vimala; Kumar, S Adish; Kaliappan, S; Banu, J Rajesh

    2014-09-01

    Excess sludge disintegration by energy intensive processes like mechanical pretreatment is considered to be high in cost. In this study, an attempt has been made to disintegrate excess sludge by disperser in a cost effective manner by deflocculating the sludge using sodium dodecyl sulphate (SDS) at a concentration of 0.04 g/g SS. The disperser pretreatment was effective at a specific energy input of 5013 kJ/kg TS where deflocculated sludge showed higher chemical oxygen demand solubilisation and suspended solids reduction of 26% and 22.9% than flocculated sludge and was found to be 18.8% and 18.6% for former and latter respectively. Higher accumulation of volatile fatty acid (700 mg/L) in deflocculated sludge indicates better hydrolysis of sludge by proposed method. The anaerobic biodegradability resulted in higher biogas production potential of 0.522 L/(g VS) for deflocculated sludge. Cost analysis of the study showed 43% net energy saving in deflocculated sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Enhanced chemoprophylactic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis.

    Science.gov (United States)

    Pensel, Patricia E; Castro, Silvina; Allemandi, Daniel; Bruni, Sergio Sánchez; Palma, Santiago D; Elissondo, María Celina

    2014-06-16

    Cystic echinococcosis is a chronic, complex, and still neglected disease. Although albendazole has demonstrated efficacy, only about one-third of patients experience complete remission or cure and 30-50% of treated patients develop some evidence of a therapeutic response. Different strategies have been developed in order to improve the albendazole water solubility and dissolution rate. The aim of the current work was to investigate the chemoprophylactic and clinical efficacy of an albendazole:poloxamer 188 solid dispersion formulation on mice infected with Echinococcus granulosus metacestodes. Albendazole formulated as solid dispersion had greater chemoprophylactic and clinical efficacy than albendazole alone. The improved in therapeutic efficacy could be a consequence of the increase in the systemic availability of albendazole sulfoxide. The work reported here demonstrates that in vivo treatment with albendazole:poloxamer 188 impairs the development of the hydatid cysts. This new pharmacotechnically based strategy could be a suitable alternative for treating cystic echinococcosis in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier.

    Science.gov (United States)

    Seo, Sang-Wan; Han, Hyo-Kyung; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2012-03-15

    Solubility of curcumin at physiological pH was significantly increased by forming solid dispersion (SD) with Solutol® HS15. Since curcumin undergoes hydrolytic degradation, chemical stability study was conducted in pH 1.2, 6.8 and 7.4 buffer media. Solutol® HS15 exhibited superior stabilizing effect to Cremophor® RH40 and Kollidon® 30. The physical state of the dispersed curcumin in the polymer matrix was characterized by differential scanning calorimetry and X-ray diffraction studies. SD preparation transformed curcumin into amorphous form and facilitated micellar incorporation, thereby preventing hydrolysis in aqueous medium. In vitro drug release in pH 6.8 buffer revealed that SD (1:10) improved the dissolution of curcumin with approximately 90% release of the drug within 1h. Pharmacokinetic study of the solid dispersion formulation in rat showed that bioavailability of the drug was significantly improved as compared to pure curcumin. SD containing 1:10 ratio of drug and Solutol® HS15 resulted in approximately 5 fold higher AUC(0-12h). SD formulation was physically stable over the study period of 3 months. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA.

    Science.gov (United States)

    Wlodarski, K; Tajber, L; Sawicki, W

    2016-12-01

    The aim of this research was to develop immediate release tablets comprising solid dispersion (IRSDTs) of tadalafil (Td) in a vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA), characterized by improved dissolution profiles. The solid dispersion of Td in PVP-VA (Td/PVP-VA) in a weight ratio of 1:1 (w/w) was prepared using two different processes i.e. spray drying and ball milling. While the former process has been well established in the formulation of IRSDTs the latter has not been exploited in these systems yet. Regardless of the preparation method, both Td/PVP-VA solid dispersions were amorphous as confirmed by PXRD, DSC and FTIR. However, different morphology of particles (SEM) resulted in differences in water apparent solubility and disk intrinsic dissolution rate (DIDR). Both solid dispersions and crystalline Td were successfully made into directly compressible tablets at three doses of Td, i.e. 2.5mg, 10mgand20mg, yielding nine different formulations (D 1 -D 9 ). Each of the lots met the requirements set by Ph.Eur. and was evaluated with respect to appearance, diameter, thickness, mass, hardness, friability, disintegration time and content of Td. IRSDTs performed as supersaturable formulations and had significantly improved water dissolution profiles in comparison with equivalent tablets containing crystalline Td and the marketed formulations. Tablets with both spray dried and ball milled Td/PVP-VA revealed the greatest improvement in dissolution depending on the investigated doses, i.e. 2.5mgand20mg, respectively. Also, dissolution of Td from Td/PVP-VA delivered in different forms occurred in the following order: powders>tablets>capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A comparative study on production of stable carbon nano tube dispersions using gum arabic and sodium dodecyl sulphate

    International Nuclear Information System (INIS)

    Rashmi, W.; Ismail, A.F.; Jameel, A.T.; Yusof, F.; Khalid, M.; Mubarak, N.M.

    2009-01-01

    Full text: Improvements on the stability of carbon nano tube (CNT)-water suspensions are necessary to enhance the performance of CNT nano fluids. CNTs are usually packed into crystalline ropes that form strong networks due to Van der Waals attraction. Aggregation of these CNTs is obstacle to most of the applications which diminished its special properties. Thus, this paper aims to produce stable CNT dispersion using Gum Arabic (GA) and Sodium dodecyl sulphate (SDS) as dispersants. The CNT concentration is varied from 0.01-0.1 wt% while the concentration of dispersants is varied from 1-12 wt%, respectively. This work gives detailed information on effect of CNT concentration, dispersant concentration and sonication time on stability of CNT dispersions. UV-Vis Spectrophotometer was used to measure the concentration of CNTs with respect to sedimentation time. CNT-GA suspensions were found to be more stable compared to CNT-SDS suspensions. The homogeneous suspension of CNT-GA is stable for several months. (author)

  17. Rheological Behavior of Bentonite-Polyester Dispersions

    Science.gov (United States)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  18. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    Science.gov (United States)

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On-cartridge derivatisation using matrix solid phase dispersion for the determination of cyclamate in foods

    International Nuclear Information System (INIS)

    Li, Jianjun; Liu, Yun; Liu, Qianping; Hui, Junfeng; Liu, Yangzi

    2017-01-01

    A novel method for determination of sodium cyclamate in foods was developed. In this method, a syringe was loaded with the homogeneous mixture of the sample, KMnO 4 powder and silica dispersant and used as a matrix solid phase dispersion (MSPD) reactor. As the reactor was infiltrated with small amounts of concentrated HCl, cyclamate was converted to 2-chlorocyclohexanone quickly and effectively within 5 min and determined by HPLC on a reversed-phase column using UV detection at a wavelength of 310 nm. Comparing with the traditional derivatisation in solution, the better clean-up was provided using on-cartridge derivatisation of MSPD, and much time, labor, and expense were saved. The results showed good linearity (r 2  = 0.9998) over the concentration range of 1–500 mg/L. The limit of detection (LOD) and limits of quantification (LOQ) of the cyclamate were 0.3 mg/L and 1 mg/L respectively. The recoveries ranged from 91.6% to 101.3% with the relative standard deviations (RSDs) in the range of 2.5%–4.3%. - Highlights: • A novel method was developed for the determination of cyclamate in foods. • On cartridge derivatisation, using matrix solid phase dispersion, was developed. • A new derivatisation reaction for cyclamate conversion to 2-chlorocyclohexanone was developed. • The method was rapid, simple, inexpensive, effective.

  20. Preparation and evaluation of azithromycin binary solid dispersions using various polyethylene glycols for the improvement of the drug solubility and dissolution rate

    Directory of Open Access Journals (Sweden)

    Ehsan Adeli

    Full Text Available ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin, various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG. Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC, Powder X-Ray Diffraction (PXRD and Scanning Election Microscopy (SEM. In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.

  1. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    Science.gov (United States)

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    Science.gov (United States)

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  4. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding

    Science.gov (United States)

    Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie

    2018-01-01

    Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.

  5. BMI and BMI SDS in childhood: annual increments and conditional change

    OpenAIRE

    Brannsether-Ellingsen, Bente; Eide, Geir Egil; Roelants, Mathieu; Bjerknes, Robert; Juliusson, Petur Benedikt

    2016-01-01

    Background: Early detection of abnormal weight gain in childhood may be important for preventive purposes. It is still debated which annual changes in BMI should warrant attention. Aim: To analyse 1-year increments of Body Mass Index (BMI) and standardised BMI (BMI SDS) in childhood and explore conditional change in BMI SDS as an alternative method to evaluate 1-year changes in BMI. Subjects and methods: The distributions of 1-year increments of BMI (kg/m2) and BMI SDS are summarised by...

  6. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    Science.gov (United States)

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  7. Pharmaceutical development of an amorphous solid dispersion formulation of elacridar hydrochloride for proof-of-concept clinical studies

    NARCIS (Netherlands)

    Sawicki, E.; Schellens, J. H M; Beijnen, J. H.; Nuijen, B.

    2017-01-01

    Objective: A novel tablet formulation containing an amorphous solid dispersion (ASD) of elacridar hydrochloride was developed with the purpose to resolve the drug’s low solubility in water and to conduct proof-of-concept clinical studies. Significance: Elacridar is highly demanded for

  8. Fast-track to a solid dispersion formulation using multi-way analysis of complex interactions

    DEFF Research Database (Denmark)

    Wu, Jian-Xiong; Den Berg, Frans Van; Søgaard, Søren Vinter

    2013-01-01

    Several factors with complex interactions influence the physical stability of solid dispersions, thus highlighting the need for efficient experimental design together with robust and simple multivariate model. Design of Experiments together with ANalysis Of VAriance (ANOVA) model is one of the ce.......g., an entire spectral data set), model uniqueness, and curve resolution abilities. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:904-914, 2013....

  9. Evaluation of SDS depletion using an affinity spin column and IMS-MS detection

    Energy Technology Data Exchange (ETDEWEB)

    Hengel, Shawna M.; Floyd, Erica A.; Baker, Erin Shammel; Zhao, Rui; Wu, Si; Pasa-Tolic, Ljiljana

    2012-11-01

    While the use of detergents is necessary for a variety of protein isolation preparation protocols, often prior to mass spectral (MS) analysis, they are not compatible with MS analysis due to ion suppression and adduct formation. This manuscript describes optimization of detergent removal, using commercially available SDS depletion spin columns containing an affinity resin, providing for both increased protein recovery and thorough SDS removal. Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) allowed for a concurrent analysis of both analyte and detergent. In the case of both proteins and peptides, higher detergent concentrations than previously reported provided an increase of sample recovery; however there was a limit as SDS was detected by IMS-MS at higher levels of SDS indicating incomplete detergent depletion. The results also suggest optimal conditions for SDS removal are dependent on the sample concentration. Overall, this study provides a useful guide for proteomic studies where SDS is required for efficient sample preparation.

  10. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    Science.gov (United States)

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On-cartridge derivatisation using matrix solid phase dispersion for the determination of cyclamate in foods

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianjun, E-mail: bootan12@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, Xi' an 710069 (China); National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China); Liu, Yun [College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi' an 710062 (China); Liu, Qianping [National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China); Hui, Junfeng [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, Xi' an 710069 (China); Liu, Yangzi [National Engineering Research Center for Miniaturized Detection Systems, Xi' an 710069 (China)

    2017-06-15

    A novel method for determination of sodium cyclamate in foods was developed. In this method, a syringe was loaded with the homogeneous mixture of the sample, KMnO{sub 4} powder and silica dispersant and used as a matrix solid phase dispersion (MSPD) reactor. As the reactor was infiltrated with small amounts of concentrated HCl, cyclamate was converted to 2-chlorocyclohexanone quickly and effectively within 5 min and determined by HPLC on a reversed-phase column using UV detection at a wavelength of 310 nm. Comparing with the traditional derivatisation in solution, the better clean-up was provided using on-cartridge derivatisation of MSPD, and much time, labor, and expense were saved. The results showed good linearity (r{sup 2} = 0.9998) over the concentration range of 1–500 mg/L. The limit of detection (LOD) and limits of quantification (LOQ) of the cyclamate were 0.3 mg/L and 1 mg/L respectively. The recoveries ranged from 91.6% to 101.3% with the relative standard deviations (RSDs) in the range of 2.5%–4.3%. - Highlights: • A novel method was developed for the determination of cyclamate in foods. • On cartridge derivatisation, using matrix solid phase dispersion, was developed. • A new derivatisation reaction for cyclamate conversion to 2-chlorocyclohexanone was developed. • The method was rapid, simple, inexpensive, effective.

  12. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  13. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mortazavi, Shirin R. [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); Cheung-Lau, Jasmina C.; Dmochowski, Ivan J. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Loll, Patrick J., E-mail: renyu.liu@uphs.upenn.edu [Drexel University College of Medicine, Philadelphia, Pennsylvania (United States); University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  14. Development and characterization of clay facial mask containing turmeric extract solid dispersion.

    Science.gov (United States)

    Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree

    2018-04-01

    To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.

  15. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    International Nuclear Information System (INIS)

    Jiang Yijun; Li Xiutao; Cao Quan; Mu Xindong

    2011-01-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that –SO 3 H, –COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  16. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    Science.gov (United States)

    Jiang, Yijun; Li, Xiutao; Cao, Quan; Mu, Xindong

    2011-02-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that -SO3H, -COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  17. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and UHPLC-MS/MS.

    Science.gov (United States)

    Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan

    2017-08-01

    A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  19. Point Lepreau refurbishment project programmable digital comparator (PDC) replacement for SDS1 and SDS2

    International Nuclear Information System (INIS)

    Ichiyen, N.M.; Chan, D.; Thompson, P.D.

    2003-01-01

    NB Power is tentatively planning to conduct an 18-month maintenance outage of the Point Lepreau Generating Station (PLGS) starting in April 2007. The scope of the outage was determined from the outcome of a two year study (Phase 1) involving a detailed condition assessment of the station which examined issues relating to ageing and obsolescence, along with a detailed review of Safety and Licensing issues associated with extended operation. In order to minimize schedule and regulatory risk for the Refurbishment project, pre-project work was initiated in early 2002. This program is called Phase 2 ESA (Early Start Activities). As part of the Phase 1 assessments it was concluded that replacement of the PDCs (Programmable Digital Comparators) for both shutdown systems was required in order to ensure operation of the plant for a further 25-30 years. Critical tasks were identified related to PDC replacement as part of the Phase 2 ESA program. This paper describes the activities that have taken place in the Phase 2 ESA program as well as the plan for future work for the PDC replacement for SDS 1 (Shutdown System Number One) and SDS2 (Shutdown System Number Two). (author)

  20. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel

    NARCIS (Netherlands)

    Sawicki, Emilia; Beijnen, Jos H|info:eu-repo/dai/nl/071919570; Schellens, Jan H M|info:eu-repo/dai/nl/073926272; Nuijen, Bastiaan

    2016-01-01

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in

  2. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  3. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  4. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  6. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  7. Disintegration mediated controlled release supersaturating solid dispersion formulation of an insoluble drug: design, development, optimization, and in vitro evaluation.

    Science.gov (United States)

    Verma, Sanjay; Rudraraju, Varma S

    2015-02-01

    The objective of this study was to develop a solid dispersion based controlled release system for drug substances that are poorly soluble in water. A wax-based disintegration mediated controlled release system was designed based on the fact that an amorphous drug can crystallize out from hydrophilic matrices. For this study, cilostazol (CIL) was selected as the model drug, as it exhibits poor aqueous solubility. An amorphous solid dispersion was prepared to assist the drug to attain a supersaturated state. Povidone was used as carrier for solid dispersion (spray drying technique), hydrogenated vegetable oil (HVO) as wax matrix former, and sodium carboxymethyl cellulose (NaCMC) as a disintegrant. The extreme vertices mixture design (EVMD) was applied to optimize the designed and developed composition. The optimized formulation provided a dissolution pattern which was equivalent to the predicted curve, ascertaining that the optimal formulation could be accomplished with EVMD. The release profile of CIL was described by the Higuchi's model better than zero-order, first-order, and Hixson-Crowell's model, which indicated that the supersaturation state of CIL dominated to allow drug release by diffusion rather than disintegration regulated release as is generally observed by Hixson-Crowell's model. The optimized composition was evaluated for disintegration, dissolution, XRD, and stability studies. It was found that the amorphous state as well as the dissolution profile of CIL was maintained under the accelerated conditions of 40°C/75% RH for 6 months.

  8. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  10. Screening of SDS-degrading bacteria from car wash wastewater and study of the alkylsulfatase enzyme activity.

    Science.gov (United States)

    Shahbazi, Razieh; Kasra-Kermanshahi, Roha; Gharavi, Sara; Moosavi-Nejad, Zahra; Borzooee, Faezeh

    2013-06-01

    Sodium dodecyl sulfate (SDS) is one of the main surfactant components in detergents and cosmetics, used in high amounts as a detergent in products such as shampoos, car wash soap and toothpaste. Therefore, its bioremediation by suitable microorganisms is important. Alkylsulfatase is an enzyme that hydrolyses sulfate -ester bonds to give inorganic sulfate and alcohol. The purpose of this study was to isolate SDS-degrading bacteria from Tehran city car wash wastewater, study bacterial alkylsulfatase enzyme activity and identify the alkylsulfatase enzyme coding gene. Screening of SDS-degrading bacteria was carried out on basal salt medium containing SDS as the sole source of carbon. Amount of SDS degraded was assayed by methylene blue active substance (MBAS). Identification of the sdsA gene was carried by PCR and subsequent sequencing of the 16S rDNA gene and biochemical tests identified Pseudomonas aeruginosa. This bacterium is able to degrade 84% of SDS after four days incubation. Bacteria isolated from car wash wastewater were shown to carry the sdsA gene (670bp) and the alkylsulfatase enzyme specific activity expressed from this gene was determined to be 24.3 unit/mg. The results presented in this research indicate that Pseudomonas aeruginosa is a suitable candidate for SDS biodegradation.

  11. Controllable growth and photocatalytic activity of Cu{sub 2}O solid microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hong; Zhang, Junying, E-mail: zjy@buaa.edu.cn; Wang, Mei

    2013-09-01

    Graphical abstract: - Highlights: • 3 μm uniform Cu{sub 2}O solid microspheres with abundant nanopores are achieved. • NH{sub 2}OH·HCl and SDS are main factors that manipulate morphologies of Cu{sub 2}O particles. • Surface features of microspheres influenced the photocatalytic activity of Cu{sub 2}O. • Microspheres are transforming to polyhedrons with extended holding time. - Abstract: A series of Cu{sub 2}O solid microspheres with different surface features were prepared and their photocatalytic activities were studied. The experiment conditions were investigated and the formation mechanism was explored systematically. It was found that varying the amounts of NH{sub 2}OH·HCl reductant in alkaline solutions changed the reaction process and thus altered the surface features of Cu{sub 2}O microspheres. Sodium dodecyl sulfate (SDS) surfactant, introduced as a morphology directing agent, caused the nuclei aggregation and growth process of Cu{sub 2}O solid microspheres by precisely realizing the opposite charges’ directional attraction. This SDS-mediated method can be readily extended to synthesizing solid microspheres of other metal oxides. Meanwhile, it was found that Cu{sub 2}O solid microspheres with abundant nanopores on the surface showed much higher efficient catalytic activity for decoloring methyl orange (MO) aqueous solution than with other surface features under visible light irradiation. Furthermore, we found that prolonging the holding time made Cu{sub 2}O microspheres transform to polyhedrons.

  12. Acoustic and Seismic Dispersion in Complex Fluids and Solids

    Science.gov (United States)

    Goddard, Joe

    2017-04-01

    The first part of the present paper is the continuation of a previous work [3] on the effects of higher spatial gradients and temporal relaxation on stress and heat flux in complex fluids. In particular, the general linear theory is applied to acoustic dispersion, extending a simpler model proposed by Davis and Brenner [2]. The theory is applied to a linearized version of the Chapman-Enskog fluid [1] valid to terms of Burnett order and including Maxwell-Cataneo relaxation of stress and heat flux on relaxation time scales τ. For this model, the dispersion relation k(ω) giving spatial wave number k as function of temporal frequency ω is a cubic in k2, in contrast to the quadratic in k2 given by the classical model and the recently proposed modification [2]. The cubic terms are shown to be important only for ωτ = O(1) where Maxwell-Cataneo relaxation is also important. As a second part of the present work, it is shown how the above model can also be applied to isotropic solids, where both shear and pressure waves are important. Finally, consideration is given to hyperstress in micro- polar continua, including both graded and micro-morphic varieties. [1]S. Chapman and T. Cowling. The mathematical theory of non-uniform gases. Cambridge University Press, [Cambridge, UK], 1960. [2]A. M.J. Davis and H. Brenner. Thermal and viscous effects on sound waves: revised classical theory. J. Acoust. Soc. Am., 132(5):2963-9, 2012. [3] J.D. Goddard. On material velocities and non-locality in the thermo-mechanics of continua. Int. J. Eng. Sci., 48(11):1279-88, 2010.

  13. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR.

    Science.gov (United States)

    Baghel, Shrawan; Cathcart, Helen; O'Reilly, Niall J

    2018-01-30

    In this study, the dissolution behaviour of dipyridamole (DPM) and cinnarizine (CNZ) spray-dried amorphous solid dispersions (ASDs) using polyvinyl pyrrolidone (PVP) and polyacrylic acid (PAA) as a carrier matrix were evaluated and compared. The drug concentrations achieved from the dissolution of PVP and PAA solid dispersions were significantly greater than the equilibrium solubility of crystalline DPM and CNZ in phosphate buffer pH 6.8 (PBS 6.8). The maximum drug concentration achieved by dissolution of PVP and PAA solid dispersions did not exceed the theoretically calculated apparent solubility of amorphous DPM and CNZ. However, the degree of supersaturation of DPM and CNZ increased considerably as the polymer weight fraction within the solid dispersion increased. In addition, the supersaturation profile of DPM and CNZ were studied in the presence and absence of the polymers. PAA was found to maintain a higher level of supersaturation compared to PVP. The enhanced drug solution concentration following dissolution of ASDs can be attributed to the reduced crystal growth rates of DPM and CNZ at an equivalent supersaturation. We have also shown that, for drugs having high crystallization tendency and weak drug-polymer interaction, the feasible way to increase dissolution might be increase the polymer weight fraction in the ASD. Solution 1 H NMR spectra were used to understand dissolution mechanism and to identify drug-polymer interaction. The change in electron densities of proton attached to different groups in DPM and CNZ suggested drug-polymer interaction in solution. The relative intensities of peak shift and nature of interaction between drug and polymer in different systems are different. These different effects suggest that DPM and CNZ interacts in a different way with PVP and PAA in solution which goes some way towards explaining the different polymeric effect, particularly in terms of inhibition of drug recrystallization and dissolution of DPM and CNZ ASDs

  14. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Directory of Open Access Journals (Sweden)

    Tenna Ruest Haarmark Nielsen

    Full Text Available The body mass index (BMI standard deviation score (SDS may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment.876 children and adolescents (498 girls with overweight/obesity, median age 11.2 years (range 1.6-21.7, and median BMI SDS 2.8 (range 1.3-5.7 were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4. Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC, low-density lipoprotein (LDL, high-density lipoprotein (HDL, non-HDL, and triglycerides (TG were available in 469 individuals (264 girls. Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations.At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4 and positively with TG (p = 9.7*10-6. Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10-16 and percent truncal body fat (p<2*10-16. Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001. Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations.Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma

  15. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    Science.gov (United States)

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  16. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Science.gov (United States)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (pobesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  17. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS ...

    African Journals Online (AJOL)

    Four strains of eri, Samia cynthia ricini Lepidoptera: Saturniidae that can be identified morphologically and maintained at North East Institute of Science and Technology, Jorhat were characterized based on their protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and DNA by random ...

  18. SDS-PEG软模板法制备纳米硒球%Synthesis of Selenium Nanospheres Using SDS-PEG Cluster as Soft Template

    Institute of Scientific and Technical Information of China (English)

    牛牧野; 方云; 顾文英

    2011-01-01

    Selenium nanospheres were prepared from selenious acid reduced by hydrazine hydrate in the soft template composed of sodium dodecyl sulfate (SDS)-polyethylene glycol (PEG) cluster in aqueous solution. The XRD pattern suggests that the red product is amorphous Se. The DSC thermogram of the as-synthesized selenium nanospheres shows a melting peak at 221 ℃. The concentration of SDS has an influence on the size of selenium nanospheres. The TEM images show that the average diameter of the reduced products increases from 35 nm to 85 nm with increase in the concentration of SDS. The UV-Vis spectrums show that the absorption becomes both stronger and red-shifted when average diameter of selenium nanospheres is increased.%以十二烷基硫酸钠(SDS)-聚乙二醇(PEG)组成的项链状软物质团簇为可调控性模板,在水溶液中采用水合肼(N2H4·H2O)还原亚硒酸(H2SeO3)制备纳米硒球.XRD结果表明,所得红色还原产物为无定形的纳米硒球;DSC测得产物纳米硒球的熔融温度为221 ℃.在一定范围内改变SDS浓度,可以影响制备得到纳米硒球的粒径,TEM结果显示,增加SDS浓度可以使体系中产物的平均粒径由35 nm增大到85 nm;UV-Vis光谱显示,吸收强度随着还原产物平均粒径增大而下降,同时伴随着一定程度的红移.

  19. Crystalline Ethylene Oxide and Propylene Oxide Triblock Copolymer Solid Dispersion Enhance Solubility, Stability and Promoting Time- Controllable Release of Curcumin.

    Science.gov (United States)

    Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V

    2018-01-01

    The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation

    NARCIS (Netherlands)

    van Drooge, Dirk-Jan; Hinrichs, Wouter L J; Dickhoff, Bastiaan H J; Elli, Marco N A; Visser, Marinella R; Zijlstra, Gerrit S; Frijlink, Henderik W

    2005-01-01

    The purpose of this study is to investigate whether spray freeze drying produces an inhalable solid dispersion powder in which Delta(9)-tetrahydrocannabinol (THC) is stabilised. Solutions of THC and inulin in a mixture of tertiary butanol (TBA) and water were spray freeze dried. Drug loads varied

  1. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  2. Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies

    Science.gov (United States)

    Gujar, Varsha B.; Ottoor, Divya

    2017-02-01

    Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.

  3. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  4. Dispersing Si{sub 3}N{sub 4} at high solids loading - applied to protein forming

    Energy Technology Data Exchange (ETDEWEB)

    Lyckfeldt, O.; Palmqvist, L. [Swedish Ceramic Inst., Goeteborg (Sweden); Poeydemenge, F. [ENSCI, Limoges (France)

    2002-07-01

    The dispersing of a Si{sub 3}N{sub 4} powder (UBE SN-E10) at high solids loading in aqueous media was investigated. The powder was used in the as-received (raw) state, after thermal (calcinations) and/or mechanical pre-treatments (ball milling{yields}freeze granulation{yields}freeze-drying). Slips were prepared using pH adjustment with NH{sub 4}OH or an addition of Tiron (low-M{sub w} sulphonic acid). Zeta potential measurements of diluted systems and rheological evaluations of concentrated suspensions were conducted. The effect of adding whey protein concentrate (WPC) was also studied. Zeta potential measurements showed a clear decrease in pH{sub iep} by calcination, whereas Tiron slightly increased the pH{sub iep} of calcined powder and decreased the pH{sub iep} of the as-received powder. Rheological data showed that pH adjustment to 10 was more efficient in stabilising the as-received powder than the calcined powder. pH adjustment was also considered to be the most important effect of adding small amounts of Tiron (0.08 wt%). However, for calcined powder, Tiron was shown to be equally efficient as pH adjustment. Pre-milling followed by freeze granulation/freeze-drying resulted in de-agglomerated powders with improved ability to rapidly disperse and, hence, extend the possibility of achieving extreme solids loadings. When approaching the practical limits in solids loading of these pre-milled powders, slips with 49.5 vol% of as-received and 46.6 vol% of calcined powders displayed clear shear thickening behaviour. However, addition of WPC (12 wt% based on water) significantly decreased the degree of shear thickening although the viscosity at lower shear rates increased. The gelling of WPC was distinct and rapid in suspensions with the two pre-milled powders, as-received stabilised at pH 10 and calcined stabilised with Tiron. (orig.)

  5. Determination of six pesticides in the medicinal herb Cordia salicifolia by matrix solid-phase dispersion and gas chromatography/mass spectrometry.

    Science.gov (United States)

    de Carvalho, Pedro Henrique Viana; Prata, Vanessa de Menezes; Alves, Péricles Barreto; Navickiene, Sandro

    2009-01-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed for acephate, chlorpropham, pyrimicarb, bifenthrin, tetradifon, and phosalone in leaves of the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products. The determination method was GC/MS with selected-ion monitoring. Different parameters of the method were evaluated, such as type of solid phase (C18, alumina, silica gel, and Florisil) and the amount of solid phase and eluent (dichloromethane, ethyl acetate, chloroform, and cyclohexane). The best results were obtained using 0.5 g herb sample, 0.5 g neutral alumina as the dispersant sorbent, 0.5 g C18 as the cleanup sorbent, and cyclohexane-dichloromethane (3 + 1, v/v) as the eluting solvent. The method was validated using herb samples fortified with pesticides at different concentration levels (0.3, 0.5, and 1.0 mg/kg). Average recoveries (seven replicates) ranged from 67.7 to 129.9%, with relative standard deviations between 6.3 and 26%. Detection and quantitation limits for the herb ranged from 0.10 to 0.15 and 0.15 to 0.25 mg/kg, respectively.

  6. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  7. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  8. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS in Phosphate Beneficiation

    Directory of Open Access Journals (Sweden)

    Kun Sun

    2017-02-01

    Full Text Available Phosphate ore is a valuable strategic resource. Most phosphate ore in China is collophane. Utilization of mid-low grade collophane is necessary to maintain social sustainable development. The gravity-flotation combination separation process can be utilized to separate mid-low grade collophane, but the process consumes a large quantity of acid in the reverse stage. Sodium dodecyl sulfate (SDS was used as a dolomite collector in this study to reduce the acid consumption of collophane flotation. SDS effectively removed dolomite from the gravity concentrate when no other reagents were present. Flotation test results showed that, compared to the conventional gravity-flotation process, the proposed SDS-based process reduced phosphoric acid dosage from 6.1 kg/t to 3.9 kg/t with similar separation results. The SDS action mechanisms on dolomite were further investigated by zeta potential analysis, single mineral flotation tests, infrared spectrum detection, and theoretical analysis. The results indicate that the SDS adsorption on dolomite is mainly physical adsorption, and that favorable separation effects between collophane and dolomite may be attributed to physical adsorption and entrainment. In addition, it also indicates that the physical adsorption can be utilized to remove dolomite from phosphate on account of zeta potential differences when the separate feed is coarse.

  9. Magnetic matrix solid phase dispersion assisted dispersive liquid liquid microextraction of ultra trace polychlorinated biphenyls in water prior to GC-ECD determination

    International Nuclear Information System (INIS)

    Diao, Chunpeng; Li, Cong; Yang, Xiao; Sun, Ailing; Liu, Renmin

    2016-01-01

    Magnetic matrix solid phase dispersion (MMSPD) assisted dispersive liquid liquid microextraction (DLLME) was applied to extract ultra traces of polychlorinated biphenyls (PCBs) from water samples prior to gas chromatography with electron capture detection. PCBs in water were adsorbed by micro particles of magnetic bamboo charcoal and then transferred into the elution solvent. PCBs in the elution solvent of the MMSPD were further concentrated into trace volume extraction solvent of the DLLME procedure. Under optimized conditions, good linearity in the range of 0.2–100 ng L"−"1 was obtained with regression coefficients (r) higher than 0.9987. Based on a signal-noise ratio of 3, the limits of detection (LODs) range from 0.05–0.1 ng L"−"1. These LODs are much lower than those of MMSPD or DLLME alone. Relative standard deviations are between 4.9–8.2 %. The method was successfully applied to the determination of PCBs in lake and river water. Relative recoveries were 85.5–117.4 % for the spiked environmental water samples. (author)

  10. On-line process analysis innovation: DiComp (tm) shunting dielectric sensor technology

    Science.gov (United States)

    Davis, Craig R.; Waldman, Frank A.

    1993-01-01

    The DiComp Shunting Dielectric Sensor (SDS) is a new patent-pending technology developed under the Small Business Innovation Research Program (SBIR) for NASA's Kennedy Space Center. The incorporation of a shunt electrode into a conventional fringing field dielectric sensor makes the SDS uniquely sensitive to changes in material dielectric properties in the KHz to MHz range which were previously detectable only at GHz measurement frequencies. The initial NASA application of the SDS for Nutrient Delivery Control has demonstrated SDS capabilities for thickness and concentration measurement of Hoagland nutrient solutions. The commercial introduction of DiComp SDS technology for concentration and percent solids measurements in dispersions, emulsions and solutions represents a new technology for process measurements for liquids in a variety of industries.

  11. Thermal fatigue and creep evaluation for the bed in tritium SDS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo-seok, E-mail: wschoi@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Park, Chang-gyu [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of); Ju, Yong-sun [KOASIS, Yuseong, Daejeon (Korea, Republic of); Kang, Hyun-goo; Jang, Min-ho; Yun, Sei-hun [National Fusion Research Institute, Yuseong, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • To evaluate the integrity of the ITER tritium SDS bed, three kinds of assessments were conducted. • The structural analysis showed that the stress induced from the thermal load and the internal pressure is within the design stress intensity. • The combined fatigue and creep assessment was also performed according to the procedure of ASME code Subsection NH. • A new operation procedure to obtain more integrity margin was recommended. • The other operation procedure could be considered which makes the rapid operation possible giving up the marginal integrity. - Abstract: The primary vessel of ITER tritium SDS bed is made of stainless steel. It is heated beyond 500 °C to desorb tritium. During this process the primary vessel is subject to thermal stress. And it is also subject to thermal fatigue by the iterative process of absorption and desorption. In addition, its operation temperature range is in the thermal creep temperature region. Therefore, the tritium SDS bed should have sufficient design stress intensity under the high temperature operating conditions. It should also be free of damage due to fatigue during the design life. Thermal analysis and structural analysis was performed using a finite element method to calculate the temperature and the stress distribution of the ITER tritium SDS bed due to the internal pressure and thermal loads. The thermal fatigue and creep effects were also evaluated since the tritium SDS bed was heated to hot temperature region where creep occurs. Based on the distribution of the primary stress and secondary stress results, two evaluation cross-sections were selected. The evaluation showed that the calculated value on the cross-sections satisfied all of the limits of the design code requirements.

  12. The Role of Decorated SDS Micelles in Sub-CMC Protein Denaturation and Association

    DEFF Research Database (Denmark)

    Andersen, Kell; Oliveira, Cristiano Luis Pinto De; Larsen, Kim Lambertsen

    2009-01-01

    structures. SAXS data show that, at this stage, a decorated micelle links two ACBP molecules together, leaving about half of the polypeptide chain as a disordered region protruding into the solvent. Further titration with SDS leads to the additional uptake of 26 SDS molecules, which, according to SAXS, forms...

  13. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    Science.gov (United States)

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Vitrification of highly-loaded SDS zeolites

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bryan, G.H.; Knowlton, D.E.; Knox, C.A.

    1982-11-01

    Pacific Northwest Laboratory (PNL) is demonstrating a vitrification system designed for immobilization of highly loaded SDS zeolites. The Zeolite Vitrification Demonstration Project (ZVDP) utilizes an in-can melting process. All steps of the process have been demonstrated, from receipt of the liners through characterization of the vitrified product. The system has been tested with both nonradioactive and radioactive zeolite material. Additional high-radioactivity demonstrations are scheduled to begin in FY-83. 5 figures, 4 tables

  15. Cuantificacion de huevo en fideos secos según metodo electroforético (SDS PAGUE) Quantification of egg in dried noodles by electrophoretic methods (SDS PAGE)

    OpenAIRE

    LB López; K Cellerino; MJ Binaghi; MS Giacomino; ME Valencia

    2011-01-01

    La cuantificación de huevo en fideos secos elaborados con harina y agregado de huevo. Se analizaron 6 sistemas modelos (SM) de fideos que contenían 0,0; 1,0; 2,5; 4,0; 6,0 y 8,0% de huevo en polvo. Se extrajeron proteínas totales con un buffer que contiene dodecilsulfato de sodio (SDS) y 2-Mercaptoetanol y se realizó electroforesis en gel de poliacrilamida con SDS. Se establecieron las relaciones de las áreas de los picos de los densitogramas (de huevo y de trigo) que permiten una correcta cu...

  16. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Ghazaghi, Mehri [Department of Chemistry, College of Science, Semnan University, P.O. Box: 35131-19111, Semnan (Iran, Islamic Republic of); Mousavi, Hassan Zavvar, E-mail: hzmousavi@semnan.ac.ir [Department of Chemistry, College of Science, Semnan University, P.O. Box: 35131-19111, Semnan (Iran, Islamic Republic of); Rashidi, Ali Morad [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran (Iran, Islamic Republic of); Shirkhanloo, Hamid [Occupational and Environmental Health Research Center (OEHRC), Iranian Petroleum Industry Health Research Institute (IPIHRI), Tehran (Iran, Islamic Republic of); Rahighi, Reza [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran (Iran, Islamic Republic of); Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran (Iran, Islamic Republic of)

    2016-01-01

    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL{sup −1}), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL{sup −1}). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L{sup −1} for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24–15.6, 0.015–0.95 and 0.039–2.33 µg L{sup −1} for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned

  17. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection

    International Nuclear Information System (INIS)

    Tsai, Wen-Hsien; Chuang, Hung-Yi; Chen, Ho-Hsien; Huang, Joh-Jong; Chen, Hwi-Chang; Cheng, Shou-Hsun; Huang, Tzou-Chi

    2009-01-01

    Dispersive liquid-liquid microextraction (DLLME) and dispersive micro-solid-phase extraction (DMSPE) are two simple and low-cost sample preparation methods for liquid samples. In this work, these two methods were applied to solid tissue sample for the determination of seven quinolones by high-performance liquid chromatography with diode-array detection (HPLC-DAD). After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, small amounts of the extract were used for the DLLME and DMSPE methods. In the DLLME approach, the target analytes in the extraction solvent were rapidly extracted into a small volume of dichloromethane for drying and the residue was reconstituted for HPLC-DAD analysis. In the DMSPE approach, the target analytes in the extraction solvent were trapped by dispersive silica-based PSA (primary and secondary amine) sorbents and desorbed into a small amount of desorption solution for HPLC-DAD analysis. Under the optimal conditions, relative recoveries were determined for swine muscle spiked 50-200 μg kg -1 and quantification was achieved by matrix-matched calibration. The calibration curves of seven quinolones showed linearity with a correlation coefficient value above 0.998 for both approaches. Relative recoveries ranged from 93.0 to 104.7% and from 95.5 to 111.0% for DLLME and DMSPE, respectively. Limits of detection (LODs) ranged from 5.6 to 23.8 μg kg -1 and from 7.5 to 26.3 μg kg -1 for DLLME and DMSPE, respectively.

  18. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during......, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition...... childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6±21.7), and median BMI SDS 2.8 (range 1.3±5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0...

  19. A new percolation model for composite solid electrolytes and dispersed ionic conductors

    Science.gov (United States)

    Risyad Hasyim, Muhammad; Lanagan, Michael T.

    2018-02-01

    Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.

  20. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    DEFF Research Database (Denmark)

    Li, Li; Molin, Søren; Yang, Liang

    2013-01-01

    -b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment...

  1. [Schedule for evaluation of the deficit syndrome in schizophrenia: Schedule for Deficit Syndrome (SDS) (Kirkpatrick et al.). Importance pertinence of the SDS. Introduction of the French version].

    Science.gov (United States)

    Ribeyre, J M; Dollfus, S; Lesieur, P; Ménard, J F; Petit, M

    1994-01-01

    The negative symptoms of schizophrenia have generated a great interest leading some authors (Crow, Andreasen, Kay) to delineate schizophrenic subtypes based on their presence or absence. Carpenter et al. have recently proposed another subtype, the deficit syndrome, based on Kraepelin's clinical description. This differs from other proposed negative subtypes and refers to the presence or absence of prominent, enduring and primary negative symptoms. Primary negative symptoms have to be due to psychophrenia itself, in other words, independent of factors such as depression, anxiety, akinesia... Kirkpatrick et al. have proposed the Schedule for the Deficit Syndrome (SDS) to reliably identify this deficit syndrome. Some studies using this instrument have supported the validity of the deficit syndrome concept. Particularly, deficit patients have clinical, neuropsychological, neurological, eye-tracking and brain imaging impairments compared to nondeficit patients. We realized a french translation of SDS and used it to study a biological index (plasma homovanillic acid, pHVA) among deficit and nondeficit schizophrenic patients. Our data suggest a specific biochemical basis for the deficit syndrome, ie, significant lower mean pHVA levels with a lack of diurnal variation for deficit patients. The french version of SDS was validated by Kirkpatrick after english back translation. We present here our psychometric data regarding reliability (assessed by weighted and unweighted kappa coefficients) and cohesiveness of the construct (assessed by rank-order correlations of each negative symptoms with the other five, using Spearman's rho). These data are quite significant and in agreement with the SDS authors.

  2. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    Science.gov (United States)

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation.

    Science.gov (United States)

    Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan

    2015-01-01

    In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.

  4. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    Science.gov (United States)

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  6. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion.

    Science.gov (United States)

    Lauer, Matthias E; Maurer, Reto; Paepe, Anne T De; Stillhart, Cordula; Jacob, Laurence; James, Rajesh; Kojima, Yuki; Rietmann, Rene; Kissling, Tom; van den Ende, Joost A; Schwarz, Sabine; Grassmann, Olaf; Page, Susanne

    2018-05-19

    Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.

  7. Temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites

    International Nuclear Information System (INIS)

    Tan, Lei; Chen, Kuncai; He, Rong; Peng, Rongfei; Huang, Cong

    2016-01-01

    This article demonstrates the feasibility of an alternative strategy for producing temperature sensitive molecularly imprinted microspheres (MIMs) for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Thermo-sensitive MIMs can change their structure following temperature stimulation. This allows capture and release of target molecules to be controlled by temperature. The fabrication technique provides surface molecular imprinting in acetonitrile using vinyl modified silica microspheres as solid supports, methacrylic acid and N-isopropyl acrylamide as the functional monomers, ethyleneglycol dimethacrylate as the cross-linker, and malachite green as the template. After elution of the template, the MIMs can be used for fairly group-selective solid phase dispersion extraction of malachite green, crystal violet, leucomalachite green, and leucocrystal violet from homogenized fish samples at a certain temperature. Following centrifugal separation of the microspheres, the analytes were eluted with a 95:5 mixture of acetonitrile and formic acid, and then quantified by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with isotope internal calibration. The detection limits for malachite green, crystal violet and their metabolites typically are 30 ng·kg −1 . Positive samples were identified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. The method was applied to the determination of the dyes and the respective leuko dyes in fish samples, and accuracy and precision were validated by comparative analysis of the samples by using aluminum neutral columns. (author)

  8. Polymer⁻Surfactant System Based Amorphous Solid Dispersion: Precipitation Inhibition and Bioavailability Enhancement of Itraconazole.

    Science.gov (United States)

    Feng, Disang; Peng, Tingting; Huang, Zhengwei; Singh, Vikramjeet; Shi, Yin; Wen, Ting; Lu, Ming; Quan, Guilan; Pan, Xin; Wu, Chuanbin

    2018-04-24

    The rapid release of poorly water-soluble drugs from amorphous solid dispersion (ASD) is often associated with the generation of supersaturated solution, which provides a strong driving force for precipitation and results in reduced absorption. Precipitation inhibitors, such as polymers and surfactants, are usually used to stabilize the supersaturated solution by blocking the way of kinetic or thermodynamic crystal growth. To evaluate the combined effect of polymers and surfactants on maintaining the supersaturated state of itraconazole (ITZ), various surfactants were integrated with enteric polymer hydroxypropyl methylcellulose acetate succinate (HPMC AS) to develop polymer⁻surfactant based solid dispersion. The supersaturation stability was investigated by in vitro supersaturation dissolution test and nucleation induction time measurement. Compared to the ASD prepared with HPMC AS alone, the addition of d-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) exhibited a synergistic effect on precipitation inhibition. The results indicated that the TPGS not only significantly reduced the degree of supersaturation which is the driving force for precipitation, but also provided steric hindrance to delay crystal growth by absorbing onto the surface of small particles. Subsequently, the formulations were evaluated in vivo in beagle dogs. Compared with commercial product Sporanox ® , the formulation prepared with HPMC AS/TPGS exhibited a 1.8-fold increase in the AUC (0⁻24 h) of ITZ and a 1.43-fold increase of hydroxyitraconazole (OH-ITZ) in the plasma. Similarly, the extent of absorption was increased by more than 40% when compared to the formulation prepared with HPMC AS alone. The results of this study demonstrated that the ASD based on polymer⁻surfactant system could obviously inhibit drug precipitation in vitro and in vivo, which provides a new access for the development of ASD for poorly water-soluble drug.

  9. Liquid-liquid and liquid-solid phase separation and flocculation for a charged colloidal dispersion

    International Nuclear Information System (INIS)

    Lai, S.K.; Wu, K.L.

    2002-01-01

    We model the intercolloidal interaction by a hard-sphere Yukawa repulsion to which is added the long-range van der Waals attraction. In comparison with the Derjaguin-Landau-Verwey-Overbeek repulsion, the Yukawa repulsion explicitly incorporates the spatial correlations between colloids and small ions. As a result, the repulsive part can be expressed analytically and has a coupling strength depending on the colloidal volume fraction. By use of this two-body potential of mean force and in conjunction with a second-order thermodynamic perturbation theory, we construct the colloidal Helmholtz free energy and use it to calculate the thermodynamic quantities, pressure and chemical potential, needed in the determination of the liquid-liquid and liquid-solid phase diagrams. We examine, in an aqueous charged colloidal dispersion, the effects of the Hamaker constant and particle size on the conformation of a stable liquid-liquid phase transition calculated with respect to the liquid-solid coexistence phases. We find that there exists a threshold Hamaker constant or particle size whose value demarcates the stable liquid-liquid coexistence phases from their metastable counterparts. Applying the same technique and using the energetic criterion, we extend our calculations to study the flocculation phenomenon in aqueous charged colloids. Here, we pay due attention to determining the loci of a stability curve stipulated for a given temperature T 0 , and obtain the parametric phase diagram of the Hamaker constant vs the coupling strength or, at given surface potential, the particle size. By imposing T 0 to be the critical temperature T c , i.e., setting k B T 0 (=k B T c ) equal to a reasonable potential barrier, we arrive at the stability curve that marks the irreversible reversible phase transition. The interesting result is that there occurs a minimum size for the colloidal particles below (above) which the colloidal dispersion is driven to an irreversible (reversible) phase

  10. Synthesis of erythrocyte membrane proteins in dispersed cells from fetal rat liver

    International Nuclear Information System (INIS)

    Kitagawa, Yasuo; Murakami, Akihiko; Sugimoto, Etsuro

    1984-01-01

    Protein synthesis in dispersed cells from fetal liver was studied by fluorography of SDS-polyacrylamide gel electrophoresis of a [ 35 S] methionine labeled cell lysate. Synthesis of several proteins with molecular weights ranging from 45,000 to 220,000 was observed during erythropoiesis in fetal liver. Some of these proteins were demonstrated to be erythrocyte membrane proteins because they were immunoprecipitated with antiserum against rat red blood cells and the immunoprecipitation was competitive with non-radioactive proteins solubilized from erythrocyte ghosts. The same antiserum caused agglutination of dispered cells from fetal liver. This supported the possibility that these proteins are translocated onto plasma membranes of the dispersed cells. (author)

  11. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    Science.gov (United States)

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin

    Directory of Open Access Journals (Sweden)

    Claire M. Gabe

    2017-06-01

    Full Text Available Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We

  13. Modification of T-cell antigenic properties of tetanus toxoid by SDS-PAGE separation. Implications for T-cell blotting

    DEFF Research Database (Denmark)

    Christensen, C B; Theander, T G

    1997-01-01

    Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20% of the ......Using Tetanus Toxoid (TT) as a model antigen the T-cell Blotting method was evaluated. Peripheral blood mononuclear cell (PBMC) cultures were stimulated by blotted nitrocellulose-bound TT or soluble TT. SDS-Poly-Acrylamide-Gel-Electrophoresis separated TT only induced proliferation in 20......% of the PBMC cultures whereas proliferation was induced in 79% of the same cultures offered similar treated TT (except for the PAGE separation). When T-cell blotting was performed with TT separated in a SDS-agarose matrix, proliferation was induced in 80% of donors responding to soluble TT. The results show...... that SDS-PAGE alters the ability of TT to induce T-cell proliferation, possibly due to unpolymerized acrylamide binding to proteins during SDS-PAGE. The use of SDS-PAGE T-cell blotting in the screening for T-cell antigens must therefore be reconsidered. We suggest the use of SDS-Agarose Gel Electrophoresis...

  14. Effect of hyperbaric oxygen therapy on SAS and SDS in children with ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Pei-Yun Li

    2017-08-01

    Full Text Available Objective: To study and analyze the effect of early psychological intervention on the scores of SAS and SDS in children with hypoxic-ischemic encephalopathy undergoing hyperbaric oxygen therapy. Methods: A total of 64 children with hypoxic - ischemic encephalopathy enrolled in our hospital from July 2015 to July 2016 and their parents were selected as study subjects. The patients were treated with hyperbaric oxygen therapy, while their parents were given early psychological intervention. By the way of increasing parents’ awareness of the disease, helping parents build confidence in their children’s treatment and encouraging them to participate in daily training for their children to relieve their anxiety and depression. The parents' knowledge of the disease before and during treatment, the treatment of hyperbaric oxygen therapy and the change of SAS and SDS were observed. Results: After effective intervention, the scores of SAS and SDS of 64 patients’ parents were significantly lower than those before treatment. After 1 courses of intervention, the score of SAS was (43.36 ± 1.27 points, and the score of SDS was (45.22 ± 8.13 points. After 2 courses of intervention, the score of SAS was (41.07 ± 1.21 and the score of SDS was (42.35 ± 7.44 points, and parents' awareness of hypoxic-ischemic encephalopathy was significantly increased, and the differences between the two groups were statistically significant. Conclusion: Early psychological intervention on parents of children with hypoxic-ischemic encephalopathy can effectively improve the awareness of parents on the disease, so as to improve their acceptance of hyperbaric oxygen therapy; significantly reduce the parents’ SAS, SDS score. It is beneficial to build a good doctor-patient and nurse-patient relationship, improve the treatment effect and shorten the treatment time.

  15. Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS)

    DEFF Research Database (Denmark)

    Bergström, M.; Pedersen, J.S.

    1999-01-01

    The geometrical structure of pure SDS and DTAB surfactant micelles in the absence of added salt as well as its dependence on the concentration of NaBr have been investigated at 40 degrees C using small-angle neutron scattering (SANS). In contrast to previous SANS measurements on the same systems we...... that ordinary surfactant micelles are shaped as circular or elongated bilayers (tablets). Both SDS and DTAB micelles appeared to be disk-like in pure D2O and the corresponding data were best fitted with a model for (monodisperse) oblate ellipsoids of revolution with half axes a=12.0 Angstrom, b=20.3 Angstrom...... ([SDS]=1.0 wt.%) and a=12.4 Angstrom, b=21.6 Angstrom ([DTAB]=1.0 wt.%). The half axis b related to the disk radius increases in both cases with an increasing amount of added salt to about 23 Angstrom (SDS) and 24 Angstrom (DTAB) at [NaBr]=0.1 M and at about [NaBr]=0.2 M the SDS micelles become tablet...

  16. Preparation of LDPE/LNR Blend Via Emulsion Dispersion

    International Nuclear Information System (INIS)

    Rusli Daik; Yee Lee Ching

    2007-01-01

    Low density polyethylene (LDPE)/ liquid natural rubber (LNR) blends with the composition of 100LDPE/ 0LNR, 70LDPE/ 30LNR, 60LDPE/ 40LNR and 40LDPE/ 60LNR were prepared via dispersion of LDPE and LNR emulsion. LNR was obtained via photochemical sensitization of natural rubber (NR). Emulsion of LNR was prepared by using sodium dodecyl sulfate (SDS) and 1-hexanol as the emulsifier and co- emulsifier respectively. Emulsion of LDPE was prepared in the same way by using LDPE solution in carbon tetrachloride, SDS and 1-hexanol. LDPE/ LNR blends were prepared via mixing of LNR and LDPE emulsions. Mechanical properties of the blends were analyzed by tensile, hardness and impact test. Optimum mechanical properties were observed for composite with composition of 60LDPE/ 40LNR that showed the maximum value of stress and strain. The glass transition temperature, T g , of the blends as obtained from differential scanning calorimetric (DSC) showed that the blends were homogeneous. Morphology study by using scanning electron microscopy (SEM) also indicates the homogeneity of LDPE/ LNR blends produced. (author)

  17. SDS interferes with SaeS signaling of Staphylococcus aureus independently of SaePQ.

    Directory of Open Access Journals (Sweden)

    Phuti E Makgotlho

    Full Text Available The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap, which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a single amino acid substitution in the transmembrane domain of SaeS (L18P which results in constitutive kinase activity. SDS was shown to be one of the signals interfering with SaeS activity leading to inhibition of the sae target gene eap in strains with SaeS(L but causing activation in strains containing SaeS(P. Here, we analyzed the possible involvement of the SaeP protein and saePQ region in SDS-mediated sae/eap expression. We found that SaePQ is not needed for SDS-mediated SaeS signaling. Furthermore, we could show that SaeS activity is closely linked to the expression of Eap and the capacity to invade host cells in a number of clinical isolates. This suggests that SaeS activity might be directly modulated by structurally non-complex environmental signals, as SDS, which possibly altering its kinase/phosphatase activity.

  18. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  19. Comparative study of curcumin and curcumin formulated in a solid dispersion: Evaluation of their antigenotoxic effects

    Directory of Open Access Journals (Sweden)

    Leonardo Meneghin Mendonça

    2015-01-01

    Full Text Available AbstractCurcumin (CMN is the principal active component derived from the rhizome of Curcuma longa (Curcuma longa L.. It is a liposoluble polyphenolic compound that possesses great therapeutic potential. Its clinical application is, however, limited by the low concentrations detected following oral administration. One key strategy for improving the solubility and bioavailability of poorly water-soluble drugs is solid dispersion, though it is not known whether this technique might influence the pharmacological effects of CMN. Thus, in this study, we aimed to evaluate the antioxidant and antigenotoxic effects of CMN formulated in a solid dispersion (CMN SD compared to unmodified CMN delivered to Wistar rats. Cisplatin (cDDP was used as the damage-inducing agent in these evaluations. The comet assay results showed that CMN SD was not able to reduce the formation of cDDP-DNA crosslinks, but it decreased the formation of micronuclei induced by cDDP and attenuated cDDP-induced oxidative stress. Furthermore, at a dose of 50 mg/kg b.w. both CMN SD and unmodified CMN increased the expression of Tp53 mRNA. Our results showed that CMN SD did not alter the antigenotoxic effects observed for unmodified CMN and showed effects similar to those of unmodified CMN for all of the parameters evaluated. In conclusion, CMN SD maintained the protective effects of unmodified CMN with the advantage of being chemically water soluble, with maximization of absorption in the gastrointestinal tract. Thus, the optimization of the physical and chemical properties of CMN SD may increase the potential for the therapeutic use of curcumin.

  20. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    Science.gov (United States)

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Serum protein profile of Malaria patients through SDS-PAGE method ...

    African Journals Online (AJOL)

    Serum protein profile of Malaria patients through SDS-PAGE method. ... reliable method in the diagnosis of antibodies produced against Plasmodium spps. ... of malaria patients may be undertaken for study to develop possible future vaccine.

  2. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  3. Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish.

    Science.gov (United States)

    Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien

    2014-07-01

    A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. New metastable form of glibenclamide prepared by redispersion from ternary solid dispersions containing polyvinylpyrrolidone-K30 and sodium lauryl sulfate.

    Science.gov (United States)

    Thongnopkoon, Thanu; Puttipipatkhachorn, Satit

    2016-01-01

    Modification of polymorphic forms of poorly water-soluble drugs is one way to achieve the desirable properties. In this study, glibenclamide (GBM) particles with different polymorphic forms, including a new metastable form, were obtained from redispersion of ternary solid dispersion systems. The ternary solid dispersion systems, consisting of GBM, polyvinylpyrrolidone-K30 (PVP-K30) and sodium lauryl sulfate (SLS), were prepared by solvent evaporation method and subsequently redispersed in deionized water. The precipitated drug particles were then collected at a given time period. The drug particles with different polymorphic forms could be achieved depending on the polymer/surfactant ratio. Amorphous drug nanoparticles could be obtained by using a high polymer/surfactant ratio, whereas two different crystalline forms were obtained from the systems containing low polymer/surfactant ratios. Interestingly, a new metastable form IV of GBM with improved dissolution behavior could be obtained from the system of GBM:PVP-K30:SLS with the weight ratio of 2:2:4. This new polymorphic form IV of GBM was confirmed by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffractometry (PXRD) and solid state 13 C nuclear magnetic resonance (NMR) spectroscopy. The molecular arrangement of the new polymorphic form IV of GBM was proposed. The GBM particles with polymorphic form IV also showed an improved dissolution behavior. In addition, it was found that the formation of the new polymorphic form IV of GBM by this process was reproducible.

  5. Preparation and investigation of mefenamic acid - polyethylene glycol - sucrose ester solid dispersions.

    Science.gov (United States)

    Fülöp, Ibolya; Gyéresi, Árpád; Kiss, Lóránd; Deli, Mária A; Croitoru, Mircea Dumitru; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-12-01

    Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  6. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    Directory of Open Access Journals (Sweden)

    Ritesh Fule

    2014-01-01

    Full Text Available Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD with immediate release and improved bioavailability was prepared using Soluplus (Sol as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72 and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72 and Cmax higher than those with the commercial capsule (Noxafil. Molecular dynamic (MD simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  7. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    Science.gov (United States)

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...

  8. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface self-assembly of fluorosurfactants during film formation of MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Dreher, W R; Urban, M W

    2004-11-23

    These studies focus on the behavior of fluorosurfactants (FS) containing hydrophobic and ionic entities in the presence of methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal dispersions stabilized by sodium dodecyl sulfate (SDS). The presence of FS significantly not only alters the mobility of SDS in MMA/nBA films, but their hydrophobic and ionic nature results in self-assembly near the film-air (F-A) interface leading to different surface morphologies. Spherical islands and rodlike morphologies are formed which diminish the kinetic coefficient of friction of films by at least 3 orders of magnitude, and the presence of dual hydrophobic tails and an anionic head appears to have the largest effect on the surface friction. Using internal reflection IR imaging, these studies show that structural and chemical features of FS are directly related to their ability to migrate to the F-A interface and self-assemble to form specific morphological features. While the anionic nature of FS allows for SDS migration to the F-A interface and the formation of stable domains across the surface, intermolecular cohesion of nonionic FS allows for the formation of rodlike structures due to inability to form mixed micelles with SDS. These studies also establish the relationship between surface morphologies, kinetic coefficient of friction, and structural features of surfactants in the complex environments.

  10. Application of London-type dispersion corrections to the solid-state density functional theory simulation of the terahertz spectra of crystalline pharmaceuticals.

    Science.gov (United States)

    King, Matthew D; Buchanan, William D; Korter, Timothy M

    2011-03-14

    The effects of applying an empirical dispersion correction to solid-state density functional theory methods were evaluated in the simulation of the crystal structure and low-frequency (10 to 90 cm(-1)) terahertz spectrum of the non-steroidal anti-inflammatory drug, naproxen. The naproxen molecular crystal is bound largely by weak London force interactions, as well as by more prominent interactions such as hydrogen bonding, and thus serves as a good model for the assessment of the pair-wise dispersion correction term in systems influenced by intermolecular interactions of various strengths. Modifications to the dispersion parameters were tested in both fully optimized unit cell dimensions and those determined by X-ray crystallography, with subsequent simulations of the THz spectrum being performed. Use of the unmodified PBE density functional leads to an unrealistic expansion of the unit cell volume and the poor representation of the THz spectrum. Inclusion of a modified dispersion correction enabled a high-quality simulation of the THz spectrum and crystal structure of naproxen to be achieved without the need for artificially constraining the unit cell dimensions.

  11. Determination of Iron Species by Combination of Solvent Assisted-Dispersive Solid Phase Extraction and Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Zahra Dehghani

    2015-06-01

    Full Text Available A simple, rapid and sensitive solvent assisted-dispersive solid phase extraction method was developed for the extraction of iron(II prior to its spectrophotometric determination. The Fe(II reacted with 2,4,6-tris(2-pyridyl-1,3,5-triazine, neutralized with sodium dodecyl sulfate and extracted onto the fine particles of benzophenone which were formed upon rapid injection of a mixture of benzophenone as the sorbent and ethanol as the disperser solvent into the aqueous solution. After phase separation, the sedimented phase containing the complex was dissolved in ethanol and the analyte concentration was determined by measuring its absorption at 594 nm. Total iron was determined after the reduction of Fe(III to Fe(II with hydroxylamine hydrochloride. Under the optimized conditions, an enhancement factor of 32, the detection limit of 0.16 µg l-1, and the relative standard deviation of 1.9% (n = 6 at 20 µg l-1 concentration level of Fe(II were achieved. The method was successfully applied to the determination of iron species in water samples and total iron in infant dry formula milk, apple, rice, spinach and parsley samples.

  12. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    Science.gov (United States)

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  13. The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Sundas; Park, Soo-Young, E-mail: psy@knu.ac.kr

    2015-09-17

    Sodium dodecyl sulphate (SDS) including β-cyclodextrin (β-CD) (β-CD{sub SDS}) was used to detect cholesterol at the 4-cyano-4′-pentylbiphenyl (5CB)/aqueous interface in transmission electron microscopy (TEM) grid cells. The β-CD acts as a host for SDS (guest). The guest SDS enclosed within the β-CD cavity was replaced with cholesterol by injecting cholesterol solution into the TEM cell at concentrations greater than 3 μM. The replacement of SDS with cholesterol was confirmed by pH measurement and high performance liquid chromatography (HPLC). The SDS excluded from the β-CD altered the planar orientation of the 5CB confined within the TEM grid cell to a homeotropic orientation. This planar-to-homeotropic transition was observed using a polarized optical microscope under crossed polarizers. This convenient TEM grid cell provides a new method for the selective detection of cholesterol without immobilization of the detecting receptors (enzyme, antibody, or aptamer) or the use of sophisticated instruments. - Highlights: • β-CD-SDS inclusion was used for the detection of cholesterol at 5CB/aqueous interface. • The SDS enclosed within the β-CD cavity was replaced by cholesterol. • The released SDS from the β-CD caused homeotropic orientation of 5CB. • The cholesterol was detected from planar-to-homeotropic transition of 5CB. • This convenient TEM grid cell provides a new method for the selective detection of cholesterol.

  14. Cation modulation of hemoglobin interaction with sodium n-dodecyl sulphate (SDS iv: magnesium modulation at pH 7.20

    Directory of Open Access Journals (Sweden)

    Ali Akbar Moosavi-Movahedi

    2016-03-01

    Full Text Available We investigate the interaction of Mg2+ (0–2.30 mM and sodium n-dodecyl sulfate (SDS with hemoglobins (Hbs A and S at pH 7.20. SDS was used to model both membranes (0.60 mM SDS and proteases (5.0 mM SDS. Via UV-visible spectroscopy, second derivative and difference second derivative spectroscopy, we interrogated for difference(s in the interaction of these ligands with the proteins that can account for the HbS resistance to malaria parasite while been prone to sickling. Our results show that Mg2+ interaction with the proteins lowered the HbS oxygen affinity in comparison with the HbA. Additionally, [SDS]-protein interactions resulted in oxoferryl heme species formation that was prominent for the HbA and highly diminished for the HbS. [Mg2+] introduction to the [SDS]-protein mixture, however decreased the concentration of denatured protein species. The [Mg2+]-[SDS]-protein interactions suggest that while ionic or coulomb interactions for the HbA, in the presence of the surfactants, are [Mg2+] dependent, those of the HbS are not. Furthermore, hydrophobicity is a crucial force for the HbS interaction at neutral pH and is little-masked by ionic, electrostatic or coulombic interactions. In conclusion, at physiological pH, the Mg-SDS interaction decreased the HbS denaturation in comparison to the HbA.

  15. Adsorption factor effect on dispersive ability of polymethylmethylmethacrylate

    International Nuclear Information System (INIS)

    Gorokhovskij, G.A.; Samsonov, G.V.; Gorshunov, V.P.

    1977-01-01

    A relationhsip between the rate of polymer macromolecules absorption on some refractory compounds and the dispersion ability of polymer-abrasive compositions was investigated at various contents of the polymethacrylate polymer in an abrasive composition. The solid phase used was powders of Al 2 O 3 , WC, W 2 B 5 , TiB 2 . It was established that the dispersion ability of the polymer-abrasive compositions was a function not only of the cutting properties of the abrasives and the dispersion ability of the polymers, but also of the adsorption properties of the solid phase and of its capacity to transport macromolecules to the surface being worked

  16. Cation modulation of hemoglobin interaction with sodium n-dodecyl sulphate (SDS) iv: magnesium modulation at pH 7.20

    OpenAIRE

    Ali Akbar Moosavi-Movahedi; Ferdinand C. Chilaka; Charles O. Nwamba

    2016-01-01

    We investigate the interaction of Mg2+ (0–2.30 mM) and sodium n-dodecyl sulfate (SDS) with hemoglobins (Hbs) A and S at pH 7.20. SDS was used to model both membranes (0.60 mM SDS) and proteases (5.0 mM SDS). Via UV-visible spectroscopy, second derivative and difference second derivative spectroscopy, we interrogated for difference(s) in the interaction of these ligands with the proteins that can account for the HbS resistance to malaria parasite while been prone to sickling. Our results show ...

  17. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-02

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    Science.gov (United States)

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Science.gov (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physical stability of API/polymer-blend amorphous solid dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    Science.gov (United States)

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  2. Preconcentration of Trace Neonicotinoid Insecticide Residues Using Vortex-Assisted Dispersive Micro Solid-Phase Extraction with Montmorillonite as an Efficient Sorbent

    Directory of Open Access Journals (Sweden)

    Khwankaew Moyakao

    2018-04-01

    Full Text Available In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE. High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL−1 with a correlation of determination (R2 greater than 0.99. Limit of detection (LOD ranged from 0.005 to 0.065 ng mL−1, while limit of quantification (LOQ ranged from 0.008 to 0.263 ng mL−1. The enrichment factor (EF ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.

  3. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS).

    Science.gov (United States)

    Forni, C; Braglia, R; Harren, F J M; Cristescu, S M

    2012-04-01

    Surfactants are used for several purposes and recently they have attracted the attention for their ability to modify the behavior of other preexistent or co-disposed contaminants, although their use or discharge in wastewaters can represent a real or potential risk for the environment. Lemna minor L. and Azolla filiculoides Lam. are floating aquatic macrophytes, very effective in accumulating several pollutants including sodium dodecyl sulphate (SDS). In this work we evaluated the effects of SDS on these species by determining the stress ethylene production via laser-based trace gas detection, and the activities of enzymes involved in stress response, such as guaiacol peroxidase (G-POD), phenylalanine ammonia-lyase (PAL) and polyphenol-oxidase (PPO). Phenolics content was also determined. The macrophytes were treated with different concentrations of SDS for one week. SDS affected duckweed enzymatic activities and phenol content. While in the fern phenolics amount, PAL, G-POD and PPO activities were not affected by SDS except for 100 ppm SDS, the only concentration that was taken up and not completely degraded. Stress ethylene production was induced only in the fern treated with 50 and 100 ppm SDS. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  5. Importance of in vitro dissolution conditions for the in vivo predictability of an amorphous solid dispersion containing a pH-sensitive carrier

    DEFF Research Database (Denmark)

    Wendelboe, Johan; Knopp, Matthias Manne; Khan, Fauzan

    2017-01-01

    as a carrier in amorphous solid dispersions of CCX. In vitro-in vivo correlation demonstrated that the in vitro data obtained in FaSSIF pH 7.4 was more predictive for the in vivo performance than that obtained in FaSSIF pH 6.5. Consequently, the findings of this study underline that when predicting the in vivo...

  6. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 32 Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Jatinderpal Singh

    2015-01-01

    Full Text Available Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 32 full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55.

  7. The development of a cholesterol biosensor using a liquid crystal/aqueous interface in a SDS-included β-cyclodextrin aqueous solution

    International Nuclear Information System (INIS)

    Munir, Sundas; Park, Soo-Young

    2015-01-01

    Sodium dodecyl sulphate (SDS) including β-cyclodextrin (β-CD) (β-CD_S_D_S) was used to detect cholesterol at the 4-cyano-4′-pentylbiphenyl (5CB)/aqueous interface in transmission electron microscopy (TEM) grid cells. The β-CD acts as a host for SDS (guest). The guest SDS enclosed within the β-CD cavity was replaced with cholesterol by injecting cholesterol solution into the TEM cell at concentrations greater than 3 μM. The replacement of SDS with cholesterol was confirmed by pH measurement and high performance liquid chromatography (HPLC). The SDS excluded from the β-CD altered the planar orientation of the 5CB confined within the TEM grid cell to a homeotropic orientation. This planar-to-homeotropic transition was observed using a polarized optical microscope under crossed polarizers. This convenient TEM grid cell provides a new method for the selective detection of cholesterol without immobilization of the detecting receptors (enzyme, antibody, or aptamer) or the use of sophisticated instruments. - Highlights: • β-CD-SDS inclusion was used for the detection of cholesterol at 5CB/aqueous interface. • The SDS enclosed within the β-CD cavity was replaced by cholesterol. • The released SDS from the β-CD caused homeotropic orientation of 5CB. • The cholesterol was detected from planar-to-homeotropic transition of 5CB. • This convenient TEM grid cell provides a new method for the selective detection of cholesterol.

  8. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis.

    Directory of Open Access Journals (Sweden)

    Aldona Jelińska

    Full Text Available We showed that the Taylor Dispersion Analysis (TDA is a fast and easy to use method for the study of denaturation proteins. We applied TDA to study denaturation of β-lactoglobulin, transferrin, and human insulin by anionic surfactant sodium dodecyl sulfate (SDS. A series of measurements at constant protein concentration (for transferrin was 1.9 x 10-5 M, for β- lactoglobulin was 7.6 x 10-5 M, and for insulin was 1.2 x 10-4 M and varying SDS concentrations were carried out in the phosphate-buffered saline (PBS. The structural changes were analyzed based on the diffusion coefficients of the complexes formed at various surfactant concentrations. The concentration of surfactant was varied in the range from 1.2 x 10-4 M to 8.7 x 10-2 M. We determined the minimum concentration of the surfactant necessary to change the native conformation of the proteins. The minimal concentration of SDS for β-lactoglobulin and transferrin was 4.3 x 10-4 M and for insulin 2.3 x 10-4 M. To evaluate the TDA as a novel method for studying denaturation of proteins we also applied other methods i.e. electronic circular dichroism (ECD and dynamic light scattering (DLS to study the same phenomenon. The results obtained using these methods were in agreement with the results from TDA.

  9. Effervescence-assisted dispersive liquid-liquid microextraction using a solid effervescent agent as a novel dispersion technique for the analysis of fungicides in apple juice.

    Science.gov (United States)

    Jiang, Wenqing; Chen, Xiaochu; Liu, Fengmao; You, Xiangwei; Xue, Jiaying

    2014-11-01

    A novel effervescence-assisted dispersive liquid-liquid microextraction method has been developed for the determination of four fungicides in apple juice samples. In this method, a solid effervescent agent is added into samples to assist the dispersion of extraction solvent. The effervescent agent is environmentally friendly and only produces an increase in the ionic strength and a negligible variation in the pH value of the aqueous sample, which does not interfere with the extraction of the analytes. The parameters affecting the extraction efficiency were investigated including the composition of effervescent agent, effervescent agent amount, formulation of effervescent agent, adding mode of effervescent agent, type and volume of extraction solvent, and pH. Under optimized conditions, the method showed a good linearity within the range of 0.05-2 mg/L for pyrimethanil, fludioxonil, and cyprodinil, and 0.1-4 mg/L for kresoxim-methyl, with the correlation coefficients >0.998. The limits of detection for the method ranged between 0.005 and 0.01 mg/L. The recoveries of the target fungicides in apple juice samples were in the range of 72.4-110.8% with the relative standard deviations ranging from 1.2 to 6.8%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solid lubricants and surfaces

    CERN Document Server

    Braithwaite, E R

    1964-01-01

    Solid Lubricants and Surfaces deals with the theory and use of solid lubricants, particularly in colloidal form. Portions of this book are devoted to graphite and molybdenum disulfides, which are widely used solid lubricants in colloidal form. An extensive literature on the laboratory examination of hundreds of solids as potential lubricants is also provided in this text. Other topics discussed include the metals and solid lubricants; techniques for examining surfaces; other solid lubricants; metal shaping; and industrial uses of solid-lubricant dispersions. This publication is beneficial to e

  11. Dispersion of dielectric permittivity and magnetic properties of solid solution PZT–PFT

    Directory of Open Access Journals (Sweden)

    Skulski Ryszard

    2015-09-01

    Full Text Available In this paper we present the results of investigations into ceramic samples of solid solution (1-x(PbZr0.53Ti0.47O3- x(PbFe0.5Ta0.503 (i.e. (1-xPZT-xPFT with x = 0.25, 0.35 and 0.45. We try to find the relation between the character of dielectric dispersion at various temperatures and the composition of this solution. We also describe the magnetic properties of investigated samples. With increasing the content of PFT also mass magnetization and mass susceptibility increase (i.e. magnetic properties are more pronounced at every temperature. The temperature dependences of mass magnetization and re­ciprocal of mass susceptibility have similar runs for all the compositions. However, our magnetic investigations exhibit weak antiferromagnetic ordering instead of the ferromagnetic one at room temperature. We can also say that up to room tempera­ture any magnetic phase transition has not occurred. It may be a result of the conditions of the technological process during producing our PZT-PFT ceramics.

  12. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing.

    Science.gov (United States)

    Alhijjaj, Muqdad; Belton, Peter; Qi, Sheng

    2016-11-01

    FDM 3D printing has been recently attracted increasing research efforts towards the production of personalized solid oral formulations. However, commercially available FDM printers are extremely limited with regards to the materials that can be processed to few types of thermoplastic polymers, which often may not be pharmaceutically approved materials nor ideal for optimizing dosage form performance of poor soluble compounds. This study explored the use of polymer blends as a formulation strategy to overcome this processability issue and to provide adjustable drug release rates from the printed dispersions. Solid dispersions of felodipine, the model drug, were successfully fabricated using FDM 3D printing with polymer blends of PEG, PEO and Tween 80 with either Eudragit E PO or Soluplus. As PVA is one of most widely used polymers in FDM 3D printing, a PVA based solid dispersion was used as a benchmark to compare the polymer blend systems to in terms of processability. The polymer blends exhibited excellent printability and were suitable for processing using a commercially available FDM 3D printer. With 10% drug loading, all characterization data indicated that the model drug was molecularly dispersed in the matrices. During in vitro dissolution testing, it was clear that the disintegration behavior of the formulations significantly influenced the rates of drug release. Eudragit EPO based blend dispersions showed bulk disintegration; whereas the Soluplus based blends showed the 'peeling' style disintegration of strip-by-strip. The results indicated that interplay of the miscibility between excipients in the blends, the solubility of the materials in the dissolution media and the degree of fusion between the printed strips during FDM process can be used to manipulate the drug release rate of the dispersions. This brings new insight into the design principles of controlled release formulations using FDM 3D printing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin.

    Science.gov (United States)

    Li, Jinglei; Lee, Il Woo; Shin, Gye Hwa; Chen, Xiguang; Park, Hyun Jin

    2015-08-01

    Using a simple solution mixing method, curcumin was dispersed in the matrix of Eudragit® E PO polymer. Water solubility of curcumin in curcumin-Eudragit® E PO solid dispersion (Cur@EPO) was greatly increased. Based on the results of several tests, curcumin was demonstrated to exist in the polymer matrix in amorphous state. The interaction between curcumin and the polymer was investigated through Fourier transform infrared spectroscopy and (1)H NMR which implied that OH group of curcumin and carbonyl group of the polymer involved in the H bonding formation. Cur@EPO also provided protection function for curcumin as verified by the pH challenge and UV irradiation test. The pH value influenced curcumin release profile in which sustained release pattern was revealed. Additionally, in vitro transdermal test was conducted to assess the potential of Cur@EPO as a vehicle to deliver curcumin through this alternative administration route. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Dispersive solid phase micro-extraction of mercury(II from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Nasrollahpour Atefeh

    2017-01-01

    Full Text Available A new dispersive solid phase micro-extraction (dispersive-SPME method for separation and preconcentration of mercury(II using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS has been developed. The IL-MrGO composite was characterized by Brunauer– Emmett–Teller method (BET for adsorption-desorption measurement, thermogravimetric analysis (TGA, powder X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The method is based on the sorption of mercury( II on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II. The effect of experimental parameters for preconcentration of mercury(II, such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08–10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II in water and vegetable samples.

  15. Polyacrylamide gel electrophoresis-SDS as a tool to study myofibrillar proteins. A review.

    Directory of Open Access Journals (Sweden)

    Perez-Chabela, M. Lourdes

    2015-12-01

    Full Text Available Miofibrillar proteins are part of land and sea animals’ muscle. Nonetheless, even when muscle proteins are the same type of proteins, their structure, rigor mortis time, and biochemical process associated to muscle to meat conversion, are different among animal species. This review has the aim to describe the advantages of SDS-polyacrylamide gel electrophoresis (SDS-PAGE in the study of myofibrillar proteins structure, besides the influence of many parameters on this technique to obtain an electrophoretic profile. Applications of this technique as a diagnostic tool in the food science, ecology and health are described as well.

  16. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS gel technology.

    Science.gov (United States)

    Chen, Grace; Ha, Sha; Rustandi, Richard R

    2013-01-01

    Over the last decade, science has greatly improved in the area of protein sizing and characterization. Efficient high-throughput methods are now available to substitute for the traditional labor-intensive SDS-PAGE methods, which alternatively take days to analyze a very limited number of samples. Currently, PerkinElmer(®) (Caliper) has designed an automated chip-based fluorescence detection method capable of analyzing proteins in minutes with sensitivity similar to standard SDS-PAGE. Here, we describe the use and implementation of this technology to characterize and screen a large number of formulations of target glycoproteins in the 14-200 kDa molecular weight range.

  17. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    Science.gov (United States)

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  18. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques

    NARCIS (Netherlands)

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-01-01

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T-g), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam

  19. Genetic variations of robinia pseudoacacia plant using sds-page

    International Nuclear Information System (INIS)

    Zahoor, M.; Islam, N. U.; Nisar, M.

    2015-01-01

    The biochemical analysis using SDS-PAGE has great contribution for the estimation of genetic diversity. We estimated the genetic diversity of R. pseudoacacia germ plasm protein. A total of 19 varieties were collected from different areas of Dir lower were investigated for the level of genetic divergence and genetic linkages. The total germ plasm grouped were separated at 20 percentage distance into two linkages based on Euclidean distances the 19 cultivars were further divide at 45 percentage distance into three clusters, cluster 1, cluster 2 and cluster 3. Cluster 1 was comprised of Munda 3, Munda 4, Talash 2 and UOM 1. Cluster 2 was comprised of Maidan 1 and Gulabad 1. Cluster 3 was comprised Maidan 2, UOM 3, Talash 1, Maidan 4, Maidan 3, Gulabad 2, Gulabad 3 and Gulabad 4. A total of range 00 percentage to 88 percentage variation recoded among 19 varieties. The result obtained after SDS-PAGE were computed for the construction of phylogenetic diversity, geographic relationship, Euclidian distance, genetic distance and linkage distance. This plant show a lot of variation in germ plasmic level. It is concluded that it is possible to improve and produce new varieties of this plant. (author)

  20. SDS-PAGE Electrophoretic Property of Human Chorionic Gonadotropin (hCG) and its β-subunit

    OpenAIRE

    Gam, Lay-Harn; Latiff, Aishah

    2005-01-01

    The microheterogeneity property of hCG with regards to its sialic acid contents resulted in variable mobility of the glycoprotein in SDS-PAGE. The intact hCG molecule is composed of two dissimilar subunits, namely α- and β-subunits. The identification of hCG bands in SDS-PAGE was accomplished by the immunoblotting experiment, whereby the antibody directed toward the specific region of β-subunit of hCG was used. The data shows that the different mobility of intact hCG was attributed to the dif...

  1. Immunochemical characterization of Mycobacterium leprae antigens by the SDS-polyacrylamide gel electrophoresis immunoperoxidase technique (SGIP) using patients' sera

    NARCIS (Netherlands)

    Klatser, P. R.; van Rens, M. M.; Eggelte, T. A.

    1984-01-01

    In this study the SDS-polyacrylamide gel electrophoresis immunoperoxidase (SGIP) assay was used for characterizing the antigenic components of Mycobacterium leprae using patients' sera. This technique involved the separation of mycobacterial sonicates on SDS-polyacrylamide gels, longitudinal

  2. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    Science.gov (United States)

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach.

    Science.gov (United States)

    Agrawal, Anjali; Dudhedia, Mayur; Deng, Weibin; Shepard, Kevin; Zhong, Li; Povilaitis, Edward; Zimny, Ewa

    2016-02-01

    The objective of the study was to identify the extragranular component requirements (level and type of excipients) to develop an immediate release tablet of solid dispersions prepared by hot melt extrusion (HME) process using commonly used HME polymers. Solid dispersions of compound X were prepared using polyvinyl pyrrolidone co-vinyl acetate 64 (PVP VA64), Soluplus, and hypromellose acetate succinate (HPMCAS-LF) polymers in 1:2 ratio by HME through 18 mm extruder. A mixture design was employed to study effect of type of polymer, filler (microcrystalline cellulose (MCC), lactose, and dicalcium phosphate anhydrous (DCPA)), and disintegrant (Crospovidone, croscarmellose sodium, and sodium starch glycolate (SSG)) as well as level of extrudates, filler, and disintegrant on tablet properties such as disintegration time (DT), tensile strength (TS), compactibility, and dissolution. Higher extrudate level resulted in longer DT and lower TS so 60-70% was the maximum amount of acceptable extrudate level in tablets. Fast disintegration was achieved with HPMCAS-containing tablets, whereas Soluplus- and PVP VA64-containing tablets had higher TS. Crospovidone and croscarmellose sodium were more suitable disintegrant than SSG to achieve short DT, and MCC was a suitable filler to prepare tablets with acceptable TS for each studied HME polymer. The influence of extragranular components on dissolution from tablets should be carefully evaluated while finalizing tablet composition, as it varies for each HME polymer. The developed statistical models identified suitable level of fillers and disintegrants for each studied HME polymer to achieve tablets with rapid DT (tablet porosity), and their predictivity was confirmed by conducting internal and external validation studies.

  4. Superiority of SDS lysis over saponin lysis for direct bacterial identification from positive blood culture bottle by MALDI-TOF MS.

    Science.gov (United States)

    Caspar, Yvan; Garnaud, Cécile; Raykova, Mariya; Bailly, Sébastien; Bidart, Marie; Maubon, Danièle

    2017-05-01

    Fast species diagnosis has an important health care impact, as rapid and specific antibacterial therapy is of clear benefit for patient's outcome. Here, a new protocol for species identification directly from positive blood cultures is proposed. Four in-house protocols for bacterial identification by MS directly from clinical positive blood cultures evaluating two lytic agents, SDS and saponin, and two protein extraction schemes, fast (FP) and long (LP) are compared. One hundred and sixty-eight identification tests are carried out on 42 strains. Overall, there are correct identifications to the species level in 90% samples for the SDS-LP, 60% for the SDS-FP, 48% for the saponin LP, and 43% for the saponin FP. Adapted scores allowed 92, 86, 72, and 53% identification for SDS-LP, SDS-FP, saponin LP, and saponin FP, respectively. Saponin lysis is associated with a significantly lower score compared to SDS (0.87 [0.83-0.92], p-value saponin lysis and the application of this rapid and cost-effective protocol in daily routine for microbiological agents implicated in septicemia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion.

    Science.gov (United States)

    Ueda, Keisuke; Kanaya, Harunobu; Higashi, Kenjirou; Yamamoto, Keiji; Moribe, Kunikazu

    2018-03-01

    In this work, the effect of saccharin (SAC) addition on the dissolution and supersaturation level of phenytoin (PHT)/Eudragit® E (EUD-E) solid dispersion (SD) at neutral pH was examined. The PHT/EUD-E SD showed a much slower dissolution of PHT compared to the PHT/EUD-E/SAC SD. EUD-E formed a gel layer after the dispersion of the PHT/EUD-E SD into an aqueous medium, resulting in a slow dissolution of PHT. Pre-dissolving SAC in the aqueous medium significantly improved the dissolution of the PHT/EUD-E SD. Solid-state 13 C NMR measurements showed an ionic interaction between the tertiary amino group of EUD-E and the amide group of SAC in the EUD-E gel layer. Consequently, the ionized EUD-E could easily dissolve from the gel layer, promoting PHT dissolution. Solution-state 1 H NMR measurements revealed the presence of ionic interactions between SAC and the amino group of EUD-E in the PHT/EUD-E/SAC solution. In contrast, interactions between PHT and the hydrophobic group of EUD-E strongly inhibited the crystallization of the former from its supersaturated solution. The PHT supersaturated solution was formed from the PHT/EUD-E/SAC SD by the fast dissolution of PHT and the strong crystallization inhibition effect of EUD-E after aqueous dissolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Binding Of Ferrocyphen By Sds, Ctab And Triton X-100 In Water ...

    African Journals Online (AJOL)

    SDS), cetyltrimethylammonium bromide (CTAB) and Triton X-100 surfactants was studied spectrophotometrically in water-ethanol medium. The equilibrium binding constant (Kb) and the number of binding sites (n) per surfactant monomer were ...

  7. EVALUATION OF A BUFFERED SOLID PHASE DISPERSION PROCEDURE ADAPTED FOR PESTICIDE ANALYSES IN THE SOIL MATRIX

    Directory of Open Access Journals (Sweden)

    Ana María Domínguez

    2015-08-01

    Full Text Available An evaluation of the pesticides extracted from the soil matrix was conducted using a citrate-buffered solid phase dispersion sample preparation method (QuEChERS. The identification and quantitation of pesticide compounds was performed using gas chromatography-mass spectrometry. Because of the occurrence of the matrix effect in 87% of the analyzed pesticides, the quantification was performed using matrix-matched calibration. The method's quantification limits were between 0.01 and 0.5 mg kg-1. Repeatability and intermediate precision, expressed as a relative standard deviation percentage, were less than 20%. The recoveries in general ranged between 62% and 99%, with a relative standard deviation < 20%. All the responses were linear, with a correlation coefficient (r ≥0.99.

  8. Interaction Study of an Amorphous Solid Dispersion of Cyclosporin A in Poly-Alpha-Cyclodextrin with Model Membranes by 1H-, 2H-, 31P-NMR and Electron Spin Resonance

    Directory of Open Access Journals (Sweden)

    Jean-Claude Debouzy

    2014-01-01

    Full Text Available The properties of an amorphous solid dispersion of cyclosporine A (ASD prepared with the copolymer alpha cyclodextrin (POLYA and cyclosporine A (CYSP were investigated by 1H-NMR in solution and its membrane interactions were studied by 1H-NMR in small unilamellar vesicles and by 31P 2H NMR in phospholipidic dispersions of DMPC (dimyristoylphosphatidylcholine in comparison with those of POLYA and CYSP alone. 1H-NMR chemical shift variations showed that CYSP really interacts with POLYA, with possible adduct formation, dispersion in the solid matrix of the POLYA, and also complex formation. A coarse approach to the latter mechanism was tested using the continuous variations method, indicating an apparent 1 : 1 stoichiometry. Calculations gave an apparent association constant of log Ka = 4.5. A study of the interactions with phospholipidic dispersions of DMPC showed that only limited interactions occurred at the polar head group level (31P. Conversely, by comparison with the expected chain rigidification induced by CYSP, POLYA induced an increase in the fluidity of the layer while ASD formation led to these effects almost being overcome at 298 K. At higher temperature, while the effect of CYSP seems to vanish, a resulting global increase in chain fluidity was found in the presence of ASD.

  9. Dissolution and bioavailability enhancement of alpha-asarone by solid dispersions via oral administration.

    Science.gov (United States)

    Deng, Li; Wang, Yu; Gong, Tao; Sun, Xun; Zhang, Zhi-Rong

    2017-11-01

    Alpha (α)-asarone (1-propenyl-2,4,5-methoxybenzol) (ARE) has been extensively used to treat chronic obstructive pulmonary diseases (COPD), bronchial asthma, pneumonia, and epilepsy. Due to its poor solubility and bioavailability, ARE was clinically administered via intravenous injection. However, severe allergies were often reported due to the presence of solublizers in the injection formulation. In our study, we sought to explore the biopharmaceutical classification of ARE, elucidate the mechanisms behind ARE absorption, and to develop a viable formulation to improve the oral bioavailability of ARE. ARE was not a P-glycoprotein substrate, which was absorbed in the passive mode without site specificity in the gastrointestinal tract. Solid dispersions prepared using hydrophilic matrix materials such as Pluronic F68, and polyethylene glycol (PEG) of varying molecular weights (PEG4K, PEG10K, and PEG20K) were proven to significantly improve the dissolution of ARE in vitro and the oral bioavailability of ARE in rats, which represent a promising strategy for the oral administration of ARE and other BCS II compounds.

  10. Preparation and investigation of mefenamic acid – polyethylene glycol – sucrose ester solid dispersions

    Directory of Open Access Journals (Sweden)

    Fülöp Ibolya

    2015-12-01

    Full Text Available Mefenamic acid (MA is a widely used non-steroidal antiinflammatory (NSAID drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670 and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  11. Effect of light dispersion of LED curing lights on resin composite polymerization.

    Science.gov (United States)

    Vandewalle, Kraig S; Roberts, Howard W; Andrus, Jeffrey L; Dunn, William J

    2005-01-01

    This study evaluated the effect of light dispersion of halogen and LED curing lights on resin composite polymerization. One halogen (Optilux 501, SDS/Kerr, Orange, CA, USA) and five light-emitting diode (LED) curing lights (SmartLite iQ, Dentsply Caulk, Milford, DE, USA; LEDemetron 1, SDS/Kerr; FLASHlite 1001, Discus Dental, Culver City, CA, USA; UltraLume LED 5, Ultradent Products, South Jordan, UT, USA; Allegro, Den-Mat, Santa Maria, CA, USA) were used in this study. Specimens (8 mm diameter by 2 mm thick) were made in polytetrafluoroethylene molds using hybrid (Z100, 3M ESPE, St. Paul, MN, USA) and microfill (A110, 3M ESPE) composite resins. The top surface was polymerized for 5 seconds with the curing light guide tip positioned at a distance of 1 and 5 mm. Degree of conversion (DC) of the composite specimens was analyzed on the bottom surface using micro-Fourier Transform Infrared (FTIR) spectroscopy (Perkin-Elmer FTIR Spectrometer, Wellesley, PA, USA) 10 minutes after light activation. DC at the bottom of the 2 mm specimen was expressed as a percentage of the mean maximum DC. Five specimens were created per curing light and composite type (n=5). Percent mean DC ratios and SDs were calculated for each light under each testing condition. Data were analyzed by analysis of variance (ANOVA)/Tukey's test (alpha = .05). A beam analyzer (LBA-700, Spiricon, Logan, UT, USA) was used to record the emitted light from the curing lights at 0 and 5 mm distances (n=5). A Top Hat factor was used to compare the quality of the emitted beam profile (LBA/PC, Spiricon). The divergence angle from vertical was also determined in the x- and y-axes (LBA/PC). Mean values and SDs were calculated for each light under each testing condition (0 and 5 mm, x- and y-axes) and analyzed by a two-way ANOVA/Tukey's test (alpha = .05). For DC ratios, significant differences were found based on curing light and curing distance (p < .05). At 1 mm, Optilux 501 and FLASHlite 1001 produced significantly

  12. Overview of the phase diagram of ionic magnetic colloidal dispersions

    International Nuclear Information System (INIS)

    Cousin, F.; Dubois, E.; Cabuil, V.; Boue, F.; Perzynski, R.

    2001-01-01

    We study ionic magnetic colloidal dispersions, which are constituted of γ-Fe 2 O 3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion. The phase diagram PV versus Φ (P: osmotic pressure, V: particle volume, Φ: particle volume fraction) is explored, especially in the range of high Π and high Φ. The osmotic pressure P of the colloidal dispersion is known either by a measurement either because it is imposed during the sample preparation by osmotic compression. The structure of the colloidal dispersion is determined from Small Angle Neutron Scattering. Two regimes can be distinguished. At high pressure, fluid and solid phases can exist. Their structure is governed by strong electrostatic repulsion, the range of which is here evaluated. At low pressure, gas, liquid and glassy solids can exist. Their structure results from a sticky hard sphere potential. (author)

  13. Matrix solid-phase dispersion followed by gas chromatography tandem mass spectrometry for the determination of benzotriazole UV absorbers in sediments.

    Science.gov (United States)

    Carpinteiro, I; Abuín, B; Ramil, M; Rodríguez, I; Cela, R

    2012-01-01

    A cost-effective and low solvent consumption method, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six benzotriazole UV absorbers in sediments is presented. Sieved samples (0.5 g) were first mixed in a mortar with a solid sorbent and then transferred to a polypropylene syringe containing a layer of clean-up co-sorbent. Analytes were eluted with a suitable solvent and further determined by gas chromatography with tandem mass spectrometry (GC-MS/MS). Under final conditions, diatomaceous earth and silica, deactivated to 10%, were used as inert dispersant and clean-up co-sorbent, respectively. Analytes were recovered using just 5 mL of dichloromethane, and this extract was concentrated and exchanged to 1 mL of isooctane. Further removal of co-extracted sulphur was achieved adding activated copper powder to final extracts, which were stored overnight, before injection in the GC-MS/MS system. The accuracy of the method was assessed with river and marine sediment samples showing different carbon contents and spiked at different concentrations in the range from 40 to 500 ng g(-1). Recoveries varied between 78% and 110% with associated standard deviations below 14%. The limits of quantification of the method stayed between 3 and 15 ng g(-1). Levels of target compounds in sediment samples ranged from not detected up to a maximum of 56 ng g(-1) for Tinuvin 328.

  14. SDS-facilitated in vitro formation of a transmembrane B-type cytochrome is mediated by changes in local pH

    DEFF Research Database (Denmark)

    Weber, M.; Schneider, D.; Prodöhl, A.

    2011-01-01

    cytochrome b(559)', which can be efficiently assembled in vitro from a heme-binding PsbF homo-dimer by combining free heme with the apo-cytochrome b(559)'. Unfolding of the protein dissolved in the mild detergent dodecyl maltoside may be induced by addition of SDS, which at high concentrations leads to dimer...... dissociation. Surprisingly, absorption spectroscopy reveals that heme binding and cytochrome formation at pH 8.0 are optimal at intermediate SDS concentrations. Stopped-flow kinetics revealed that genuine conformational changes are involved in heme binding at these SDS concentrations. GPS (Global Protein...... folding State mapping) NMR measurements showed that optimal heme binding is intimately related to a change in the degree of histidine protonation. In the absence of SDS, the pH curve for heme binding is bell-shaped with an optimum at around pH 6-7. At alkaline pH values, the negative electrostatic...

  15. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, Mark A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)], E-mail: mark.a.chappell@usace.army.mil; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E. [SpecPro, Inc., 4815 Bradford Drive, Suite 201, Huntsville, AL 35805 (United States); Price, Cynthia L. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States); Zhou Pingheng; Morikawa, Eizi [J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Kennedy, Alan J.; Steevens, Jeffery A. [Environmental Laboratory, Engineering Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, MS 39180 (United States)

    2009-04-15

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L{sup -1} added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms.

  16. Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances

    International Nuclear Information System (INIS)

    Chappell, Mark A.; George, Aaron J.; Dontsova, Katerina M.; Porter, Beth E.; Price, Cynthia L.; Zhou Pingheng; Morikawa, Eizi; Kennedy, Alan J.; Steevens, Jeffery A.

    2009-01-01

    Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L -1 added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment. - Suspensions of multi-walled carbon nanotubes are stabilized by relatively low concentrations of dissolved humic substances in solution through surfactive mechanisms

  17. Interaction between a hydrophobic rigid face and a flexible alkyl tail: Thermodynamics of self-assembling of sodium cholate and SDS

    International Nuclear Information System (INIS)

    Bai, Guangyue; Sheng, Jianhui; Wang, Yujie; Wu, Hui; Zhao, Yang; Zhuo, Kelei; Bastos, Margarida

    2016-01-01

    Highlights: • Critical concentrations and enthalpy changes for stepwise aggregation are obtained by ITC. • ITC allowed the thermodynamic characterization for NaCA/SDS self-assembling. • Steroid face-to-alkyl chain hydrophobic interaction tends to be saturated at molar ratio 1:1.5. • Alkyl-steroid interaction favors micellization of NaCA/SDS and the mixture shows nonideal behavior. • Intermolecular interaction and excess enthalpies were discussed according to Rubingh’s model. - Abstract: The thermodynamics of molecular self-assembling of an anionic biosurfactant, sodium cholate (NaCA) and its mixtures with sodium dodecyl sulfate (SDS) in aqueous solution have been investigated by isothermal titration calorimetry (ITC), along with fluorescence and conductivity measurements. Different critical concentrations were obtained by these three techniques – critical pre-micelle concentration (cmc_p_r_e) and critical micelle concentration (cmc) for pure NaCA, and critical micelle concentrations (cmc_m_i_x) for the mixed systems with differently initial SDS concentrations. Importantly, ITC allowed us to directly measure the enthalpy changes of pre-micelle formation (ΔH_p_r_e_m_i_c = (−0.28 ± 0.02) kJ·mol"−"1) and of micelle formation (ΔH_m_i_c = (−1.76 ± 0.05) kJ·mol"−"1) for pure NaCA as well as the enthalpies for micellization for the mixed systems NaCA/SDS. The non-ideality of the mixed surfactant solution was evaluated in terms of interaction parameters and excess enthalpies that were calculated in the light of Clint’s and Rubingh’s models. It was found that there is an obvious synergistic effect in the NaCA/SDS mixed system. From all these results we can ascribe the strong interaction between the same charge surfactants NaCA and SDS to the structural difference in their hydrophobic moieties. In fact, the flexible alkyl chains of SDS and the non-planar hydrophobic β-faces of NaCA tend to have a more compact packing than pure NaCA.

  18. A combination of solid-phase extraction and dispersive solid-phase extraction effectively reduces the matrix interference in liquid chromatography-ultraviolet detection during pyraclostrobin analysis in perilla leaves.

    Science.gov (United States)

    Farha, Waziha; Rahman, Md Musfiqur; Abd El-Aty, A M; Jung, Da-I; Kabir, Md Humayun; Choi, Jeong-Heui; Kim, Sung-Woo; Im, So Jeong; Lee, Young-Jun; Shin, Ho-Chul; Kwon, Chan-Hyeok; Son, Young-Wook; Lee, Kang-Bong; Shim, Jae-Han

    2015-12-01

    Perilla leaves contain many interfering substances; thus, it is difficult to protect the analytes during identification and integration. Furthermore, increasing the amount of sample to lower the detection limit worsens the situation. To overcome this problem, we established a new method using a combination of solid-phase extraction and dispersive solid-phase extraction to analyze pyraclostrobin in perilla leaves by liquid chromatography with ultraviolet absorbance detection. The target compound was quantitated by external calibration with a good determination coefficient (R(2) = 0.997). The method was validated (in triplicate) with three fortification levels, and 79.06- 89.10% of the target compound was recovered with a relative standard deviation <4. The limits of detection and quantification were 0.0033 and 0.01 mg/kg, respectively. The method was successfully applied to field samples collected from two different areas at Gwangju and Muan. The decline in the resiudue concentrations was best ascribed to a first-order kinetic model with half-lives of 5.7 and 4.6 days. The variation between the patterns was attributed to humidity. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    Science.gov (United States)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  20. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets.

    Science.gov (United States)

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza

    2016-01-01

    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and

  1. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    Science.gov (United States)

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  2. Solid-phase extraction assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet to determine sildenafil and its analogues in dietary supplements.

    Science.gov (United States)

    Li, Jing; Roh, Si Hun; Shaodong, Jia; Hong, Ji Yeon; Lee, Dong-Kyu; Shin, Byong-Kyu; Park, Jeong Hill; Lee, Jeongmi; Kwon, Sung Won

    2017-08-01

    A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid-phase extraction assisted reversed-phase dispersive liquid-liquid microextraction based on solidification of floating organic droplet combined with ion-pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid-phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0-100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10-100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solid-soluted content of cerium in solid solution of sphene

    International Nuclear Information System (INIS)

    Zhao Wei; Teng Yuancheng; Li Yuxiang; Ren Xuetan; Huang Junjun

    2010-01-01

    The sphene solid solution was synthesized by solid-state method,with calcium carbonate, silica, titanium dioxide, cerium oxalate and alumina as raw materials. The solid-soluted content of cerium in sphene was researched by means of X-ray diffraction (XRD), backscattering scanning electron microscopy (BSE), energy dispersive spectroscopy (EDS) and so on. The influence of A l3+ ion introduction to sphene on the solid-soluted content of cerium in sphene solid solution was studied. The results indicate that when introducing Al 3+ to sphene as electrovalence compensation, Ce 4+ could be well solidified to Ca 1-x Ce x Ti 1-2x A l2x SiO 5 , and the solid-soluted content is approximately 12.61%. With no electrovalence compensation, Ce 4+ could be solidified to Ca 1-2x Ce x TiSiO 5 , and the solid-soluted content is approximately 10.98%. The appropriate synthesis temperature of sphene solid solution is 1 260 degree C.(authors)

  4. Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is an invaluable technique in immunology to detect and characterize proteins of low abundance. Proteins resolved on sodium dodecyl sulfate (SDS) polyacrylamide gels are normally transferred electrophoretically to adsorbent membranes such as nitrocellulose or polyvinylidene diflouride membranes. Here, we describe the nonelectrophroretic transfer of the Ro 60 (or SSA) autoantigen, 220- and 240-kD spectrin antigens, and prestained molecular weight standards from SDS polyacrylamide gels to obtain up to 12 immunoblots from a single gel and multiple sera.

  5. Determination of ibuprofen enantiomers in breast milk using vortex-assisted matrix solid-phase dispersion and direct chiral liquid chromatography.

    Science.gov (United States)

    León-González, M E; Rosales-Conrado, N

    2017-09-08

    A mixture of β-cyclodextrin (β-CD) and primary and secondary amine (PSA) sorbents was employed for the extraction and quantification of ibuprofen enantiomers from human breast milk, combining a vortex-assisted matrix solid-phase dispersion method (MSPD) and direct chiral liquid chromatography (CLC) with ultraviolet detection (UV). The MSPD sample preparation procedure was optimized focusing on both the type and amount of dispersion/sorption sorbents and the nature of the elution solvent, in order to obtain acceptable recoveries and avoiding enantiomer conversion. These MSPD parameters were optimized with the aid of an experimental design approach. Hence, a factorial design was used for identification of the main variables affecting the extraction process of ibuprofen enantiomers. Under optimum selected conditions, MSPD combined with direct CLC-UV was successfully applied for ibuprofen enantiomeric determination in breast milk at enantiomer levels between 0.15 and 6.0μgg -1 . The proposed analytical method also provided good repeatability, with relative standard deviations of 6.4% and 8.3% for the intra-day and inter-day precision, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol.

    Science.gov (United States)

    Meng, Fan; Meckel, Jordan; Zhang, Feng

    2017-08-30

    We investigate a ternary system that consists of itraconazole (ITZ) and two polymers: povidone K12 and Carbopol 907. The interactions between these two polymers and their effects on the properties of ternary ITZ amorphous solid dispersions (ASDs) are studied. These two polymers can form a water-insoluble complex in acidic aqueous media. The critical pH is determined to be 4.17. The weight percentage of Carbopol 907 in the interpolymer complex range from 59 to 70%, depending on the initial ratios between these two polymers in the starting solutions. This complexation is driven by a negative enthalpy change from the H-bonding between the two polymers and a positive entropy change from the freed water molecules. Due to the slow precipitation of the interpolymer complex in aqueous media, the attempt to prepare ternary ASD using solvent-controlled coprecipitation is not successful. Melt extrusion is identified to be the only viable method to prepare this ternary ASD. We find that interpolymer complex-based ASDs are physically less stable and demonstrate the poorest drug-release properties when compared to individual polymer-based binary ASDs. This study illustrates that the too strong interaction between polymers in ternary ASDs is detrimental to their performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. SDS, a structural disruption score for assessment of missense variant deleteriousness

    Directory of Open Access Journals (Sweden)

    Thanawadee ePreeprem

    2014-04-01

    Full Text Available We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites.The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation.

  8. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C; Upreti, Reshmi; Mujawar, Mohammad M; Pasha, Sadiq S

    2015-12-01

    We propose a simple technique for bacterial and yeast cfu estimations from diverse samples with no prior idea of viable counts, designated as single plate-serial dilution spotting (SP-SDS) with the prime recommendation of sample anchoring (10 0 stocks). For pure cultures, serial dilutions were prepared from 0.1 OD (10 0 ) stock and 20 μl aliquots of six dilutions (10 1 -10 6 ) were applied as 10-15 micro-drops in six sectors over agar-gelled medium in 9-cm plates. For liquid samples 10 0 -10 5 dilutions, and for colloidal suspensions and solid samples (10% w/v), 10 1 -10 6 dilutions were used. Following incubation, at least one dilution level yielded 6-60 cfu per sector comparable to the standard method involving 100 μl samples. Tested on diverse bacteria, composite samples and Saccharomyces cerevisiae , SP-SDS offered wider applicability over alternative methods like drop-plating and track-dilution for cfu estimation, single colony isolation and culture purity testing, particularly suiting low resource settings.

  9. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  10. Determination of twelve herbicides in tobacco by a combination of solid–liquid–solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry

    International Nuclear Information System (INIS)

    Liao, Qie Gen; Zhou, Yao Min; Luo, Lin Guang; Wang, Li Bing; Feng, Xiao Hu

    2014-01-01

    We report on a method for the determination of twelve herbicides using solid–liquid–solid dispersive extraction (SLSDE), followed by dispersive liquid-liquid micro-extraction (DLLME) and quantitation by gas chromatography with triple quadrupole mass spectrometric detection. SLSDE was applied to the extraction of herbicides from tobacco samples using multi-walled carbon nanotubes (MWCNTs) as clean-up adsorbents. The effect of the quantity of MWCNTs on SLSDE, and of type and volume of extraction and disperser solvents and of salt effect on DLLME were optimized. Good linearity is obtained in the 5.0 - 500 μg kg −1 concentration range, with regression coefficients of >0.99. Intra-day and inter-day repeatability, expressed as relative standard deviations, are between 3 and 9 %. The recoveries in case of herbicide-spiked tobacco at concentration levels of 20.0, 50.0 and 100.0 g kg −1 ranged from 79 to 105 %, and LODs are between 1.5 and 6.1 μg kg −1 . All the tobacco samples were found to contain butralin and pendimethalin at levels ranging from 15.8 to 500.0 μg kg −1 . (author)

  11. Preconcentration of uranium in water samples using dispersive ...

    African Journals Online (AJOL)

    Preconcentration of uranium in water samples using dispersive liquid-liquid micro- extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry.

  12. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene–polypropylene block copolymer for maximized disintegration and dissolution

    Science.gov (United States)

    Balata, Gehan F; Zidan, Ahmad S; Abourehab, Mohamad AS; Essa, Ebtessam A

    2016-01-01

    The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene–polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 32 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT’s porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin. PMID:27757012

  13. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene-polypropylene block copolymer for maximized disintegration and dissolution.

    Science.gov (United States)

    Balata, Gehan F; Zidan, Ahmad S; Abourehab, Mohamad As; Essa, Ebtessam A

    2016-01-01

    The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs) with an optimized disintegration and dissolution characteristics. Polyoxyethylene-polypropylene block copolymer (poloxamer 188) was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs). Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 3 2 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT's porosity and to fasten disintegration rather than swelling action by croscarmellose sodium. On the other hand, croscarmellose sodium was most important for the initial simvastatin release. The results suggest the potential use of poloxamer 188-based SD in RDT for the oral delivery of poor water-soluble antihyperlipidemic drug, simvastatin.

  14. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.

    Science.gov (United States)

    Aoudj, S; Khelifa, A; Drouiche, N

    2017-08-01

    Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Selective Dispersive Solid Phase Extraction of Ser-traline Using Surface Molecularly Imprinted Polymer Grafted on SiO2/Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Faezeh Khalilian

    2017-01-01

    Full Text Available A surface molecularly imprinted dispersive solid phase extraction coupled with liquid chromatography–ultraviolet detection is proposed as a selective and fast clean-up technique for the determination of sertraline in biological sample. Surface sertraline-molecular imprinted polymer was grafted and synthesized on the SiO2/graphene oxide surface. Firstly SiO2 was coated on synthesized graphene oxide sheet using sol-gel technique. Prior to polymerization, the vinyl group was incorporated on to the surface of SiO2/graphene oxide to direct selective polymerization on the surface. Methacrylic acid, ethylene glycol dimethacrylate and ethanol were used as monomer, cross-linker and progen, respectively. Non-imprinted polymer was also prepared for comparing purposes. The properties of the molecular imprinted polymer were characterized using field emission-scanning electron microscopy and Fourier transform infrared spectroscopy methods. The surface molecular imprinted polymer was utilized as an adsorbent of dispersive solid phase extraction for separation and preconcentration of sertraline. The effects of the different parameters influencing the extraction efficiency, such as sample pH were investigated and optimized. The specificity of the molecular imprinted polymer over the non-imprinted polymer was examined in absence and presence of competitive drugs. Sertraline calibration curve showed linearity in the ranges 1–500 µg L-1. The limits of detection and quantification under optimized conditions were obtained 0.2 and 0.5 µg L-1. The within-day and between-day relative standard deviations (n=3 were 4.3 and 7.1%, respectively. Furthermore, the relative recoveries for spiked biological samples were above 92%.

  16. Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multi walled Carbon Nano tubes in Keeping the Plain Concrete Properties

    International Nuclear Information System (INIS)

    Adresi, M.; Hassani, A.; Javadian, S.; Tulliani, J. M.

    2016-01-01

    A new surfactant combination compatible with concrete formulation is proposed to avoid unwanted air bubbles created during mixing process in the absence of a defoamer and to achieve the uniform and the maximum possible dispersion of multi walled carbon nano tubes (MWCNTs) in water and subsequently in concrete. To achieve this goal, three steps have been defined: (1) concrete was made with different types and amount of surfactants containing a constant amount of MWCNTs (0.05 wt%) and the air bubbles were eliminated with a proper defoamer. (2) Finding a compatible surfactant with concrete compositions and eliminating unwanted air bubbles in the absence of a common defoamer are of fundamental importance to significantly increase concrete mechanical properties. In this step, the results showed that the poly carboxylate super plasticizer (SP-C) (as a compatible surfactant) dispersed MWCNTs worse than SDS/DTAB but unwanted air bubbles were removed, so the defoamer can be omitted in the mixing process. (3) To solve the problem, a new compatible surfactant composition was developed and different ratios of surfactants were tested and evaluated by means of performance criteria mentioned above. The results showed that the new surfactant composition (SDS and SP-C) can disperse MWCNTs around 24% more efficiently than the other surfactant compositions.

  17. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    Science.gov (United States)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  18. Flexible continuous manufacturing platforms for solid dispersion formulations

    Science.gov (United States)

    Karry-Rivera, Krizia Marie

    In 2013 16,000 people died in the US due to overdose from prescription drugs and synthetic narcotics. As of that same year, 90% of new molecular entities in the pharmaceutical drug pipeline are classified as poor water-soluble. The work in this dissertation aims to design, develop and validate platforms that solubilize weak acids and can potentially deter drug abuse. These platforms are based on processing solid dispersions via solvent-casting and hot-melt extrusion methods to produce oral transmucosal films and melt tablets. To develop these platforms, nanocrystalline suspensions and glassy solutions were solvent-casted in the form of films after physicochemical characterizations of drug-excipient interactions and design of experiment approaches. A second order model was fitted to the emulsion diffusion process to predict average nanoparticle size and for process optimization. To further validate the manufacturing flexibility of the formulations, glassy solutions were also extruded and molded into tablets. This process included a systematic quality-by-design (QbD) approach that served to identify the factors affecting the critical quality attributes (CQAs) of the melt tablets. These products, due to their novelty, lack discriminatory performance tests that serve as predictors to their compliance and stability. Consequently, Process Analytical Technology (PAT) tools were integrated into the continuous manufacturing platform for films. Near-infrared (NIR) spectroscopy, including chemical imaging, combined with deconvolution algorithms were utilized for a holistic assessment of the effect of formulation and process variables on the product's CQAs. Biorelevant dissolution protocols were then established to improve the in-vivo in-vitro correlation of the oral transmucosal films. In conclusion, the work in this dissertation supports the delivery of poor-water soluble drugs in products that may deter abuse. Drug nanocrystals ensured high bioavailability, while glassy

  19. Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by 'Spencer' recombinant inbred line population of soybean.

    Science.gov (United States)

    Anderson, J; Akond, M; Kassem, M A; Meksem, K; Kantartzi, S K

    2015-04-01

    The best way to protect yield loss of soybean [Glycine max (L.) Merr.] due to sudden death syndrome (SDS), caused by Fusarium virguliforme (Aoki, O'Donnel, Homma & Lattanzi), is the development and use of resistant lines. Mapping quantitative trait loci (QTL) linked to SDS help developing resistant soybean germplasm through molecular marker-assisted selection strategy. QTL for SDS presented herein are from a high-density SNP-based genetic linkage map of MD 96-5722 (a.k.a 'Monocacy') by 'Spencer' recombinant inbred line using SoySNP6K Illumina Infinium BeadChip genotyping array. Ninety-four F 5:7 lines were evaluated for 2 years (2010 and 2011) at two locations (Carbondale and Valmeyer) in southern Illinois, USA to identify QTL controlling SDS resistance using disease index (DX). Composite interval mapping identified 19 SDS controlling QTL which were mapped on 11 separate linkage group (LG) or chromosomes (Chr) out of 20 LG or Chr of soybean genome. Many of these significant QTL identified in one environment/year were confirmed in another year or environment, which suggests a common genetic effects and modes of the pathogen. These new QTL are useful sources for SDS resistance studies in soybean breeding, complementing previously reported loci.

  20. Matrix solid-phase dispersion extraction of organophosphorus pesticide using SiO2-poly(N-vinylimidazole)

    International Nuclear Information System (INIS)

    Gutiérrez-Solís, M C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Ávila-Ortega, A; Medina-Peralta, S

    2013-01-01

    A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO 2 -PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 2 4 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO 2 or SiO 2 -PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO 2 -PVI in spiked tomato with 0.2 and 0.8μg/g.

  1. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection.

    Science.gov (United States)

    Liu, He; Zhang, Yupu; Sun, Yantao; Wang, Xue; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Yu, Aimin; Zhang, Hanqi; Wang, Yinghua

    2010-10-15

    The arctiin and arctigenin in the fruit of Arctium lappa L. were extracted by matrix solid-phase dispersion (MSPD) and determined by high-performance liquid chromatography (HPLC) with fluorescence detection. The experimental conditions for the MSPD were optimized. Silica gel was selected as dispersion adsorbent and methanol as elution solvent. The calibration curve showed good relationship (r>0.9998) in the concentration range of 0.010-5.0μgmL(-1) for arctiin and 0.025-7.5μgmL(-1) for arctigenin. The recoveries were between 74.4% and 100%. The proposed method consumed less sample, time and solvent compared with conventional methods, including ultrasonic and Soxhlet extraction. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    Science.gov (United States)

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C 18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r 2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Recovery evaluation of organophosphorus pesticides from bee pollen by matrix solid-phase dispersion extraction using sorbents based on silica and titania

    International Nuclear Information System (INIS)

    Torres-Perea, C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Medina-Peralta, S; Moguel-Ordóñez, Y B

    2013-01-01

    This work focused on the evaluation of the recovery of organophosphorus pesticides from bee pollen after matrix solid phase-dispersion extraction (MSPD). Materials based on silica, titania and titania modified with polivylnylimidazole or polyestirene were used as adsorbents for the extraction of pesticides. Small amounts of fortified pollen (0.1 g, at 1 micro-g/g of pesticides), adsorbent (0.4 g) and solvent elution (1 mL de acetonitrile – ACN) were used in the extractions. For recovery evaluation, pollen extracts were analyzed by gas chromatography coupled with mass spectrometry.

  4. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions.

    Science.gov (United States)

    Arioglu-Tuncil, Seda; Bhardwaj, Vivekanand; Taylor, Lynne S; Mauer, Lisa J

    2017-09-01

    Amorphous solid dispersions of thiamine chloride hydrochloride (THCl) were created using a variety of polymers with different physicochemical properties in order to investigate how effective the various polymers were as THCl crystallization inhibitors. THCl:polymer dispersions were prepared by lyophilizing solutions of THCl and amorphous polymers (guar gum, pectin, κ-carrageenan, gelatin, and polyvinylpyrrolidone (PVP)). These dispersions were stored at select temperature (25 and 40°C) and relative humidity (0, 23, 32, 54, 75, and 85% RH) conditions and monitored at different time points using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Moisture sorption isotherms of all samples were also obtained. Initially amorphous THCl was produced in the presence of ≥40% w/w pectin, κ-carrageenan, gelatin, and guar gum or ≥60% w/w PVP. Trends in polymer THCl crystallization inhibition (pectin≥κ-carrageenan>gelatin>guar gum≫PVP) were primarily based on the ability of the polymer to interact with THCl via hydrogen bonding and/or ionic interactions. The onset of THCl crystallization from the amorphous dispersions was also related to storage conditions. THCl remained amorphous at low RH conditions (0 and 23% RH) in all 1:1 dispersions except THCl:PVP. THCl crystallized in some dispersions below the glass transition temperature (T g ) but remained amorphous in others at T~T g . At high RHs (75 and 85% RH), THCl crystallized within one day in all samples. Given the ease of THCl amorphization in the presence of a variety of polymers, even at higher vitamin concentrations than would be found in foods, it is likely that THCl is amorphous in many low moisture foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  7. Application of dispersion and dose assessment models to the solid and liquid wastes facilities of Ezeiza radioactive waste management area

    International Nuclear Information System (INIS)

    Amado, Valeria A.; Lopez, Fabio O.

    2007-01-01

    This paper provides a dose assessment of the critic group from the near surface facility for solid and liquid waste, located at Ezeiza Atomic Center in Argentina (Ezeiza Radioactive Waste Management Area-AGE). The calculations were made using several approaches about source term. The activities for each radionuclide and facility were taken from the National Atomic Energy Commission's Inventory that corresponds to the first trimester of 2005. The radioactive decay of each radionuclide was considered. The work was performed in two steps. In the first step, using the Nuclide Dispersion in Phreatic Aquifer Model (DRAF), the dispersion of the contaminants into the phreatic aquifer until the discharge point at a superficial water course was considered. In the second step, the Consequences of Releases to the Environment Assessment Methodology Program (PC CREAM) was used for the study of radionuclides dispersion in superficial water course and dose calculations. The results from this paper show that, for every studied radionuclide, the doses involved are significantly lower than the values established by current regulations. On the other hand, those results put in evidence the utility of simple models in estimating the order of magnitude of expected concentrations and doses. It is important to highlight that the obtained results can be used only in the context of the suppositions that were made. (author) [es

  8. Evaluation of alternative environmentally friendly matrix solid phase dispersion solid supports for the simultaneous extraction of 15 pesticides of different chemical classes from drinking water treatment sludge.

    Science.gov (United States)

    Soares, Karina Lotz; Cerqueira, Maristela Barnes Rodrigues; Caldas, Sergiane Souza; Primel, Ednei Gilberto

    2017-09-01

    This study describes the development, optimization and validation of a method for the extraction of 15 pesticides of different chemical classes in drinking water treatment sludge (DWTS) by vortex-assisted Matrix Solid Phase Dispersion (MSPD) with determination by gas chromatography coupled to mass spectrometry. It focused on the application of alternative and different solid supports to the extraction step of the MSPD. The main parameters that influenced the extraction were studied in order to obtain better recovery responses. Recoveries ranged from 70 to 120% with RSD below 20% for all analytes. Limits of quantification (LOQ) of the method ranged from 5 to 500 μg kg -1 whereas the analytical curves showed correlation coefficients above 0.997. The method under investigation used low volume of solvent (5 mL), low sample mass (1.5 g) and low mass of chitin (0.5 g), an environmentally friendly support. It has advantages, such as speed, simplicity and low cost material, over other methods. When the method was applied, 4 out of 15 pesticides were detected in the DWTS samples in concentrations below the LOQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Radioisotope studies on the paradox in dispersion and agglomeration of sewage greases discharged from ocean outfalls

    International Nuclear Information System (INIS)

    Davison, A.; Easy, J.F.; Seatonberry, B.W.

    1981-04-01

    Experiments have been undertaken in the ocean off Sydney, Australia to monitor the movement and the dispersion of sewage solids. These solids were labelled with a radioisotope, gold-198 prior to ocean discharge. The labelled material was followed at sea using submersible scintillation detectors. Lateral and vertical dispersion coefficients were determined. The experiments showed that under some conditions the labelled sewage grease dispersed and under others the grease agglomerated. This variation is explained in terms of non-conservative processes

  10. Open Burn/Open Detonation Dispersion Model (OBODM) User's Guide. Volume I. User's Instructions

    National Research Council Canada - National Science Library

    Bjorklund, Jay

    1998-01-01

    ...) of obsolete munitions and solid propellants. OBODM uses loud/plume rise, dispersion, and deposition algorithms taken from existing models for instantaneous and quasi-continuous sources to predict the downwind transport and dispersion...

  11. Use of solid dispersions to increase stability of dithranol in topical formulations

    Directory of Open Access Journals (Sweden)

    Marilene Estanqueiro

    2014-09-01

    Full Text Available The present study was planned to improve the stability of dithranol using solid dispersions (SD. Two different SD at a 1:9 ratio of dithranol/excipient were prepared: one of them using glyceryl behenate as excipient and the other using a mixture of argan oil with stearic acid (1:8 ratio as excipient. Pure dithranol and SD of dithranol were incorporated in an oil-in-water cream and in a hydrophobic ointment in a drug/dermatological base ratio of 1:10. The physical and mechanical properties of semisolid formulations incorporating the pure drug and the developed SD were evaluated through rheological and textural analysis. To evaluate the stability, L*a*b* color space parameters of SD and semisolid formulations, and pH of hydrophilic formulations were determined at defined times, during one month. Each sample was stored at different conditions namely, light exposure (room temperature, high temperature exposition (37 °C (protected from light and protected from light (room temperature. Despite higher values of firmness and adhesiveness, hydrophobic ointment exhibited the best rheological features compared to the oil-in-water cream, namely a shear-thinning behavior and high thixotropy. These formulations have also presented more stability, with minor changes in L*a*b* color space parameters. The results of this study indicate that is possible to conclude that the developed SD contributed to the increased stability of dithranol.

  12. iSDS: a self-configurable software-defined storage system for enterprise

    Science.gov (United States)

    Chen, Wen-Shyen Eric; Huang, Chun-Fang; Huang, Ming-Jen

    2018-01-01

    Storage is one of the most important aspects of IT infrastructure for various enterprises. But, enterprises are interested in more than just data storage; they are interested in such things as more reliable data protection, higher performance and reduced resource consumption. Traditional enterprise-grade storage satisfies these requirements at high cost. It is because traditional enterprise-grade storage is usually designed and constructed by customised field-programmable gate array to achieve high-end functionality. However, in this ever-changing environment, enterprises request storage with more flexible deployment and at lower cost. Moreover, the rise of new application fields, such as social media, big data, video streaming service etc., makes operational tasks for administrators more complex. In this article, a new storage system called intelligent software-defined storage (iSDS), based on software-defined storage, is described. More specifically, this approach advocates using software to replace features provided by traditional customised chips. To alleviate the management burden, it also advocates applying machine learning to automatically configure storage to meet dynamic requirements of workloads running on storage. This article focuses on the analysis feature of iSDS cluster by detailing its architecture and design.

  13. A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Ayrolles-Torro, Adeline; Duarte Rodrigues, Alysson; Torrent, Joan; Alvarez-Martinez, Maria Teresa; Kovacs, Gabor G; Verdier, Jean-Michel; Robitzer, Mike; Perrier, Véronique

    2016-01-26

    Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches. We previously identified thienyl pyrimidine compounds that induce SDS-resistant PrP(Sc) (rSDS-PrP(Sc)) oligomers in prion-infected samples. Due to the low effective doses of the thienyl pyrimidine hits, we synthesized a quaterthiophene-bis-triazine compound, called MR100 to better evaluate their diagnostic and therapeutic potentials. This molecule exhibits a powerful activity inducing rSDS-PrP(Sc) oligomers at nanomolar concentrations in prion-infected cells. Fluorescence interaction studies of MR100 with mouse PrP fibrils showed substantial modification of the spectrum, and the interaction was confirmed in vitro by production of rSDS-oligomer species upon incubation of MR100 with fibrils in SDS-PAGE gel. We further explored whether MR100 compound has a potential to be used in the diagnosis of prion diseases. Our results showed that: (i) MR100 can detect rSDS-oligomers in prion-infected brain homogenates of various species, including human samples from CJD patients; (ii) A protocol, called "Rapid Centrifugation Assay" (RCA), was developed based on MR100 property of inducing rSDS-PrP(Sc) oligomers only in prion-infected samples, and avoiding the protease digestion step. RCA allows the detection of both PK-sensitive and PK-resistant PrP(Sc) species in rodents samples but also from patients with different CJD forms (sporadic and new variant); (iii) A correlation could be established between the amount of rSDS-PrP(Sc) oligomers revealed by MR100 and the

  14. Determination of selected UV filters in indoor dust by matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2009-07-31

    A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.

  15. Development of Nanofluids as Lubricant to Study Friction and Wear Behavior of Stainless Steels

    Science.gov (United States)

    Sahoo, Rashmi Ranjan; Bhattacharjee, Santu; Das, Tuhin

    A number of nanofluids have been prepared to study the effect of lubrication properties of nanofluids on stainless steels taking Kaolin and Boron Nitride (BN) as the lubricant particles and Sodium Dodecyl Sulfate (SDS), Cetyl Trimethyl Ammonium Bromide (CTAB), Sodium Hexa Meta Phosphate (SHMP) as dispersants in the same liquid medium i.e. water. A pin on disc tribometer is being used to access the tribological behaviour of the prepared nanofluids. The particle size of these particle dispersions are examined with a nanoparticle size analyzer. It has been found that the use of dispersants significantly control the particle size and tribological behavior of the nanofluids as for Boron Nitride particle with Sodium Dodecyl Sulfate (SDS) as dispersant has got a very low value of coefficient of friction being equal to 0.142 while without dispersant the value is 0.498. Similarly, in case of Kaolin water with SDS as dispersant the value of coefficient of friction obtained is 0.161 and without dispersant it is 0.333. Sodium Dodecyl Sulfate (SDS) as dispersant has resulted a very low coefficient of friction compared to other dispersants tested even though it doesn’t always assure a least particle size. The role of SDS in yielding the lowest friction has pursued significant attention for further investigation.

  16. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    International Nuclear Information System (INIS)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-01-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe n+ but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe n+ was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate

  17. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  18. Structural insight into the physical stability of amorphous Simvastatin dispersed in pHPMA: enhanced dynamics and local clustering as evidenced by solid-state NMR and Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Martina; Šturcová, Adriana; Kredatusová, Jana; Brus, Jiří

    2015-01-01

    Roč. 478, č. 2 (2015), s. 464-475 ISSN 0378-5173 R&D Projects: GA ČR(CZ) GA14-03636S; GA MŠk(CZ) LD14010 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : solid dispersions * simvastatin * pharmaceuticals Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.994, year: 2015

  19. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  20. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    Science.gov (United States)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  1. Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta.

    Science.gov (United States)

    Wang, Ying; Gao, Wei; Wu, Jing; Liu, Huijin; Wang, Yingjun; Wang, Yawei; Jiang, Guibin

    2017-12-01

    Chlorinated paraffins (SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion (MSPD) was developed for the analysis of short-chain CPs (SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry (GC-ECNI-LRMS) and gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent, sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test. Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane (7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC-QTOF-HRMS, and the corresponding relative standard deviations were 10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8ng/g (dry weight, dw) and 19.2ng/g (dw) as measured by GC-ECNI-LRMS and GC-QTOF-HRMS, respectively. The concentrations of SCCPs in four human placentas were in the range of

  2. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    Science.gov (United States)

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  3. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    Science.gov (United States)

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  4. Bottom-up and Top-down Approaches to Explore Sodium Dodecyl Sulfate and Soluplus on the Crystallization Inhibition and Dissolution of Felodipine Extrudates.

    Science.gov (United States)

    Chen, Jiali; Chen, Yuqi; Huang, Wencong; Wang, Hanning; Du, Yang; Xiong, Subin

    2018-05-05

    The objectives of this study were to explore sodium dodecyl sulfate (SDS) and Soluplus on the crystallization inhibition and dissolution of felodipine (FLDP) extrudates by bottom-up and top-down approaches. FLDP extrudates with Soluplus and/or SDS were prepared by hot melt extrusion (HME), and characterized by PLM, DSC and FT-IR. Results indicated that Soluplus inhibited FLDP crystallization and the whole amorphous solid dispersions (ASDs) were binary FLDP-Soluplus (1:3) and ternary FLDP-Soluplus-SDS(1:2:0.15∼0.3 and 1:3:0.2∼0.4) extrudates. Internal SDS (5%-10%) decreased Tgs of FLDP-Soluplus-SDS ternary ASDs without presenting molecular interactions with FLDP or Soluplus. The enhanced dissolution rate of binary or ternary Soluplus-rich ASDs in the non-sink condition of 0.05%SDS was achieved. Bottom-up approach indicated that Soluplus was a much stronger crystal inhibitor to the supersaturated FLDP in solutions than SDS. Top-down approach demonstrated that SDS enhanced the dissolution of Soluplus-rich ASDs via wettability and complexation with Soluplus to accelerate the medium uptake and erosion kinetics of extrudates, but induced FLDP recrystallization and resulted in incomplete dissolution of FLDP-rich extrudates. In conclusion, top-down approach is a promising strategy to explore the mechanisms of ASDs' dissolution, and small amount of SDS enhances the dissolution rate of polymer-rich ASDs in the non-sink condition. Copyright © 2018. Published by Elsevier Inc.

  5. Micellar effects on positronium lifetime in aqueous SDS solutions

    International Nuclear Information System (INIS)

    Vass, Sz.; Kajcsos, Zs.; Molnar, B.; Stergiopoulos, Ch.

    1981-09-01

    Positron lifetime measurements have been performed in aqueous SDS (Sodium Dodecyl Sulphate) solutions. The lifetime distributions measured by fast-slow coincidence technique have been found to be influenced by surfactant concentration, which varied in the range of 1.25x10 -3 - 3.2x10 -1 mol/dm 3 (i.e. 2.27x10 -5 - 5.82x10 -3 mole fractions). The lifetime of the long living component connected to positronium formation and decay increases with increasing surfactant concentration. Lifetime data suggest that a direct positronium-micelle electron-exchange reaction leading to pick-off annihilation is contraindicated. (author)

  6. Typing of Typhoidal Salmonella Using Extraction of Water Soluble Whole Cell Proteins and Analysing by SDS-PAGE

    Directory of Open Access Journals (Sweden)

    R. Yousefi Mashouf

    2005-10-01

    Full Text Available Introduction & Objective : Salmonella is one of the most important genus of Enterobacteriacea family. The aim of this study was typing of typhoidal Salmonella by SDS-PAGE and comparing the results with those of serotyping method.Materials and Methods: In this study, 4 reference strains of Salmonella species, 5 reference strains of Enterobacteriacea family and 100 clinical isolates of Salmonella that were previously collected from laboratories of Hamadan medical centers were studied. Serotyping of strains were performed by Biomereux and Difco monovalent antisera. Whole-cell proteins of strains were also separated on 10% poly acrylamide gel. Gels were stained by Coomassie Brilliant Blue and analyzed by densitometry. Results: Of 100 cases of Salmonella species, 43 cases (43% were S. typhi, 20 cases (20% were S. typhymurium, 12 cases (12% were S. para typhi B, 10 cases (10% were S. para typhi C, S. para typhi A 1 case (1% and other cases were non-typhoidal Salmonella. The results of serotyping were compared with the results obtained by SDS-PAGE. Many protein bands from 220 KDa to 18.5 KDa were detected by SDS-PAGE and they were used to differentiate the strains. S. typhi serotypes were divided into 5 sub-species and S. para typhi B and C were divided each into 3 sub-species. Protein profiles of the reference strains of Salmonella were compared with protein profiles of Enterobacteriaceae species and showed some differences in major protein bands, however, they had a very similar protein band in 43 KDa area. Conclusion: Since our data was able to divide Salmonella species to sub-types and differentiate them from Enterobacteriacea species, we concluded that analsying SDS-PAGE profile of water soluble whole-cell proteins can be used for typing of these organisms and it is comparble with serotyping, nevertheless, further researches are needed to establish SDS-PAGE method and to replace it with serotyping method.

  7. Manufacturing Amorphous Solid Dispersions with a Tailored Amount of Crystallized API for Biopharmaceutical Testing.

    Science.gov (United States)

    Theil, Frank; Milsmann, Johanna; Anantharaman, Sankaran; van Lishaut, Holger

    2018-05-07

    The preparation of an amorphous solid dispersion (ASD) by dissolving a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can improve the bioavailability by orders of magnitude. Crystallization of the API in the ASD, though, is an inherent threat for bioavailability. Commonly, the impact of crystalline API on the drug release of the dosage form is studied with samples containing spiked crystallinity. These spiked samples possess implicit differences compared to native crystalline samples, regarding size and spatial distribution of the crystals as well as their molecular environment. In this study, we demonstrate that it is possible to grow defined amounts of crystalline API in solid dosage forms, which enables us to study the biopharmaceutical impact of actual crystallization. For this purpose, we studied the crystal growth in fenofibrate tablets over time under an elevated moisture using transmission Raman spectroscopy (TRS). As a nondestructive method to assess API crystallinity in ASD formulations, TRS enables the monitoring of crystal growth in individual dosage forms. Once the kinetic trace of the crystal growth for a certain environmental condition is determined, this method can be used to produce samples with defined amounts of crystallized API. To investigate the biopharmaceutical impact of crystallized API, non-QC dissolution methods were used, designed to identify differences between the various amounts of crystalline materials present. The drug release in the samples manufactured in this fashion was compared to that of samples with spiked crystallinity. In this study, we present for the first time a method for targeted crystallization of amorphous tablets to simulate crystallized ASDs. This methodology is a valuable tool to generate model systems for biopharmaceutical studies on the impact of crystallinity on the bioavailability.

  8. Quantification of major allergen parvalbumin in 22 species of fish by SDS-PAGE.

    Science.gov (United States)

    Kobayashi, Yukihiro; Yang, Tao; Yu, Cheng-Tao; Ume, Chiaki; Kubota, Hiroyuki; Shimakura, Kuniyoshi; Shiomi, Kazuo; Hamada-Sato, Naoko

    2016-03-01

    Fish is an important causative material of food allergy. Although the allergenicity of fish is considered to correlate with the content of parvalbumin, the major fish allergen, available information about the parvalbumin content in fish is limited. In this study, a simple and reliable quantification method for fish parvalbumin by SDS-PAGE was first established. Application of the SDS-PAGE method to 22 species of fish revealed a marked variation in parvalbumin content among fish. Furthermore, the parvalbumin content was found to be higher in dorsal white muscle than in ventral white muscle, in rostral part of white muscle than in caudal part of white muscle and in white muscle than in dark muscle. IgE reactivity of fish was roughly proportional to parvalbumin content. Interestingly, large-sized migratory fish, such as salmon, swordfish and tuna, were commonly very low in both parvalbumin content and IgE reactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Analysis of the axial filaments of Treponema hyodysenteriae by SDS-PAGE and immunoblotting.

    Science.gov (United States)

    Kent, K A; Sellwood, R; Lemcke, R M; Burrows, M R; Lysons, R J

    1989-06-01

    Purified axial filaments from eight serotypes of Treponema hyodysenteriae and two non-pathogenic intestinal spirochaetes were characterized by SDS-PAGE and Western blotting. Axial filaments of all ten strains had similar SDS-PAGE profiles; five major axial filament polypeptides were identified, with molecular masses of 43.8, 38, 34.8, 32.8 and 29.4 kDa. Hyperimmune gnotobiotic pig serum raised against purified axial filaments of strain P18A (serotype 4) cross-reacted with all other serotypes and with the non-pathogens, and convalescent serum taken from a pig with persistent swine dysentery also showed a strong response to the axial filament polypeptides. Hyperimmune gnotobiotic pig serum raised against axial filaments failed to agglutinate viable organisms and did not inhibit growth in vitro. Hence, the axial filaments of T. hyodysenteriae have been identified as major immunodominant antigens, although the role that antibodies to these antigens play in protection has yet to be established.

  10. Nosocomial klebsiella infection in neonates in a tertiary care hospital: Protein profile by SDS-page and klebocin typing as epidemiological markers

    Directory of Open Access Journals (Sweden)

    Malik A

    2003-01-01

    Full Text Available PURPOSE: To find out the prevalence of Klebsiella in hospital acquired neonatal infections in a tertiary care set up and to evaluate the role of klebocin typing and protein profile by SDS-PAGE in epidemiological typing of the isolates. METHODS: Hospital born neonates transferred to the neonatal unit after birth and available in the unit 48 hours later comprised the study group. Two hundred and three neonates were found eligible for inclusion in the study. Repeated blood cultures, other relevant clinical specimens and environmental samples were collected and identified according to the standard techniques. Isolated clinical and environmental Klebsiella pneumoniae strains were subjected to klebocin typing and protein profiling by SDS-PAGE at regular intervals. RESULTS: Multi drug resistant K. pneumoniae were the commonest organism isolated in 30 neonates leading to the incidence of Klebsiella nosocomial infection to be 14.7%. Klebocin typing of the K. pneumoniae isolates showed four patterns with type 312 being the commonest (43.4%. Whole cell protein analysis by SDS-PAGE of K. pneumoniae isolates revealed four types of banding pattern. Analysis of the typing method showed that the typeability and reproducibility of klebocin was 83.3% and 73.3% respectively whereas typeability and reproducibility of SDS-PAGE was 100%. CONCLUSIONS: Based on the present study it is concluded that SDS-PAGE typing method is better than klebocin typing in neonatal nosocomial infection. It is also suggested that protein profile by SDS-PAGE may be used as a tool for epidemiological typing of Klebsiella pneumoniae isolates in laboratories where genomic based molecular typing technique is not available.

  11. Analysis of Wolsong-1 SDS1 Effectiveness with Stuck-In Shutoff Rod Core Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Jung, Young Suk; Choi, Seong Soo [Atomic Creative Technology Co., Ltd., Daejeon (Korea, Republic of); Kim, Sung Min [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2010-05-15

    The Wolsong-1 CANDU 6 reactor (W-1) is currently undergoing the major refurbishment project including replacement of the pressure tube after nearly 25 years of service. In parallel to the refurbishment, the reactor is planned to be operated with Improved Technical Specifications (ITS) that are being prepared as an integrated part of the new project to conduct the overall Improved Standard Technical Specifications (ISTS) layout for PHWR (Ref. 1). The ISTS project is dually purported, namely, firstly, to improve and update the existing Current Technical Specifications (CTS) with the specific emphasis of rooting the conceptual and practical applications that are derived out of the PWR oriented TS so that PHWR could be operated in more closely surveillant practices with PWR domestically, and secondly, the finished ISTS product could also be exposed overseas for global marketing purposes. During the course of reviewing the draft version of the W-1 ITS it is felt that ITS Items related to the unavailability of Shutdown System No. 1 (SDS1) should be supported with some detailed analysis performed by using the safety analysis codes as a precautionary measure. The present paper deals with the cases of SDS1 shutoff rod (SOR) stuck into the core so that the stuck rod will not be available when SDS1 is actuated to drop rods into the core. In the following, the models used for the simulations are briefly described and the corresponding results are presented with some conclusions.

  12. Investigating the spontaneous formation of SDS micelle in aqueous solution using a coarse-grained force field

    Directory of Open Access Journals (Sweden)

    José Maria Pires

    2012-01-01

    Full Text Available A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.

  13. Preparation of milk samples for immunoassay and liquid chromatographic screening using matrix solid-phase dispersion.

    Science.gov (United States)

    Barker, S A; Long, A R

    1994-01-01

    The use of drugs to maintain the health and maximize the output of dairy cattle has made the monitoring of milk for such agents essential. Screening tests based on immunological, microbial inhibition, and bacterial receptor assays have been developed for the detection of violative levels of therapeutic substances. However, such assays are not infallible, and false positive or negative results can occur when contaminants bind receptors or compete for the binding of the target residues. Such effects may arise from dietary sources, diseases, or other variables. Thus, a violation by such a test is not definitive until further confirmation is obtained. Our laboratory has developed extraction procedures for several drugs used in dairy production. Our method uses matrix solid-phase dispersion (MSPD) to isolate drugs away from contaminants and to eliminate many possible interferences. MSPD can also be used to enhance the specificity of such assays by fractionating various classes of drugs that may cross-react. Similarly, such methods may be used for liquid chromatographic screening and confirmation of a suspect sample.

  14. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    Directory of Open Access Journals (Sweden)

    Aymeric Ousset

    2018-03-01

    Full Text Available The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling, and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width, and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs. Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w. Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC and X-ray powder diffraction (XRPD. Principal component analysis (PCA was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development.

  15. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.

    Science.gov (United States)

    Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F

    2015-12-01

    The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.

  17. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.

    Science.gov (United States)

    Irwan, Anastasia W; Berania, Jacqueline E; Liu, Xueming

    2016-03-01

    This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6 mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037 mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5-80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN's release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55-57 °C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61-63 °C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic-hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.

  18. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    Science.gov (United States)

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  19. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  20. Using Two Different Self-Directed Search (SDS) Interpretive Materials: Implications for Career Assessment

    Science.gov (United States)

    Dozier, V. Casey; Sampson, James P.; Reardon, Robert C.

    2013-01-01

    John Holland's Self-Directed Search (SDS) is a career assessment that consists of several booklets designed to be self-scored and self-administered. It simulates what a practitioner and an individual might do together in a career counseling session (e.g., review preferred activities and occupations; review competencies, abilities and possible…

  1. Dispersion of Silicate in Tricalcium Phosphate Elucidated by Solid-State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rewal, A.; Wei, X.; Akinc, M.; Schmidt-Rohr, K.

    2008-03-12

    The dispersion of silicate in tricalcium phosphate, a resorbable bioceramics for bone replacement, has been investigated by various solid-state nuclear magnetic resonance (NMR) methods. In samples prepared with 5 and 10 mol% of both {sup 29}SiO{sub 2} and ZnO, three types of silicate have been detected: (i) SiO{sub 4}{sup 4-} (Q{sub 0} sites) with long longitudinal (T{sub 1,Si}) relaxation times ({approx} 10,000 s), which substitute for {approx}1% of PO{sub 4}{sup 3-}; (ii) silicate nanoinclusions containing Q{sub 2}, Q{sub 1}, and Q{sub 0} sites with T{sub 1,Si} 100 s, which account for most of the silicon; and (iii) crystalline Q{sub 4} (SiO{sub 2}) with long T{sub 1,Si}. Sensitivity was enhanced >100-fold by {sup 29}Si enrichment and refocused detection. The inclusions in both samples have a diameter of {approx}8 nm, as proved by {sup 29}Si{l_brace}{sup 31}P{r_brace} REDOR dephasing on a 30-ms time scale, which was simulated using a multispin approach specifically suited for nanoparticles. {sup 29}Si CODEX NMR with 30-s {sup 29}Si spin diffusion confirms that an inclusion contains >10 Si (consistent with the REDOR result of >100 Si per inclusion). Overlapping signals of silicate Q{sub 2}, Q{sub 1}, and Q{sub 0} sites were spectrally edited based on their J-couplings, using double-quantum filtering. The large inhomogeneous broadening of the Q{sub 2}, Q{sub 1}, and Q{sub 0} {sup 29}Si subspectra indicates that the nanoinclusions are amorphous.

  2. Determination of Parabens by Injection-Port Derivatization Coupled With Gas-Chromatography-Mass Spectrometry and Matrix Solid Phase Dispersion

    Science.gov (United States)

    Djatmika, Rosalina; Ding, Wang-Hsien; Sulistyarti, Hermin

    2018-01-01

    A rapid determination of four parabens preservatives (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in marketed seafood is presented. Analytes were extracted and purified using matrix solid-phase dispersion (MSPD) method, followed by Injection port acylation gas chromatography-mass spectrometry (GC-MS) with acetic anhydride reagent. In this method, acylation of parabens was performed by acetic anhydride at GC injection-port generating reduction of the time-consuming sample-processing steps, and the amount of toxic reagents and solvents. The parameters affecting this method such as injection port temperature, purge-off time and acylation (acetic anhydride) volume were studied. In addition, the MSPD influence factors (including the amount of dispersant and clean-up co-sorbent, as well as the volume of elution solvent) were also investigated. After MSPD method and Injection port acylation applied, good linearity of analytes was achieved. The limits of quantitation (LOQs) were 0.2 to 1.0 ng/g (dry weight). Compared with offline derivatization commonly performed, injection port acylation employs a rapid, simple, low-cost and environmental-friendly derivatization process. The optimized method has been successfully applied for the analysis of parabens in four kind of marketed seafood. Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7 ng/g (dry weight).

  3. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development and Characterization of Gas Diffusion Layer Using Carbon Slurry Dispersed by Ammonium Lauryl Sulfate for Proton Exchange Member Fuel Cells

    Science.gov (United States)

    Villacorta, Rashida

    Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O 2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.

  5. Microstructure of Pharmaceutical Semicrystalline Dispersions: The Significance of Polymer Conformation.

    Science.gov (United States)

    Van Duong, Tu; Goderis, Bart; Van Humbeeck, Jan; Van den Mooter, Guy

    2018-02-05

    The microstructure of pharmaceutical semicrystalline solid dispersions has attracted extensive attention due to its complexity that might result in the diversity in physical stability, dissolution behavior, and pharmaceutical performance of the systems. Numerous factors have been reported that dictate the microstructure of semicrystalline dispersions. Nevertheless, the importance of the complicated conformation of the polymer has never been elucidated. In this study, we investigate the microstructure of dispersions of polyethylene glycol and active pharmaceutical ingredients by small-angle X-ray scattering and high performance differential scanning calorimetry. Polyethylene glycol with molecular weight of 2000 g/mol (PEG2000) and 6000 g/mol (PEG6000) exhibited remarkable discrepancy in the lamellar periodicity in dispersions with APIs which was attributed to the differences in their folding behavior. The long period of PEG2000 always decreased upon aging-induced exclusion of APIs from the interlamellar region of extended chain crystals whereas the periodicity of PEG6000 may decrease or increase during storage as a consequence of the competition between the drug segregation and the lamellar thickening from nonintegral-folded into integral-folded chain crystals. These processes were in turn significantly influenced by the crystallization tendency of the pharmaceutical compounds, drug-polymer interactions, as well as the dispersion composition and crystallization temperature. This study highlights the significance of the polymer conformation on the microstructure of semicrystalline systems that is critical for the preparation of solid dispersions with consistent and reproducible quality.

  6. Lack of Population Structure in Coriander Populations Based on SDS (Seed Storage Protein Page Analysis

    Directory of Open Access Journals (Sweden)

    Gülsüm Yaldiz

    2016-08-01

    Full Text Available Genetic variation is prerequisite for plant breeding. Nothing information existed in the literature for available diversity of Coriander accession in Turkey. Plant breeding activities are negligible in Turkey. So in order to start effective plant breeding program in Turkey, information on the available genetic diversity is viable. Therefore we planned to study the genetic variation and population structure of 29 Coriander accessions by seed storage protein (SDS. SDS analysis elaborated the lack of population structure and genetic bottleneck in the Coriander accessions in Turkey. Based on the results of this study, it was clear that sampling strategy was not appropriate and plant introduction should be made from different sources and diverse genotypes should be used as parents to initialize the effective Turkish Coriander breeding program.

  7. Dispersants in an organic medium: synthesis and physicochemical study of dispersants for fuels and lubricants; Dispersants en milieu organique: synthese et etude physicochimique de dispersants pour carburants et lubrifiants

    Energy Technology Data Exchange (ETDEWEB)

    Dubois-Clochard, M.C.

    1998-11-19

    Carbonaceous deposits coming from the fuel and the lubricant are known to form over time at critical locations in an engine. In general, the deposits have an adverse effect on four functional areas which are the fuel metering system, the intake system, the lubrication system and the combustion chambers. These deposits can degrade vehicle performance and drive-ability, reduce fuel economy, increase fuel consumption and pollutant emissions and may lead to the destruction of the engine. In order to remedy these problems, detergent-dispersant additives are used in fuels and lubricants to avoid or decrease deposit adhesion on metallic surfaces and prevent from deposit aggregation. These products are mainly polymer surfactants and in this work, poly-iso-butenyl-succinimide of different structures have been studied. Firstly, 'comb like' polymers have been synthesized. Then they have been compared to classical di-bloc additives in terms of performance and action mechanism. These additives are adsorbed from their hydrophilic polyamine part on the acidic functions of the carbon black surface chosen as an engine deposit model and on the aluminium oxide function of an aluminium powder chosen as an engine wall model. The adsorption increases with temperature on the two solids. Their affinity with the solid surface increases with the length of the hydrophilic part. In the same way, changing the di-bloc structure for a comb like one lead to a better adsorption. At low concentration, it has been shown that the adsorption phenomenon was irreversible, due to the polymer structure of the polar part. Depending on the space required by the hydrophilic part on the solid surface, a more of less dense monolayer is formed. At higher concentrations, an important increase of the adsorbed amount appears. This phenomenon is totally reversible showing that the interactions additive / additive are weak. The dispersing efficiency of a comb like structure is better than a di-bloc one as

  8. Partitioning of fresh crude oil between floating, dispersed and sediment phases: Effect of exposure order to dispersant and granular materials.

    Science.gov (United States)

    Boglaienko, Daria; Tansel, Berrin

    2016-06-15

    When three or more high and low energy substrates are mixed, wetting order can significantly affect the behavior of the mixture. We analyzed the phase distribution of fresh floating Louisiana crude oil into dispersed, settled and floating phases depending on the exposure sequence to Corexit 9500A (dispersant) and granular materials. In the experiments artificial sea water at salinity 34‰ was used. Limestone (2.00-0.300 mm) and quartz sand (0.300-0.075 mm) were used as the natural granular materials. Dispersant Corexit 9500A increased the amount of dispersed oil up to 33.76 ± 7.04%. Addition of granular materials after the dispersant increased dispersion of oil to 47.96 ± 1.96%. When solid particles were applied on the floating oil before the dispersant, oil was captured as oil-particle aggregates and removed from the floating layer. However, dispersant addition led to partial release of the captured oil, removing it from the aggregated form to the dispersed and floating phases. There was no visible oil aggregation with the granular materials when quartz or limestone was at the bottom of the flask before the addition of oil and dispersant. The results show that granular materials can be effective when applied from the surface for aggregating or dispersing oil. However, the granular materials in the sediments are not effective neither for aggregating nor dispersing floating oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Development of In Vitro-In Vivo Correlation for Amorphous Solid Dispersion Immediate-Release Suvorexant Tablets and Application to Clinically Relevant Dissolution Specifications and In-Process Controls.

    Science.gov (United States)

    Kesisoglou, Filippos; Hermans, Andre; Neu, Colleen; Yee, Ka Lai; Palcza, John; Miller, Jessica

    2015-09-01

    Although in vitro-in vivo correlations (IVIVCs) are commonly pursued for modified-release products, there are limited reports of successful IVIVCs for immediate-release (IR) formulations. This manuscript details the development of a Multiple Level C IVIVC for the amorphous solid dispersion formulation of suvorexant, a BCS class II compound, and its application to establishing dissolution specifications and in-process controls. Four different 40 mg batches were manufactured at different tablet hardnesses to produce distinct dissolution profiles. These batches were evaluated in a relative bioavailability clinical study in healthy volunteers. Although no differences were observed for the total exposure (AUC) of the different batches, a clear relationship between dissolution and Cmax was observed. A validated Multiple Level C IVIVC against Cmax was developed for the 10, 15, 20, 30, and 45 min dissolution time points and the tablet disintegration time. The relationship established between tablet tensile strength and dissolution was subsequently used to inform suitable tablet hardness ranges within acceptable Cmax limits. This is the first published report for a validated Multiple Level C IVIVC for an IR solid dispersion formulation demonstrating how this approach can facilitate Quality by Design in formulation development and help toward clinically relevant specifications and in-process controls. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Separating DDTs in edible animal fats using matrix solid-phase dispersion extraction with activated carbon filter, Toyobo-KF.

    Science.gov (United States)

    Furusawa, Naoto

    2006-09-01

    A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.

  11. FEATURES OF RESTORATION OF DISPERSE POROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2016-01-01

    Full Text Available The article presents the results of research recycling of dispersed materials in rotary furnaces. Has been received new data on the of heat and mass transfer processes and carry out intensive and continuous process of solid- liquid-phase reduction of oxides in a single unit.

  12. Rapid and selective screening of melamine in bovine milk using molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    Yan, Hongyuan; Cheng, Xiaoling; Sun, Ning; Cai, Tianyu; Wu, Ruijun; Han, Kun

    2012-11-01

    A simple, convenient and high selective molecularly imprinted matrix solid-phase dispersion (MI-MSPD) using water-compatible cyromazine-imprinted polymer as adsorbent was proposed for the rapid screening of melamine from bovine milk coupled with liquid chromatography-ultraviolet detection. The molecularly imprinted polymers (MIPs) synthesized by cyromazine as dummy template and reformative methanol-water system as reaction medium showed higher affinity and selectivity to melamine, and so they were applied as the specific dispersant of MSPD to extraction of melamine and simultaneously eliminate the effect of template leakage on quantitative analysis. Under the optimized conditions, good linearity was obtained in a range of 0.24-60.0μgg(-1) with the correlation coefficient of 0.9994. The recoveries of melamine at three spiked levels were ranged from 86.0 to 96.2% with the relative standard deviation (RSD)≤4.0%. This proposed MI-MSPD method combined the advantages of MSPD and MIPs, and could be used as an alternative tool for analyzing the residues of melamine in complex milk samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. On the rule of thumb for flipping the dispersion relation in BAW devices

    NARCIS (Netherlands)

    Jose, Sumy; Hueting, Raymond Josephus Engelbart; Jansman, Andreas

    2011-01-01

    High-performance solidly mounted bulk acoustic wave resonators (SMRs) can be obtained by employing frame region, if these exhibit type I dispersion. The commonly used piezoelectric material Aluminum Nitride is a type II material, for which type I dispersion can be enforced by increasing the top

  14. Holland's SDS Applied to Chinese College Students: A Revisit to Cross-Culture Adaptation

    Science.gov (United States)

    Kong, Jin; Xu, Yonghong Jade; Zhang, Hao

    2016-01-01

    In this study, data collected from 875 college freshman and sophomore students enrolled in a 4-year university in central China are used to examine the applicability and validity of a Chinese version of Holland's Self-Directed Search (SDS) that was adapted in the 1990s. The total sample was randomly divided into two groups. Data from the first…

  15. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  16. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of the Different Kinds of Pilose Antler Protein Differentiation by SDS-PAGE Gel%SDS-PAGE凝胶电泳法对不同种鹿茸蛋白质差异化研究

    Institute of Scientific and Technical Information of China (English)

    朱云飞; 初正云; 李洪江

    2017-01-01

    Objective:To study the protein differences of pilose antler pieces of China pharmacopoeia (CP) and its adulterants in market by using electrophoresis method and provide research basis for immunological identification technology of pilose antler.Methods:The velvet antler protein was extracted by the protein solution method,bovine serum protein was used as a control,determination of the concentration of water soluble protein determination of pilose antler by Bradford method,analysis of flower antler,red deer,New Zealand red deer and reindeer protein differences by SDS-PAGE gel electrophoresis method.Results:With 7.5% separation gel system to separate flower antler,New Zealand deer,red deer and reindeer water soluble protein,and four protein bands were in difference.Conclusion:The SDS-PAGE gel electrophoresis was used to examine the differences in protein between the different varieties of pilose antler and provide basis and research foundation for qualitative research of different varieties of pilose antler.%目的:利用电泳方法研究市场上药典规定品种的鹿茸饮片及其混淆品中蛋白质的差异,为鹿茸的免疫鉴定技术研究提供研究依据.方法:采用蛋白溶解液法提取各鹿茸蛋白,以牛血清蛋白为对照,利用Bradford法测定鹿茸水溶性蛋白的浓度,利用SDS-PAGE凝胶电泳法分析花鹿茸、马鹿、新西兰赤鹿及驯鹿的蛋白差异.结果:用7.5%分离胶系统分离花鹿茸、新西兰马鹿、马鹿及驯鹿的水溶性蛋白,四者蛋白条带有差异.结论:利用SDS-PAGE凝胶电泳法考察不同品种鹿茸的蛋白差异,为不同品种鹿茸的定性研究提供依据和研究基础.

  18. Analysis of malachite green in aquatic products by carbon nanotube-based molecularly imprinted - matrix solid phase dispersion.

    Science.gov (United States)

    Wang, Yu; Chen, Ligang

    2015-10-01

    A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Simultaneous determination and qualitative analysis of six types of components in Naoxintong capsule by miniaturized matrix solid-phase dispersion extraction coupled with ultra high-performance liquid chromatography with photodiode array detection and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Huilin; Jiang, Yan; Ding, Mingya; Li, Jin; Hao, Jia; He, Jun; Wang, Hui; Gao, Xiu-Mei; Chang, Yan-Xu

    2018-02-03

    A simple and effective sample preparation process based on miniaturized matrix solid-phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5-dicaffeoylqunic acid, 1,5-dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol-3-O-rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5-hydroxymethylfurfural) in Naoxintong capsule by ultra high-performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid-phase dispersion coupled with ultra high-performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The NPOESS Preparatory Project Science Data Segment (SDS) Data Depository and Distribution Element (SD3E) System Architecture

    Science.gov (United States)

    Ho, Evelyn L.; Schweiss, Robert J.

    2008-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) Science Data Segment (SDS) will make daily data requests for approximately six terabytes of NPP science products for each of its six environmental assessment elements from the operational data providers. As a result, issues associated with duplicate data requests, data transfers of large volumes of diverse products, and data transfer failures raised concerns with respect to the network traffic and bandwidth consumption. The NPP SDS Data Depository and Distribution Element (SD3E) was developed to provide a mechanism for efficient data exchange, alleviate duplicate network traffic, and reduce operational costs.

  1. Electrophoretic analysis of proteins from Mycoplasma hominis strains detected by SDS-PAGE, two-dimensional gel electrophoresis and immunoblotting

    DEFF Research Database (Denmark)

    Andersen, H; Birkelund, Svend; Christiansen, Gunna

    1987-01-01

    The proteins of 14 strains of Mycoplasma hominis were compared by SDS-PAGE in gradient gels, by two-dimensional (2D) gel electrophoresis of extracts of 35S-labelled cells and by immunoblot analysis of cell proteins. The strains examined included the M. hominis type strain PG21 and 13 others...... isolated variously from genital tract, mouth, blood, upper urinary tract and a wound. These 14 strains shared 76-99% of proteins in SDS-gradient gel analysis and 41-72% in the 2D gels. As expected, the immunoblot analysis likewise revealed the existence of an extensive common protein pattern in M. hominis...

  2. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses.

    Science.gov (United States)

    Guo, Xiao; Wei, Peijun

    2016-03-01

    The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  4. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    Science.gov (United States)

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  5. Development of a Matrix Solid-Phase Dispersion Extraction Combined with UPLC/Q-TOF-MS for Determination of Phenolics and Terpenoids from the Euphorbia fischeriana.

    Science.gov (United States)

    Li, Wenjing; Lin, Yu; Wang, Yuchun; Hong, Bo

    2017-09-11

    A method based on a simplified extraction by matrix solid phase dispersion (MSPD) followed by ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) determination is validated for analysis of two phenolics and three terpenoids in Euphorbia fischeriana . The optimized experimental parameters of MSPD including dispersing sorbent (silica gel), ratio of sample to dispersing sorbent (1:2), elution solvent (water-ethanol: 30-70) and volume of the elution solvent (10 mL) were examined and set down. The highest extraction yields of chromatogram information and the five compounds were obtained under the optimized conditions. A total of 25 constituents have been identified and five components have been quantified from Euphorbia fischeriana . A linear relationship (r² ≥ 0.9964) between the concentrations and the peak areas of the mixed standard substances were revealed. The average recovery was between 92.4% and 103.2% with RSD values less than 3.45% ( n = 5). The extraction yields of two phenolics and three terpenoids obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirement on sample, solvent and time. In addition, the optimized method will be applied for analyzing terpenoids in other Chinese herbal medicine samples.

  6. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dispersion of acoustic surface waves by velocity gradients

    Science.gov (United States)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  8. Gas phase dispersion in a small rotary kiln

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1981-07-01

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m 3 /h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds

  9. Systematic study on intermolecular valence-band dispersion in molecular crystalline films

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2015-01-01

    Highlights: • Intermolecular valence-band dispersion of crystalline films of phthalocyanines. • Intermolecular transfer integral versus lattice constant. • Site-specific intermolecular interaction and resultant valence-band dispersion. • Band narrowing effect induced by elevated temperature. - Abstract: Functionalities of organic semiconductors are governed not only by individual properties of constituent molecules but also by solid-state electronic states near the Fermi level such as frontier molecular orbitals, depending on weak intermolecular interactions in various conformations. The individual molecular property has been widely investigated in detail; on the other hand, the weak intermolecular interaction is difficult to investigate precisely due to the presence of the structural and thermal energy broadenings in organic solids. Here we show quite small but essential intermolecular valence band dispersions and their temperature dependence of sub-0.1-eV scale in crystalline films of metal phthalocyanines (H_2Pc, ZnPc, CoPc, MnPc, and F_1_6ZnPc) by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The observed bands show intermolecular and site dependent dispersion widths, phases, and periodicities, for different chemical substitution of terminal groups and central metals in the phthalocyanine molecule. The precise and systematic band-dispersion measurement would be a credible approach toward the comprehensive understanding of intermolecular interactions and resultant charge transport properties as well as their tuning by substituents in organic molecular systems.

  10. Simultaneous determination of fumonisins B1 and B2 in different types of maize by matrix solid phase dispersion and HPLC-MS/MS.

    Science.gov (United States)

    de Oliveira, Gabriel Barros; de Castro Gomes Vieira, Carolyne Menezes; Orlando, Ricardo Mathias; Faria, Adriana Ferreira

    2017-10-15

    This work involved the optimization and validation of a method, according to Directive 2002/657/EC and the Analytical Quality Assurance Manual of Ministério da Agricultura, Pecuária e Abastecimento, Brazil, for simultaneous extraction and determination of fumonisins B1 and B2 in maize. The extraction procedure was based on a matrix solid phase dispersion approach, the optimization of which employed a sequence of different factorial designs. A liquid chromatography-tandem mass spectrometry method was developed for determining these analytes using the selected reaction monitoring mode. The optimized method employed only 1g of silica gel for dispersion and elution with 70% ammonium formate aqueous buffer (50mmolL -1 , pH 9), representing a simple, cheap and chemically friendly sample preparation method. Trueness (recoveries: 86-106%), precision (RSD ≤19%), decision limits, detection capabilities and measurement uncertainties were calculated for the validated method. The method scope was expanded to popcorn kernels, white maize kernels and yellow maize grits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Calculation of the negative reactivity inserted by the shutdown system number two (SDS2) of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, B [Ecole Polytechnique, Montreal, PQ (Canada)

    1994-12-31

    The secondary shutdown system (SDS2) of a CANDU reactor consists of liquid poison injection through nozzles disposed horizontally across the core. The nominal concentration of gadolinium nitrate poison is 8000 ppm. With the methods available to the nuclear industry for calculating the negative reactivity inserted by the SDS2, some approximations are needed, and a simplified model of poison propagation has to be used to calculate the differential cross sections. The objective of this paper is to evaluate the errors introduced by the approximations in the supercell and core calculations. The MULTICELL and EXCELL codes gave different power distributions, and further work was recommended. 9 refs., 2 tabs., 4 figs.

  12. Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method

    Directory of Open Access Journals (Sweden)

    Wajhul Qamar

    2017-11-01

    Full Text Available In case of studies associated with human genetics, genomics, and pharmacogenetics the genomic DNA is extracted from the buccal cells, whole blood etc. Several methods are exploited by the researchers to extract DNA from the whole blood. One of these methods, which utilizes cell lysis and proteolytic properties of sodium dodecyl sulfate (SDS and proteinase K respectively, might also be called SDS-PK method. It does not include any hazardous chemicals such as phenol or chloroform and is inexpensive. However, several researchers report the same method with different formulas and conditions. During our experiments with whole blood DNA extraction we experienced problems such as protein contamination, DNA purity and yield when followed some SDS-PK protocols reported elsewhere. A260/A280 and A260/A230 ratios along with PCR amplification give a clear idea about the procedure that was followed to extract the DNA. In an effort to increase the DNA purity from human whole blood, we pointed out some steps of the protocol that play a crucial role in determining the extraction of high quality DNA.

  13. Heat transfer in nucleate pool boiling of aqueous SDS and triton X-100 solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wasekar, Vivek M. [Tata Steel Limited, Department of Research and Development, Jamshedpur (India)

    2009-09-15

    Variation in degree of surface wettability is presented through the application of Cooper's correlative approach (h{proportional_to}M{sup -0.5}q{sub w}''0.67) for computing enhancement ({phi}) in nucleate pool boiling of aqueous solutions of SDS and Triton X-100 and its presentation with Marangoni parameter ({chi}) that represents the dynamic convection effects due to surface tension gradients. Dynamic spreading coefficient defined as {sigma} {sub dyn}N{sub a}, which relates spreading and wetting characteristics with the active nucleation site density on the heated surface and bubble evolution process, represents cavity filling and activation process and eliminates the concentration dependence of nucleate pool boiling heat transfer in boiling of aqueous surfactant solutions. Using the dynamic spreading coefficient ({sigma}{sub dyn}N{sub a}=0.09q{sub w}''0.71), correlation predictions within {+-}15% for both SDS and triton X-100 solutions for low heat flux boiling condition (q{sub w}''{<=} 100 kW/m {sup 2}) characterised primarily by isolated bubble regime are presented. (orig.)

  14. Hybrid elastic solids

    KAUST Repository

    Lai, Yun; Wu, Ying; Sheng, Ping; Zhang, Zhaoqing

    2011-01-01

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  15. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  16. Analytical methods for proteome data obtained from SDS-PAGE multi-dimensional separation and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gun Wook Park

    2010-03-01

    Full Text Available For proteome analysis, various experimental protocols using mass spectrometry have been developed over thelast decade. The different protocols have differing performances and degrees of accuracy. Furthermore, the “best”protocol for a proteomic analysis of a sample depends on the purpose of the analysis, especially in connection withdisease proteomics, including biomarker discovery and therapeutics analyses of human serum or plasma. Theprotein complexity and the wide dynamic range of blood samples require high-dimensional separation technology.In this article, we review proteome analysis protocols in which both Sodium Dodecyl Sulfate-Polyacryl Amide GelElectrophoresis(SDS-PAGE and liquid chromatography are used for peptide and protein separations. Multidimensionalseparation technology supplies a high-quality dataset of tandem mass spectra and reveals signals fromlow-abundance proteins, although it can be time-consuming and laborious work. We survey shotgun proteomicsprotocols using SDS-PAGE and liquid chromatography and introduce bioinformatics tools for the analysis ofproteomics data. We also review efforts toward the biological interpretation of the proteome.

  17. Induction of hsp60 in the rotifer, Brachionus plicatilis exposed to dispersed and undispersed crude oil

    International Nuclear Information System (INIS)

    Wheelock, C.; Tjeerdema, R.; Wolfe, M.

    1995-01-01

    The use of chemical dispersants to treat oil spills remains a controversial area. Questions arise as to whether the dispersed oil is in fact more toxic than the original spill, potentially increasing the exposure of organisms in the water column to the dispersed components. Stress proteins, including hsp60, are a group of highly conserved proteins that are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. They are constitutively expressed, but Brachionus plicatilis has been used to document increased hsp60 levels in response to different environmental stresses. Hsp60 was therefore selected as a sublethal endpoint for B. plicatilis exposed to a range of concentrations of a water accommodated fraction (WAF) of Prudhoe Bay Crude Oil (PBCO), a PCBO/dispersant (Corexit 9527) fraction and a mixture of Corexit 9527 alone. All exposures were done at concentrations below the no observable effect level (NOEL) and at two different salinities, 22 ppt and 34 ppt. Laemmli SDS-PAGE techniques followed by Western Blotting using hsp60 specific antibodies and chemiluminescent detection were used to isolate, identify and measure induced hsp60 as a percentage of control values. Hsp60 induction exhibited a biphasic response with maximal induction occurring at lower concentrations of all three different mixtures, WAF, PBCO/Corexit 9527, and Corexit 9527 alone. Preliminary data found that the dispersed oil is indeed more toxic in terms of hsp60 induction than both the undispersed oil and the dispersing agent alone

  18. Induction of hsp60 in the rotifer, Brachionus plicatilis exposed to dispersed and undispersed crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, C.; Tjeerdema, R.; Wolfe, M. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry

    1995-12-31

    The use of chemical dispersants to treat oil spills remains a controversial area. Questions arise as to whether the dispersed oil is in fact more toxic than the original spill, potentially increasing the exposure of organisms in the water column to the dispersed components. Stress proteins, including hsp60, are a group of highly conserved proteins that are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. They are constitutively expressed, but Brachionus plicatilis has been used to document increased hsp60 levels in response to different environmental stresses. Hsp60 was therefore selected as a sublethal endpoint for B. plicatilis exposed to a range of concentrations of a water accommodated fraction (WAF) of Prudhoe Bay Crude Oil (PBCO), a PCBO/dispersant (Corexit 9527) fraction and a mixture of Corexit 9527 alone. All exposures were done at concentrations below the no observable effect level (NOEL) and at two different salinities, 22 ppt and 34 ppt. Laemmli SDS-PAGE techniques followed by Western Blotting using hsp60 specific antibodies and chemiluminescent detection were used to isolate, identify and measure induced hsp60 as a percentage of control values. Hsp60 induction exhibited a biphasic response with maximal induction occurring at lower concentrations of all three different mixtures, WAF, PBCO/Corexit 9527, and Corexit 9527 alone. Preliminary data found that the dispersed oil is indeed more toxic in terms of hsp60 induction than both the undispersed oil and the dispersing agent alone.

  19. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  20. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    Science.gov (United States)

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Model development of UO_2-Zr dispersion plate-type fuel behavior at early phase of severe accident and molten fuel meat relocation

    International Nuclear Information System (INIS)

    Zhang Zhuohua; Yu Junchong; Peng Shinian

    2014-01-01

    According to former study on oxygen diffusion, Nb-Zr solid reaction and UO_2-Zr solid reaction, the models of oxidation, solid reaction in fuel meat and relocation of molten fuel meat are developed based on structure and material properties of UO_2-Zr dispersion plate-type fuel, The new models can supply theoretical elements for the safety analysis of the core assembled with dispersion plate-type fuel under severe accident. (authors)

  2. Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples.

    Science.gov (United States)

    Behbahani, Mohammad; Ghareh Hassanlou, Parmoon; Amini, Mostafa M; Omidi, Fariborz; Esrafili, Ali; Farzadkia, Mehdi; Bagheri, Akbar

    2015-11-15

    In this research, a new sample treatment technique termed solvent-assisted dispersive solid phase extraction (SA-DSPE) was developed. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by injecting a mixture solution of the sorbent and disperser solvent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy solution resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, the cloudy solution was centrifuged and the enriched analytes in the sediment phase dissolved in ethanol and determined by flame atomic absorption spectrophotometer. Under the optimized conditions, the detection limit for lead and cadmium ions was 1.2 μg L(-1) and 0.2 μg L(-1), respectively. Furthermore, the preconcentration factor was 299.3 and 137.1 for cadmium and lead ions, respectively. SA-DSPE was successfully applied for trace determination of lead and cadmium in fruit (Citrus limetta, Kiwi and pomegranate) and water samples. Finally, the introduced sample preparation method can be used as a simple, rapid, reliable, selective and sensitive method for flame atomic absorption spectrophotometric determination of trace levels of lead and cadmium ions in fruit and water samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions o...

  4. Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ecstasy compounds and amphetamines in biological samples

    Directory of Open Access Journals (Sweden)

    H. A. Mashayekhi

    2014-09-01

    Full Text Available A novel approach for the determination of ecstasy and amphetamines (3,4-methylenedioxymethylamphetamine (MDMA, Ecstasy, 3,4-methylenedioxyamphetamine (MDA, 3,4-methylenedioxyethylamphetamine (MDEA and 3,4-methylenedioxypropylamphetamine (MDPA in biological samples is presented. The analytes were extracted from the matrix and transferred to a small volume of a high density, water insoluble solvent using solid-phase extraction (SPE followed by dispersive liquid-liquid microextraction (DLLME. This combination not only resulted in a high enrichment factor, but also it could be used in complex matrices (biological samples. Some important extraction parameters, such as sample solution flow rate, sample pH, type and volume of extraction and disperser solvents as well as the salt addition, were studied and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.5-500 µg L-1 and 1.0-500 µg L-1 with detection limits in the range of 0.1-0.3 µg L-1 and 0.2-0.7 µg L-1 in urine and plasma samples, respectively. The results showed that SPE-DLLME is a suitable method for the determination of ecstasy components and amphetamines in biological and water samples. DOI: http://dx.doi.org/10.4314/bcse.v28i3.3

  5. Study of the solid-solid surface adsorption of Eu2O3 on various Al2O3 supports

    International Nuclear Information System (INIS)

    Liu Rongchuan; Yu Zhi; Zhou Yuan; Yoshitake Yamazaki

    1997-12-01

    Solid-solid surface interactions of Eu 2 O 3 on various oxide substrates are investigated with X-ray and Moessbauer experiments. The results indicate that the interaction of Eu 2 O 3 on the complex support differs from that having simple support. An incorporation model is used to explain how Eu 2 O 3 disperses onto the surface of γ-alumina or η-alumina

  6. Onsager Reciprocity in Premelting Solids

    KAUST Repository

    Peppin, S. S. L.

    2009-02-01

    The diffusive motion of foreign particles dispersed in a premelting solid is analyzed within the framework of irreversible thermodynamics. We determine the mass diffusion coefficient, thermal diffusion coefficient and Soret coefficient of the particles in the dilute limit, and find good agreement with experimental data. In contrast to liquid suspensions, the unique nature of premelting solids allows us to derive an expression for the Dufour coefficient and independently verify the Onsager reciprocal relation coupling diffusion to the flow of heat. © 2009 Springer Science+Business Media, LLC.

  7. Onsager Reciprocity in Premelting Solids

    KAUST Repository

    Peppin, S. S. L.; Spannuth, M. J.; Wettlaufer, J. S.

    2009-01-01

    The diffusive motion of foreign particles dispersed in a premelting solid is analyzed within the framework of irreversible thermodynamics. We determine the mass diffusion coefficient, thermal diffusion coefficient and Soret coefficient of the particles in the dilute limit, and find good agreement with experimental data. In contrast to liquid suspensions, the unique nature of premelting solids allows us to derive an expression for the Dufour coefficient and independently verify the Onsager reciprocal relation coupling diffusion to the flow of heat. © 2009 Springer Science+Business Media, LLC.

  8. Addition of urea and thiourea to electrophoresis sample buffer improves efficiency of protein extraction from TCA/acetone-treated smooth muscle tissues for phos-tag SDS-PAGE.

    Science.gov (United States)

    Takeya, Kosuke; Kaneko, Toshiyuki; Miyazu, Motoi; Takai, Akira

    2018-01-01

    Phosphorylation analysis by using phos-tag technique has been reported to be suitable for highly sensitive quantification of smooth muscle myosin regulatory light chain (LC 20 ) phosphorylation. However, there is another factor that will affect the sensitivity of phosphorylation analysis, that is, protein extraction. Here, we optimized the conditions for total protein extraction out of trichloroacetic acid (TCA)-fixed tissues. Standard SDS sample buffer extracted less LC 20 , actin and myosin phosphatase targeting subunit 1 (MYPT1) from TCA/acetone treated ciliary muscle strips. On the other hand, sample buffer containing urea and thiourea in addition to lithium dodecyl sulfate (LDS) or SDS extracted those proteins more efficiently, and thus increased the detection sensitivity up to 4-5 fold. Phos-tag SDS-PAGE separated dephosphorylated and phosphorylated LC 20 s extracted in LDS/urea/thiourea sample buffer to the same extent as those in standard SDS buffer. We have concluded that LDS (or SDS) /urea/thiourea sample buffer is suitable for highly sensitive phosphorylation analysis in smooth muscle, especially when it is treated with TCA/acetone. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  10. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  11. Quantitative determination of titin and nebulin in poultry meat by SDS-PAGE with an internal standard

    NARCIS (Netherlands)

    Tomaszewska Gras, J.; Kijowski,; Schreurs, F.J.G.

    2002-01-01

    The method of quantitative determination of titin and nebulin in chicken meat by SDS-PAGE electrophoresis technique was developed by application of β-galactosidase as the internal standard. The method was tested first on marker protein samples of known concentrations (myosin, transferrin, glutamic

  12. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes.

    NARCIS (Netherlands)

    Wessels, H.C.T.; Vogel, R.O.; Heuvel, L.P.W.J. van den; Smeitink, J.A.M.; Rodenburg, R.J.T.; Nijtmans, L.G.J.; Farhoud, M.H.

    2009-01-01

    Two-dimensional blue native/SDS-PAGE is widely applied to investigate native protein-protein interactions, particularly those within membrane multi-protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we

  13. Investigation the foam dynamics capacity of SDS in foam generator by affecting the presence of organic and inorganic contaminant

    Science.gov (United States)

    Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam

    2017-05-01

    The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.

  14. Effects of tablet formulation and subsequent film coating on the supersaturated dissolution behavior of amorphous solid dispersions.

    Science.gov (United States)

    Sakai, Toshiro; Hirai, Daiki; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-05

    The effects of tablet preparation and subsequent film coating with amorphous solid dispersion (ASD) particles that were composed of a drug with poor water solubility and hydrophilic polymers were investigated. ASD particles were prepared with a drug and vinylpyrrolidone-vinyl acetate copolymer (PVPVA) or polyvinylpyrrolidone (PVP) at a weight ratio of 1:1 or 1:2 using a melt extrusion technique. Tablets were prepared by conventional direct compression followed by pan coating. A mathematical model based on the Noyes-Whitney equation assuming that stable crystals precipitated at the changeable surface area of the solid-liquid interface used to estimate drug dissolution kinetics in a non-sink dissolution condition. All the ASD particles showed a maximum dissolution concentration approximately ten times higher than that of the crystalline drug. The ASD particles with PVPVA showed higher precipitation rate with lower polymer ratio, while PVP did not precipitate within 960 min regardless of the polymer ratio, suggesting the ASD particles of 1:1 drug:PVPVA (ASD-1) were the most unstable among the ASD particles considered. The dissolution of a core tablet with ASD-1 showed less supersaturation and a much higher precipitation rate than those of ASD-1 particles. However, a film-coated tablet or core tablet with a trace amount of hydroxypropylmethylcellulose (HPMC) showed a similar dissolution profile to that of the ASD-1 particles, indicating HPMC had a remarkable precipitation inhibition effect. Overall, these results suggest that tablet preparation with ASD may adversely affect the maintenance of supersaturation; however, this effect can be mitigated by adding an appropriate precipitation inhibitor to the formulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    Science.gov (United States)

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  16. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  17. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone.

    Science.gov (United States)

    Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru

    2011-01-01

    The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan

  18. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  19. Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methods

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks; Larsen-Olsen, Thue Trofod; Andreasen, Birgitta

    2011-01-01

    Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b′)dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5′-diyl] (P1), poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2...... (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated...

  20. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol.

    Science.gov (United States)

    Wang, Yanzhu; Sun, Lizhang; Jiang, Tongying; Zhang, Jinghai; Zhang, Chen; Sun, Changshan; Deng, Yihui; Sun, Jin; Wang, Siling

    2014-06-01

    To explore the suitable application of MCM-41 (Mobil Composition of Matter number forty-one)-type and MCM-48-type mesoporous silica in the oral water insoluble drug delivery system. Cilostazol (CLT) as a model drug was loaded into synthesized MCM-48 (Mobil Composition of Matter number forty-eight) and commercial MCM-41 by three common methods. The obtained MCM-41, MCM-48 and CLT-loaded samples were characterized by means of nitrogen adsorption, thermogravimetric analysis, ultraviolet-visible spectrophotometry, scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry and powder X-ray diffractometer. It was found that solvent evaporation method was preferred according to the drug loading efficiency and the maximum percent cumulative drug dissolution. MCM-48 with 3D cubic pore structure and MCM-41 with 2D long tubular structure are nearly spherical particles in 300-500 nm. Nevertheless, the silica carriers with similar large specific surface areas and concentrating pore size distributions (978.66 m(2)/g, 3.8 nm for MCM-41 and 1108.04 m(2)/g, 3.6 nm for MCM-48) exhibited different adsorption behaviors for CLT. The maximum percent cumulative drug release of the two CLT/silica solid dispersion (CLT-MCM-48 and CLT-MCM-41) was 63.41% and 85.78% within 60 min, respectively; while in the subsequent 12 h release experiment, almost 100% cumulative drug release were both obtained. In the pharmacokinetics aspect, the maximum plasma concentrations of CLT-MCM-48 reached 3.63 mg/L by 0.92 h. The AUC0-∞ values of the CLT-MCM-41 and CLT-MCM-48 were 1.14-fold and 1.73-fold, respectively, compared with the commercial preparation. Our findings suggest that MCM-41-type and MCM-48-type mesoporous silica have great promise as solid dispersion carriers for sustained and immediate release separately.

  1. High-throughput multipesticides residue analysis in earthworms by the improvement of purification method: Development and application of magnetic Fe3 O4 -SiO2 nanoparticles based dispersive solid-phase extraction.

    Science.gov (United States)

    Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan

    2018-06-01

    As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Design of modified xanthan mini-matrices for monitoring oral discharge of highly soluble Soluplus{sup ®}–glibenclamide dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Bakshi, Paromita; Sadhukhan, Sayantan; Maiti, Sabyasachi, E-mail: sabya245@rediffmail.com

    2015-09-01

    In this work, Soluplus{sup ®} was used as a hydrophilic carrier for the preparation of solid dispersion (SD) of a model BCS class II drug, glibenclamide by applying hot melting process and microwave irradiation in combination. Increasing the concentration of carrier relative to drug significantly increased the drug solubility, which corresponded to a maximum 75 fold increase at a drug:carrier ratio of 1:7. Scanning electron microscopy, differential scanning calorimetry, and x-ray diffraction analyses confirmed complete amorphization of the drug in SD. In animal study, about two fold reductions in hyperglycemic level were achieved by SD compared to pure drug. SD-loaded O-carboxymethyl xanthan mini-matrices controlled the release of drug into gastro-luminal fluid over longer duration. The drug release corroborated with pH-dependent swelling behavior of the matrices and approximated anomalous diffusion mechanism. This study proved the potential of Soluplus{sup ®}-based dispersion in improving the clinical performance of the drug, especially when embedded in modified xanthan mini-matrices. - Highlights: • Microwave-induced solid dispersion of glibenclamide was prepared using Soluplus®. • Solubility of drug corresponded to 75 fold increase at a drug:Soluplus® ratio of 1:7. • Thermal and x-ray analyses suggested amorphization of drug in solid dispersion. • About two fold reductions in hyperglycemic level were achieved by solid dispersion. • Modified xanthan gum showed potential in controlling anomalous transport of drug.

  3. Colloidal approach to dispersion and enhanced deaggregation of aqueous ferrite suspensions

    Science.gov (United States)

    Mandanas, Michael Patrick M.

    The role of solution and surface chemistry on deaggregation of calcined ferrites during attrition (stirred-media) milling of aqueous suspensions were investigated. Suspensions of commercially calcined Fe2O 3 powder (d50 ˜ 5.0 mum) were milled at different solid loadings and suspension pH. The drift of suspension pH, from pH 2.5 to pH 7.0, during solid loading experiments accounted for the observed reagglomeration with milling time. The observed deaggregation rates during pH stat milling, in the acidic region, can be related to (i) elevated solubility and (ii) enhanced dispersion via surface charge. Proton adsorption density during pH stat milling at different pH values is also comparable to existing potentiometric titration plots and can be related to deaggregation rates. A passivation-dispersion approach for dispersing manganese zinc ferrite (MnxZn(1 - x)Fe2O4) powder is presented. Addition of oxalic acid can help control dissolution reactions from particle surfaces and is subsequently dispersed with polyethyleneimine (PEI). Fully dissociated oxalic acid (pK1 = 1.2, pK2 = 4.3) solutions reacted with MnxZn(1 - x)Fe 2O4 leads to the formation of a uniform negative charge on the particle surface, resulting from the sparingly soluble salt formed on the surface. The resulting rheological data for passivation/dispersion of relatively high solid MnxZn(1 - x)Fe2O 4 suspensions (˜80 w/o, (˜40 v/o)) demonstrate improved colloid stability with improved rheological properties. Using the passivation dispersion scheme developed, deaggregation of commercially calcined MnxZn(1 - x)Fe2O4 powders during attrition milling was investigated. Reagglomeration is apparent when using a typical treatment, 2 w/w of a sulfonated based naphthalene condensate, during deaggregation of the calcined MnxZn(1 - x)Fe 2O4. However, is not observed for select oxalate/PEI treatments. The determined ideal treatment is 2 w/w oxalate and 3 w/w PEI based on the particle size and rheological

  4. Waves in microstructured solids and negative group velocity

    Science.gov (United States)

    Peets, T.; Kartofelev, D.; Tamm, K.; Engelbrecht, J.

    2013-07-01

    Waves with negative group velocity (NGV) were discovered in optics by Sommerfeld and Brillouin, and experimentally verified in many cases, for example in left-handed media. For waves in solids, such an effect is described mostly in layered media. In this paper, it is demonstrated that in microstructured solids, waves with NGV may also exist leading to backwards pulse propagation. Two physical cases are analysed: a Mindlin-type hierarchical (a scale within a scale) material and a felt-type (made of fibres) material. For both cases, the dispersion analysis of one-dimensional waves shows that there exists certain ranges of physical parameters which lead to NGV. The results can be used in dispersion engineering for designing materials with certain properties.

  5. Genetic variation and relationships of old maize genotypes (Zea mays l. detected using SDS-page

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 40 old genotypes of maize from Hungary, Union of Soviet Socialist Republics, Poland, Czechoslovakia, Yugoslavia and Slovak Republic  were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE through vertical slab unit. The number of total scorable protein bands was twentythree as a result of SDS-PAGE technique but those that were not cosistent in reproducibility and showed occasional variation in sharpness and density were not considered. Out of twentythree polypeptide bands, 6 (31% were commonly present in all accessions and considered as monomorphic, while 17 (65% showed variations and considered as polymorphic. On the basis of banding profiles of proteins of different kDa, gel was divided into zones A, B and C. The major protein bands were lied in zones A and B, while minor bands were present in zones C. In zone A out of 10 protein bands, 1 were monomorphic and 9 were polymorphic. In zone B out of 8 protein bands, 3 was monomorphic and 5 was polymorphic and in zone C out of 5 protein bands, 2 were monomorphic whereas 3 polymorphic. The dendrogram tree demonstrated the relationship among the forty registered old maize genotypes according to the similarity index, using UPGMA cluster analysis. The dendrogram was divided into two main clusters. The first one contained eleven genotypes from maize, while the second cluster contained the twentynine genotypes of maize. Similarly the present study of genetic variability in the seed storage polypeptide determined by SDS-PAGE technique proved that it is fruitful to identify genetic diversity among accessions of maize. 

  6. The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) Data Depository and Distribution Element (SD3E) System Architecture

    Science.gov (United States)

    Ho, Evelyn L.; Schweiss, Robert J.

    2008-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS), the U.S. Government's future low-Earth orbiting satellite system, will monitor global weather and environmental conditions. Serving as a risk reduction for NPOESS, the NPOESS Preparatory Project (NPP) will provide remotely sensed atmospheric, land, ocean, ozone, and sounder data that will serve the meteorological and global climate change scientific communities. The National Aeronautics and Space Administration (NASA) NPP Science Data Segment's (SDS) primary role is to independently assess the quality of the NPP science and environmental data records for their ability to support climate research. The SDS is composed of nine elements; an input element that receives data from the operational agencies and acts as a buffer, a calibration analysis element, five elements devoted to measurement based quality assessment, an element used to test algorithmic improvements, and an element that provides overall science direction. Each element requires a set of sensor specific science data products for their evaluation. There are four NPP sensors that will be flown on the NPP observatory. They are the Visible Infrared Imagining Radiometer Suite (VIIRS), the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Ozone Mapper/Profiler Suite (OMPS). It is estimated that these four sensors combined will make daily data requests for approximately six terabytes of NPP science products from the operational data providers. As a result, issues associated with duplicate data requests, data transfers of large volumes of diverse products, and data transfer failures raised concerns with respect to the network traffic and bandwidth consumption. Therefore, a central data broker system for receiving and buffering data requests and data products for the SDS was developed. The data element for this system is called the SDS Data Depository and Distribution Element (SD3E). It

  7. Characterization of solid-solution interface by potentiometric titration and electrophoretic mobility

    International Nuclear Information System (INIS)

    Lindecker, C.; Drot, R.; Fourest, B.; Simoni, E.

    1999-01-01

    The study of nuclear waste storage in deep geological sites involves the understanding of processes which could produce a possible dispersion or retention of radioelements. The dispersion of solid particles in aqueous solution is consequently important to be characterized. In this bi-phased system it is necessary to determine the characteristics of the solid-solution interface. The method used of this study is the techniques of potentiometric titration applied to heterogeneous systems. The material studied were phosphate matrices which were synthesized in the laboratory. The dependence of their surface change upon the nature of the electrolytes was investigated

  8. Development of high pressure conductivity probe (HPCP) for secondary shut down system (SDS-2) of 500 MWe PHWR

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Mohan, L.R.

    2003-09-01

    The poison solution and the moderator in Secondary Shutdown System (SDS-2) of 500 MWe PHWR, are separated by their own liquid in liquid interface. This interface moves towards the calandria because of molecular diffusion, temperature difference and physical disturbances in the moderator level. It is proposed to install two numbers of high pressure conductivity probes (HPCP) to monitor the interface movement as well as to provide the safe annunciation value for interface location. On actuation of the SDS-2 signal, high-pressure helium will inject the poison into the moderator to shutdown the reactor. During poison injection, these probes will experience high pressure of nearly 85 kg/sq.cm. Global market survey indicated that conductivity probes having built in temperature sensor are available for a maximum pressure rating of 35 kg/sq.cm. Hence in order to meet the process requirement of SDS-2, the development of HPCP suitable for a pressure of 85 kg/sq.cm. was taken up. Two numbers of such probes were successfully designed, fabricated and evaluated for their performance. The developed conductivity probes fully meet the laid design and performance criteria. The aforesaid development work was a successful endeavour towards indigenisation of high-pressure conductivity probe for future applications. This report deals with the design aspects, fabrication technique, material and performance evajuation criteria and test results of HPCP. (author)

  9. Speciation analysis of mercury by dispersive solid-phase extraction coupled with capillary electrophoresis.

    Science.gov (United States)

    Li, Jinhua; Liu, Junying; Lu, Wenhui; Gao, Fangfang; Wang, Liyan; Ma, Jiping; Liu, Huitao; Liao, Chunyang; Chen, Lingxin

    2018-04-23

    A pretreatment method of dispersive solid-phase extraction (DSPE) along with back-extraction followed by CE-UV detector was developed for the determination of mercury species in water samples. Sulfhydryl-functionalized SiO 2 microspheres (SiO 2 -SH) were synthesized and used as DSPE adsorbents for selective extraction and enrichment of three organic mercury species namely ethylmercury (EtHg), methylmercury (MeHg), and phenylmercury (PhHg), along with L-cysteine (L-cys) containing hydrochloric acid as back-extraction solvent. Several main extraction parameters were systematically investigated including sample pH, amount of adsorbent, extraction and back-extraction time, volume of eluent, and concentration of hydrochloric acid. Under optimal conditions, good linearity was achieved with correlation coefficients over 0.9990, in the range of 4-200 μg/L for EtHg, and 2-200 μg/L for MeHg and PhHg. The LODs were obtained of 1.07, 0.34, and 0.24 μg/L for EtHg, MeHg, and PhHg, respectively, as well as the LOQs were 3.57, 1.13, and 0.79 μg/L, respectively, with enrichment factors ranging from 109 to 184. Recoveries were attained with tap and lake water samples in a range of 62.3-107.2%, with relative standard deviations of 3.5-10.1%. The results proved that the method of SiO 2 -SH based DSPE coupled with CE-UV was a simple, rapid, cost-effective, and eco-friendly alternative for the determination of mercury species in water samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  11. Urinary growth hormone level and insulin-like growth factor-1 standard deviation score (IGF-SDS) can discriminate adult patients with severe growth hormone deficiency.

    Science.gov (United States)

    Hirohata, Toshio; Saito, Nobuhito; Takano, Koji; Yamada, So; Son, Jae-Hyun; Yamada, Shoko M; Nakaguchi, Hiroshi; Hoya, Katsumi; Murakami, Mineko; Mizutani, Akiko; Okinaga, Hiroko; Matsuno, Akira

    2013-01-01

    Adult growth hormone (GH) deficiency (AGHD) in Japan is diagnosed based on peak GH concentrations during GH provocative tests such as GHRP-2 stimulation test. In this study, we aimed to evaluate the ability of serum insulin-like growth factor-1 (sIGF-1) and urinary GH (uGH) at the time of awakening to diagnose AGHD. Fifty-nine patients with pituitary disease (32 men and 27 women; age 20-85 y (57.5 ± 15.5, mean ± SD) underwent GHRP-2 stimulation and sIGF-1 testing. Thirty-six and 23 patients were diagnosed with and without severe AGHD, respectively based on a peak GH response of standard deviation score (IGF-1 SDS) based on age and sex. We determined whether uGH levels in urine samples from 42 of the 59 patients at awakening were above or below the sensitivity limit. We evaluated IGF-1 SDS and uGH levels in a control group of 15 healthy volunteers. Values for IGF-1 SDS were significantly lower in patients with, than without (-2.07 ± 1.77 vs.-0.03 ± 0.92, mean ± SD; p -1.4. IGF-1 SDS discriminated AGHD more effectively in patients aged ≤60 years. The χ2 test revealed a statistical relationship between uGH and AGHD (test statistic: 7.0104 ≥ χ2 (1; 0.01) = 6.6349). When IGF-1 SDS is < -1.4 or uGH is below the sensitivity limit, AGHD can be detected with high sensitivity.

  12. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  13. The Preparation and Performances of Self-Dispersed Nanomicron Emulsified Wax Solid Lubricant Ewax for Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available An oil-in-water nanomicron wax emulsion with oil phase content 45 wt% was prepared by using the emulsifying method of surfactant-in-oil. The optimum prepared condition is 85°C, 20 min, and 5 wt% complex emulsifiers. Then the abovementioned nanomicron emulsifying wax was immersed into a special water-soluble polymer in a certain percentage by the semidry technology. At last, a solidified self-dispersed nanomicron emulsified wax named as Ewax, a kind of solid lubricant for water based drilling fluid, was obtained after dried in the special soluble polymer containing emulsifying wax in low temperature. It is shown that the adhesion coefficient reduced rate (ΔKf is 73.5% and the extreme pressure (E-P friction coefficient reduced rate (Δf is 77.6% when the produced Ewax sample was added to fresh water based drilling fluid at dosage 1.0 wt%. In comparison with other normal similar liquid products, Ewax not only has better performances of lubrication, filtration loss control property, heat resistance, and tolerance to salt and is environmentally friendly, but also can solve the problems of freezing in the winter and poor storage stability of liquid wax emulsion in oilfield applications.

  14. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    Science.gov (United States)

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Determination of soy proteins in food samples by dispersive solid-phase immunoextraction and dynamic long-wavelength fluorometry

    International Nuclear Information System (INIS)

    Molina-Delgado, María Ángeles; Aguilar-Caballos, María Paz; Gomez-Hens, Agustina

    2013-01-01

    We report on a method for the determination of soy proteins in food samples via dispersive solid-phase immunoextraction using gold-coated magnetic nanoparticles (NPs) as a support. Soy proteins were first extracted using anti-soy protein antibodies immobilized on the NPs, and then quantified by measuring the increase in fluorescence of the long-wavelength fluorophore cresyl violet in the presence of the anionic surfactant sodium dodecyl sulfate at neutral pH in a flow system. The method involves the use of two standard or sample aliquots. The fluorescence intensity of one aliquot is directly measured whereas that of the other aliquot is measured after immunoextraction. The difference between the peak heights of both aliquots serves as the analytical information that is directly proportional to the protein concentration. The limit of detection is 0.35 mg L −1 , the linear range is from 1 to 15 mg L −1 , and the relative standard deviation is < 5 %. Proteins such as bovine serum albumin and globulins do not interfere at the same concentration level. The method was applied to the analysis of soy-based beverages and gave recoveries in the range between 80.0 and 107.3 %. (author)

  16. Characterization and morphology of solids suspended in rain water

    International Nuclear Information System (INIS)

    Iturbe G, J.L.; Lopez M, B.E.; Torre O, J. De la

    2000-01-01

    This work presents the results obtained from the analysis of rain water in Mexico. The study treats over the characterization and morphology of the solids suspended in form of particles in the atmosphere. The solids suspended were obtained of the pluvial precipitations after these have been centrifuged. Subsequently of the separation, the particulate matter was analysed by Sem and X-ray dispersive energy

  17. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis.

    Science.gov (United States)

    Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo

    2006-03-20

    In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate

  18. Approximate method for treating dispersion in one-way quantum channels

    International Nuclear Information System (INIS)

    Stace, T. M.; Wiseman, H. M.

    2006-01-01

    Coupling the output of a source quantum system into a target quantum system is easily treated by cascaded systems theory if the intervening quantum channel is dispersionless. However, dispersion may be important in some transfer protocols, especially in solid-state systems. In this paper we show how to generalize cascaded systems theory to treat such dispersion, provided it is not too strong. We show that the technique also works for fermionic systems with a low flux, and can be extended to treat fermionic systems with large flux. To test our theory, we calculate the effect of dispersion on the fidelity of a simple protocol of quantum state transfer. We find good agreement with an approximate analytical theory that had been previously developed for this example

  19. Simultaneous determination of atorvastatin and valsartan in human plasma by solid-based disperser liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khorram, Parisa; Pazhohan, Azar

    2016-04-01

    A simple, sensitive, and efficient method has been developed for simultaneous estimation of valsartan and atorvastatin in human plasma by combination of solid-based dispersive liquid-liquid microextraction and high performance liquid chromatography-diode array detection. In the proposed method, 1,2-dibromoethane (extraction solvent) is added on a sugar cube (as a solid disperser) and it is introduced into plasma sample containing the analytes. After manual shaking and centrifugation, the resultant sedimented phase is subjected to back extraction into a small volume of sodium hydrogen carbonate solution using air-assisted liquid-liquid microextraction. Then the cloudy solution is centrifuged and the obtained aqueous phase is transferred into a microtube and analyzed by the separation system. Under the optimal conditions, extraction recoveries are obtained in the range of 81-90%. Calibration curves plotted in drug-free plasma sample are linear in the ranges of 5-5000μgL(-1) for valsartan and 10-5000μgL(-1) for atorvastatin with the coefficients of determination higher than 0.997. Limits of detection and quantification of the studied analytes in plasma sample are 0.30-2.6 and 1.0-8.2μgL(-1), respectively. Intra-day (n=6) and inter-days (n=4) precisions of the method are satisfactory with relative standard deviations less than 7.4% (at three levels of 10, 500, and 2000μgL(-1), each analyte). These data suggest that the method can be successfully applied to determine trace amounts of valsartan and atorvastatin in human plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ionic liquid-assisted multiwalled carbon nanotube-dispersive micro-solid phase extraction for sensitive determination of inorganic As species in garlic samples by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Grijalba, Alexander Castro; Escudero, Leticia B.; Wuilloud, Rodolfo G.

    2015-08-01

    A highly sensitive dispersive micro-solid phase extraction (D-μ-SPE) method combining an ionic liquid (IL) and multi-walled carbon nanotubes (MWCNTs) for inorganic As species (As(III) and As(V)) species separation and determination in garlic samples by electrothermal atomic absorption spectrometry (ETAAS) was developed. Trihexyl(tetradecil)phosphonium chloride IL was used to form an ion pair with the arsenomolybdate complex obtained by reaction of As(V) with molybdate ion. Afterwards, 1.0 mg of MWCNTs was dispersed for As(V) extraction and the supernatant was separated by centrifugation. MWCNTs were re-dispersed with tetradecyltrimethylammonium bromide surfactant and ultrasound followed by direct injection into the graphite furnace of ETAAS for As determination. Pyrolysis and atomization conditions were carefully studied for complete decomposition of MWCNTs and IL matrices. Under optimum conditions, an extraction efficiency of 100% and a preconcentration factor of 70 were obtained with 5 mL of garlic extract. The detection limit was 7.1 ng L- 1 and the relative standard deviations (RSDs) for six replicate measurements at 5 μg L- 1 of As were 5.4% and 4.8% for As(III) and As(V), respectively. The proposed D-μ-SPE method allowed the efficient separation and determination of inorganic As species in a complex matrix such as garlic extract.

  1. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  2. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions

    NARCIS (Netherlands)

    Van Drooge, D.J.; Hinrichs, W.L.J.; Frijlink, H.W.

    2004-01-01

    In this study, anomalous dissolution behaviour of tablets consisting of sugar glass dispersions was investigated. The poorly aqueous soluble diazepam was used as a lipophilic model drug. The release of diazepam and sugar carrier was determined to study the mechanisms governing dissolution behaviour.

  3. Development of amorphous dispersions of artemether with hydrophilic polymers via spray drying: Physicochemical and in silico studies

    Directory of Open Access Journals (Sweden)

    Jaywant N. Pawar

    2016-06-01

    Full Text Available Artemether (ARM is a poorly water soluble and poorly permeable drug effective against acute and severe falciparum malaria, hence there is a strong need to improve its solubility. The objective of the study was to enhance the solubility and dissolution rate of ARM by preparation of solid dispersions using spray-drying technique. Solid dispersions of ARM were prepared with Soluplus, Kollidon VA 64, HPMC and Eudragit EPO at weight ratios of 1:1, 1:2, 1:3 using spray drying technology, and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC, and X-ray powder diffraction (XRD to identify the physicochemical interaction between drug and carrier, as well as effect on dissolution. The prepared solid dispersion of ARM with polymers showed reduced crystallinity as compared to neat ARM, which was confirmed by DSC and XRD. Drug/polymer interactions were studied in-silico by docking and molecular dynamics which indicated formation of van der Waals type of interactions of ARM with the polymers. Based on solubility studies, the optimum drug/Soluplus ratio was found to be 1:3. The dissolution studies of formulation SD3 showed highest drug release up to 82% compared to neat ARM giving only 20% at 60 minutes. The spray-dried products were free of crystalline ARM; possessed higher dissolution rates, and were stable over a period according to ICH guidelines. These findings suggest that an amorphous solid dispersion of ARM could be a viable option for enhancing the dissolution rate of ARM.

  4. Process improvement studies for the Submerged Demineralizer System (SDS) at the Three Mile Island Nuclear Power Station, Unit 2

    International Nuclear Information System (INIS)

    Campbell, D.O.; Collins, E.D.; King, L.J.; Knauer, J.B.

    1982-05-01

    Tests were made to investigate flowsheet modifications which might improve the expected performance of the reference Submerged Demineralizer System (SDS) flowsheet for decontaminating the high-activity-level water at the Three Mile Island Nuclear Power Station, Unit 2. The tests included one series designed to show the effects of aging time, temperature, and pH on reduction of the concentrations of residual 137 Cs and 90 Sr, and a second series designed to evaluate the physical sorption of 125 Sb on silica gel or other inorganic sorbents. Results of the tests indicated that the most promising method for reducing 137 Cs and 90 Sr concentrations below 10 -4 μCi/mL is to age the effluent water from the zeolite columns for at least 2 h at 75 0 C prior to its passage through another zeolite column. Sorption of the 125 Sb on silica gel or other inorganic sorbents did not show sufficient promise to be considered for practical use. A previously identified method for removal of 125 Sb requires deionization of the water by removal of the sodium on a cation exchange resin prior to sorption of 125 Sb on anion exchange resin; however, this method would generate a relatively large amount of low-activity-level solid waste

  5. End Functionalized Nonionic Water-Dispersible Conjugated Polymers.

    Science.gov (United States)

    Zhan, Ruoyu; Liu, Bin

    2017-09-01

    2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecularly Imprinted Nanomicrospheres as Matrix Solid-Phase Dispersant Combined with Gas Chromatography for Determination of Four Phosphorothioate Pesticides in Carrot and Yacon

    Directory of Open Access Journals (Sweden)

    Mengchun Zhou

    2015-01-01

    Full Text Available An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD coupled with gas chromatography (GC, was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05–17.0 ng·g−1 with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g−1 in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4–105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples.

  7. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene–polypropylene block copolymer for maximized disintegration and dissolution

    Directory of Open Access Journals (Sweden)

    Balata GF

    2016-10-01

    Full Text Available Gehan F Balata,1,2 Ahmad S Zidan,2 Mohamad AS Abourehab,1,3 Ebtessam A Essa4 1Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; 2Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 3Department of Pharmaceutics, Faculty of Pharmacy, El-Minia University, El-Minia, 4Department of Pharmaceutics, Faculty of Pharmacy, Tanta University, Tanta, Egypt Abstract: The objective of this research was to improve the dissolution of simvastatin and to incorporate it in rapid disintegrating tablets (RDTs with an optimized disintegration and dissolution characteristics. Polyoxyethylene–polypropylene block copolymer (poloxamer 188 was employed as a hydrophilic carrier to prepare simvastatin solid dispersions (SDs. Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC and X-ray diffractometry were employed to understand the interaction between the drug and the carrier in the solid state. The results obtained from Fourier transform infrared spectroscopy showed absence of any chemical interaction between the drug and poloxamer. The results of differential scanning calorimetry and X-ray diffractometry confirmed the conversion of simvastatin to distorted crystalline state. The SD of 1:2 w/w drug to carrier ratio showed the highest dissolution; hence, it was incorporated in RDT formulations using a 32 full factorial design and response surface methodology. The initial assessments of RDTs demonstrated an acceptable flow, hardness, and friability to indicate good mechanical strength. The interaction and Pareto charts indicated that percentage of croscarmellose sodium incorporated was the most important factor affecting the disintegration time and dissolution parameter followed by the hardness value and their interaction effect. Compression force showed a superior influence to increase RDT’s porosity and to fasten disintegration rather than swelling action by

  8. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  9. Development and characterization of controlled release polar lipid microparticles of candesartan cilexetil by solid dispersion

    Science.gov (United States)

    Kamalakkannan, V; Puratchikody, A; Ramanathan, L

    2013-01-01

    Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822

  10. Evaluation of Intestinal Absorption and Bioavailability of a Bergenin-Phospholipid Complex Solid Dispersion in Rats.

    Science.gov (United States)

    Gao, Haoshi; Wei, Yue; Xi, Long; Sun, Yuanyuan; Zhang, Tianhong

    2018-05-01

    Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. C max and AUC 0 → t values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.

  11. Enhanced dissolution and bioavailability of Nateglinide by microenvironmental pH-regulated ternary solid dispersion: in-vitro and in-vivo evaluation.

    Science.gov (United States)

    Wairkar, Sarika; Gaud, Ram; Jadhav, Namdeo

    2017-09-01

    Nateglinide, an Antidiabetic drug (BCS II), shows pH-dependent solubility and variable bioavailability. The purpose of study was to increase dissolution and bioavailability of Nateglinide by development of its microenvironmental pH-regulated ternary solid dispersion (MeSD). MeSD formulation of Nateglinide, poloxamer-188 and Na 2 CO 3 was prepared by melt dispersion in 1 : 2 : 0.2 w/w ratio and further characterised for solubility, In-vitro dissolution, microenvironmental pH, crystallinity/amorphism, physicochemical interactions, bioavailability in Wistar rats. Solubility of Nateglinide was increased notably in MeSD, and its in-vitro dissolution study showed fourfold increase in the dissolution, particularly in 1.2 pH buffer. Prominent reduction in the peak intensity of X-ray powder diffraction (XRPD) and absence of endotherm in DSC thermogram confirmed the amorphism of Nateglinide in MeSD. Attenuated total reflectance Fourier transform infrared spectra revealed the hydrogen bond interactions between Nateglinide and poloxamer-188. In-vivo study indicated that MeSD exhibited fourfold increase in area under curve over Nateglinide. Tmax of MeSD was observed at 0.25 h, which is beneficial for efficient management of postprandial sugar. Instead of mere transformation of the Nateglinide to its amorphous form as evidenced by DSC and XRPD, formation of a soluble carboxylate compound of Nateglinide in MeSD was predominantly responsible for dissolution and bioavailability enhancement. The study demonstrates the utility of MeSD in achieving pH-independent dissolution, reduced T max and enhanced bioavailability of Nateglinide. © 2017 Royal Pharmaceutical Society.

  12. Influence of sodium dodecyl sulfonate (SDS) on the hydrothermal synthesis of YVO4:Eu3+ crystals in a wide pH range

    International Nuclear Information System (INIS)

    Wang Juan; Xu Yunhua; Hojamberdiev, Mirabbos; Zhu Gangqiang

    2009-01-01

    In this work, a facile hydrothermal route has been proposed for the morphology-controllable preparation of Eu-doped yttrium orthovanadate (YVO 4 :Eu 3+ ) powders in the presence of sodium dodecyl sulfonate (SDS) as a template in a wide pH range. The structure, composition, morphology, and optical properties of the final products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL), respectively. It was found that single phase YVO 4 :Eu 3+ micro- and nanocrystals with different shapes can be fabricated at 180 deg. C for 24 h with suitable amount of SDS in a wide pH range. The formation mechanism and the influence of SDS on the morphology of YVO 4 :Eu 3+ micro- and nanocrystals were investigated as a function of pH value. The PL measurement revealed that the samples with different morphologies exhibited different values for optical properties, especially soybean-like nanopowders showed a higher intensity compared to other samples with different morphologies due mainly to their high packing densities and low scattering of light.

  13. A Follow-up Study on BMI-SDS and Insulin Resistance in Overweight and Obese Children at Risk for Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Soulmaz Fazeli Farsani PharmD, MSc

    2015-01-01

    Full Text Available Objectives. To evaluate body mass index standard deviation score (BMI-SDS, insulin sensitivity, and progression to type 2 diabetes mellitus (T2DM in children at risk for T2DM approximately 3 years after being diagnosed with overweight/obesity and insulin resistance (measured by Homeostasis Model Assessment of Insulin Resistance [HOMA-IR]. Methods. Out of 86 invited children, 44 (mean age 15.4 ± 3.6 years participated. Medical history, physical examination, and laboratory workup were performed. Results. While the mean BMI-SDS significantly increased from 2.9 to 3.4, the mean HOMA-IR significantly decreased from 5.5 to 4.6 (baseline vs follow-up visit. Change in HOMA-IR was only due to a decrease in mean fasting plasma insulin (24.1 vs 21.1, P = .073. Conclusions. Although increase in BMI-SDS in these children is worrisome, the American Diabetes Association recommended screening interval of 3 years for children at risk for T2DM is not too long based on the fact that none of our study participants developed T2DM.

  14. Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder

    Science.gov (United States)

    Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.

    2014-11-01

    Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.

  15. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High throughput screening of phenoxy carboxylic acids with dispersive solid phase extraction followed by direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Wang, Jiaqin; Zhu, Jun; Si, Ling; Du, Qi; Li, Hongli; Bi, Wentao; Chen, David Da Yong

    2017-12-15

    A high throughput, low environmental impact methodology for rapid determination of phenoxy carboxylic acids (PCAs) in water samples was developed by combing dispersive solid phase extraction (DSPE) using velvet-like graphitic carbon nitride (V-g-C 3 N 4 ) and direct analysis in real time mass spectrometry (DART-MS). Due to the large surface area and good dispersity of V-g-C 3 N 4 , the DSPE of PCAs in water was completed within 20 s, and the elution of PCAs was accomplished in 20 s as well using methanol. The eluents were then analyzed and quantified using DART ionization source coupled to a high resolution mass spectrometer, where an internal standard was added in the samples. The limit of detection ranged from 0.5 ng L -1 to 2 ng L -1 on the basis of 50 mL water sample; the recovery 79.9-119.1%; and the relative standard deviation 0.23%-9.82% (≥5 replicates). With the ease of use and speed of DART-MS, the whole protocol can complete within mere minutes, including sample preparation, extraction, elution, detection and quantitation. The methodology developed here is simple, fast, sensitive, quantitative, requiring little sample preparation and consuming significantly less toxic organic solvent, which can be used for high throughput screening of PCAs and potentially other contaminants in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Thermodynamic and structural investigation of the specific SDS binding of humicola insolens cutinase

    DEFF Research Database (Denmark)

    Kold, David; Dauter, Zbigniew; Laustsen, Anne K

    2014-01-01

    The interaction of lipolytic enzymes with anionic surfactants is of great interest with respect to industrially produced detergents. Here, we report the interaction of cutinase from the thermophilic fungus Humicola insolens with the anionic surfactant SDS, and show the enzyme specifically binds...... of the enzyme has been solved by X-ray crystallography in its apo form and after cocrystallization with diethyl p-nitrophenyl phosphate (DNPP) leading to a complex with monoethylphosphate (MEP) esterified to the catalytically active serine. The enzyme has the same fold as reported for other cutinases but...

  18. In-Vial Micro-Matrix-Solid Phase Dispersion for the Analysis of Fragrance Allergens, Preservatives, Plasticizers, and Musks in Cosmetics

    Directory of Open Access Journals (Sweden)

    Maria Celeiro

    2014-07-01

    Full Text Available Fragrance allergens, preservatives, plasticizers, and synthetic musks are usually present in cosmetic and personal care products formulations and many of them are subjected to use restrictions or labeling requirements. Matrix solid-phase dispersion (MSPD is a very suitable analytical technique for the extraction of these compounds providing a simple, low cost sample preparation, and the possibility of performing both extraction and clean-up in one step, reducing possible contamination and analyte losses. This extraction technique has been successfully applied to many cosmetics ingredients allowing obtaining quantitative recoveries. A new very simple micro-MSPD procedure performing the disruption step in a vial is proposed for the gas chromatography-mass spectrometry (GC-MS analysis of 66 chemicals usually present in cosmetics and personal care products. The method was validated showing general recoveries between 80% and 110%, relative standard deviation (RSD values lower than 15%, and limits of detection (LODs below 30 ng·g−1. The validated method was applied to a broad range of cosmetics and personal care products, including several products intended for baby care.

  19. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  20. Conformational studies of peptides representing a segment of TM7 from Vo-H+-V-ATPase in SDS micelles

    NARCIS (Netherlands)

    Duarte, A.M.; Jong, de E.R.; Koehorst, R.B.M.; Hemminga, M.A.

    2010-01-01

    The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence